efi.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180
  1. /*
  2. * Extensible Firmware Interface
  3. *
  4. * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999
  5. *
  6. * Copyright (C) 1999 VA Linux Systems
  7. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  8. * Copyright (C) 1999-2003 Hewlett-Packard Co.
  9. * David Mosberger-Tang <davidm@hpl.hp.com>
  10. * Stephane Eranian <eranian@hpl.hp.com>
  11. * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
  12. * Bjorn Helgaas <bjorn.helgaas@hp.com>
  13. *
  14. * All EFI Runtime Services are not implemented yet as EFI only
  15. * supports physical mode addressing on SoftSDV. This is to be fixed
  16. * in a future version. --drummond 1999-07-20
  17. *
  18. * Implemented EFI runtime services and virtual mode calls. --davidm
  19. *
  20. * Goutham Rao: <goutham.rao@intel.com>
  21. * Skip non-WB memory and ignore empty memory ranges.
  22. */
  23. #include <linux/module.h>
  24. #include <linux/kernel.h>
  25. #include <linux/init.h>
  26. #include <linux/types.h>
  27. #include <linux/time.h>
  28. #include <linux/efi.h>
  29. #include <linux/kexec.h>
  30. #include <asm/io.h>
  31. #include <asm/kregs.h>
  32. #include <asm/meminit.h>
  33. #include <asm/pgtable.h>
  34. #include <asm/processor.h>
  35. #include <asm/mca.h>
  36. #define EFI_DEBUG 0
  37. extern efi_status_t efi_call_phys (void *, ...);
  38. struct efi efi;
  39. EXPORT_SYMBOL(efi);
  40. static efi_runtime_services_t *runtime;
  41. static unsigned long mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
  42. #define efi_call_virt(f, args...) (*(f))(args)
  43. #define STUB_GET_TIME(prefix, adjust_arg) \
  44. static efi_status_t \
  45. prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
  46. { \
  47. struct ia64_fpreg fr[6]; \
  48. efi_time_cap_t *atc = NULL; \
  49. efi_status_t ret; \
  50. \
  51. if (tc) \
  52. atc = adjust_arg(tc); \
  53. ia64_save_scratch_fpregs(fr); \
  54. ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \
  55. ia64_load_scratch_fpregs(fr); \
  56. return ret; \
  57. }
  58. #define STUB_SET_TIME(prefix, adjust_arg) \
  59. static efi_status_t \
  60. prefix##_set_time (efi_time_t *tm) \
  61. { \
  62. struct ia64_fpreg fr[6]; \
  63. efi_status_t ret; \
  64. \
  65. ia64_save_scratch_fpregs(fr); \
  66. ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm)); \
  67. ia64_load_scratch_fpregs(fr); \
  68. return ret; \
  69. }
  70. #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
  71. static efi_status_t \
  72. prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm) \
  73. { \
  74. struct ia64_fpreg fr[6]; \
  75. efi_status_t ret; \
  76. \
  77. ia64_save_scratch_fpregs(fr); \
  78. ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
  79. adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
  80. ia64_load_scratch_fpregs(fr); \
  81. return ret; \
  82. }
  83. #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
  84. static efi_status_t \
  85. prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
  86. { \
  87. struct ia64_fpreg fr[6]; \
  88. efi_time_t *atm = NULL; \
  89. efi_status_t ret; \
  90. \
  91. if (tm) \
  92. atm = adjust_arg(tm); \
  93. ia64_save_scratch_fpregs(fr); \
  94. ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
  95. enabled, atm); \
  96. ia64_load_scratch_fpregs(fr); \
  97. return ret; \
  98. }
  99. #define STUB_GET_VARIABLE(prefix, adjust_arg) \
  100. static efi_status_t \
  101. prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
  102. unsigned long *data_size, void *data) \
  103. { \
  104. struct ia64_fpreg fr[6]; \
  105. u32 *aattr = NULL; \
  106. efi_status_t ret; \
  107. \
  108. if (attr) \
  109. aattr = adjust_arg(attr); \
  110. ia64_save_scratch_fpregs(fr); \
  111. ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable), \
  112. adjust_arg(name), adjust_arg(vendor), aattr, \
  113. adjust_arg(data_size), adjust_arg(data)); \
  114. ia64_load_scratch_fpregs(fr); \
  115. return ret; \
  116. }
  117. #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
  118. static efi_status_t \
  119. prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor) \
  120. { \
  121. struct ia64_fpreg fr[6]; \
  122. efi_status_t ret; \
  123. \
  124. ia64_save_scratch_fpregs(fr); \
  125. ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable), \
  126. adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
  127. ia64_load_scratch_fpregs(fr); \
  128. return ret; \
  129. }
