setup.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975
  1. /*
  2. * Architecture-specific setup.
  3. *
  4. * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. * Stephane Eranian <eranian@hpl.hp.com>
  7. * Copyright (C) 2000, 2004 Intel Corp
  8. * Rohit Seth <rohit.seth@intel.com>
  9. * Suresh Siddha <suresh.b.siddha@intel.com>
  10. * Gordon Jin <gordon.jin@intel.com>
  11. * Copyright (C) 1999 VA Linux Systems
  12. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  13. *
  14. * 12/26/04 S.Siddha, G.Jin, R.Seth
  15. * Add multi-threading and multi-core detection
  16. * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
  17. * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
  18. * 03/31/00 R.Seth cpu_initialized and current->processor fixes
  19. * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
  20. * 02/01/00 R.Seth fixed get_cpuinfo for SMP
  21. * 01/07/99 S.Eranian added the support for command line argument
  22. * 06/24/99 W.Drummond added boot_cpu_data.
  23. * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
  24. */
  25. #include <linux/module.h>
  26. #include <linux/init.h>
  27. #include <linux/acpi.h>
  28. #include <linux/bootmem.h>
  29. #include <linux/console.h>
  30. #include <linux/delay.h>
  31. #include <linux/kernel.h>
  32. #include <linux/reboot.h>
  33. #include <linux/sched.h>
  34. #include <linux/seq_file.h>
  35. #include <linux/string.h>
  36. #include <linux/threads.h>
  37. #include <linux/screen_info.h>
  38. #include <linux/dmi.h>
  39. #include <linux/serial.h>
  40. #include <linux/serial_core.h>
  41. #include <linux/efi.h>
  42. #include <linux/initrd.h>
  43. #include <linux/pm.h>
  44. #include <linux/cpufreq.h>
  45. #include <linux/kexec.h>
  46. #include <linux/crash_dump.h>
  47. #include <asm/ia32.h>
  48. #include <asm/machvec.h>
  49. #include <asm/mca.h>
  50. #include <asm/meminit.h>
  51. #include <asm/page.h>
  52. #include <asm/patch.h>
  53. #include <asm/pgtable.h>
  54. #include <asm/processor.h>
  55. #include <asm/sal.h>
  56. #include <asm/sections.h>
  57. #include <asm/setup.h>
  58. #include <asm/smp.h>
  59. #include <asm/system.h>
  60. #include <asm/unistd.h>
  61. #include <asm/system.h>
  62. #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
  63. # error "struct cpuinfo_ia64 too big!"
  64. #endif
  65. #ifdef CONFIG_SMP
  66. unsigned long __per_cpu_offset[NR_CPUS];
  67. EXPORT_SYMBOL(__per_cpu_offset);
  68. #endif
  69. extern void ia64_setup_printk_clock(void);
  70. DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
  71. DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
  72. DEFINE_PER_CPU(unsigned long, ia64_phys_stacked_size_p8);
  73. unsigned long ia64_cycles_per_usec;
  74. struct ia64_boot_param *ia64_boot_param;
  75. struct screen_info screen_info;
  76. unsigned long vga_console_iobase;
  77. unsigned long vga_console_membase;
  78. static struct resource data_resource = {
  79. .name = "Kernel data",
  80. .flags = IORESOURCE_BUSY | IORESOURCE_MEM
  81. };
  82. static struct resource code_resource = {
  83. .name = "Kernel code",
  84. .flags = IORESOURCE_BUSY | IORESOURCE_MEM
  85. };
  86. extern void efi_initialize_iomem_resources(struct resource *,
  87. struct resource *);
  88. extern char _text[], _end[], _etext[];
  89. unsigned long ia64_max_cacheline_size;
  90. int dma_get_cache_alignment(void)
  91. {
  92. return ia64_max_cacheline_size;
  93. }
  94. EXPORT_SYMBOL(dma_get_cache_alignment);
  95. unsigned long ia64_iobase; /* virtual address for I/O accesses */
  96. EXPORT_SYMBOL(ia64_iobase);
  97. struct io_space io_space[MAX_IO_SPACES];
  98. EXPORT_SYMBOL(io_space);
  99. unsigned int num_io_spaces;
  100. /*
  101. * "flush_icache_range()" needs to know what processor dependent stride size to use
  102. * when it makes i-cache(s) coherent with d-caches.
