forcedeth.c 193 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Known bugs:
  33. * We suspect that on some hardware no TX done interrupts are generated.
  34. * This means recovery from netif_stop_queue only happens if the hw timer
  35. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  36. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  37. * If your hardware reliably generates tx done interrupts, then you can remove
  38. * DEV_NEED_TIMERIRQ from the driver_data flags.
  39. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  40. * superfluous timer interrupts from the nic.
  41. */
  42. #define FORCEDETH_VERSION "0.64"
  43. #define DRV_NAME "forcedeth"
  44. #include <linux/module.h>
  45. #include <linux/types.h>
  46. #include <linux/pci.h>
  47. #include <linux/interrupt.h>
  48. #include <linux/netdevice.h>
  49. #include <linux/etherdevice.h>
  50. #include <linux/delay.h>
  51. #include <linux/spinlock.h>
  52. #include <linux/ethtool.h>
  53. #include <linux/timer.h>
  54. #include <linux/skbuff.h>
  55. #include <linux/mii.h>
  56. #include <linux/random.h>
  57. #include <linux/init.h>
  58. #include <linux/if_vlan.h>
  59. #include <linux/dma-mapping.h>
  60. #include <asm/irq.h>
  61. #include <asm/io.h>
  62. #include <asm/uaccess.h>
  63. #include <asm/system.h>
  64. #if 0
  65. #define dprintk printk
  66. #else
  67. #define dprintk(x...) do { } while (0)
  68. #endif
  69. #define TX_WORK_PER_LOOP 64
  70. #define RX_WORK_PER_LOOP 64
  71. /*
  72. * Hardware access:
  73. */
  74. #define DEV_NEED_TIMERIRQ 0x000001 /* set the timer irq flag in the irq mask */
  75. #define DEV_NEED_LINKTIMER 0x000002 /* poll link settings. Relies on the timer irq */
  76. #define DEV_HAS_LARGEDESC 0x000004 /* device supports jumbo frames and needs packet format 2 */
  77. #define DEV_HAS_HIGH_DMA 0x000008 /* device supports 64bit dma */
  78. #define DEV_HAS_CHECKSUM 0x000010 /* device supports tx and rx checksum offloads */
  79. #define DEV_HAS_VLAN 0x000020 /* device supports vlan tagging and striping */
  80. #define DEV_HAS_MSI 0x000040 /* device supports MSI */
  81. #define DEV_HAS_MSI_X 0x000080 /* device supports MSI-X */
  82. #define DEV_HAS_POWER_CNTRL 0x000100 /* device supports power savings */
  83. #define DEV_HAS_STATISTICS_V1 0x000200 /* device supports hw statistics version 1 */
  84. #define DEV_HAS_STATISTICS_V2 0x000600 /* device supports hw statistics version 2 */
  85. #define DEV_HAS_STATISTICS_V3 0x000e00 /* device supports hw statistics version 3 */
  86. #define DEV_HAS_TEST_EXTENDED 0x001000 /* device supports extended diagnostic test */
  87. #define DEV_HAS_MGMT_UNIT 0x002000 /* device supports management unit */
  88. #define DEV_HAS_CORRECT_MACADDR 0x004000 /* device supports correct mac address order */
  89. #define DEV_HAS_COLLISION_FIX 0x008000 /* device supports tx collision fix */
  90. #define DEV_HAS_PAUSEFRAME_TX_V1 0x010000 /* device supports tx pause frames version 1 */
  91. #define DEV_HAS_PAUSEFRAME_TX_V2 0x020000 /* device supports tx pause frames version 2 */
  92. #define DEV_HAS_PAUSEFRAME_TX_V3 0x040000 /* device supports tx pause frames version 3 */
  93. #define DEV_NEED_TX_LIMIT 0x080000 /* device needs to limit tx */
  94. #define DEV_HAS_GEAR_MODE 0x100000 /* device supports gear mode */
  95. enum {
  96. NvRegIrqStatus = 0x000,
  97. #define NVREG_IRQSTAT_MIIEVENT 0x040
  98. #define NVREG_IRQSTAT_MASK 0x83ff
  99. NvRegIrqMask = 0x004,
  100. #define NVREG_IRQ_RX_ERROR 0x0001
  101. #define NVREG_IRQ_RX 0x0002
  102. #define NVREG_IRQ_RX_NOBUF 0x0004
  103. #define NVREG_IRQ_TX_ERR 0x0008
  104. #define NVREG_IRQ_TX_OK 0x0010
  105. #define NVREG_IRQ_TIMER 0x0020
  106. #define NVREG_IRQ_LINK 0x0040
  107. #define NVREG_IRQ_RX_FORCED 0x0080
  108. #define NVREG_IRQ_TX_FORCED 0x0100
  109. #define NVREG_IRQ_RECOVER_ERROR 0x8200
  110. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  111. #define NVREG_IRQMASK_CPU 0x0060
  112. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  113. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  114. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  115. NvRegUnknownSetupReg6 = 0x008,
  116. #define NVREG_UNKSETUP6_VAL 3
  117. /*
  118. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  119. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  120. */
  121. NvRegPollingInterval = 0x00c,
  122. #define NVREG_POLL_DEFAULT_THROUGHPUT 65535 /* backup tx cleanup if loop max reached */
  123. #define NVREG_POLL_DEFAULT_CPU 13
  124. NvRegMSIMap0 = 0x020,
  125. NvRegMSIMap1 = 0x024,
  126. NvRegMSIIrqMask = 0x030,
  127. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  128. NvRegMisc1 = 0x080,
  129. #define NVREG_MISC1_PAUSE_TX 0x01
  130. #define NVREG_MISC1_HD 0x02
  131. #define NVREG_MISC1_FORCE 0x3b0f3c
  132. NvRegMacReset = 0x34,
  133. #define NVREG_MAC_RESET_ASSERT 0x0F3
  134. NvRegTransmitterControl = 0x084,
  135. #define NVREG_XMITCTL_START 0x01
  136. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  137. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  138. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  139. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  140. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  141. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  142. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  143. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  144. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  145. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  146. #define NVREG_XMITCTL_DATA_START 0x00100000
  147. #define NVREG_XMITCTL_DATA_READY 0x00010000
  148. #define NVREG_XMITCTL_DATA_ERROR 0x00020000
  149. NvRegTransmitterStatus = 0x088,
  150. #define NVREG_XMITSTAT_BUSY 0x01
  151. NvRegPacketFilterFlags = 0x8c,
  152. #define NVREG_PFF_PAUSE_RX 0x08
  153. #define NVREG_PFF_ALWAYS 0x7F0000
  154. #define NVREG_PFF_PROMISC 0x80
  155. #define NVREG_PFF_MYADDR 0x20
  156. #define NVREG_PFF_LOOPBACK 0x10
  157. NvRegOffloadConfig = 0x90,
  158. #define NVREG_OFFLOAD_HOMEPHY 0x601
  159. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  160. NvRegReceiverControl = 0x094,
  161. #define NVREG_RCVCTL_START 0x01
  162. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  163. NvRegReceiverStatus = 0x98,
  164. #define NVREG_RCVSTAT_BUSY 0x01
  165. NvRegSlotTime = 0x9c,
  166. #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
  167. #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
  168. #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
  169. #define NVREG_SLOTTIME_HALF 0x0000ff00
  170. #define NVREG_SLOTTIME_DEFAULT 0x00007f00
  171. #define NVREG_SLOTTIME_MASK 0x000000ff
  172. NvRegTxDeferral = 0xA0,
  173. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  174. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  175. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  176. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
  177. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
  178. #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
  179. NvRegRxDeferral = 0xA4,
  180. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  181. NvRegMacAddrA = 0xA8,
  182. NvRegMacAddrB = 0xAC,
  183. NvRegMulticastAddrA = 0xB0,
  184. #define NVREG_MCASTADDRA_FORCE 0x01
  185. NvRegMulticastAddrB = 0xB4,
  186. NvRegMulticastMaskA = 0xB8,
  187. #define NVREG_MCASTMASKA_NONE 0xffffffff
  188. NvRegMulticastMaskB = 0xBC,
  189. #define NVREG_MCASTMASKB_NONE 0xffff
  190. NvRegPhyInterface = 0xC0,
  191. #define PHY_RGMII 0x10000000
  192. NvRegBackOffControl = 0xC4,
  193. #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
  194. #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
  195. #define NVREG_BKOFFCTRL_SELECT 24
  196. #define NVREG_BKOFFCTRL_GEAR 12
  197. NvRegTxRingPhysAddr = 0x100,
  198. NvRegRxRingPhysAddr = 0x104,
  199. NvRegRingSizes = 0x108,
  200. #define NVREG_RINGSZ_TXSHIFT 0
  201. #define NVREG_RINGSZ_RXSHIFT 16
  202. NvRegTransmitPoll = 0x10c,
  203. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  204. NvRegLinkSpeed = 0x110,
  205. #define NVREG_LINKSPEED_FORCE 0x10000
  206. #define NVREG_LINKSPEED_10 1000
  207. #define NVREG_LINKSPEED_100 100
  208. #define NVREG_LINKSPEED_1000 50
  209. #define NVREG_LINKSPEED_MASK (0xFFF)
  210. NvRegUnknownSetupReg5 = 0x130,
  211. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  212. NvRegTxWatermark = 0x13c,
  213. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  214. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  215. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  216. NvRegTxRxControl = 0x144,
  217. #define NVREG_TXRXCTL_KICK 0x0001
  218. #define NVREG_TXRXCTL_BIT1 0x0002
  219. #define NVREG_TXRXCTL_BIT2 0x0004
  220. #define NVREG_TXRXCTL_IDLE 0x0008
  221. #define NVREG_TXRXCTL_RESET 0x0010
  222. #define NVREG_TXRXCTL_RXCHECK 0x0400
  223. #define NVREG_TXRXCTL_DESC_1 0
  224. #define NVREG_TXRXCTL_DESC_2 0x002100
  225. #define NVREG_TXRXCTL_DESC_3 0xc02200
  226. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  227. #define NVREG_TXRXCTL_VLANINS 0x00080