  130. #define STUB_SET_VARIABLE(prefix, adjust_arg) \
  131. static efi_status_t \
  132. prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr, \
  133. unsigned long data_size, void *data) \
  134. { \
  135. struct ia64_fpreg fr[6]; \
  136. efi_status_t ret; \
  137. \
  138. ia64_save_scratch_fpregs(fr); \
  139. ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable), \
  140. adjust_arg(name), adjust_arg(vendor), attr, data_size, \
  141. adjust_arg(data)); \
  142. ia64_load_scratch_fpregs(fr); \
  143. return ret; \
  144. }
  145. #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
  146. static efi_status_t \
  147. prefix##_get_next_high_mono_count (u32 *count) \
  148. { \
  149. struct ia64_fpreg fr[6]; \
  150. efi_status_t ret; \
  151. \
  152. ia64_save_scratch_fpregs(fr); \
  153. ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
  154. __va(runtime->get_next_high_mono_count), adjust_arg(count)); \
  155. ia64_load_scratch_fpregs(fr); \
  156. return ret; \
  157. }
  158. #define STUB_RESET_SYSTEM(prefix, adjust_arg) \
  159. static void \
  160. prefix##_reset_system (int reset_type, efi_status_t status, \
  161. unsigned long data_size, efi_char16_t *data) \
  162. { \
  163. struct ia64_fpreg fr[6]; \
  164. efi_char16_t *adata = NULL; \
  165. \
  166. if (data) \
  167. adata = adjust_arg(data); \
  168. \
  169. ia64_save_scratch_fpregs(fr); \
  170. efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system), \
  171. reset_type, status, data_size, adata); \
  172. /* should not return, but just in case... */ \
  173. ia64_load_scratch_fpregs(fr); \
  174. }
  175. #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
  176. STUB_GET_TIME(phys, phys_ptr)
  177. STUB_SET_TIME(phys, phys_ptr)
  178. STUB_GET_WAKEUP_TIME(phys, phys_ptr)
  179. STUB_SET_WAKEUP_TIME(phys, phys_ptr)
  180. STUB_GET_VARIABLE(phys, phys_ptr)
  181. STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
  182. STUB_SET_VARIABLE(phys, phys_ptr)
  183. STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
  184. STUB_RESET_SYSTEM(phys, phys_ptr)
  185. #define id(arg) arg
  186. STUB_GET_TIME(virt, id)
  187. STUB_SET_TIME(virt, id)
  188. STUB_GET_WAKEUP_TIME(virt, id)
  189. STUB_SET_WAKEUP_TIME(virt, id)
  190. STUB_GET_VARIABLE(virt, id)
  191. STUB_GET_NEXT_VARIABLE(virt, id)
  192. STUB_SET_VARIABLE(virt, id)
  193. STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
  194. STUB_RESET_SYSTEM(virt, id)
  195. void
  196. efi_gettimeofday (struct timespec *ts)
  197. {
  198. efi_time_t tm;
  199. memset(ts, 0, sizeof(ts));
  200. if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS)
  201. return;
  202. ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second);
  203. ts->tv_nsec = tm.nanosecond;
  204. }
  205. static int
  206. is_memory_available (efi_memory_desc_t *md)
  207. {
  208. if (!(md->attribute & EFI_MEMORY_WB))
  209. return 0;
  210. switch (md->type) {
  211. case EFI_LOADER_CODE:
  212. case EFI_LOADER_DATA:
  213. case EFI_BOOT_SERVICES_CODE:
  214. case EFI_BOOT_SERVICES_DATA:
  215. case EFI_CONVENTIONAL_MEMORY:
  216. return 1;
  217. }
  218. return 0;
  219. }
  220. typedef struct kern_memdesc {
  221. u64 attribute;
  222. u64 start;
  223. u64 num_pages;
  224. } kern_memdesc_t;
  225. static kern_memdesc_t *kern_memmap;
  226. #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
  227. static inline u64
  228. kmd_end(kern_memdesc_t *kmd)
  229. {
  230. return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
  231. }
  232. static inline u64
  233. efi_md_end(efi_memory_desc_t *md)
  234. {
  235. return (md->phys_addr + efi_md_size(md));
  236. }
  237. static inline int
  238. efi_wb(efi_memory_desc_t *md)
  239. {
  240. return (md->attribute & EFI_MEMORY_WB);
  241. }
  242. static inline int
  243. efi_uc(efi_memory_desc_t *md)
  244. {
  245. return (md->attribute & EFI_MEMORY_UC);
  246. }
  247. static void
  248. walk (efi_freemem_callback_t callback, void *arg, u64 attr)
  249. {
  250. kern_memdesc_t *k;
  251. u64 start, end, voff;
  252. voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
  253. for (k = kern_memmap; k->start != ~0UL; k++) {
  254. if (k->attribute != attr)
  255. continue;
  256. start = PAGE_ALIGN(k->start);
  257. end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
  258. if (start < end)
  259. if ((*callback)(start + voff, end + voff, arg) < 0)
  260. return;
  261. }
  262. }
  263. /*
  264. * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
  265. * has memory that is available for OS use.