  103. */
  104. #define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */
  105. unsigned long ia64_i_cache_stride_shift = ~0;
  106. /*
  107. * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1). This
  108. * mask specifies a mask of address bits that must be 0 in order for two buffers to be
  109. * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
  110. * address of the second buffer must be aligned to (merge_mask+1) in order to be
  111. * mergeable). By default, we assume there is no I/O MMU which can merge physically
  112. * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
  113. * page-size of 2^64.
  114. */
  115. unsigned long ia64_max_iommu_merge_mask = ~0UL;
  116. EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
  117. /*
  118. * We use a special marker for the end of memory and it uses the extra (+1) slot
  119. */
  120. struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
  121. int num_rsvd_regions __initdata;
  122. /*
  123. * Filter incoming memory segments based on the primitive map created from the boot
  124. * parameters. Segments contained in the map are removed from the memory ranges. A
  125. * caller-specified function is called with the memory ranges that remain after filtering.
  126. * This routine does not assume the incoming segments are sorted.
  127. */
  128. int __init
  129. filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
  130. {
  131. unsigned long range_start, range_end, prev_start;
  132. void (*func)(unsigned long, unsigned long, int);
  133. int i;
  134. #if IGNORE_PFN0
  135. if (start == PAGE_OFFSET) {
  136. printk(KERN_WARNING "warning: skipping physical page 0\n");
  137. start += PAGE_SIZE;
  138. if (start >= end) return 0;
  139. }
  140. #endif
  141. /*
  142. * lowest possible address(walker uses virtual)
  143. */
  144. prev_start = PAGE_OFFSET;
  145. func = arg;
  146. for (i = 0; i < num_rsvd_regions; ++i) {
  147. range_start = max(start, prev_start);
  148. range_end = min(end, rsvd_region[i].start);
  149. if (range_start < range_end)
  150. call_pernode_memory(__pa(range_start), range_end - range_start, func);
  151. /* nothing more available in this segment */
  152. if (range_end == end) return 0;
  153. prev_start = rsvd_region[i].end;
  154. }
  155. /* end of memory marker allows full processing inside loop body */
  156. return 0;
  157. }
  158. static void __init
  159. sort_regions (struct rsvd_region *rsvd_region, int max)
  160. {
  161. int j;
  162. /* simple bubble sorting */
  163. while (max--) {
  164. for (j = 0; j < max; ++j) {
  165. if (rsvd_region[j].start > rsvd_region[j+1].start) {
  166. struct rsvd_region tmp;
  167. tmp = rsvd_region[j];
  168. rsvd_region[j] = rsvd_region[j + 1];
  169. rsvd_region[j + 1] = tmp;
  170. }
  171. }
  172. }
  173. }
  174. /*
  175. * Request address space for all standard resources
  176. */
  177. static int __init register_memory(void)
  178. {
  179. code_resource.start = ia64_tpa(_text);
  180. code_resource.end = ia64_tpa(_etext) - 1;
  181. data_resource.start = ia64_tpa(_etext);
  182. data_resource.end = ia64_tpa(_end) - 1;
  183. efi_initialize_iomem_resources(&code_resource, &data_resource);
  184. return 0;
  185. }
  186. __initcall(register_memory);
  187. /**
  188. * reserve_memory - setup reserved memory areas
  189. *
  190. * Setup the reserved memory areas set aside for the boot parameters,
  191. * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined,
  192. * see include/asm-ia64/meminit.h if you need to define more.