  228. NvRegTxRingPhysAddrHigh = 0x148,
  229. NvRegRxRingPhysAddrHigh = 0x14C,
  230. NvRegTxPauseFrame = 0x170,
  231. #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
  232. #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
  233. #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
  234. #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
  235. NvRegTxPauseFrameLimit = 0x174,
  236. #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000
  237. NvRegMIIStatus = 0x180,
  238. #define NVREG_MIISTAT_ERROR 0x0001
  239. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  240. #define NVREG_MIISTAT_MASK_RW 0x0007
  241. #define NVREG_MIISTAT_MASK_ALL 0x000f
  242. NvRegMIIMask = 0x184,
  243. #define NVREG_MII_LINKCHANGE 0x0008
  244. NvRegAdapterControl = 0x188,
  245. #define NVREG_ADAPTCTL_START 0x02
  246. #define NVREG_ADAPTCTL_LINKUP 0x04
  247. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  248. #define NVREG_ADAPTCTL_RUNNING 0x100000
  249. #define NVREG_ADAPTCTL_PHYSHIFT 24
  250. NvRegMIISpeed = 0x18c,
  251. #define NVREG_MIISPEED_BIT8 (1<<8)
  252. #define NVREG_MIIDELAY 5
  253. NvRegMIIControl = 0x190,
  254. #define NVREG_MIICTL_INUSE 0x08000
  255. #define NVREG_MIICTL_WRITE 0x00400
  256. #define NVREG_MIICTL_ADDRSHIFT 5
  257. NvRegMIIData = 0x194,
  258. NvRegTxUnicast = 0x1a0,
  259. NvRegTxMulticast = 0x1a4,
  260. NvRegTxBroadcast = 0x1a8,
  261. NvRegWakeUpFlags = 0x200,
  262. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  263. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  264. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  265. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  266. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  267. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  268. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  269. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  270. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  271. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  272. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  273. NvRegMgmtUnitGetVersion = 0x204,
  274. #define NVREG_MGMTUNITGETVERSION 0x01
  275. NvRegMgmtUnitVersion = 0x208,
  276. #define NVREG_MGMTUNITVERSION 0x08
  277. NvRegPowerCap = 0x268,
  278. #define NVREG_POWERCAP_D3SUPP (1<<30)
  279. #define NVREG_POWERCAP_D2SUPP (1<<26)
  280. #define NVREG_POWERCAP_D1SUPP (1<<25)
  281. NvRegPowerState = 0x26c,
  282. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  283. #define NVREG_POWERSTATE_VALID 0x0100
  284. #define NVREG_POWERSTATE_MASK 0x0003
  285. #define NVREG_POWERSTATE_D0 0x0000
  286. #define NVREG_POWERSTATE_D1 0x0001
  287. #define NVREG_POWERSTATE_D2 0x0002
  288. #define NVREG_POWERSTATE_D3 0x0003
  289. NvRegMgmtUnitControl = 0x278,
  290. #define NVREG_MGMTUNITCONTROL_INUSE 0x20000
  291. NvRegTxCnt = 0x280,
  292. NvRegTxZeroReXmt = 0x284,
  293. NvRegTxOneReXmt = 0x288,
  294. NvRegTxManyReXmt = 0x28c,
  295. NvRegTxLateCol = 0x290,
  296. NvRegTxUnderflow = 0x294,
  297. NvRegTxLossCarrier = 0x298,
  298. NvRegTxExcessDef = 0x29c,
  299. NvRegTxRetryErr = 0x2a0,
  300. NvRegRxFrameErr = 0x2a4,
  301. NvRegRxExtraByte = 0x2a8,
  302. NvRegRxLateCol = 0x2ac,
  303. NvRegRxRunt = 0x2b0,
  304. NvRegRxFrameTooLong = 0x2b4,
  305. NvRegRxOverflow = 0x2b8,
  306. NvRegRxFCSErr = 0x2bc,
  307. NvRegRxFrameAlignErr = 0x2c0,
  308. NvRegRxLenErr = 0x2c4,
  309. NvRegRxUnicast = 0x2c8,
  310. NvRegRxMulticast = 0x2cc,
  311. NvRegRxBroadcast = 0x2d0,
  312. NvRegTxDef = 0x2d4,
  313. NvRegTxFrame = 0x2d8,
  314. NvRegRxCnt = 0x2dc,
  315. NvRegTxPause = 0x2e0,
  316. NvRegRxPause = 0x2e4,
  317. NvRegRxDropFrame = 0x2e8,
  318. NvRegVlanControl = 0x300,
  319. #define NVREG_VLANCONTROL_ENABLE 0x2000
  320. NvRegMSIXMap0 = 0x3e0,
  321. NvRegMSIXMap1 = 0x3e4,
  322. NvRegMSIXIrqStatus = 0x3f0,
  323. NvRegPowerState2 = 0x600,
  324. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15
  325. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  326. #define NVREG_POWERSTATE2_PHY_RESET 0x0004
  327. };
  328. /* Big endian: should work, but is untested */
  329. struct ring_desc {
  330. __le32 buf;
  331. __le32 flaglen;
  332. };
  333. struct ring_desc_ex {
  334. __le32 bufhigh;
  335. __le32 buflow;
  336. __le32 txvlan;
  337. __le32 flaglen;
  338. };
  339. union ring_type {
  340. struct ring_desc* orig;
  341. struct ring_desc_ex* ex;
  342. };
  343. #define FLAG_MASK_V1 0xffff0000
  344. #define FLAG_MASK_V2 0xffffc000
  345. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  346. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  347. #define NV_TX_LASTPACKET (1<<16)
  348. #define NV_TX_RETRYERROR (1<<19)
  349. #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
  350. #define NV_TX_FORCED_INTERRUPT (1<<24)
  351. #define NV_TX_DEFERRED (1<<26)
  352. #define NV_TX_CARRIERLOST (1<<27)
  353. #define NV_TX_LATECOLLISION (1<<28)
  354. #define NV_TX_UNDERFLOW (1<<29)
  355. #define NV_TX_ERROR (1<<30)
  356. #define NV_TX_VALID (1<<31)
  357. #define NV_TX2_LASTPACKET (1<<29)
  358. #define NV_TX2_RETRYERROR (1<<18)
  359. #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
  360. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  361. #define NV_TX2_DEFERRED (1<<25)
  362. #define NV_TX2_CARRIERLOST (1<<26)
  363. #define NV_TX2_LATECOLLISION (1<<27)
  364. #define NV_TX2_UNDERFLOW (1<<28)
  365. /* error and valid are the same for both */
  366. #define NV_TX2_ERROR (1<<30)
  367. #define NV_TX2_VALID (1<<31)
  368. #define NV_TX2_TSO (1<<28)
  369. #define NV_TX2_TSO_SHIFT 14
  370. #define NV_TX2_TSO_MAX_SHIFT 14
  371. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  372. #define NV_TX2_CHECKSUM_L3 (1<<27)
  373. #define NV_TX2_CHECKSUM_L4 (1<<26)
  374. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  375. #define NV_RX_DESCRIPTORVALID (1<<16)
  376. #define NV_RX_MISSEDFRAME (1<<17)
  377. #define NV_RX_SUBSTRACT1 (1<<18)
  378. #define NV_RX_ERROR1 (1<<23)
  379. #define NV_RX_ERROR2 (1<<24)
  380. #define NV_RX_ERROR3 (1<<25)
  381. #define NV_RX_ERROR4 (1<<26)
  382. #define NV_RX_CRCERR (1<<27)
  383. #define NV_RX_OVERFLOW (1<<28)
  384. #define NV_RX_FRAMINGERR (1<<29)
  385. #define NV_RX_ERROR (1<<30)
  386. #define NV_RX_AVAIL (1<<31)
  387. #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
  388. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  389. #define NV_RX2_CHECKSUM_IP (0x10000000)
  390. #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
  391. #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
  392. #define NV_RX2_DESCRIPTORVALID (1<<29)
  393. #define NV_RX2_SUBSTRACT1 (1<<25)
  394. #define NV_RX2_ERROR1 (1<<18)
  395. #define NV_RX2_ERROR2 (1<<19)
  396. #define NV_RX2_ERROR3 (1<<20)
  397. #define NV_RX2_ERROR4 (1<<21)
  398. #define NV_RX2_CRCERR (1<<22)
  399. #define NV_RX2_OVERFLOW (1<<23)
  400. #define NV_RX2_FRAMINGERR (1<<24)
  401. /* error and avail are the same for both */
  402. #define NV_RX2_ERROR (1<<30)
  403. #define NV_RX2_AVAIL (1<<31)
  404. #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
  405. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  406. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  407. /* Miscelaneous hardware related defines: */
  408. #define NV_PCI_REGSZ_VER1 0x270
  409. #define NV_PCI_REGSZ_VER2 0x2d4
  410. #define NV_PCI_REGSZ_VER3 0x604
  411. #define NV_PCI_REGSZ_MAX 0x604
  412. /* various timeout delays: all in usec */
  413. #define NV_TXRX_RESET_DELAY 4
  414. #define NV_TXSTOP_DELAY1 10
  415. #define NV_TXSTOP_DELAY1MAX 500000
  416. #define NV_TXSTOP_DELAY2 100
  417. #define NV_RXSTOP_DELAY1 10
  418. #define NV_RXSTOP_DELAY1MAX 500000
  419. #define NV_RXSTOP_DELAY2 100
  420. #define NV_SETUP5_DELAY 5
  421. #define NV_SETUP5_DELAYMAX 50000
  422. #define NV_POWERUP_DELAY 5
  423. #define NV_POWERUP_DELAYMAX 5000
  424. #define NV_MIIBUSY_DELAY 50
  425. #define NV_MIIPHY_DELAY 10
  426. #define NV_MIIPHY_DELAYMAX 10000
  427. #define NV_MAC_RESET_DELAY 64
  428. #define NV_WAKEUPPATTERNS 5
  429. #define NV_WAKEUPMASKENTRIES 4
  430. /* General driver defaults */
  431. #define NV_WATCHDOG_TIMEO (5*HZ)
  432. #define RX_RING_DEFAULT 512
  433. #define TX_RING_DEFAULT 256
  434. #define RX_RING_MIN 128
  435. #define TX_RING_MIN 64
  436. #define RING_MAX_DESC_VER_1 1024
  437. #define RING_MAX_DESC_VER_2_3 16384
  438. /* rx/tx mac addr + type + vlan + align + slack*/
  439. #define NV_RX_HEADERS (64)
  440. /* even more slack. */
  441. #define NV_RX_ALLOC_PAD (64)
  442. /* maximum mtu size */
  443. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  444. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  445. #define OOM_REFILL (1+HZ/20)
  446. #define POLL_WAIT (1+HZ/100)
  447. #define LINK_TIMEOUT (3*HZ)
  448. #define STATS_INTERVAL (10*HZ)
  449. /*
  450. * desc_ver values:
  451. * The nic supports three different descriptor types:
  452. * - DESC_VER_1: Original
  453. * - DESC_VER_2: support for jumbo frames.
  454. * - DESC_VER_3: 64-bit format.