  266. */
  267. void
  268. efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
  269. {
  270. walk(callback, arg, EFI_MEMORY_WB);
  271. }
  272. /*
  273. * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
  274. * has memory that is available for uncached allocator.
  275. */
  276. void
  277. efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
  278. {
  279. walk(callback, arg, EFI_MEMORY_UC);
  280. }
  281. /*
  282. * Look for the PAL_CODE region reported by EFI and maps it using an
  283. * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
  284. * Abstraction Layer chapter 11 in ADAG
  285. */
  286. void *
  287. efi_get_pal_addr (void)
  288. {
  289. void *efi_map_start, *efi_map_end, *p;
  290. efi_memory_desc_t *md;
  291. u64 efi_desc_size;
  292. int pal_code_count = 0;
  293. u64 vaddr, mask;
  294. efi_map_start = __va(ia64_boot_param->efi_memmap);
  295. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  296. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  297. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  298. md = p;
  299. if (md->type != EFI_PAL_CODE)
  300. continue;
  301. if (++pal_code_count > 1) {
  302. printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n",
  303. md->phys_addr);
  304. continue;
  305. }
  306. /*
  307. * The only ITLB entry in region 7 that is used is the one installed by
  308. * __start(). That entry covers a 64MB range.
  309. */
  310. mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
  311. vaddr = PAGE_OFFSET + md->phys_addr;
  312. /*
  313. * We must check that the PAL mapping won't overlap with the kernel
  314. * mapping.
  315. *
  316. * PAL code is guaranteed to be aligned on a power of 2 between 4k and
  317. * 256KB and that only one ITR is needed to map it. This implies that the
  318. * PAL code is always aligned on its size, i.e., the closest matching page
  319. * size supported by the TLB. Therefore PAL code is guaranteed never to
  320. * cross a 64MB unless it is bigger than 64MB (very unlikely!). So for
  321. * now the following test is enough to determine whether or not we need a
  322. * dedicated ITR for the PAL code.
  323. */
  324. if ((vaddr & mask) == (KERNEL_START & mask)) {
  325. printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
  326. __FUNCTION__);
  327. continue;
  328. }
  329. if (md->num_pages << EFI_PAGE_SHIFT > IA64_GRANULE_SIZE)
  330. panic("Woah! PAL code size bigger than a granule!");
  331. #if EFI_DEBUG
  332. mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
  333. printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
  334. smp_processor_id(), md->phys_addr,
  335. md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
  336. vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
  337. #endif
  338. return __va(md->phys_addr);
  339. }
  340. printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
  341. __FUNCTION__);
  342. return NULL;
  343. }
  344. void
  345. efi_map_pal_code (void)
  346. {
  347. void *pal_vaddr = efi_get_pal_addr ();
  348. u64 psr;
  349. if (!pal_vaddr)
  350. return;
  351. /*
  352. * Cannot write to CRx with PSR.ic=1
  353. */
  354. psr = ia64_clear_ic();
  355. ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr),
  356. pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
  357. IA64_GRANULE_SHIFT);
  358. ia64_set_psr(psr); /* restore psr */
  359. ia64_srlz_i();
  360. }
  361. void __init
  362. efi_init (void)
  363. {
  364. void *efi_map_start, *efi_map_end;
  365. efi_config_table_t *config_tables;
  366. efi_char16_t *c16;
  367. u64 efi_desc_size;
  368. char *cp, vendor[100] = "unknown";
  369. extern char saved_command_line[];
  370. int i;
  371. /* it's too early to be able to use the standard kernel command line support... */
  372. for (cp = saved_command_line; *cp; ) {
  373. if (memcmp(cp, "mem=", 4) == 0) {
  374. mem_limit = memparse(cp + 4, &cp);
  375. } else if (memcmp(cp, "max_addr=", 9) == 0) {
  376. max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
  377. } else if (memcmp(cp, "min_addr=", 9) == 0) {
  378. min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
  379. } else {
  380. while (*cp != ' ' && *cp)
  381. ++cp;
  382. while (*cp == ' ')
  383. ++cp;
  384. }
  385. }
  386. if (min_addr != 0UL)