  193. */
  194. void __init
  195. reserve_memory (void)
  196. {
  197. int n = 0;
  198. /*
  199. * none of the entries in this table overlap
  200. */
  201. rsvd_region[n].start = (unsigned long) ia64_boot_param;
  202. rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param);
  203. n++;
  204. rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
  205. rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
  206. n++;
  207. rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
  208. rsvd_region[n].end = (rsvd_region[n].start
  209. + strlen(__va(ia64_boot_param->command_line)) + 1);
  210. n++;
  211. rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
  212. rsvd_region[n].end = (unsigned long) ia64_imva(_end);
  213. n++;
  214. #ifdef CONFIG_BLK_DEV_INITRD
  215. if (ia64_boot_param->initrd_start) {
  216. rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
  217. rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size;
  218. n++;
  219. }
  220. #endif
  221. efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
  222. n++;
  223. #ifdef CONFIG_KEXEC
  224. /* crashkernel=size@offset specifies the size to reserve for a crash
  225. * kernel. If offset is 0, then it is determined automatically.
  226. * By reserving this memory we guarantee that linux never set's it
  227. * up as a DMA target.Useful for holding code to do something
  228. * appropriate after a kernel panic.
  229. */
  230. {
  231. char *from = strstr(saved_command_line, "crashkernel=");
  232. unsigned long base, size;
  233. if (from) {
  234. size = memparse(from + 12, &from);
  235. if (*from == '@')
  236. base = memparse(from+1, &from);
  237. else
  238. base = 0;
  239. if (size) {
  240. if (!base) {
  241. sort_regions(rsvd_region, n);
  242. base = kdump_find_rsvd_region(size,
  243. rsvd_region, n);
  244. }
  245. if (base != ~0UL) {
  246. rsvd_region[n].start =
  247. (unsigned long)__va(base);
  248. rsvd_region[n].end =
  249. (unsigned long)__va(base + size);
  250. n++;
  251. crashk_res.start = base;
  252. crashk_res.end = base + size - 1;
  253. }
  254. }
  255. }
  256. efi_memmap_res.start = ia64_boot_param->efi_memmap;
  257. efi_memmap_res.end = efi_memmap_res.start +
  258. ia64_boot_param->efi_memmap_size;
  259. boot_param_res.start = __pa(ia64_boot_param);
  260. boot_param_res.end = boot_param_res.start +
  261. sizeof(*ia64_boot_param);
  262. }
  263. #endif
  264. /* end of memory marker */
  265. rsvd_region[n].start = ~0UL;
  266. rsvd_region[n].end = ~0UL;
  267. n++;
  268. num_rsvd_regions = n;
  269. BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
  270. sort_regions(rsvd_region, num_rsvd_regions);
  271. }
  272. /**
  273. * find_initrd - get initrd parameters from the boot parameter structure
  274. *
  275. * Grab the initrd start and end from the boot parameter struct given us by
  276. * the boot loader.
  277. */
  278. void __init
  279. find_initrd (void)
  280. {
  281. #ifdef CONFIG_BLK_DEV_INITRD
  282. if (ia64_boot_param->initrd_start) {
  283. initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
  284. initrd_end = initrd_start+ia64_boot_param->initrd_size;
  285. printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
  286. initrd_start, ia64_boot_param->initrd_size);
  287. }
  288. #endif
  289. }
  290. static void __init
  291. io_port_init (void)
  292. {
  293. unsigned long phys_iobase;
  294. /*
  295. * Set `iobase' based on the EFI memory map or, failing that, the
  296. * value firmware left in ar.k0.
  297. *
  298. * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
  299. * the port's virtual address, so ia32_load_state() loads it with a
  300. * user virtual address. But in ia64 mode, glibc uses the
  301. * *physical* address in ar.k0 to mmap the appropriate area from
  302. * /dev/mem, and the inX()/outX() interfaces use MMIO. In both
  303. * cases, user-mode can only use the legacy 0-64K I/O port space.
  304. *
  305. * ar.k0 is not involved in kernel I/O port accesses, which can use
  306. * any of the I/O port spaces and are done via MMIO using the
  307. * virtual mmio_base from the appropriate io_space[].