  455. */
  456. #define DESC_VER_1 1
  457. #define DESC_VER_2 2
  458. #define DESC_VER_3 3
  459. /* PHY defines */
  460. #define PHY_OUI_MARVELL 0x5043
  461. #define PHY_OUI_CICADA 0x03f1
  462. #define PHY_OUI_VITESSE 0x01c1
  463. #define PHY_OUI_REALTEK 0x0732
  464. #define PHY_OUI_REALTEK2 0x0020
  465. #define PHYID1_OUI_MASK 0x03ff
  466. #define PHYID1_OUI_SHFT 6
  467. #define PHYID2_OUI_MASK 0xfc00
  468. #define PHYID2_OUI_SHFT 10
  469. #define PHYID2_MODEL_MASK 0x03f0
  470. #define PHY_MODEL_REALTEK_8211 0x0110
  471. #define PHY_REV_MASK 0x0001
  472. #define PHY_REV_REALTEK_8211B 0x0000
  473. #define PHY_REV_REALTEK_8211C 0x0001
  474. #define PHY_MODEL_REALTEK_8201 0x0200
  475. #define PHY_MODEL_MARVELL_E3016 0x0220
  476. #define PHY_MARVELL_E3016_INITMASK 0x0300
  477. #define PHY_CICADA_INIT1 0x0f000
  478. #define PHY_CICADA_INIT2 0x0e00
  479. #define PHY_CICADA_INIT3 0x01000
  480. #define PHY_CICADA_INIT4 0x0200
  481. #define PHY_CICADA_INIT5 0x0004
  482. #define PHY_CICADA_INIT6 0x02000
  483. #define PHY_VITESSE_INIT_REG1 0x1f
  484. #define PHY_VITESSE_INIT_REG2 0x10
  485. #define PHY_VITESSE_INIT_REG3 0x11
  486. #define PHY_VITESSE_INIT_REG4 0x12
  487. #define PHY_VITESSE_INIT_MSK1 0xc
  488. #define PHY_VITESSE_INIT_MSK2 0x0180
  489. #define PHY_VITESSE_INIT1 0x52b5
  490. #define PHY_VITESSE_INIT2 0xaf8a
  491. #define PHY_VITESSE_INIT3 0x8
  492. #define PHY_VITESSE_INIT4 0x8f8a
  493. #define PHY_VITESSE_INIT5 0xaf86
  494. #define PHY_VITESSE_INIT6 0x8f86
  495. #define PHY_VITESSE_INIT7 0xaf82
  496. #define PHY_VITESSE_INIT8 0x0100
  497. #define PHY_VITESSE_INIT9 0x8f82
  498. #define PHY_VITESSE_INIT10 0x0
  499. #define PHY_REALTEK_INIT_REG1 0x1f
  500. #define PHY_REALTEK_INIT_REG2 0x19
  501. #define PHY_REALTEK_INIT_REG3 0x13
  502. #define PHY_REALTEK_INIT_REG4 0x14
  503. #define PHY_REALTEK_INIT_REG5 0x18
  504. #define PHY_REALTEK_INIT_REG6 0x11
  505. #define PHY_REALTEK_INIT_REG7 0x01
  506. #define PHY_REALTEK_INIT1 0x0000
  507. #define PHY_REALTEK_INIT2 0x8e00
  508. #define PHY_REALTEK_INIT3 0x0001
  509. #define PHY_REALTEK_INIT4 0xad17
  510. #define PHY_REALTEK_INIT5 0xfb54
  511. #define PHY_REALTEK_INIT6 0xf5c7
  512. #define PHY_REALTEK_INIT7 0x1000
  513. #define PHY_REALTEK_INIT8 0x0003
  514. #define PHY_REALTEK_INIT9 0x0008
  515. #define PHY_REALTEK_INIT10 0x0005
  516. #define PHY_REALTEK_INIT11 0x0200
  517. #define PHY_REALTEK_INIT_MSK1 0x0003
  518. #define PHY_GIGABIT 0x0100
  519. #define PHY_TIMEOUT 0x1
  520. #define PHY_ERROR 0x2
  521. #define PHY_100 0x1
  522. #define PHY_1000 0x2
  523. #define PHY_HALF 0x100
  524. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  525. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  526. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  527. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  528. #define NV_PAUSEFRAME_RX_REQ 0x0010
  529. #define NV_PAUSEFRAME_TX_REQ 0x0020
  530. #define NV_PAUSEFRAME_AUTONEG 0x0040
  531. /* MSI/MSI-X defines */
  532. #define NV_MSI_X_MAX_VECTORS 8
  533. #define NV_MSI_X_VECTORS_MASK 0x000f
  534. #define NV_MSI_CAPABLE 0x0010
  535. #define NV_MSI_X_CAPABLE 0x0020
  536. #define NV_MSI_ENABLED 0x0040
  537. #define NV_MSI_X_ENABLED 0x0080
  538. #define NV_MSI_X_VECTOR_ALL 0x0
  539. #define NV_MSI_X_VECTOR_RX 0x0
  540. #define NV_MSI_X_VECTOR_TX 0x1
  541. #define NV_MSI_X_VECTOR_OTHER 0x2
  542. #define NV_MSI_PRIV_OFFSET 0x68
  543. #define NV_MSI_PRIV_VALUE 0xffffffff
  544. #define NV_RESTART_TX 0x1
  545. #define NV_RESTART_RX 0x2
  546. #define NV_TX_LIMIT_COUNT 16
  547. #define NV_DYNAMIC_THRESHOLD 4
  548. #define NV_DYNAMIC_MAX_QUIET_COUNT 2048
  549. /* statistics */
  550. struct nv_ethtool_str {
  551. char name[ETH_GSTRING_LEN];
  552. };
  553. static const struct nv_ethtool_str nv_estats_str[] = {
  554. { "tx_bytes" },
  555. { "tx_zero_rexmt" },
  556. { "tx_one_rexmt" },
  557. { "tx_many_rexmt" },
  558. { "tx_late_collision" },
  559. { "tx_fifo_errors" },
  560. { "tx_carrier_errors" },
  561. { "tx_excess_deferral" },
  562. { "tx_retry_error" },
  563. { "rx_frame_error" },
  564. { "rx_extra_byte" },
  565. { "rx_late_collision" },
  566. { "rx_runt" },
  567. { "rx_frame_too_long" },
  568. { "rx_over_errors" },
  569. { "rx_crc_errors" },
  570. { "rx_frame_align_error" },
  571. { "rx_length_error" },
  572. { "rx_unicast" },
  573. { "rx_multicast" },
  574. { "rx_broadcast" },
  575. { "rx_packets" },
  576. { "rx_errors_total" },
  577. { "tx_errors_total" },
  578. /* version 2 stats */
  579. { "tx_deferral" },
  580. { "tx_packets" },
  581. { "rx_bytes" },
  582. { "tx_pause" },
  583. { "rx_pause" },
  584. { "rx_drop_frame" },
  585. /* version 3 stats */
  586. { "tx_unicast" },
  587. { "tx_multicast" },
  588. { "tx_broadcast" }
  589. };
  590. struct nv_ethtool_stats {
  591. u64 tx_bytes;
  592. u64 tx_zero_rexmt;
  593. u64 tx_one_rexmt;
  594. u64 tx_many_rexmt;
  595. u64 tx_late_collision;
  596. u64 tx_fifo_errors;
  597. u64 tx_carrier_errors;
  598. u64 tx_excess_deferral;
  599. u64 tx_retry_error;
  600. u64 rx_frame_error;
  601. u64 rx_extra_byte;
  602. u64 rx_late_collision;
  603. u64 rx_runt;
  604. u64 rx_frame_too_long;
  605. u64 rx_over_errors;
  606. u64 rx_crc_errors;
  607. u64 rx_frame_align_error;
  608. u64 rx_length_error;
  609. u64 rx_unicast;
  610. u64 rx_multicast;
  611. u64 rx_broadcast;
  612. u64 rx_packets;
  613. u64 rx_errors_total;
  614. u64 tx_errors_total;
  615. /* version 2 stats */
  616. u64 tx_deferral;
  617. u64 tx_packets;
  618. u64 rx_bytes;
  619. u64 tx_pause;
  620. u64 rx_pause;
  621. u64 rx_drop_frame;
  622. /* version 3 stats */
  623. u64 tx_unicast;
  624. u64 tx_multicast;
  625. u64 tx_broadcast;
  626. };
  627. #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
  628. #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
  629. #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
  630. /* diagnostics */
  631. #define NV_TEST_COUNT_BASE 3
  632. #define NV_TEST_COUNT_EXTENDED 4
  633. static const struct nv_ethtool_str nv_etests_str[] = {
  634. { "link (online/offline)" },
  635. { "register (offline) " },
  636. { "interrupt (offline) " },
  637. { "loopback (offline) " }
  638. };
  639. struct register_test {
  640. __u32 reg;
  641. __u32 mask;
  642. };
  643. static const struct register_test nv_registers_test[] = {
  644. { NvRegUnknownSetupReg6, 0x01 },
  645. { NvRegMisc1, 0x03c },
  646. { NvRegOffloadConfig, 0x03ff },
  647. { NvRegMulticastAddrA, 0xffffffff },
  648. { NvRegTxWatermark, 0x0ff },
  649. { NvRegWakeUpFlags, 0x07777 },
  650. { 0,0 }
  651. };
  652. struct nv_skb_map {
  653. struct sk_buff *skb;
  654. dma_addr_t dma;
  655. unsigned int dma_len;
  656. struct ring_desc_ex *first_tx_desc;
  657. struct nv_skb_map *next_tx_ctx;
  658. };
  659. /*
  660. * SMP locking:
  661. * All hardware access under netdev_priv(dev)->lock, except the performance
  662. * critical parts:
  663. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  664. * by the arch code for interrupts.
  665. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  666. * needs netdev_priv(dev)->lock :-(
  667. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  668. */
  669. /* in dev: base, irq */
  670. struct fe_priv {
  671. spinlock_t lock;
  672. struct net_device *dev;
  673. struct napi_struct napi;
  674. /* General data:
  675. * Locking: spin_lock(&np->lock); */
  676. struct nv_ethtool_stats estats;
  677. int in_shutdown;
  678. u32 linkspeed;
  679. int duplex;
  680. int autoneg;
  681. int fixed_mode;
  682. int phyaddr;
  683. int wolenabled;
  684. unsigned int phy_oui;
  685. unsigned int phy_model;
  686. unsigned int phy_rev;
  687. u16 gigabit;
  688. int intr_test;
  689. int recover_error;
  690. int quiet_count;
  691. /* General data: RO fields */
  692. dma_addr_t ring_addr;
  693. struct pci_dev *pci_dev;
  694. u32 orig_mac[2];
  695. u32 events;
  696. u32 irqmask;
  697. u32 desc_ver;
  698. u32 txrxctl_bits;
  699. u32 vlanctl_bits;
  700. u32 driver_data;
  701. u32 device_id;
  702. u32 register_size;
  703. int rx_csum;
  704. u32 mac_in_use;
  705. int mgmt_version;
  706. int mgmt_sema;
  707. void __iomem *base;
  708. /* rx specific fields.
