tsc.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477
  1. /*
  2. * This code largely moved from arch/i386/kernel/timer/timer_tsc.c
  3. * which was originally moved from arch/i386/kernel/time.c.
  4. * See comments there for proper credits.
  5. */
  6. #include <linux/clocksource.h>
  7. #include <linux/workqueue.h>
  8. #include <linux/cpufreq.h>
  9. #include <linux/jiffies.h>
  10. #include <linux/init.h>
  11. #include <linux/dmi.h>
  12. #include <asm/delay.h>
  13. #include <asm/tsc.h>
  14. #include <asm/io.h>
  15. #include "mach_timer.h"
  16. /*
  17. * On some systems the TSC frequency does not
  18. * change with the cpu frequency. So we need
  19. * an extra value to store the TSC freq
  20. */
  21. unsigned int tsc_khz;
  22. int tsc_disable;
  23. #ifdef CONFIG_X86_TSC
  24. static int __init tsc_setup(char *str)
  25. {
  26. printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
  27. "cannot disable TSC.\n");
  28. return 1;
  29. }
  30. #else
  31. /*
  32. * disable flag for tsc. Takes effect by clearing the TSC cpu flag
  33. * in cpu/common.c
  34. */
  35. static int __init tsc_setup(char *str)
  36. {
  37. tsc_disable = 1;
  38. return 1;
  39. }
  40. #endif
  41. __setup("notsc", tsc_setup);
  42. /*
  43. * code to mark and check if the TSC is unstable
  44. * due to cpufreq or due to unsynced TSCs
  45. */
  46. static int tsc_unstable;
  47. static inline int check_tsc_unstable(void)
  48. {
  49. return tsc_unstable;
  50. }
  51. void mark_tsc_unstable(void)
  52. {
  53. tsc_unstable = 1;
  54. }
  55. EXPORT_SYMBOL_GPL(mark_tsc_unstable);
  56. /* Accellerators for sched_clock()
  57. * convert from cycles(64bits) => nanoseconds (64bits)
  58. * basic equation:
  59. * ns = cycles / (freq / ns_per_sec)
  60. * ns = cycles * (ns_per_sec / freq)
  61. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  62. * ns = cycles * (10^6 / cpu_khz)
  63. *
  64. * Then we use scaling math (suggested by george@mvista.com) to get:
  65. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  66. * ns = cycles * cyc2ns_scale / SC
  67. *
  68. * And since SC is a constant power of two, we can convert the div
  69. * into a shift.
  70. *
  71. * We can use khz divisor instead of mhz to keep a better percision, since
  72. * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
  73. * (mathieu.desnoyers@polymtl.ca)
  74. *
  75. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  76. */
  77. static unsigned long cyc2ns_scale __read_mostly;
  78. #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
  79. static inline void set_cyc2ns_scale(unsigned long cpu_khz)
  80. {
  81. cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR)/cpu_khz;
  82. }
  83. static inline unsigned long long cycles_2_ns(unsigned long long cyc)
  84. {
  85. return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR;
  86. }
  87. /*
  88. * Scheduler clock - returns current time in nanosec units.
  89. */
  90. unsigned long long sched_clock(void)
  91. {
  92. unsigned long long this_offset;
  93. /*
  94. * in the NUMA case we dont use the TSC as they are not
  95. * synchronized across all CPUs.
  96. */
  97. #ifndef CONFIG_NUMA
  98. if (!cpu_khz || check_tsc_unstable())
  99. #endif
  100. /* no locking but a rare wrong value is not a big deal */
  101. return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
  102. /* read the Time Stamp Counter: */
  103. rdtscll(this_offset);
  104. /* return the value in ns */
  105. return cycles_2_ns(this_offset);
  106. }
  107. static unsigned long calculate_cpu_khz(void)
  108. {
  109. unsigned long long start, end;
  110. unsigned long count;
  111. u64 delta64;
  112. int i;
  113. unsigned long flags;
  114. local_irq_save(flags);
  115. /* run 3 times to ensure the cache is warm */
  116. for (i = 0; i < 3; i++) {
  117. mach_prepare_counter();
  118. rdtscll(start);
  119. mach_countup(&count);
  120. rdtscll(end);
  121. }
  122. /*
  123. * Error: ECTCNEVERSET
  124. * The CTC wasn't reliable: we got a hit on the very first read,
  125. * or the CPU was so fast/slow that the quotient wouldn't fit in
  126. * 32 bits..