  308. */
  309. phys_iobase = efi_get_iobase();
  310. if (!phys_iobase) {
  311. phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
  312. printk(KERN_INFO "No I/O port range found in EFI memory map, "
  313. "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
  314. }
  315. ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
  316. ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
  317. /* setup legacy IO port space */
  318. io_space[0].mmio_base = ia64_iobase;
  319. io_space[0].sparse = 1;
  320. num_io_spaces = 1;
  321. }
  322. /**
  323. * early_console_setup - setup debugging console
  324. *
  325. * Consoles started here require little enough setup that we can start using
  326. * them very early in the boot process, either right after the machine
  327. * vector initialization, or even before if the drivers can detect their hw.
  328. *
  329. * Returns non-zero if a console couldn't be setup.
  330. */
  331. static inline int __init
  332. early_console_setup (char *cmdline)
  333. {
  334. int earlycons = 0;
  335. #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
  336. {
  337. extern int sn_serial_console_early_setup(void);
  338. if (!sn_serial_console_early_setup())
  339. earlycons++;
  340. }
  341. #endif
  342. #ifdef CONFIG_EFI_PCDP
  343. if (!efi_setup_pcdp_console(cmdline))
  344. earlycons++;
  345. #endif
  346. #ifdef CONFIG_SERIAL_8250_CONSOLE
  347. if (!early_serial_console_init(cmdline))
  348. earlycons++;
  349. #endif
  350. return (earlycons) ? 0 : -1;
  351. }
  352. static inline void
  353. mark_bsp_online (void)
  354. {
  355. #ifdef CONFIG_SMP
  356. /* If we register an early console, allow CPU 0 to printk */
  357. cpu_set(smp_processor_id(), cpu_online_map);
  358. #endif
  359. }
  360. #ifdef CONFIG_SMP
  361. static void __init
  362. check_for_logical_procs (void)
  363. {
  364. pal_logical_to_physical_t info;
  365. s64 status;
  366. status = ia64_pal_logical_to_phys(0, &info);
  367. if (status == -1) {
  368. printk(KERN_INFO "No logical to physical processor mapping "
  369. "available\n");
  370. return;
  371. }
  372. if (status) {
  373. printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
  374. status);
  375. return;
  376. }
  377. /*
  378. * Total number of siblings that BSP has. Though not all of them
  379. * may have booted successfully. The correct number of siblings
  380. * booted is in info.overview_num_log.
  381. */
  382. smp_num_siblings = info.overview_tpc;
  383. smp_num_cpucores = info.overview_cpp;
  384. }
  385. #endif
  386. static __initdata int nomca;
  387. static __init int setup_nomca(char *s)
  388. {
  389. nomca = 1;
  390. return 0;
  391. }
  392. early_param("nomca", setup_nomca);
  393. #ifdef CONFIG_PROC_VMCORE
  394. /* elfcorehdr= specifies the location of elf core header
  395. * stored by the crashed kernel.
  396. */
  397. static int __init parse_elfcorehdr(char *arg)
  398. {
  399. if (!arg)
  400. return -EINVAL;
  401. elfcorehdr_addr = memparse(arg, &arg);
  402. return 0;
  403. }
  404. early_param("elfcorehdr", parse_elfcorehdr);
  405. #endif /* CONFIG_PROC_VMCORE */
  406. void __init
  407. setup_arch (char **cmdline_p)
  408. {
  409. unw_init();
  410. ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
  411. *cmdline_p = __va(ia64_boot_param->command_line);
  412. strlcpy(saved_command_line, *cmdline_p, COMMAND_LINE_SIZE);
  413. efi_init();
  414. io_port_init();
  415. parse_early_param();
  416. #ifdef CONFIG_IA64_GENERIC
  417. machvec_init(NULL);
  418. #endif
  419. if (early_console_setup(*cmdline_p) == 0)
  420. mark_bsp_online();
  421. #ifdef CONFIG_ACPI
  422. /* Initialize the ACPI boot-time table parser */
  423. acpi_table_init();
  424. # ifdef CONFIG_ACPI_NUMA
  425. acpi_numa_init();
  426. # endif
  427. #else