  709. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  710. */
  711. union ring_type get_rx, put_rx, first_rx, last_rx;
  712. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  713. struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
  714. struct nv_skb_map *rx_skb;
  715. union ring_type rx_ring;
  716. unsigned int rx_buf_sz;
  717. unsigned int pkt_limit;
  718. struct timer_list oom_kick;
  719. struct timer_list nic_poll;
  720. struct timer_list stats_poll;
  721. u32 nic_poll_irq;
  722. int rx_ring_size;
  723. /* media detection workaround.
  724. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  725. */
  726. int need_linktimer;
  727. unsigned long link_timeout;
  728. /*
  729. * tx specific fields.
  730. */
  731. union ring_type get_tx, put_tx, first_tx, last_tx;
  732. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  733. struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
  734. struct nv_skb_map *tx_skb;
  735. union ring_type tx_ring;
  736. u32 tx_flags;
  737. int tx_ring_size;
  738. int tx_limit;
  739. u32 tx_pkts_in_progress;
  740. struct nv_skb_map *tx_change_owner;
  741. struct nv_skb_map *tx_end_flip;
  742. int tx_stop;
  743. /* vlan fields */
  744. struct vlan_group *vlangrp;
  745. /* msi/msi-x fields */
  746. u32 msi_flags;
  747. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  748. /* flow control */
  749. u32 pause_flags;
  750. /* power saved state */
  751. u32 saved_config_space[NV_PCI_REGSZ_MAX/4];
  752. /* for different msi-x irq type */
  753. char name_rx[IFNAMSIZ + 3]; /* -rx */
  754. char name_tx[IFNAMSIZ + 3]; /* -tx */
  755. char name_other[IFNAMSIZ + 6]; /* -other */
  756. };
  757. /*
  758. * Maximum number of loops until we assume that a bit in the irq mask
  759. * is stuck. Overridable with module param.
  760. */
  761. static int max_interrupt_work = 4;
  762. /*
  763. * Optimization can be either throuput mode or cpu mode
  764. *
  765. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  766. * CPU Mode: Interrupts are controlled by a timer.
  767. */
  768. enum {
  769. NV_OPTIMIZATION_MODE_THROUGHPUT,
  770. NV_OPTIMIZATION_MODE_CPU,
  771. NV_OPTIMIZATION_MODE_DYNAMIC
  772. };
  773. static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC;
  774. /*
  775. * Poll interval for timer irq
  776. *
  777. * This interval determines how frequent an interrupt is generated.
  778. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  779. * Min = 0, and Max = 65535
  780. */
  781. static int poll_interval = -1;
  782. /*
  783. * MSI interrupts
  784. */
  785. enum {
  786. NV_MSI_INT_DISABLED,
  787. NV_MSI_INT_ENABLED
  788. };
  789. static int msi = NV_MSI_INT_ENABLED;
  790. /*
  791. * MSIX interrupts
  792. */
  793. enum {
  794. NV_MSIX_INT_DISABLED,
  795. NV_MSIX_INT_ENABLED
  796. };
  797. static int msix = NV_MSIX_INT_ENABLED;
  798. /*
  799. * DMA 64bit
  800. */
  801. enum {
  802. NV_DMA_64BIT_DISABLED,
  803. NV_DMA_64BIT_ENABLED
  804. };
  805. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  806. /*
  807. * Crossover Detection
  808. * Realtek 8201 phy + some OEM boards do not work properly.
  809. */
  810. enum {
  811. NV_CROSSOVER_DETECTION_DISABLED,
  812. NV_CROSSOVER_DETECTION_ENABLED
  813. };
  814. static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
  815. /*
  816. * Power down phy when interface is down (persists through reboot;
  817. * older Linux and other OSes may not power it up again)
  818. */
  819. static int phy_power_down = 0;
  820. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  821. {
  822. return netdev_priv(dev);
  823. }
  824. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  825. {
  826. return ((struct fe_priv *)netdev_priv(dev))->base;
  827. }
  828. static inline void pci_push(u8 __iomem *base)
  829. {
  830. /* force out pending posted writes */
  831. readl(base);
  832. }
  833. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  834. {
  835. return le32_to_cpu(prd->flaglen)
  836. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  837. }
  838. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  839. {
  840. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  841. }
  842. static bool nv_optimized(struct fe_priv *np)
  843. {
  844. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  845. return false;
  846. return true;
  847. }
  848. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  849. int delay, int delaymax, const char *msg)
  850. {
  851. u8 __iomem *base = get_hwbase(dev);
  852. pci_push(base);
  853. do {
  854. udelay(delay);
  855. delaymax -= delay;
  856. if (delaymax < 0) {
  857. if (msg)
  858. printk("%s", msg);
  859. return 1;
  860. }
  861. } while ((readl(base + offset) & mask) != target);
  862. return 0;
  863. }
  864. #define NV_SETUP_RX_RING 0x01
  865. #define NV_SETUP_TX_RING 0x02
  866. static inline u32 dma_low(dma_addr_t addr)
  867. {
  868. return addr;
  869. }
  870. static inline u32 dma_high(dma_addr_t addr)
  871. {
  872. return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
  873. }
  874. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  875. {
  876. struct fe_priv *np = get_nvpriv(dev);
  877. u8 __iomem *base = get_hwbase(dev);
  878. if (!nv_optimized(np)) {
  879. if (rxtx_flags & NV_SETUP_RX_RING) {
  880. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  881. }
  882. if (rxtx_flags & NV_SETUP_TX_RING) {
  883. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  884. }
  885. } else {
  886. if (rxtx_flags & NV_SETUP_RX_RING) {
  887. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  888. writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
  889. }
  890. if (rxtx_flags & NV_SETUP_TX_RING) {
  891. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  892. writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
  893. }
  894. }
  895. }
  896. static void free_rings(struct net_device *dev)
  897. {
  898. struct fe_priv *np = get_nvpriv(dev);
  899. if (!nv_optimized(np)) {
  900. if (np->rx_ring.orig)
  901. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  902. np->rx_ring.orig, np->ring_addr);
  903. } else {
  904. if (np->rx_ring.ex)
  905. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  906. np->rx_ring.ex, np->ring_addr);
  907. }
  908. if (np->rx_skb)
  909. kfree(np->rx_skb);
  910. if (np->tx_skb)
  911. kfree(np->tx_skb);
  912. }
  913. static int using_multi_irqs(struct net_device *dev)
  914. {
  915. struct fe_priv *np = get_nvpriv(dev);
  916. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  917. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  918. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  919. return 0;
  920. else
  921. return 1;
  922. }
  923. static void nv_enable_irq(struct net_device *dev)
  924. {
  925. struct fe_priv *np = get_nvpriv(dev);
  926. if (!using_multi_irqs(dev)) {
  927. if (np->msi_flags & NV_MSI_X_ENABLED)
  928. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  929. else
  930. enable_irq(np->pci_dev->irq);
  931. } else {
  932. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  933. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  934. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  935. }
  936. }
  937. static void nv_disable_irq(struct net_device *dev)
  938. {
  939. struct fe_priv *np = get_nvpriv(dev);
  940. if (!using_multi_irqs(dev)) {
  941. if (np->msi_flags & NV_MSI_X_ENABLED)
  942. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  943. else
  944. disable_irq(np->pci_dev->irq);
  945. } else {
  946. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  947. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  948. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  949. }
  950. }
  951. /* In MSIX mode, a write to irqmask behaves as XOR */
  952. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  953. {
  954. u8 __iomem *base = get_hwbase(dev);
  955. writel(mask, base + NvRegIrqMask);
  956. }
  957. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  958. {
  959. struct fe_priv *np = get_nvpriv(dev);
  960. u8 __iomem *base = get_hwbase(dev);
  961. if (np->msi_flags & NV_MSI_X_ENABLED) {
  962. writel(mask, base + NvRegIrqMask);
  963. } else {
  964. if (np->msi_flags & NV_MSI_ENABLED)
  965. writel(0, base + NvRegMSIIrqMask);
  966. writel(0, base + NvRegIrqMask);
  967. }
  968. }
  969. static void nv_napi_enable(struct net_device *dev)
  970. {
  971. #ifdef CONFIG_FORCEDETH_NAPI
  972. struct fe_priv *np = get_nvpriv(dev);
  973. napi_enable(&np->napi);
  974. #endif
  975. }
  976. static void nv_napi_disable(struct net_device *dev)
  977. {
  978. #ifdef CONFIG_FORCEDETH_NAPI
  979. struct fe_priv *np = get_nvpriv(dev);
  980. napi_disable(&np->napi);
  981. #endif
  982. }
  983. #define MII_READ (-1)
  984. /* mii_rw: read/write a register on the PHY.
