time.c 4.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182
  1. /*
  2. * linux/arch/v850/kernel/time.c -- Arch-dependent timer functions
  3. *
  4. * Copyright (C) 1991, 1992, 1995, 2001, 2002 Linus Torvalds
  5. *
  6. * This file contains the v850-specific time handling details.
  7. * Most of the stuff is located in the machine specific files.
  8. *
  9. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  10. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  11. */
  12. #include <linux/errno.h>
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/param.h>
  16. #include <linux/string.h>
  17. #include <linux/mm.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/time.h>
  20. #include <linux/timex.h>
  21. #include <linux/profile.h>
  22. #include <asm/io.h>
  23. #include "mach.h"
  24. #define TICK_SIZE (tick_nsec / 1000)
  25. /*
  26. * timer_interrupt() needs to keep up the real-time clock,
  27. * as well as call the "do_timer()" routine every clocktick
  28. */
  29. static irqreturn_t timer_interrupt (int irq, void *dummy, struct pt_regs *regs)
  30. {
  31. #if 0
  32. /* last time the cmos clock got updated */
  33. static long last_rtc_update=0;
  34. #endif
  35. /* may need to kick the hardware timer */
  36. if (mach_tick)
  37. mach_tick ();
  38. do_timer (1);
  39. #ifndef CONFIG_SMP
  40. update_process_times(user_mode(regs));
  41. #endif
  42. profile_tick(CPU_PROFILING, regs);
  43. #if 0
  44. /*
  45. * If we have an externally synchronized Linux clock, then update
  46. * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
  47. * called as close as possible to 500 ms before the new second starts.
  48. */
  49. if (ntp_synced() &&
  50. xtime.tv_sec > last_rtc_update + 660 &&
  51. (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
  52. (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
  53. if (set_rtc_mmss (xtime.tv_sec) == 0)
  54. last_rtc_update = xtime.tv_sec;
  55. else
  56. last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
  57. }
  58. #ifdef CONFIG_HEARTBEAT
  59. /* use power LED as a heartbeat instead -- much more useful
  60. for debugging -- based on the version for PReP by Cort */
  61. /* acts like an actual heart beat -- ie thump-thump-pause... */
  62. if (mach_heartbeat) {
  63. static unsigned cnt = 0, period = 0, dist = 0;
  64. if (cnt == 0 || cnt == dist)
  65. mach_heartbeat ( 1 );
  66. else if (cnt == 7 || cnt == dist+7)
  67. mach_heartbeat ( 0 );
  68. if (++cnt > period) {
  69. cnt = 0;
  70. /* The hyperbolic function below modifies the heartbeat period
  71. * length in dependency of the current (5min) load. It goes
  72. * through the points f(0)=126, f(1)=86, f(5)=51,
  73. * f(inf)->30. */
  74. period = ((672<<FSHIFT)/(5*avenrun[0]+(7<<FSHIFT))) + 30;
  75. dist = period / 4;
  76. }
  77. }
  78. #endif /* CONFIG_HEARTBEAT */
  79. #endif /* 0 */
  80. return IRQ_HANDLED;
  81. }
  82. /*
  83. * This version of gettimeofday has near microsecond resolution.
  84. */
  85. void do_gettimeofday (struct timeval *tv)
  86. {
  87. #if 0 /* DAVIDM later if possible */
  88. extern volatile unsigned long lost_ticks;
  89. unsigned long lost;
  90. #endif
  91. unsigned long flags;
  92. unsigned long usec, sec;
  93. unsigned long seq;
  94. do {
  95. seq = read_seqbegin_irqsave(&xtime_lock, flags);
  96. #if 0
  97. usec = mach_gettimeoffset ? mach_gettimeoffset () : 0;
  98. #else
  99. usec = 0;
  100. #endif
  101. #if 0 /* DAVIDM later if possible */
  102. lost = lost_ticks;
  103. if (lost)
  104. usec += lost * (1000000/HZ);
  105. #endif
  106. sec = xtime.tv_sec;
  107. usec += xtime.tv_nsec / 1000;
  108. } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
  109. while (usec >= 1000000) {
  110. usec -= 1000000;
  111. sec++;
  112. }
  113. tv->tv_sec = sec;
  114. tv->tv_usec = usec;
  115. }
  116. EXPORT_SYMBOL(do_gettimeofday);
  117. int do_settimeofday(struct timespec *tv)
  118. {
  119. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  120. return -EINVAL;
  121. write_seqlock_irq (&xtime_lock);
  122. /* This is revolting. We need to set the xtime.tv_nsec
  123. * correctly. However, the value in this location is
  124. * is value at the last tick.
  125. * Discover what correction gettimeofday
  126. * would have done, and then undo it!
  127. */
  128. #if 0
  129. tv->tv_nsec -= mach_gettimeoffset() * 1000;
  130. #endif
  131. while (tv->tv_nsec < 0) {
  132. tv->tv_nsec += NSEC_PER_SEC;
  133. tv->tv_sec--;
  134. }
  135. xtime.tv_sec = tv->tv_sec;
  136. xtime.tv_nsec = tv->tv_nsec;
  137. ntp_clear();
  138. write_sequnlock_irq (&xtime_lock);
  139. clock_was_set();
  140. return 0;
  141. }
  142. EXPORT_SYMBOL(do_settimeofday);
  143. static int timer_dev_id;
  144. static struct irqaction timer_irqaction = {
  145. timer_interrupt,
  146. IRQF_DISABLED,
  147. CPU_MASK_NONE,
  148. "timer",
  149. &timer_dev_id,
  150. NULL
  151. };
  152. void time_init (void)
  153. {
  154. mach_gettimeofday (&xtime);
  155. mach_sched_init (&timer_irqaction);
  156. }