  428. # ifdef CONFIG_SMP
  429. smp_build_cpu_map(); /* happens, e.g., with the Ski simulator */
  430. # endif
  431. #endif /* CONFIG_APCI_BOOT */
  432. find_memory();
  433. /* process SAL system table: */
  434. ia64_sal_init(__va(efi.sal_systab));
  435. ia64_setup_printk_clock();
  436. #ifdef CONFIG_SMP
  437. cpu_physical_id(0) = hard_smp_processor_id();
  438. cpu_set(0, cpu_sibling_map[0]);
  439. cpu_set(0, cpu_core_map[0]);
  440. check_for_logical_procs();
  441. if (smp_num_cpucores > 1)
  442. printk(KERN_INFO
  443. "cpu package is Multi-Core capable: number of cores=%d\n",
  444. smp_num_cpucores);
  445. if (smp_num_siblings > 1)
  446. printk(KERN_INFO
  447. "cpu package is Multi-Threading capable: number of siblings=%d\n",
  448. smp_num_siblings);
  449. #endif
  450. cpu_init(); /* initialize the bootstrap CPU */
  451. mmu_context_init(); /* initialize context_id bitmap */
  452. check_sal_cache_flush();
  453. #ifdef CONFIG_ACPI
  454. acpi_boot_init();
  455. #endif
  456. #ifdef CONFIG_VT
  457. if (!conswitchp) {
  458. # if defined(CONFIG_DUMMY_CONSOLE)
  459. conswitchp = &dummy_con;
  460. # endif
  461. # if defined(CONFIG_VGA_CONSOLE)
  462. /*
  463. * Non-legacy systems may route legacy VGA MMIO range to system
  464. * memory. vga_con probes the MMIO hole, so memory looks like
  465. * a VGA device to it. The EFI memory map can tell us if it's
  466. * memory so we can avoid this problem.
  467. */
  468. if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
  469. conswitchp = &vga_con;
  470. # endif
  471. }
  472. #endif
  473. /* enable IA-64 Machine Check Abort Handling unless disabled */
  474. if (!nomca)
  475. ia64_mca_init();
  476. platform_setup(cmdline_p);
  477. paging_init();
  478. }
  479. /*
  480. * Display cpu info for all cpu's.
  481. */
  482. static int
  483. show_cpuinfo (struct seq_file *m, void *v)
  484. {
  485. #ifdef CONFIG_SMP
  486. # define lpj c->loops_per_jiffy
  487. # define cpunum c->cpu
  488. #else
  489. # define lpj loops_per_jiffy
  490. # define cpunum 0
  491. #endif
  492. static struct {
  493. unsigned long mask;
  494. const char *feature_name;
  495. } feature_bits[] = {
  496. { 1UL << 0, "branchlong" },
  497. { 1UL << 1, "spontaneous deferral"},
  498. { 1UL << 2, "16-byte atomic ops" }
  499. };
  500. char features[128], *cp, *sep;
  501. struct cpuinfo_ia64 *c = v;
  502. unsigned long mask;
  503. unsigned long proc_freq;
  504. int i, size;
  505. mask = c->features;
  506. /* build the feature string: */
  507. memcpy(features, "standard", 9);
  508. cp = features;
  509. size = sizeof(features);
  510. sep = "";
  511. for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
  512. if (mask & feature_bits[i].mask) {
  513. cp += snprintf(cp, size, "%s%s", sep,
  514. feature_bits[i].feature_name),
  515. sep = ", ";
  516. mask &= ~feature_bits[i].mask;
  517. size = sizeof(features) - (cp - features);
  518. }
  519. }
  520. if (mask && size > 1) {
  521. /* print unknown features as a hex value */
  522. snprintf(cp, size, "%s0x%lx", sep, mask);
  523. }
  524. proc_freq = cpufreq_quick_get(cpunum);
  525. if (!proc_freq)
  526. proc_freq = c->proc_freq / 1000;
  527. seq_printf(m,
  528. "processor : %d\n"
  529. "vendor : %s\n"
  530. "arch : IA-64\n"
  531. "family : %u\n"
  532. "model : %u\n"
  533. "model name : %s\n"
  534. "revision : %u\n"
  535. "archrev : %u\n"
  536. "features : %s\n"
  537. "cpu number : %lu\n"
  538. "cpu regs : %u\n"
  539. "cpu MHz : %lu.%06lu\n"
  540. "itc MHz : %lu.%06lu\n"
  541. "BogoMIPS : %lu.%02lu\n",
  542. cpunum, c->vendor, c->family, c->model,
  543. c->model_name, c->revision, c->archrev,
  544. features, c->ppn, c->number,
  545. proc_freq / 1000, proc_freq % 1000,
  546. c->itc_freq / 1000000, c->itc_freq % 1000000,
  547. lpj*HZ/500000, (lpj*HZ/5000) % 100);