  387. printk(KERN_INFO "Ignoring memory below %luMB\n", min_addr >> 20);
  388. if (max_addr != ~0UL)
  389. printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20);
  390. efi.systab = __va(ia64_boot_param->efi_systab);
  391. /*
  392. * Verify the EFI Table
  393. */
  394. if (efi.systab == NULL)
  395. panic("Woah! Can't find EFI system table.\n");
  396. if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
  397. panic("Woah! EFI system table signature incorrect\n");
  398. if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0)
  399. printk(KERN_WARNING "Warning: EFI system table major version mismatch: "
  400. "got %d.%02d, expected %d.%02d\n",
  401. efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff,
  402. EFI_SYSTEM_TABLE_REVISION >> 16, EFI_SYSTEM_TABLE_REVISION & 0xffff);
  403. config_tables = __va(efi.systab->tables);
  404. /* Show what we know for posterity */
  405. c16 = __va(efi.systab->fw_vendor);
  406. if (c16) {
  407. for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
  408. vendor[i] = *c16++;
  409. vendor[i] = '\0';
  410. }
  411. printk(KERN_INFO "EFI v%u.%.02u by %s:",
  412. efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor);
  413. efi.mps = EFI_INVALID_TABLE_ADDR;
  414. efi.acpi = EFI_INVALID_TABLE_ADDR;
  415. efi.acpi20 = EFI_INVALID_TABLE_ADDR;
  416. efi.smbios = EFI_INVALID_TABLE_ADDR;
  417. efi.sal_systab = EFI_INVALID_TABLE_ADDR;
  418. efi.boot_info = EFI_INVALID_TABLE_ADDR;
  419. efi.hcdp = EFI_INVALID_TABLE_ADDR;
  420. efi.uga = EFI_INVALID_TABLE_ADDR;
  421. for (i = 0; i < (int) efi.systab->nr_tables; i++) {
  422. if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
  423. efi.mps = config_tables[i].table;
  424. printk(" MPS=0x%lx", config_tables[i].table);
  425. } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
  426. efi.acpi20 = config_tables[i].table;
  427. printk(" ACPI 2.0=0x%lx", config_tables[i].table);
  428. } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
  429. efi.acpi = config_tables[i].table;
  430. printk(" ACPI=0x%lx", config_tables[i].table);
  431. } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
  432. efi.smbios = config_tables[i].table;
  433. printk(" SMBIOS=0x%lx", config_tables[i].table);
  434. } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
  435. efi.sal_systab = config_tables[i].table;
  436. printk(" SALsystab=0x%lx", config_tables[i].table);
  437. } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
  438. efi.hcdp = config_tables[i].table;
  439. printk(" HCDP=0x%lx", config_tables[i].table);
  440. }
  441. }
  442. printk("\n");
  443. runtime = __va(efi.systab->runtime);
  444. efi.get_time = phys_get_time;
  445. efi.set_time = phys_set_time;
  446. efi.get_wakeup_time = phys_get_wakeup_time;
  447. efi.set_wakeup_time = phys_set_wakeup_time;
  448. efi.get_variable = phys_get_variable;
  449. efi.get_next_variable = phys_get_next_variable;
  450. efi.set_variable = phys_set_variable;
  451. efi.get_next_high_mono_count = phys_get_next_high_mono_count;
  452. efi.reset_system = phys_reset_system;
  453. efi_map_start = __va(ia64_boot_param->efi_memmap);
  454. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  455. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  456. #if EFI_DEBUG
  457. /* print EFI memory map: */
  458. {
  459. efi_memory_desc_t *md;
  460. void *p;
  461. for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) {
  462. md = p;
  463. printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n",
  464. i, md->type, md->attribute, md->phys_addr,
  465. md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
  466. md->num_pages >> (20 - EFI_PAGE_SHIFT));
  467. }
  468. }
  469. #endif
  470. efi_map_pal_code();
  471. efi_enter_virtual_mode();
  472. }
  473. void
  474. efi_enter_virtual_mode (void)
  475. {
  476. void *efi_map_start, *efi_map_end, *p;
  477. efi_memory_desc_t *md;
  478. efi_status_t status;
  479. u64 efi_desc_size;
  480. efi_map_start = __va(ia64_boot_param->efi_memmap);
  481. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  482. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  483. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  484. md = p;
  485. if (md->attribute & EFI_MEMORY_RUNTIME) {
  486. /*
  487. * Some descriptors have multiple bits set, so the order of
  488. * the tests is relevant.