  985. *
  986. * Caller must guarantee serialization
  987. */
  988. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  989. {
  990. u8 __iomem *base = get_hwbase(dev);
  991. u32 reg;
  992. int retval;
  993. writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
  994. reg = readl(base + NvRegMIIControl);
  995. if (reg & NVREG_MIICTL_INUSE) {
  996. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  997. udelay(NV_MIIBUSY_DELAY);
  998. }
  999. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  1000. if (value != MII_READ) {
  1001. writel(value, base + NvRegMIIData);
  1002. reg |= NVREG_MIICTL_WRITE;
  1003. }
  1004. writel(reg, base + NvRegMIIControl);
  1005. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  1006. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  1007. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  1008. dev->name, miireg, addr);
  1009. retval = -1;
  1010. } else if (value != MII_READ) {
  1011. /* it was a write operation - fewer failures are detectable */
  1012. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  1013. dev->name, value, miireg, addr);
  1014. retval = 0;
  1015. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  1016. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  1017. dev->name, miireg, addr);
  1018. retval = -1;
  1019. } else {
  1020. retval = readl(base + NvRegMIIData);
  1021. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  1022. dev->name, miireg, addr, retval);
  1023. }
  1024. return retval;
  1025. }
  1026. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  1027. {
  1028. struct fe_priv *np = netdev_priv(dev);
  1029. u32 miicontrol;
  1030. unsigned int tries = 0;
  1031. miicontrol = BMCR_RESET | bmcr_setup;
  1032. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  1033. return -1;
  1034. }
  1035. /* wait for 500ms */
  1036. msleep(500);
  1037. /* must wait till reset is deasserted */
  1038. while (miicontrol & BMCR_RESET) {
  1039. msleep(10);
  1040. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1041. /* FIXME: 100 tries seem excessive */
  1042. if (tries++ > 100)
  1043. return -1;
  1044. }
  1045. return 0;
  1046. }
  1047. static int phy_init(struct net_device *dev)
  1048. {
  1049. struct fe_priv *np = get_nvpriv(dev);
  1050. u8 __iomem *base = get_hwbase(dev);
  1051. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  1052. /* phy errata for E3016 phy */
  1053. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  1054. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1055. reg &= ~PHY_MARVELL_E3016_INITMASK;
  1056. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  1057. printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
  1058. return PHY_ERROR;
  1059. }
  1060. }
  1061. if (np->phy_oui == PHY_OUI_REALTEK) {
  1062. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1063. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1064. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1065. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1066. return PHY_ERROR;
  1067. }
  1068. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1069. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1070. return PHY_ERROR;
  1071. }
  1072. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1073. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1074. return PHY_ERROR;
  1075. }
  1076. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1077. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1078. return PHY_ERROR;
  1079. }
  1080. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1081. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1082. return PHY_ERROR;
  1083. }
  1084. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1085. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1086. return PHY_ERROR;
  1087. }
  1088. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1089. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1090. return PHY_ERROR;
  1091. }
  1092. }
  1093. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1094. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1095. u32 powerstate = readl(base + NvRegPowerState2);
  1096. /* need to perform hw phy reset */
  1097. powerstate |= NVREG_POWERSTATE2_PHY_RESET;
  1098. writel(powerstate, base + NvRegPowerState2);
  1099. msleep(25);
  1100. powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
  1101. writel(powerstate, base + NvRegPowerState2);
  1102. msleep(25);
  1103. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1104. reg |= PHY_REALTEK_INIT9;
  1105. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg)) {
  1106. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1107. return PHY_ERROR;
  1108. }
  1109. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10)) {
  1110. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1111. return PHY_ERROR;
  1112. }
  1113. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
  1114. if (!(reg & PHY_REALTEK_INIT11)) {
  1115. reg |= PHY_REALTEK_INIT11;
  1116. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg)) {
  1117. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1118. return PHY_ERROR;
  1119. }
  1120. }
  1121. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1122. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1123. return PHY_ERROR;
  1124. }
  1125. }
  1126. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1127. if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  1128. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  1129. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  1130. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  1131. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  1132. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  1133. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  1134. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) {
  1135. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1136. phy_reserved |= PHY_REALTEK_INIT7;
  1137. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1138. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1139. return PHY_ERROR;
  1140. }
  1141. }
  1142. }
  1143. }
  1144. /* set advertise register */
  1145. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1146. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  1147. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  1148. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  1149. return PHY_ERROR;
  1150. }
  1151. /* get phy interface type */
  1152. phyinterface = readl(base + NvRegPhyInterface);
  1153. /* see if gigabit phy */
  1154. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1155. if (mii_status & PHY_GIGABIT) {
  1156. np->gigabit = PHY_GIGABIT;
  1157. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1158. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1159. if (phyinterface & PHY_RGMII)
  1160. mii_control_1000 |= ADVERTISE_1000FULL;
  1161. else
  1162. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1163. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1164. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1165. return PHY_ERROR;
  1166. }
  1167. }
  1168. else
  1169. np->gigabit = 0;
  1170. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1171. mii_control |= BMCR_ANENABLE;
  1172. if (np->phy_oui == PHY_OUI_REALTEK &&
  1173. np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1174. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1175. /* start autoneg since we already performed hw reset above */
  1176. mii_control |= BMCR_ANRESTART;
  1177. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1178. printk(KERN_INFO "%s: phy init failed\n", pci_name(np->pci_dev));
  1179. return PHY_ERROR;
  1180. }
  1181. } else {
  1182. /* reset the phy
  1183. * (certain phys need bmcr to be setup with reset)
  1184. */
  1185. if (phy_reset(dev, mii_control)) {
  1186. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  1187. return PHY_ERROR;
  1188. }
  1189. }
  1190. /* phy vendor specific configuration */
  1191. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  1192. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1193. phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
  1194. phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
  1195. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  1196. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1197. return PHY_ERROR;
  1198. }
  1199. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1200. phy_reserved |= PHY_CICADA_INIT5;
  1201. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1202. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1203. return PHY_ERROR;
  1204. }
  1205. }
  1206. if (np->phy_oui == PHY_OUI_CICADA) {
  1207. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1208. phy_reserved |= PHY_CICADA_INIT6;
  1209. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1210. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1211. return PHY_ERROR;
  1212. }
  1213. }
  1214. if (np->phy_oui == PHY_OUI_VITESSE) {
  1215. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
  1216. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1217. return PHY_ERROR;
  1218. }
  1219. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
  1220. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1221. return PHY_ERROR;
  1222. }
  1223. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1224. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1225. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1226. return PHY_ERROR;
  1227. }
  1228. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1229. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1230. phy_reserved |= PHY_VITESSE_INIT3;
  1231. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1232. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1233. return PHY_ERROR;
  1234. }
  1235. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
  1236. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1237. return PHY_ERROR;
  1238. }
  1239. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
  1240. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1241. return PHY_ERROR;
  1242. }
  1243. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1244. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1245. phy_reserved |= PHY_VITESSE_INIT3;
  1246. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1247. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1248. return PHY_ERROR;
  1249. }
  1250. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1251. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1252. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1253. return PHY_ERROR;
  1254. }
  1255. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
  1256. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1257. return PHY_ERROR;
  1258. }
  1259. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
  1260. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1261. return PHY_ERROR;
  1262. }
  1263. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1264. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1265. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1266. return PHY_ERROR;
  1267. }
  1268. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1269. phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
  1270. phy_reserved |= PHY_VITESSE_INIT8;
  1271. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1272. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1273. return PHY_ERROR;
  1274. }
  1275. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
  1276. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1277. return PHY_ERROR;
  1278. }
  1279. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
  1280. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1281. return PHY_ERROR;
  1282. }
  1283. }
  1284. if (np->phy_oui == PHY_OUI_REALTEK) {
  1285. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1286. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1287. /* reset could have cleared these out, set them back */
  1288. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1289. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1290. return PHY_ERROR;
  1291. }
  1292. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1293. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1294. return PHY_ERROR;
  1295. }
  1296. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1297. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1298. return PHY_ERROR;
  1299. }
  1300. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1301. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1302. return PHY_ERROR;
  1303. }
  1304. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1305. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1306. return PHY_ERROR;