  548. #ifdef CONFIG_SMP
  549. seq_printf(m, "siblings : %u\n", cpus_weight(cpu_core_map[cpunum]));
  550. if (c->threads_per_core > 1 || c->cores_per_socket > 1)
  551. seq_printf(m,
  552. "physical id: %u\n"
  553. "core id : %u\n"
  554. "thread id : %u\n",
  555. c->socket_id, c->core_id, c->thread_id);
  556. #endif
  557. seq_printf(m,"\n");
  558. return 0;
  559. }
  560. static void *
  561. c_start (struct seq_file *m, loff_t *pos)
  562. {
  563. #ifdef CONFIG_SMP
  564. while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
  565. ++*pos;
  566. #endif
  567. return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
  568. }
  569. static void *
  570. c_next (struct seq_file *m, void *v, loff_t *pos)
  571. {
  572. ++*pos;
  573. return c_start(m, pos);
  574. }
  575. static void
  576. c_stop (struct seq_file *m, void *v)
  577. {
  578. }
  579. struct seq_operations cpuinfo_op = {
  580. .start = c_start,
  581. .next = c_next,
  582. .stop = c_stop,
  583. .show = show_cpuinfo
  584. };
  585. static char brandname[128];
  586. static char * __cpuinit
  587. get_model_name(__u8 family, __u8 model)
  588. {
  589. char brand[128];
  590. memcpy(brand, "Unknown", 8);
  591. if (ia64_pal_get_brand_info(brand)) {
  592. if (family == 0x7)
  593. memcpy(brand, "Merced", 7);
  594. else if (family == 0x1f) switch (model) {
  595. case 0: memcpy(brand, "McKinley", 9); break;
  596. case 1: memcpy(brand, "Madison", 8); break;
  597. case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
  598. }
  599. }
  600. if (brandname[0] == '\0')
  601. return strcpy(brandname, brand);
  602. else if (strcmp(brandname, brand) == 0)
  603. return brandname;
  604. else
  605. return kstrdup(brand, GFP_KERNEL);
  606. }
  607. static void __cpuinit
  608. identify_cpu (struct cpuinfo_ia64 *c)
  609. {
  610. union {
  611. unsigned long bits[5];
  612. struct {
  613. /* id 0 & 1: */
  614. char vendor[16];
  615. /* id 2 */
  616. u64 ppn; /* processor serial number */
  617. /* id 3: */
  618. unsigned number : 8;
  619. unsigned revision : 8;
  620. unsigned model : 8;
  621. unsigned family : 8;
  622. unsigned archrev : 8;
  623. unsigned reserved : 24;
  624. /* id 4: */
  625. u64 features;
  626. } field;
  627. } cpuid;
  628. pal_vm_info_1_u_t vm1;
  629. pal_vm_info_2_u_t vm2;
  630. pal_status_t status;
  631. unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */
  632. int i;
  633. for (i = 0; i < 5; ++i)
  634. cpuid.bits[i] = ia64_get_cpuid(i);
  635. memcpy(c->vendor, cpuid.field.vendor, 16);
  636. #ifdef CONFIG_SMP
  637. c->cpu = smp_processor_id();
  638. /* below default values will be overwritten by identify_siblings()
  639. * for Multi-Threading/Multi-Core capable cpu's
  640. */
  641. c->threads_per_core = c->cores_per_socket = c->num_log = 1;
  642. c->socket_id = -1;
  643. identify_siblings(c);
  644. #endif
  645. c->ppn = cpuid.field.ppn;
  646. c->number = cpuid.field.number;
  647. c->revision = cpuid.field.revision;
  648. c->model = cpuid.field.model;
  649. c->family = cpuid.field.family;
  650. c->archrev = cpuid.field.archrev;
  651. c->features = cpuid.field.features;
  652. c->model_name = get_model_name(c->family, c->model);
  653. status = ia64_pal_vm_summary(&vm1, &vm2);
  654. if (status == PAL_STATUS_SUCCESS) {
  655. impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
  656. phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
  657. }
  658. c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
  659. c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
  660. }
  661. void
  662. setup_per_cpu_areas (void)
  663. {
  664. /* start_kernel() requires this... */
  665. #ifdef CONFIG_ACPI_HOTPLUG_CPU
  666. prefill_possible_map();
  667. #endif
  668. }
  669. /*
  670. * Calculate the max. cache line size.