  489. */
  490. if (md->attribute & EFI_MEMORY_WB) {
  491. md->virt_addr = (u64) __va(md->phys_addr);
  492. } else if (md->attribute & EFI_MEMORY_UC) {
  493. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  494. } else if (md->attribute & EFI_MEMORY_WC) {
  495. #if 0
  496. md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
  497. | _PAGE_D
  498. | _PAGE_MA_WC
  499. | _PAGE_PL_0
  500. | _PAGE_AR_RW));
  501. #else
  502. printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
  503. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  504. #endif
  505. } else if (md->attribute & EFI_MEMORY_WT) {
  506. #if 0
  507. md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
  508. | _PAGE_D | _PAGE_MA_WT
  509. | _PAGE_PL_0
  510. | _PAGE_AR_RW));
  511. #else
  512. printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
  513. md->virt_addr = (u64) ioremap(md->phys_addr, 0);
  514. #endif
  515. }
  516. }
  517. }
  518. status = efi_call_phys(__va(runtime->set_virtual_address_map),
  519. ia64_boot_param->efi_memmap_size,
  520. efi_desc_size, ia64_boot_param->efi_memdesc_version,
  521. ia64_boot_param->efi_memmap);
  522. if (status != EFI_SUCCESS) {
  523. printk(KERN_WARNING "warning: unable to switch EFI into virtual mode "
  524. "(status=%lu)\n", status);
  525. return;
  526. }
  527. /*
  528. * Now that EFI is in virtual mode, we call the EFI functions more efficiently:
  529. */
  530. efi.get_time = virt_get_time;
  531. efi.set_time = virt_set_time;
  532. efi.get_wakeup_time = virt_get_wakeup_time;
  533. efi.set_wakeup_time = virt_set_wakeup_time;
  534. efi.get_variable = virt_get_variable;
  535. efi.get_next_variable = virt_get_next_variable;
  536. efi.set_variable = virt_set_variable;
  537. efi.get_next_high_mono_count = virt_get_next_high_mono_count;
  538. efi.reset_system = virt_reset_system;
  539. }
  540. /*
  541. * Walk the EFI memory map looking for the I/O port range. There can only be one entry of
  542. * this type, other I/O port ranges should be described via ACPI.
  543. */
  544. u64
  545. efi_get_iobase (void)
  546. {
  547. void *efi_map_start, *efi_map_end, *p;
  548. efi_memory_desc_t *md;
  549. u64 efi_desc_size;
  550. efi_map_start = __va(ia64_boot_param->efi_memmap);
  551. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  552. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  553. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  554. md = p;
  555. if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
  556. if (md->attribute & EFI_MEMORY_UC)
  557. return md->phys_addr;
  558. }
  559. }
  560. return 0;
  561. }
  562. static struct kern_memdesc *
  563. kern_memory_descriptor (unsigned long phys_addr)
  564. {
  565. struct kern_memdesc *md;
  566. for (md = kern_memmap; md->start != ~0UL; md++) {
  567. if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
  568. return md;
  569. }
  570. return NULL;
  571. }
  572. static efi_memory_desc_t *
  573. efi_memory_descriptor (unsigned long phys_addr)
  574. {
  575. void *efi_map_start, *efi_map_end, *p;
  576. efi_memory_desc_t *md;
  577. u64 efi_desc_size;
  578. efi_map_start = __va(ia64_boot_param->efi_memmap);
  579. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  580. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  581. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  582. md = p;
  583. if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
  584. return md;
  585. }
  586. return NULL;
  587. }
  588. u32
  589. efi_mem_type (unsigned long phys_addr)
  590. {
  591. efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
  592. if (md)
  593. return md->type;
  594. return 0;
  595. }
  596. u64
  597. efi_mem_attributes (unsigned long phys_addr)
  598. {
  599. efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
  600. if (md)
  601. return md->attribute;
  602. return 0;
  603. }
  604. EXPORT_SYMBOL(efi_mem_attributes);
  605. u64
  606. efi_mem_attribute (unsigned long phys_addr, unsigned long size)
  607. {
  608. unsigned long end = phys_addr + size;
  609. efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
  610. u64 attr;
  611. if (!md)
  612. return 0;
  613. /*
  614. * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
  615. * the kernel that firmware needs this region mapped.
  616. */
  617. attr = md->attribute & ~EFI_MEMORY_RUNTIME;
  618. do {
  619. unsigned long md_end = efi_md_end(md);
  620. if (end <= md_end)
  621. return attr;
  622. md = efi_memory_descriptor(md_end);
  623. if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
  624. return 0;
  625. } while (md);
  626. return 0;
  627. }
  628. u64
  629. kern_mem_attribute (unsigned long phys_addr, unsigned long size)
  630. {
  631. unsigned long end = phys_addr + size;
  632. struct kern_memdesc *md;
  633. u64 attr;
  634. /*
  635. * This is a hack for ioremap calls before we set up kern_memmap.
  636. * Maybe we should do efi_memmap_init() earlier instead.
  637. */
  638. if (!kern_memmap) {
  639. attr = efi_mem_attribute(phys_addr, size);
  640. if (attr & EFI_MEMORY_WB)
  641. return EFI_MEMORY_WB;
  642. return 0;
  643. }
  644. md = kern_memory_descriptor(phys_addr);
  645. if (!md)
  646. return 0;
  647. attr = md->attribute;
  648. do {
  649. unsigned long md_end = kmd_end(md);
  650. if (end <= md_end)
  651. return attr;
  652. md = kern_memory_descriptor(md_end);
  653. if (!md || md->attribute != attr)
  654. return 0;
  655. } while (md);
  656. return 0;
  657. }
  658. EXPORT_SYMBOL(kern_mem_attribute);
  659. int
  660. valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
  661. {
  662. u64 attr;
  663. /*
  664. * /dev/mem reads and writes use copy_to_user(), which implicitly
  665. * uses a granule-sized kernel identity mapping. It's really
  666. * only safe to do this for regions in kern_memmap. For more
  667. * details, see Documentation/ia64/aliasing.txt.