  1307. }
  1308. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1309. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1310. return PHY_ERROR;
  1311. }
  1312. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1313. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1314. return PHY_ERROR;
  1315. }
  1316. }
  1317. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1318. if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  1319. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  1320. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  1321. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  1322. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  1323. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  1324. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  1325. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) {
  1326. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1327. phy_reserved |= PHY_REALTEK_INIT7;
  1328. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1329. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1330. return PHY_ERROR;
  1331. }
  1332. }
  1333. if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  1334. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1335. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1336. return PHY_ERROR;
  1337. }
  1338. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  1339. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  1340. phy_reserved |= PHY_REALTEK_INIT3;
  1341. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved)) {
  1342. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1343. return PHY_ERROR;
  1344. }
  1345. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1346. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1347. return PHY_ERROR;
  1348. }
  1349. }
  1350. }
  1351. }
  1352. /* some phys clear out pause advertisment on reset, set it back */
  1353. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1354. /* restart auto negotiation, power down phy */
  1355. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1356. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  1357. if (phy_power_down) {
  1358. mii_control |= BMCR_PDOWN;
  1359. }
  1360. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1361. return PHY_ERROR;
  1362. }
  1363. return 0;
  1364. }
  1365. static void nv_start_rx(struct net_device *dev)
  1366. {
  1367. struct fe_priv *np = netdev_priv(dev);
  1368. u8 __iomem *base = get_hwbase(dev);
  1369. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1370. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1371. /* Already running? Stop it. */
  1372. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1373. rx_ctrl &= ~NVREG_RCVCTL_START;
  1374. writel(rx_ctrl, base + NvRegReceiverControl);
  1375. pci_push(base);
  1376. }
  1377. writel(np->linkspeed, base + NvRegLinkSpeed);
  1378. pci_push(base);
  1379. rx_ctrl |= NVREG_RCVCTL_START;
  1380. if (np->mac_in_use)
  1381. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1382. writel(rx_ctrl, base + NvRegReceiverControl);
  1383. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1384. dev->name, np->duplex, np->linkspeed);
  1385. pci_push(base);
  1386. }
  1387. static void nv_stop_rx(struct net_device *dev)
  1388. {
  1389. struct fe_priv *np = netdev_priv(dev);
  1390. u8 __iomem *base = get_hwbase(dev);
  1391. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1392. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1393. if (!np->mac_in_use)
  1394. rx_ctrl &= ~NVREG_RCVCTL_START;
  1395. else
  1396. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1397. writel(rx_ctrl, base + NvRegReceiverControl);
  1398. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1399. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1400. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1401. udelay(NV_RXSTOP_DELAY2);
  1402. if (!np->mac_in_use)
  1403. writel(0, base + NvRegLinkSpeed);
  1404. }
  1405. static void nv_start_tx(struct net_device *dev)
  1406. {
  1407. struct fe_priv *np = netdev_priv(dev);
  1408. u8 __iomem *base = get_hwbase(dev);
  1409. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1410. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1411. tx_ctrl |= NVREG_XMITCTL_START;
  1412. if (np->mac_in_use)
  1413. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1414. writel(tx_ctrl, base + NvRegTransmitterControl);
  1415. pci_push(base);
  1416. }
  1417. static void nv_stop_tx(struct net_device *dev)
  1418. {
  1419. struct fe_priv *np = netdev_priv(dev);
  1420. u8 __iomem *base = get_hwbase(dev);
  1421. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1422. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1423. if (!np->mac_in_use)
  1424. tx_ctrl &= ~NVREG_XMITCTL_START;
  1425. else
  1426. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1427. writel(tx_ctrl, base + NvRegTransmitterControl);
  1428. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1429. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1430. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1431. udelay(NV_TXSTOP_DELAY2);
  1432. if (!np->mac_in_use)
  1433. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1434. base + NvRegTransmitPoll);
  1435. }
  1436. static void nv_start_rxtx(struct net_device *dev)
  1437. {
  1438. nv_start_rx(dev);
  1439. nv_start_tx(dev);
  1440. }
  1441. static void nv_stop_rxtx(struct net_device *dev)
  1442. {
  1443. nv_stop_rx(dev);
  1444. nv_stop_tx(dev);
  1445. }
  1446. static void nv_txrx_reset(struct net_device *dev)
  1447. {
  1448. struct fe_priv *np = netdev_priv(dev);
  1449. u8 __iomem *base = get_hwbase(dev);
  1450. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1451. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1452. pci_push(base);
  1453. udelay(NV_TXRX_RESET_DELAY);
  1454. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1455. pci_push(base);
  1456. }
  1457. static void nv_mac_reset(struct net_device *dev)
  1458. {
  1459. struct fe_priv *np = netdev_priv(dev);
  1460. u8 __iomem *base = get_hwbase(dev);
  1461. u32 temp1, temp2, temp3;
  1462. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1463. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1464. pci_push(base);
  1465. /* save registers since they will be cleared on reset */
  1466. temp1 = readl(base + NvRegMacAddrA);
  1467. temp2 = readl(base + NvRegMacAddrB);
  1468. temp3 = readl(base + NvRegTransmitPoll);
  1469. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1470. pci_push(base);
  1471. udelay(NV_MAC_RESET_DELAY);
  1472. writel(0, base + NvRegMacReset);
  1473. pci_push(base);
  1474. udelay(NV_MAC_RESET_DELAY);
  1475. /* restore saved registers */
  1476. writel(temp1, base + NvRegMacAddrA);
  1477. writel(temp2, base + NvRegMacAddrB);
  1478. writel(temp3, base + NvRegTransmitPoll);
  1479. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1480. pci_push(base);
  1481. }
  1482. static void nv_get_hw_stats(struct net_device *dev)
  1483. {
  1484. struct fe_priv *np = netdev_priv(dev);
  1485. u8 __iomem *base = get_hwbase(dev);
  1486. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  1487. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  1488. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  1489. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  1490. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  1491. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  1492. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  1493. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  1494. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  1495. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  1496. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  1497. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  1498. np->estats.rx_runt += readl(base + NvRegRxRunt);
  1499. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  1500. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  1501. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  1502. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  1503. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  1504. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  1505. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  1506. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  1507. np->estats.rx_packets =
  1508. np->estats.rx_unicast +
  1509. np->estats.rx_multicast +
  1510. np->estats.rx_broadcast;
  1511. np->estats.rx_errors_total =
  1512. np->estats.rx_crc_errors +
  1513. np->estats.rx_over_errors +
  1514. np->estats.rx_frame_error +
  1515. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  1516. np->estats.rx_late_collision +
  1517. np->estats.rx_runt +
  1518. np->estats.rx_frame_too_long;
  1519. np->estats.tx_errors_total =
  1520. np->estats.tx_late_collision +
  1521. np->estats.tx_fifo_errors +
  1522. np->estats.tx_carrier_errors +
  1523. np->estats.tx_excess_deferral +
  1524. np->estats.tx_retry_error;
  1525. if (np->driver_data & DEV_HAS_STATISTICS_V2) {
  1526. np->estats.tx_deferral += readl(base + NvRegTxDef);
  1527. np->estats.tx_packets += readl(base + NvRegTxFrame);
  1528. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  1529. np->estats.tx_pause += readl(base + NvRegTxPause);
  1530. np->estats.rx_pause += readl(base + NvRegRxPause);
  1531. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  1532. }
  1533. if (np->driver_data & DEV_HAS_STATISTICS_V3) {
  1534. np->estats.tx_unicast += readl(base + NvRegTxUnicast);
  1535. np->estats.tx_multicast += readl(base + NvRegTxMulticast);
  1536. np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
  1537. }
  1538. }
  1539. /*
  1540. * nv_get_stats: dev->get_stats function
  1541. * Get latest stats value from the nic.
  1542. * Called with read_lock(&dev_base_lock) held for read -
  1543. * only synchronized against unregister_netdevice.
  1544. */
  1545. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1546. {
  1547. struct fe_priv *np = netdev_priv(dev);
  1548. /* If the nic supports hw counters then retrieve latest values */
  1549. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) {
  1550. nv_get_hw_stats(dev);
  1551. /* copy to net_device stats */
  1552. dev->stats.tx_bytes = np->estats.tx_bytes;
  1553. dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
  1554. dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
  1555. dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
  1556. dev->stats.rx_over_errors = np->estats.rx_over_errors;
  1557. dev->stats.rx_errors = np->estats.rx_errors_total;
  1558. dev->stats.tx_errors = np->estats.tx_errors_total;
  1559. }
  1560. return &dev->stats;
  1561. }
  1562. /*
  1563. * nv_alloc_rx: fill rx ring entries.
  1564. * Return 1 if the allocations for the skbs failed and the
  1565. * rx engine is without Available descriptors
  1566. */
  1567. static int nv_alloc_rx(struct net_device *dev)
  1568. {
  1569. struct fe_priv *np = netdev_priv(dev);
  1570. struct ring_desc* less_rx;
  1571. less_rx = np->get_rx.orig;
  1572. if (less_rx-- == np->first_rx.orig)
  1573. less_rx = np->last_rx.orig;
  1574. while (np->put_rx.orig != less_rx) {
  1575. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1576. if (skb) {
  1577. np->put_rx_ctx->skb = skb;
  1578. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1579. skb->data,
  1580. skb_tailroom(skb),
  1581. PCI_DMA_FROMDEVICE);
  1582. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1583. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1584. wmb();
  1585. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1586. if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
  1587. np->put_rx.orig = np->first_rx.orig;
  1588. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1589. np->put_rx_ctx = np->first_rx_ctx;
  1590. } else {
  1591. return 1;
  1592. }
  1593. }
  1594. return 0;
  1595. }
  1596. static int nv_alloc_rx_optimized(struct net_device *dev)
  1597. {
  1598. struct fe_priv *np = netdev_priv(dev);
  1599. struct ring_desc_ex* less_rx;
  1600. less_rx = np->get_rx.ex;
  1601. if (less_rx-- == np->first_rx.ex)
  1602. less_rx = np->last_rx.ex;
  1603. while (np->put_rx.ex != less_rx) {
  1604. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1605. if (skb) {
  1606. np->put_rx_ctx->skb = skb;
  1607. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1608. skb->data,
  1609. skb_tailroom(skb),
  1610. PCI_DMA_FROMDEVICE);
  1611. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1612. np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
  1613. np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
  1614. wmb();