  127. */
  128. if (count <= 1)
  129. goto err;
  130. delta64 = end - start;
  131. /* cpu freq too fast: */
  132. if (delta64 > (1ULL<<32))
  133. goto err;
  134. /* cpu freq too slow: */
  135. if (delta64 <= CALIBRATE_TIME_MSEC)
  136. goto err;
  137. delta64 += CALIBRATE_TIME_MSEC/2; /* round for do_div */
  138. do_div(delta64,CALIBRATE_TIME_MSEC);
  139. local_irq_restore(flags);
  140. return (unsigned long)delta64;
  141. err:
  142. local_irq_restore(flags);
  143. return 0;
  144. }
  145. int recalibrate_cpu_khz(void)
  146. {
  147. #ifndef CONFIG_SMP
  148. unsigned long cpu_khz_old = cpu_khz;
  149. if (cpu_has_tsc) {
  150. cpu_khz = calculate_cpu_khz();
  151. tsc_khz = cpu_khz;
  152. cpu_data[0].loops_per_jiffy =
  153. cpufreq_scale(cpu_data[0].loops_per_jiffy,
  154. cpu_khz_old, cpu_khz);
  155. return 0;
  156. } else
  157. return -ENODEV;
  158. #else
  159. return -ENODEV;
  160. #endif
  161. }
  162. EXPORT_SYMBOL(recalibrate_cpu_khz);
  163. void __init tsc_init(void)
  164. {
  165. if (!cpu_has_tsc || tsc_disable)
  166. return;
  167. cpu_khz = calculate_cpu_khz();
  168. tsc_khz = cpu_khz;
  169. if (!cpu_khz)
  170. return;
  171. printk("Detected %lu.%03lu MHz processor.\n",
  172. (unsigned long)cpu_khz / 1000,
  173. (unsigned long)cpu_khz % 1000);
  174. set_cyc2ns_scale(cpu_khz);
  175. use_tsc_delay();
  176. }
  177. #ifdef CONFIG_CPU_FREQ
  178. static unsigned int cpufreq_delayed_issched = 0;
  179. static unsigned int cpufreq_init = 0;
  180. static struct work_struct cpufreq_delayed_get_work;
  181. static void handle_cpufreq_delayed_get(struct work_struct *work)
  182. {
  183. unsigned int cpu;
  184. for_each_online_cpu(cpu)
  185. cpufreq_get(cpu);
  186. cpufreq_delayed_issched = 0;
  187. }
  188. /*
  189. * if we notice cpufreq oddness, schedule a call to cpufreq_get() as it tries
  190. * to verify the CPU frequency the timing core thinks the CPU is running
  191. * at is still correct.
  192. */
  193. static inline void cpufreq_delayed_get(void)
  194. {
  195. if (cpufreq_init && !cpufreq_delayed_issched) {
  196. cpufreq_delayed_issched = 1;
  197. printk(KERN_DEBUG "Checking if CPU frequency changed.\n");
  198. schedule_work(&cpufreq_delayed_get_work);
  199. }
  200. }
  201. /*
  202. * if the CPU frequency is scaled, TSC-based delays will need a different
  203. * loops_per_jiffy value to function properly.
  204. */
  205. static unsigned int ref_freq = 0;
  206. static unsigned long loops_per_jiffy_ref = 0;
  207. static unsigned long cpu_khz_ref = 0;
  208. static int
  209. time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, void *data)
  210. {
  211. struct cpufreq_freqs *freq = data;
  212. if (val != CPUFREQ_RESUMECHANGE && val != CPUFREQ_SUSPENDCHANGE)
  213. write_seqlock_irq(&xtime_lock);
  214. if (!ref_freq) {
  215. if (!freq->old){
  216. ref_freq = freq->new;
  217. goto end;
  218. }
  219. ref_freq = freq->old;
  220. loops_per_jiffy_ref = cpu_data[freq->cpu].loops_per_jiffy;
  221. cpu_khz_ref = cpu_khz;
  222. }
  223. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  224. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
  225. (val == CPUFREQ_RESUMECHANGE)) {
  226. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  227. cpu_data[freq->cpu].loops_per_jiffy =
  228. cpufreq_scale(loops_per_jiffy_ref,
  229. ref_freq, freq->new);
  230. if (cpu_khz) {
  231. if (num_online_cpus() == 1)
  232. cpu_khz = cpufreq_scale(cpu_khz_ref,
  233. ref_freq, freq->new);
  234. if (!(freq->flags & CPUFREQ_CONST_LOOPS)) {
  235. tsc_khz = cpu_khz;
  236. set_cyc2ns_scale(cpu_khz);
  237. /*
  238. * TSC based sched_clock turns
  239. * to junk w/ cpufreq
  240. */
  241. mark_tsc_unstable();
  242. }
  243. }
  244. }
  245. end:
  246. if (val != CPUFREQ_RESUMECHANGE && val != CPUFREQ_SUSPENDCHANGE)
  247. write_sequnlock_irq(&xtime_lock);
  248. return 0;
  249. }
  250. static struct notifier_block time_cpufreq_notifier_block = {
  251. .notifier_call = time_cpufreq_notifier
  252. };
  253. static int __init cpufreq_tsc(void)
  254. {
  255. int ret;
  256. INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get);
  257. ret = cpufreq_register_notifier(&time_cpufreq_notifier_block,
  258. CPUFREQ_TRANSITION_NOTIFIER);
  259. if (!ret)
  260. cpufreq_init = 1;
  261. return ret;