  668. */
  669. attr = kern_mem_attribute(phys_addr, size);
  670. if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
  671. return 1;
  672. return 0;
  673. }
  674. int
  675. valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
  676. {
  677. /*
  678. * MMIO regions are often missing from the EFI memory map.
  679. * We must allow mmap of them for programs like X, so we
  680. * currently can't do any useful validation.
  681. */
  682. return 1;
  683. }
  684. pgprot_t
  685. phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
  686. pgprot_t vma_prot)
  687. {
  688. unsigned long phys_addr = pfn << PAGE_SHIFT;
  689. u64 attr;
  690. /*
  691. * For /dev/mem mmap, we use user mappings, but if the region is
  692. * in kern_memmap (and hence may be covered by a kernel mapping),
  693. * we must use the same attribute as the kernel mapping.
  694. */
  695. attr = kern_mem_attribute(phys_addr, size);
  696. if (attr & EFI_MEMORY_WB)
  697. return pgprot_cacheable(vma_prot);
  698. else if (attr & EFI_MEMORY_UC)
  699. return pgprot_noncached(vma_prot);
  700. /*
  701. * Some chipsets don't support UC access to memory. If
  702. * WB is supported, we prefer that.
  703. */
  704. if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
  705. return pgprot_cacheable(vma_prot);
  706. return pgprot_noncached(vma_prot);
  707. }
  708. int __init
  709. efi_uart_console_only(void)
  710. {
  711. efi_status_t status;
  712. char *s, name[] = "ConOut";
  713. efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
  714. efi_char16_t *utf16, name_utf16[32];
  715. unsigned char data[1024];
  716. unsigned long size = sizeof(data);
  717. struct efi_generic_dev_path *hdr, *end_addr;
  718. int uart = 0;
  719. /* Convert to UTF-16 */
  720. utf16 = name_utf16;
  721. s = name;
  722. while (*s)
  723. *utf16++ = *s++ & 0x7f;
  724. *utf16 = 0;
  725. status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
  726. if (status != EFI_SUCCESS) {
  727. printk(KERN_ERR "No EFI %s variable?\n", name);
  728. return 0;
  729. }
  730. hdr = (struct efi_generic_dev_path *) data;
  731. end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
  732. while (hdr < end_addr) {
  733. if (hdr->type == EFI_DEV_MSG &&
  734. hdr->sub_type == EFI_DEV_MSG_UART)
  735. uart = 1;
  736. else if (hdr->type == EFI_DEV_END_PATH ||
  737. hdr->type == EFI_DEV_END_PATH2) {
  738. if (!uart)
  739. return 0;
  740. if (hdr->sub_type == EFI_DEV_END_ENTIRE)
  741. return 1;
  742. uart = 0;
  743. }
  744. hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length);
  745. }
  746. printk(KERN_ERR "Malformed %s value\n", name);
  747. return 0;
  748. }
  749. /*
  750. * Look for the first granule aligned memory descriptor memory
  751. * that is big enough to hold EFI memory map. Make sure this
  752. * descriptor is atleast granule sized so it does not get trimmed
  753. */
  754. struct kern_memdesc *
  755. find_memmap_space (void)
  756. {
  757. u64 contig_low=0, contig_high=0;
  758. u64 as = 0, ae;
  759. void *efi_map_start, *efi_map_end, *p, *q;
  760. efi_memory_desc_t *md, *pmd = NULL, *check_md;
  761. u64 space_needed, efi_desc_size;
  762. unsigned long total_mem = 0;
  763. efi_map_start = __va(ia64_boot_param->efi_memmap);
  764. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  765. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  766. /*
  767. * Worst case: we need 3 kernel descriptors for each efi descriptor
  768. * (if every entry has a WB part in the middle, and UC head and tail),
  769. * plus one for the end marker.