  671. *
  672. * In addition, the minimum of the i-cache stride sizes is calculated for
  673. * "flush_icache_range()".
  674. */
  675. static void __cpuinit
  676. get_max_cacheline_size (void)
  677. {
  678. unsigned long line_size, max = 1;
  679. unsigned int cache_size = 0;
  680. u64 l, levels, unique_caches;
  681. pal_cache_config_info_t cci;
  682. s64 status;
  683. status = ia64_pal_cache_summary(&levels, &unique_caches);
  684. if (status != 0) {
  685. printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
  686. __FUNCTION__, status);
  687. max = SMP_CACHE_BYTES;
  688. /* Safest setup for "flush_icache_range()" */
  689. ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
  690. goto out;
  691. }
  692. for (l = 0; l < levels; ++l) {
  693. status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
  694. &cci);
  695. if (status != 0) {
  696. printk(KERN_ERR
  697. "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
  698. __FUNCTION__, l, status);
  699. max = SMP_CACHE_BYTES;
  700. /* The safest setup for "flush_icache_range()" */
  701. cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
  702. cci.pcci_unified = 1;
  703. }
  704. line_size = 1 << cci.pcci_line_size;
  705. if (line_size > max)
  706. max = line_size;
  707. if (cache_size < cci.pcci_cache_size)
  708. cache_size = cci.pcci_cache_size;
  709. if (!cci.pcci_unified) {
  710. status = ia64_pal_cache_config_info(l,
  711. /* cache_type (instruction)= */ 1,
  712. &cci);
  713. if (status != 0) {
  714. printk(KERN_ERR
  715. "%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
  716. __FUNCTION__, l, status);
  717. /* The safest setup for "flush_icache_range()" */
  718. cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
  719. }
  720. }
  721. if (cci.pcci_stride < ia64_i_cache_stride_shift)
  722. ia64_i_cache_stride_shift = cci.pcci_stride;
  723. }
  724. out:
  725. #ifdef CONFIG_SMP
  726. max_cache_size = max(max_cache_size, cache_size);
  727. #endif
  728. if (max > ia64_max_cacheline_size)
  729. ia64_max_cacheline_size = max;
  730. }
  731. /*
  732. * cpu_init() initializes state that is per-CPU. This function acts
  733. * as a 'CPU state barrier', nothing should get across.
  734. */
  735. void __cpuinit
  736. cpu_init (void)
  737. {
  738. extern void __cpuinit ia64_mmu_init (void *);
  739. unsigned long num_phys_stacked;
  740. pal_vm_info_2_u_t vmi;
  741. unsigned int max_ctx;
  742. struct cpuinfo_ia64 *cpu_info;
  743. void *cpu_data;
  744. cpu_data = per_cpu_init();
  745. /*
  746. * We set ar.k3 so that assembly code in MCA handler can compute
  747. * physical addresses of per cpu variables with a simple:
  748. * phys = ar.k3 + &per_cpu_var
  749. */
  750. ia64_set_kr(IA64_KR_PER_CPU_DATA,
  751. ia64_tpa(cpu_data) - (long) __per_cpu_start);
  752. get_max_cacheline_size();
  753. /*
  754. * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
  755. * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it
  756. * depends on the data returned by identify_cpu(). We break the dependency by
  757. * accessing cpu_data() through the canonical per-CPU address.