  262. }
  263. core_initcall(cpufreq_tsc);
  264. #endif
  265. /* clock source code */
  266. static unsigned long current_tsc_khz = 0;
  267. static int tsc_update_callback(void);
  268. static cycle_t read_tsc(void)
  269. {
  270. cycle_t ret;
  271. rdtscll(ret);
  272. return ret;
  273. }
  274. static struct clocksource clocksource_tsc = {
  275. .name = "tsc",
  276. .rating = 300,
  277. .read = read_tsc,
  278. .mask = CLOCKSOURCE_MASK(64),
  279. .mult = 0, /* to be set */
  280. .shift = 22,
  281. .update_callback = tsc_update_callback,
  282. .is_continuous = 1,
  283. };
  284. static int tsc_update_callback(void)
  285. {
  286. int change = 0;
  287. /* check to see if we should switch to the safe clocksource: */
  288. if (clocksource_tsc.rating != 0 && check_tsc_unstable()) {
  289. clocksource_tsc.rating = 0;
  290. clocksource_reselect();
  291. change = 1;
  292. }
  293. /* only update if tsc_khz has changed: */
  294. if (current_tsc_khz != tsc_khz) {
  295. current_tsc_khz = tsc_khz;
  296. clocksource_tsc.mult = clocksource_khz2mult(current_tsc_khz,
  297. clocksource_tsc.shift);
  298. change = 1;
  299. }
  300. return change;
  301. }
  302. static int __init dmi_mark_tsc_unstable(struct dmi_system_id *d)
  303. {
  304. printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
  305. d->ident);
  306. mark_tsc_unstable();
  307. return 0;
  308. }
  309. /* List of systems that have known TSC problems */
  310. static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
  311. {
  312. .callback = dmi_mark_tsc_unstable,
  313. .ident = "IBM Thinkpad 380XD",
  314. .matches = {
  315. DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
  316. DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
  317. },
  318. },
  319. {}
  320. };
  321. #define TSC_FREQ_CHECK_INTERVAL (10*MSEC_PER_SEC) /* 10sec in MS */
  322. static struct timer_list verify_tsc_freq_timer;
  323. /* XXX - Probably should add locking */
  324. static void verify_tsc_freq(unsigned long unused)
  325. {
  326. static u64 last_tsc;
  327. static unsigned long last_jiffies;
  328. u64 now_tsc, interval_tsc;
  329. unsigned long now_jiffies, interval_jiffies;
  330. if (check_tsc_unstable())
  331. return;
  332. rdtscll(now_tsc);
  333. now_jiffies = jiffies;
  334. if (!last_jiffies) {
  335. goto out;
  336. }
  337. interval_jiffies = now_jiffies - last_jiffies;
  338. interval_tsc = now_tsc - last_tsc;
  339. interval_tsc *= HZ;
  340. do_div(interval_tsc, cpu_khz*1000);
  341. if (interval_tsc < (interval_jiffies * 3 / 4)) {
  342. printk("TSC appears to be running slowly. "
  343. "Marking it as unstable\n");
  344. mark_tsc_unstable();
  345. return;
  346. }
  347. out:
  348. last_tsc = now_tsc;
  349. last_jiffies = now_jiffies;
  350. /* set us up to go off on the next interval: */
  351. mod_timer(&verify_tsc_freq_timer,
  352. jiffies + msecs_to_jiffies(TSC_FREQ_CHECK_INTERVAL));
  353. }
  354. /*
  355. * Make an educated guess if the TSC is trustworthy and synchronized
  356. * over all CPUs.
  357. */
  358. static __init int unsynchronized_tsc(void)
  359. {
  360. /*
  361. * Intel systems are normally all synchronized.
  362. * Exceptions must mark TSC as unstable:
  363. */
  364. if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
  365. return 0;
  366. /* assume multi socket systems are not synchronized: */
  367. return num_possible_cpus() > 1;
  368. }
  369. static int __init init_tsc_clocksource(void)
  370. {
  371. if (cpu_has_tsc && tsc_khz && !tsc_disable) {
  372. /* check blacklist */
  373. dmi_check_system(bad_tsc_dmi_table);
  374. if (unsynchronized_tsc()) /* mark unstable if unsynced */
  375. mark_tsc_unstable();
  376. current_tsc_khz = tsc_khz;
  377. clocksource_tsc.mult = clocksource_khz2mult(current_tsc_khz,
  378. clocksource_tsc.shift);
  379. /* lower the rating if we already know its unstable: */
  380. if (check_tsc_unstable())
  381. clocksource_tsc.rating = 0;
  382. init_timer(&verify_tsc_freq_timer);
  383. verify_tsc_freq_timer.function = verify_tsc_freq;
  384. verify_tsc_freq_timer.expires =
  385. jiffies + msecs_to_jiffies(TSC_FREQ_CHECK_INTERVAL);
  386. add_timer(&verify_tsc_freq_timer);
  387. return clocksource_register(&clocksource_tsc);
  388. }
  389. return 0;
  390. }
  391. module_init(init_tsc_clocksource);