  770. */
  771. space_needed = sizeof(kern_memdesc_t) *
  772. (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
  773. for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
  774. md = p;
  775. if (!efi_wb(md)) {
  776. continue;
  777. }
  778. if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
  779. contig_low = GRANULEROUNDUP(md->phys_addr);
  780. contig_high = efi_md_end(md);
  781. for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
  782. check_md = q;
  783. if (!efi_wb(check_md))
  784. break;
  785. if (contig_high != check_md->phys_addr)
  786. break;
  787. contig_high = efi_md_end(check_md);
  788. }
  789. contig_high = GRANULEROUNDDOWN(contig_high);
  790. }
  791. if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
  792. continue;
  793. /* Round ends inward to granule boundaries */
  794. as = max(contig_low, md->phys_addr);
  795. ae = min(contig_high, efi_md_end(md));
  796. /* keep within max_addr= and min_addr= command line arg */
  797. as = max(as, min_addr);
  798. ae = min(ae, max_addr);
  799. if (ae <= as)
  800. continue;
  801. /* avoid going over mem= command line arg */
  802. if (total_mem + (ae - as) > mem_limit)
  803. ae -= total_mem + (ae - as) - mem_limit;
  804. if (ae <= as)
  805. continue;
  806. if (ae - as > space_needed)
  807. break;
  808. }
  809. if (p >= efi_map_end)
  810. panic("Can't allocate space for kernel memory descriptors");
  811. return __va(as);
  812. }
  813. /*
  814. * Walk the EFI memory map and gather all memory available for kernel
  815. * to use. We can allocate partial granules only if the unavailable
  816. * parts exist, and are WB.
  817. */
  818. void
  819. efi_memmap_init(unsigned long *s, unsigned long *e)
  820. {
  821. struct kern_memdesc *k, *prev = NULL;
  822. u64 contig_low=0, contig_high=0;
  823. u64 as, ae, lim;
  824. void *efi_map_start, *efi_map_end, *p, *q;
  825. efi_memory_desc_t *md, *pmd = NULL, *check_md;
  826. u64 efi_desc_size;
  827. unsigned long total_mem = 0;
  828. k = kern_memmap = find_memmap_space();
  829. efi_map_start = __va(ia64_boot_param->efi_memmap);
  830. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  831. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  832. for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
  833. md = p;
  834. if (!efi_wb(md)) {
  835. if (efi_uc(md) && (md->type == EFI_CONVENTIONAL_MEMORY ||
  836. md->type == EFI_BOOT_SERVICES_DATA)) {
  837. k->attribute = EFI_MEMORY_UC;
  838. k->start = md->phys_addr;
  839. k->num_pages = md->num_pages;
  840. k++;
  841. }
  842. continue;
  843. }
  844. if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
  845. contig_low = GRANULEROUNDUP(md->phys_addr);
  846. contig_high = efi_md_end(md);
  847. for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
  848. check_md = q;
  849. if (!efi_wb(check_md))
  850. break;
  851. if (contig_high != check_md->phys_addr)
  852. break;
  853. contig_high = efi_md_end(check_md);
  854. }
  855. contig_high = GRANULEROUNDDOWN(contig_high);
  856. }
  857. if (!is_memory_available(md))
  858. continue;
  859. /*
  860. * Round ends inward to granule boundaries
  861. * Give trimmings to uncached allocator
  862. */
  863. if (md->phys_addr < contig_low) {
  864. lim = min(efi_md_end(md), contig_low);
  865. if (efi_uc(md)) {
  866. if (k > kern_memmap && (k-1)->attribute == EFI_MEMORY_UC &&
  867. kmd_end(k-1) == md->phys_addr) {
  868. (k-1)->num_pages += (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
  869. } else {
  870. k->attribute = EFI_MEMORY_UC;
  871. k->start = md->phys_addr;
  872. k->num_pages = (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
  873. k++;
  874. }
  875. }
  876. as = contig_low;
  877. } else
  878. as = md->phys_addr;
  879. if (efi_md_end(md) > contig_high) {
  880. lim = max(md->phys_addr, contig_high);
  881. if (efi_uc(md)) {
  882. if (lim == md->phys_addr && k > kern_memmap &&
  883. (k-1)->attribute == EFI_MEMORY_UC &&
  884. kmd_end(k-1) == md->phys_addr) {
  885. (k-1)->num_pages += md->num_pages;
  886. } else {
  887. k->attribute = EFI_MEMORY_UC;
  888. k->start = lim;
  889. k->num_pages = (efi_md_end(md) - lim) >> EFI_PAGE_SHIFT;
  890. k++;
  891. }
  892. }
  893. ae = contig_high;
  894. } else
  895. ae = efi_md_end(md);
  896. /* keep within max_addr= and min_addr= command line arg */
  897. as = max(as, min_addr);
  898. ae = min(ae, max_addr);
  899. if (ae <= as)
  900. continue;
  901. /* avoid going over mem= command line arg */