  758. */
  759. cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
  760. identify_cpu(cpu_info);
  761. #ifdef CONFIG_MCKINLEY
  762. {
  763. # define FEATURE_SET 16
  764. struct ia64_pal_retval iprv;
  765. if (cpu_info->family == 0x1f) {
  766. PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
  767. if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
  768. PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
  769. (iprv.v1 | 0x80), FEATURE_SET, 0);
  770. }
  771. }
  772. #endif
  773. /* Clear the stack memory reserved for pt_regs: */
  774. memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
  775. ia64_set_kr(IA64_KR_FPU_OWNER, 0);
  776. /*
  777. * Initialize the page-table base register to a global
  778. * directory with all zeroes. This ensure that we can handle
  779. * TLB-misses to user address-space even before we created the
  780. * first user address-space. This may happen, e.g., due to
  781. * aggressive use of lfetch.fault.
  782. */
  783. ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
  784. /*
  785. * Initialize default control register to defer speculative faults except
  786. * for those arising from TLB misses, which are not deferred. The
  787. * kernel MUST NOT depend on a particular setting of these bits (in other words,
  788. * the kernel must have recovery code for all speculative accesses). Turn on
  789. * dcr.lc as per recommendation by the architecture team. Most IA-32 apps
  790. * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
  791. * be fine).
  792. */
  793. ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
  794. | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
  795. atomic_inc(&init_mm.mm_count);
  796. current->active_mm = &init_mm;
  797. if (current->mm)
  798. BUG();
  799. ia64_mmu_init(ia64_imva(cpu_data));
  800. ia64_mca_cpu_init(ia64_imva(cpu_data));
  801. #ifdef CONFIG_IA32_SUPPORT
  802. ia32_cpu_init();
  803. #endif
  804. /* Clear ITC to eliminiate sched_clock() overflows in human time. */
  805. ia64_set_itc(0);
  806. /* disable all local interrupt sources: */
  807. ia64_set_itv(1 << 16);
  808. ia64_set_lrr0(1 << 16);
  809. ia64_set_lrr1(1 << 16);
  810. ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
  811. ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
  812. /* clear TPR & XTP to enable all interrupt classes: */
  813. ia64_setreg(_IA64_REG_CR_TPR, 0);
  814. #ifdef CONFIG_SMP
  815. normal_xtp();
  816. #endif
  817. /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
  818. if (ia64_pal_vm_summary(NULL, &vmi) == 0)
  819. max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
  820. else {
  821. printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
  822. max_ctx = (1U << 15) - 1; /* use architected minimum */
  823. }
  824. while (max_ctx < ia64_ctx.max_ctx) {
  825. unsigned int old = ia64_ctx.max_ctx;
  826. if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
  827. break;
  828. }
  829. if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
  830. printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
  831. "stacked regs\n");
  832. num_phys_stacked = 96;
  833. }
  834. /* size of physical stacked register partition plus 8 bytes: */
  835. __get_cpu_var(ia64_phys_stacked_size_p8) = num_phys_stacked*8 + 8;
  836. platform_cpu_init();
  837. pm_idle = default_idle;
  838. }
  839. /*
  840. * On SMP systems, when the scheduler does migration-cost autodetection,
  841. * it needs a way to flush as much of the CPU's caches as possible.
  842. */
  843. void sched_cacheflush(void)
  844. {
  845. ia64_sal_cache_flush(3);
  846. }
  847. void __init
  848. check_bugs (void)
  849. {
  850. ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
  851. (unsigned long) __end___mckinley_e9_bundles);
  852. }
  853. static int __init run_dmi_scan(void)
  854. {
  855. dmi_scan_machine();
  856. return 0;
  857. }
  858. core_initcall(run_dmi_scan);