  1615. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1616. if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
  1617. np->put_rx.ex = np->first_rx.ex;
  1618. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1619. np->put_rx_ctx = np->first_rx_ctx;
  1620. } else {
  1621. return 1;
  1622. }
  1623. }
  1624. return 0;
  1625. }
  1626. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1627. #ifdef CONFIG_FORCEDETH_NAPI
  1628. static void nv_do_rx_refill(unsigned long data)
  1629. {
  1630. struct net_device *dev = (struct net_device *) data;
  1631. struct fe_priv *np = netdev_priv(dev);
  1632. /* Just reschedule NAPI rx processing */
  1633. napi_schedule(&np->napi);
  1634. }
  1635. #else
  1636. static void nv_do_rx_refill(unsigned long data)
  1637. {
  1638. struct net_device *dev = (struct net_device *) data;
  1639. struct fe_priv *np = netdev_priv(dev);
  1640. int retcode;
  1641. if (!using_multi_irqs(dev)) {
  1642. if (np->msi_flags & NV_MSI_X_ENABLED)
  1643. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1644. else
  1645. disable_irq(np->pci_dev->irq);
  1646. } else {
  1647. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1648. }
  1649. if (!nv_optimized(np))
  1650. retcode = nv_alloc_rx(dev);
  1651. else
  1652. retcode = nv_alloc_rx_optimized(dev);
  1653. if (retcode) {
  1654. spin_lock_irq(&np->lock);
  1655. if (!np->in_shutdown)
  1656. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1657. spin_unlock_irq(&np->lock);
  1658. }
  1659. if (!using_multi_irqs(dev)) {
  1660. if (np->msi_flags & NV_MSI_X_ENABLED)
  1661. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1662. else
  1663. enable_irq(np->pci_dev->irq);
  1664. } else {
  1665. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1666. }
  1667. }
  1668. #endif
  1669. static void nv_init_rx(struct net_device *dev)
  1670. {
  1671. struct fe_priv *np = netdev_priv(dev);
  1672. int i;
  1673. np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
  1674. if (!nv_optimized(np))
  1675. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1676. else
  1677. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1678. np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
  1679. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1680. for (i = 0; i < np->rx_ring_size; i++) {
  1681. if (!nv_optimized(np)) {
  1682. np->rx_ring.orig[i].flaglen = 0;
  1683. np->rx_ring.orig[i].buf = 0;
  1684. } else {
  1685. np->rx_ring.ex[i].flaglen = 0;
  1686. np->rx_ring.ex[i].txvlan = 0;
  1687. np->rx_ring.ex[i].bufhigh = 0;
  1688. np->rx_ring.ex[i].buflow = 0;
  1689. }
  1690. np->rx_skb[i].skb = NULL;
  1691. np->rx_skb[i].dma = 0;
  1692. }
  1693. }
  1694. static void nv_init_tx(struct net_device *dev)
  1695. {
  1696. struct fe_priv *np = netdev_priv(dev);
  1697. int i;
  1698. np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
  1699. if (!nv_optimized(np))
  1700. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1701. else
  1702. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1703. np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
  1704. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1705. np->tx_pkts_in_progress = 0;
  1706. np->tx_change_owner = NULL;
  1707. np->tx_end_flip = NULL;
  1708. np->tx_stop = 0;
  1709. for (i = 0; i < np->tx_ring_size; i++) {
  1710. if (!nv_optimized(np)) {
  1711. np->tx_ring.orig[i].flaglen = 0;
  1712. np->tx_ring.orig[i].buf = 0;
  1713. } else {
  1714. np->tx_ring.ex[i].flaglen = 0;
  1715. np->tx_ring.ex[i].txvlan = 0;
  1716. np->tx_ring.ex[i].bufhigh = 0;
  1717. np->tx_ring.ex[i].buflow = 0;
  1718. }
  1719. np->tx_skb[i].skb = NULL;
  1720. np->tx_skb[i].dma = 0;
  1721. np->tx_skb[i].dma_len = 0;
  1722. np->tx_skb[i].first_tx_desc = NULL;
  1723. np->tx_skb[i].next_tx_ctx = NULL;
  1724. }
  1725. }
  1726. static int nv_init_ring(struct net_device *dev)
  1727. {
  1728. struct fe_priv *np = netdev_priv(dev);
  1729. nv_init_tx(dev);
  1730. nv_init_rx(dev);
  1731. if (!nv_optimized(np))
  1732. return nv_alloc_rx(dev);
  1733. else
  1734. return nv_alloc_rx_optimized(dev);
  1735. }
  1736. static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
  1737. {
  1738. struct fe_priv *np = netdev_priv(dev);
  1739. if (tx_skb->dma) {
  1740. pci_unmap_page(np->pci_dev, tx_skb->dma,
  1741. tx_skb->dma_len,
  1742. PCI_DMA_TODEVICE);
  1743. tx_skb->dma = 0;
  1744. }
  1745. if (tx_skb->skb) {
  1746. dev_kfree_skb_any(tx_skb->skb);
  1747. tx_skb->skb = NULL;
  1748. return 1;
  1749. } else {
  1750. return 0;
  1751. }
  1752. }
  1753. static void nv_drain_tx(struct net_device *dev)
  1754. {
  1755. struct fe_priv *np = netdev_priv(dev);
  1756. unsigned int i;
  1757. for (i = 0; i < np->tx_ring_size; i++) {
  1758. if (!nv_optimized(np)) {
  1759. np->tx_ring.orig[i].flaglen = 0;
  1760. np->tx_ring.orig[i].buf = 0;
  1761. } else {
  1762. np->tx_ring.ex[i].flaglen = 0;
  1763. np->tx_ring.ex[i].txvlan = 0;
  1764. np->tx_ring.ex[i].bufhigh = 0;
  1765. np->tx_ring.ex[i].buflow = 0;
  1766. }
  1767. if (nv_release_txskb(dev, &np->tx_skb[i]))
  1768. dev->stats.tx_dropped++;
  1769. np->tx_skb[i].dma = 0;
  1770. np->tx_skb[i].dma_len = 0;
  1771. np->tx_skb[i].first_tx_desc = NULL;
  1772. np->tx_skb[i].next_tx_ctx = NULL;
  1773. }
  1774. np->tx_pkts_in_progress = 0;
  1775. np->tx_change_owner = NULL;
  1776. np->tx_end_flip = NULL;
  1777. }
  1778. static void nv_drain_rx(struct net_device *dev)
  1779. {
  1780. struct fe_priv *np = netdev_priv(dev);
  1781. int i;
  1782. for (i = 0; i < np->rx_ring_size; i++) {
  1783. if (!nv_optimized(np)) {
  1784. np->rx_ring.orig[i].flaglen = 0;
  1785. np->rx_ring.orig[i].buf = 0;
  1786. } else {
  1787. np->rx_ring.ex[i].flaglen = 0;
  1788. np->rx_ring.ex[i].txvlan = 0;
  1789. np->rx_ring.ex[i].bufhigh = 0;
  1790. np->rx_ring.ex[i].buflow = 0;
  1791. }
  1792. wmb();
  1793. if (np->rx_skb[i].skb) {
  1794. pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
  1795. (skb_end_pointer(np->rx_skb[i].skb) -
  1796. np->rx_skb[i].skb->data),
  1797. PCI_DMA_FROMDEVICE);
  1798. dev_kfree_skb(np->rx_skb[i].skb);
  1799. np->rx_skb[i].skb = NULL;
  1800. }
  1801. }
  1802. }
  1803. static void nv_drain_rxtx(struct net_device *dev)
  1804. {
  1805. nv_drain_tx(dev);
  1806. nv_drain_rx(dev);
  1807. }
  1808. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1809. {
  1810. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1811. }
  1812. static void nv_legacybackoff_reseed(struct net_device *dev)
  1813. {
  1814. u8 __iomem *base = get_hwbase(dev);
  1815. u32 reg;
  1816. u32 low;
  1817. int tx_status = 0;
  1818. reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
  1819. get_random_bytes(&low, sizeof(low));
  1820. reg |= low & NVREG_SLOTTIME_MASK;
  1821. /* Need to stop tx before change takes effect.
  1822. * Caller has already gained np->lock.
  1823. */
  1824. tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
  1825. if (tx_status)
  1826. nv_stop_tx(dev);
  1827. nv_stop_rx(dev);
  1828. writel(reg, base + NvRegSlotTime);
  1829. if (tx_status)
  1830. nv_start_tx(dev);
  1831. nv_start_rx(dev);
  1832. }
  1833. /* Gear Backoff Seeds */
  1834. #define BACKOFF_SEEDSET_ROWS 8
  1835. #define BACKOFF_SEEDSET_LFSRS 15
  1836. /* Known Good seed sets */
  1837. static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1838. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1839. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
  1840. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1841. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
  1842. {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
  1843. {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
  1844. {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
  1845. {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184}};
  1846. static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1847. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1848. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1849. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
  1850. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1851. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1852. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1853. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1854. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}};
  1855. static void nv_gear_backoff_reseed(struct net_device *dev)
  1856. {
  1857. u8 __iomem *base = get_hwbase(dev);
  1858. u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
  1859. u32 temp, seedset, combinedSeed;
  1860. int i;
  1861. /* Setup seed for free running LFSR */
  1862. /* We are going to read the time stamp counter 3 times
  1863. and swizzle bits around to increase randomness */
  1864. get_random_bytes(&miniseed1, sizeof(miniseed1));
  1865. miniseed1 &= 0x0fff;
  1866. if (miniseed1 == 0)
  1867. miniseed1 = 0xabc;
  1868. get_random_bytes(&miniseed2, sizeof(miniseed2));
  1869. miniseed2 &= 0x0fff;
  1870. if (miniseed2 == 0)
  1871. miniseed2 = 0xabc;
  1872. miniseed2_reversed =
  1873. ((miniseed2 & 0xF00) >> 8) |
  1874. (miniseed2 & 0x0F0) |
  1875. ((miniseed2 & 0x00F) << 8);
  1876. get_random_bytes(&miniseed3, sizeof(miniseed3));
  1877. miniseed3 &= 0x0fff;
  1878. if (miniseed3 == 0)
  1879. miniseed3 = 0xabc;
  1880. miniseed3_reversed =
  1881. ((miniseed3 & 0xF00) >> 8) |
  1882. (miniseed3 & 0x0F0) |
  1883. ((miniseed3 & 0x00F) << 8);
  1884. combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
  1885. (miniseed2 ^ miniseed3_reversed);
  1886. /* Seeds can not be zero */
  1887. if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
  1888. combinedSeed |= 0x08;
  1889. if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
  1890. combinedSeed |= 0x8000;
  1891. /* No need to disable tx here */
  1892. temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
  1893. temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
  1894. temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
  1895. writel(temp,base + NvRegBackOffControl);
  1896. /* Setup seeds for all gear LFSRs. */
  1897. get_random_bytes(&seedset, sizeof(seedset));
  1898. seedset = seedset % BACKOFF_SEEDSET_ROWS;
  1899. for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++)
  1900. {
  1901. temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
  1902. temp |= main_seedset[seedset][i-1] & 0x3ff;
  1903. temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
  1904. writel(temp, base + NvRegBackOffControl);
  1905. }
  1906. }
  1907. /*
  1908. * nv_start_xmit: dev->hard_start_xmit function
  1909. * Called with netif_tx_lock held.
  1910. */
  1911. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1912. {
  1913. struct fe_priv *np = netdev_priv(dev);
  1914. u32 tx_flags = 0;
  1915. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1916. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1917. unsigned int i;
  1918. u32 offset = 0;
  1919. u32 bcnt;
  1920. u32 size = skb->len-skb->data_len;
  1921. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1922. u32 empty_slots;
  1923. struct ring_desc* put_tx;
  1924. struct ring_desc* start_tx;
  1925. struct ring_desc* prev_tx;
  1926. struct nv_skb_map* prev_tx_ctx;
  1927. unsigned long flags;
  1928. /* add fragments to entries count */
  1929. for (i = 0; i < fragments; i++) {
  1930. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1931. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1932. }
  1933. spin_lock_irqsave(&np->lock, flags);
  1934. empty_slots = nv_get_empty_tx_slots(np);
  1935. if (unlikely(empty_slots <= entries)) {
  1936. netif_stop_queue(dev);
  1937. np->tx_stop = 1;
  1938. spin_unlock_irqrestore(&np->lock, flags);
  1939. return NETDEV_TX_BUSY;
  1940. }
  1941. spin_unlock_irqrestore(&np->lock, flags);
  1942. start_tx = put_tx = np->put_tx.orig;
  1943. /* setup the header buffer */
  1944. do {
  1945. prev_tx = put_tx;
  1946. prev_tx_ctx = np->put_tx_ctx;
  1947. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1948. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1949. PCI_DMA_TODEVICE);
  1950. np->put_tx_ctx->dma_len = bcnt;
  1951. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1952. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1953. tx_flags = np->tx_flags;
  1954. offset += bcnt;
  1955. size -= bcnt;
  1956. if (unlikely(put_tx++ == np->last_tx.orig))
  1957. put_tx = np->first_tx.orig;
  1958. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1959. np->put_tx_ctx = np->first_tx_ctx;
  1960. } while (size);
  1961. /* setup the fragments */
  1962. for (i = 0; i < fragments; i++) {
  1963. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1964. u32 size = frag->size;