  902. if (total_mem + (ae - as) > mem_limit)
  903. ae -= total_mem + (ae - as) - mem_limit;
  904. if (ae <= as)
  905. continue;
  906. if (prev && kmd_end(prev) == md->phys_addr) {
  907. prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
  908. total_mem += ae - as;
  909. continue;
  910. }
  911. k->attribute = EFI_MEMORY_WB;
  912. k->start = as;
  913. k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
  914. total_mem += ae - as;
  915. prev = k++;
  916. }
  917. k->start = ~0L; /* end-marker */
  918. /* reserve the memory we are using for kern_memmap */
  919. *s = (u64)kern_memmap;
  920. *e = (u64)++k;
  921. }
  922. void
  923. efi_initialize_iomem_resources(struct resource *code_resource,
  924. struct resource *data_resource)
  925. {
  926. struct resource *res;
  927. void *efi_map_start, *efi_map_end, *p;
  928. efi_memory_desc_t *md;
  929. u64 efi_desc_size;
  930. char *name;
  931. unsigned long flags;
  932. efi_map_start = __va(ia64_boot_param->efi_memmap);
  933. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  934. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  935. res = NULL;
  936. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  937. md = p;
  938. if (md->num_pages == 0) /* should not happen */
  939. continue;
  940. flags = IORESOURCE_MEM;
  941. switch (md->type) {
  942. case EFI_MEMORY_MAPPED_IO:
  943. case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
  944. continue;
  945. case EFI_LOADER_CODE:
  946. case EFI_LOADER_DATA:
  947. case EFI_BOOT_SERVICES_DATA:
  948. case EFI_BOOT_SERVICES_CODE:
  949. case EFI_CONVENTIONAL_MEMORY:
  950. if (md->attribute & EFI_MEMORY_WP) {
  951. name = "System ROM";
  952. flags |= IORESOURCE_READONLY;
  953. } else {
  954. name = "System RAM";
  955. }
  956. break;
  957. case EFI_ACPI_MEMORY_NVS:
  958. name = "ACPI Non-volatile Storage";
  959. flags |= IORESOURCE_BUSY;
  960. break;
  961. case EFI_UNUSABLE_MEMORY:
  962. name = "reserved";
  963. flags |= IORESOURCE_BUSY | IORESOURCE_DISABLED;
  964. break;
  965. case EFI_RESERVED_TYPE:
  966. case EFI_RUNTIME_SERVICES_CODE:
  967. case EFI_RUNTIME_SERVICES_DATA:
  968. case EFI_ACPI_RECLAIM_MEMORY:
  969. default:
  970. name = "reserved";
  971. flags |= IORESOURCE_BUSY;
  972. break;
  973. }
  974. if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
  975. printk(KERN_ERR "failed to alocate resource for iomem\n");
  976. return;
  977. }
  978. res->name = name;
  979. res->start = md->phys_addr;
  980. res->end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
  981. res->flags = flags;
  982. if (insert_resource(&iomem_resource, res) < 0)
  983. kfree(res);
  984. else {
  985. /*
  986. * We don't know which region contains
  987. * kernel data so we try it repeatedly and
  988. * let the resource manager test it.
  989. */
  990. insert_resource(res, code_resource);
  991. insert_resource(res, data_resource);
  992. #ifdef CONFIG_KEXEC
  993. insert_resource(res, &efi_memmap_res);
  994. insert_resource(res, &boot_param_res);
  995. if (crashk_res.end > crashk_res.start)
  996. insert_resource(res, &crashk_res);
  997. #endif
  998. }
  999. }
  1000. }
  1001. #ifdef CONFIG_KEXEC
  1002. /* find a block of memory aligned to 64M exclude reserved regions
  1003. rsvd_regions are sorted
  1004. */
  1005. unsigned long
  1006. kdump_find_rsvd_region (unsigned long size,
  1007. struct rsvd_region *r, int n)
  1008. {
  1009. int i;
  1010. u64 start, end;
  1011. u64 alignment = 1UL << _PAGE_SIZE_64M;
  1012. void *efi_map_start, *efi_map_end, *p;
  1013. efi_memory_desc_t *md;
  1014. u64 efi_desc_size;
  1015. efi_map_start = __va(ia64_boot_param->efi_memmap);
  1016. efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
  1017. efi_desc_size = ia64_boot_param->efi_memdesc_size;
  1018. for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
  1019. md = p;
  1020. if (!efi_wb(md))
  1021. continue;
  1022. start = ALIGN(md->phys_addr, alignment);
  1023. end = efi_md_end(md);
  1024. for (i = 0; i < n; i++) {
  1025. if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
  1026. if (__pa(r[i].start) > start + size)
  1027. return start;
  1028. start = ALIGN(__pa(r[i].end), alignment);
  1029. if (i < n-1 && __pa(r[i+1].start) < start + size)
  1030. continue;
  1031. else
  1032. break;
  1033. }
  1034. }
  1035. if (end > start + size)
  1036. return start;
  1037. }
  1038. printk(KERN_WARNING "Cannot reserve 0x%lx byte of memory for crashdump\n",
  1039. size);
  1040. return ~0UL;
  1041. }
  1042. #endif