  1965. offset = 0;
  1966. do {
  1967. prev_tx = put_tx;
  1968. prev_tx_ctx = np->put_tx_ctx;
  1969. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1970. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1971. PCI_DMA_TODEVICE);
  1972. np->put_tx_ctx->dma_len = bcnt;
  1973. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1974. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1975. offset += bcnt;
  1976. size -= bcnt;
  1977. if (unlikely(put_tx++ == np->last_tx.orig))
  1978. put_tx = np->first_tx.orig;
  1979. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1980. np->put_tx_ctx = np->first_tx_ctx;
  1981. } while (size);
  1982. }
  1983. /* set last fragment flag */
  1984. prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
  1985. /* save skb in this slot's context area */
  1986. prev_tx_ctx->skb = skb;
  1987. if (skb_is_gso(skb))
  1988. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1989. else
  1990. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1991. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1992. spin_lock_irqsave(&np->lock, flags);
  1993. /* set tx flags */
  1994. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1995. np->put_tx.orig = put_tx;
  1996. spin_unlock_irqrestore(&np->lock, flags);
  1997. dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
  1998. dev->name, entries, tx_flags_extra);
  1999. {
  2000. int j;
  2001. for (j=0; j<64; j++) {
  2002. if ((j%16) == 0)
  2003. dprintk("\n%03x:", j);
  2004. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2005. }
  2006. dprintk("\n");
  2007. }
  2008. dev->trans_start = jiffies;
  2009. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2010. return NETDEV_TX_OK;
  2011. }
  2012. static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
  2013. {
  2014. struct fe_priv *np = netdev_priv(dev);
  2015. u32 tx_flags = 0;
  2016. u32 tx_flags_extra;
  2017. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  2018. unsigned int i;
  2019. u32 offset = 0;
  2020. u32 bcnt;
  2021. u32 size = skb->len-skb->data_len;
  2022. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  2023. u32 empty_slots;
  2024. struct ring_desc_ex* put_tx;
  2025. struct ring_desc_ex* start_tx;
  2026. struct ring_desc_ex* prev_tx;
  2027. struct nv_skb_map* prev_tx_ctx;
  2028. struct nv_skb_map* start_tx_ctx;
  2029. unsigned long flags;
  2030. /* add fragments to entries count */
  2031. for (i = 0; i < fragments; i++) {
  2032. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  2033. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  2034. }
  2035. spin_lock_irqsave(&np->lock, flags);
  2036. empty_slots = nv_get_empty_tx_slots(np);
  2037. if (unlikely(empty_slots <= entries)) {
  2038. netif_stop_queue(dev);
  2039. np->tx_stop = 1;
  2040. spin_unlock_irqrestore(&np->lock, flags);
  2041. return NETDEV_TX_BUSY;
  2042. }
  2043. spin_unlock_irqrestore(&np->lock, flags);
  2044. start_tx = put_tx = np->put_tx.ex;
  2045. start_tx_ctx = np->put_tx_ctx;
  2046. /* setup the header buffer */
  2047. do {
  2048. prev_tx = put_tx;
  2049. prev_tx_ctx = np->put_tx_ctx;
  2050. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2051. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  2052. PCI_DMA_TODEVICE);
  2053. np->put_tx_ctx->dma_len = bcnt;
  2054. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2055. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2056. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2057. tx_flags = NV_TX2_VALID;
  2058. offset += bcnt;
  2059. size -= bcnt;
  2060. if (unlikely(put_tx++ == np->last_tx.ex))
  2061. put_tx = np->first_tx.ex;
  2062. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2063. np->put_tx_ctx = np->first_tx_ctx;
  2064. } while (size);
  2065. /* setup the fragments */
  2066. for (i = 0; i < fragments; i++) {
  2067. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2068. u32 size = frag->size;
  2069. offset = 0;
  2070. do {
  2071. prev_tx = put_tx;
  2072. prev_tx_ctx = np->put_tx_ctx;
  2073. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2074. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  2075. PCI_DMA_TODEVICE);
  2076. np->put_tx_ctx->dma_len = bcnt;
  2077. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2078. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2079. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2080. offset += bcnt;
  2081. size -= bcnt;
  2082. if (unlikely(put_tx++ == np->last_tx.ex))
  2083. put_tx = np->first_tx.ex;
  2084. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2085. np->put_tx_ctx = np->first_tx_ctx;
  2086. } while (size);
  2087. }
  2088. /* set last fragment flag */
  2089. prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
  2090. /* save skb in this slot's context area */
  2091. prev_tx_ctx->skb = skb;
  2092. if (skb_is_gso(skb))
  2093. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  2094. else
  2095. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  2096. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  2097. /* vlan tag */
  2098. if (likely(!np->vlangrp)) {
  2099. start_tx->txvlan = 0;
  2100. } else {
  2101. if (vlan_tx_tag_present(skb))
  2102. start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
  2103. else
  2104. start_tx->txvlan = 0;
  2105. }
  2106. spin_lock_irqsave(&np->lock, flags);
  2107. if (np->tx_limit) {
  2108. /* Limit the number of outstanding tx. Setup all fragments, but
  2109. * do not set the VALID bit on the first descriptor. Save a pointer
  2110. * to that descriptor and also for next skb_map element.
  2111. */
  2112. if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
  2113. if (!np->tx_change_owner)
  2114. np->tx_change_owner = start_tx_ctx;
  2115. /* remove VALID bit */
  2116. tx_flags &= ~NV_TX2_VALID;
  2117. start_tx_ctx->first_tx_desc = start_tx;
  2118. start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
  2119. np->tx_end_flip = np->put_tx_ctx;
  2120. } else {
  2121. np->tx_pkts_in_progress++;
  2122. }
  2123. }
  2124. /* set tx flags */
  2125. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  2126. np->put_tx.ex = put_tx;
  2127. spin_unlock_irqrestore(&np->lock, flags);
  2128. dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
  2129. dev->name, entries, tx_flags_extra);
  2130. {
  2131. int j;
  2132. for (j=0; j<64; j++) {
  2133. if ((j%16) == 0)
  2134. dprintk("\n%03x:", j);
  2135. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2136. }
  2137. dprintk("\n");
  2138. }
  2139. dev->trans_start = jiffies;
  2140. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2141. return NETDEV_TX_OK;
  2142. }
  2143. static inline void nv_tx_flip_ownership(struct net_device *dev)
  2144. {
  2145. struct fe_priv *np = netdev_priv(dev);
  2146. np->tx_pkts_in_progress--;
  2147. if (np->tx_change_owner) {
  2148. np->tx_change_owner->first_tx_desc->flaglen |=
  2149. cpu_to_le32(NV_TX2_VALID);
  2150. np->tx_pkts_in_progress++;
  2151. np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
  2152. if (np->tx_change_owner == np->tx_end_flip)
  2153. np->tx_change_owner = NULL;
  2154. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2155. }
  2156. }
  2157. /*
  2158. * nv_tx_done: check for completed packets, release the skbs.
  2159. *
  2160. * Caller must own np->lock.
  2161. */
  2162. static int nv_tx_done(struct net_device *dev, int limit)
  2163. {
  2164. struct fe_priv *np = netdev_priv(dev);
  2165. u32 flags;
  2166. int tx_work = 0;
  2167. struct ring_desc* orig_get_tx = np->get_tx.orig;
  2168. while ((np->get_tx.orig != np->put_tx.orig) &&
  2169. !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) &&
  2170. (tx_work < limit)) {
  2171. dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
  2172. dev->name, flags);
  2173. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  2174. np->get_tx_ctx->dma_len,
  2175. PCI_DMA_TODEVICE);
  2176. np->get_tx_ctx->dma = 0;
  2177. if (np->desc_ver == DESC_VER_1) {
  2178. if (flags & NV_TX_LASTPACKET) {
  2179. if (flags & NV_TX_ERROR) {
  2180. if (flags & NV_TX_UNDERFLOW)
  2181. dev->stats.tx_fifo_errors++;
  2182. if (flags & NV_TX_CARRIERLOST)
  2183. dev->stats.tx_carrier_errors++;
  2184. if ((flags & NV_TX_RETRYERROR) && !(flags & NV_TX_RETRYCOUNT_MASK))
  2185. nv_legacybackoff_reseed(dev);
  2186. dev->stats.tx_errors++;
  2187. } else {
  2188. dev->stats.tx_packets++;
  2189. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2190. }
  2191. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2192. np->get_tx_ctx->skb = NULL;
  2193. tx_work++;
  2194. }
  2195. } else {
  2196. if (flags & NV_TX2_LASTPACKET) {
  2197. if (flags & NV_TX2_ERROR) {
  2198. if (flags & NV_TX2_UNDERFLOW)
  2199. dev->stats.tx_fifo_errors++;
  2200. if (flags & NV_TX2_CARRIERLOST)
  2201. dev->stats.tx_carrier_errors++;
  2202. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK))
  2203. nv_legacybackoff_reseed(dev);
  2204. dev->stats.tx_errors++;
  2205. } else {
  2206. dev->stats.tx_packets++;
  2207. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2208. }
  2209. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2210. np->get_tx_ctx->skb = NULL;
  2211. tx_work++;
  2212. }
  2213. }
  2214. if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
  2215. np->get_tx.orig = np->first_tx.orig;
  2216. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2217. np->get_tx_ctx = np->first_tx_ctx;
  2218. }
  2219. if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
  2220. np->tx_stop = 0;
  2221. netif_wake_queue(dev);
  2222. }
  2223. return tx_work;
  2224. }
  2225. static int nv_tx_done_optimized(struct net_device *dev, int limit)
  2226. {
  2227. struct fe_priv *np = netdev_priv(dev);
  2228. u32 flags;
  2229. int tx_work = 0;
  2230. struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
  2231. while ((np->get_tx.ex != np->put_tx.ex) &&
  2232. !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
  2233. (tx_work < limit)) {
  2234. dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
  2235. dev->name, flags);
  2236. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  2237. np->get_tx_ctx->dma_len,
  2238. PCI_DMA_TODEVICE);
  2239. np->get_tx_ctx->dma = 0;
  2240. if (flags & NV_TX2_LASTPACKET) {
  2241. if (!(flags & NV_TX2_ERROR))
  2242. dev->stats.tx_packets++;
  2243. else {
  2244. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
  2245. if (np->driver_data & DEV_HAS_GEAR_MODE)
  2246. nv_gear_backoff_reseed(dev);
  2247. else
  2248. nv_legacybackoff_reseed(dev);
  2249. }
  2250. }
  2251. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2252. np->get_tx_ctx->skb = NULL;
  2253. tx_work++;
  2254. if (np->tx_limit) {
  2255. nv_tx_flip_ownership(dev);
  2256. }
  2257. }
  2258. if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
  2259. np->get_tx.ex = np->first_tx.ex;
  2260. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2261. np->get_tx_ctx = np->first_tx_ctx;
  2262. }
  2263. if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
  2264. np->tx_stop = 0;
  2265. netif_wake_queue(dev);
  2266. }
  2267. return tx_work;
  2268. }
  2269. /*
  2270. * nv_tx_timeout: dev->tx_timeout function
  2271. * Called with netif_tx_lock held.
  2272. */
  2273. static void nv_tx_timeout(struct net_device *dev)
  2274. {
  2275. struct fe_priv *np = netdev_priv(dev);
  2276. u8 __iomem *base = get_hwbase(dev);
  2277. u32 status;
  2278. union ring_type put_tx;
  2279. int saved_tx_limit;
  2280. if (np->msi_flags & NV_MSI_X_ENABLED)
  2281. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2282. else
  2283. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2284. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  2285. {
  2286. int i;
  2287. printk(KERN_INFO "%s: Ring at %lx\n",
  2288. dev->name, (unsigned long)np->ring_addr);
  2289. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  2290. for (i=0;i<=np->register_size;i+= 32) {
  2291. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  2292. i,
  2293. readl(base + i + 0), readl(base + i + 4),
  2294. readl(base + i + 8), readl(base + i + 12),
  2295. readl(base + i + 16), readl(base + i + 20),
  2296. readl(base + i + 24), readl(base + i + 28));
  2297. }
  2298. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  2299. for (i=0;i<np->tx_ring_size;i+= 4) {
  2300. if (!nv_optimized(np)) {
  2301. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  2302. i,
  2303. le32_to_cpu(np->tx_ring.orig[i].buf),
  2304. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  2305. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  2306. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  2307. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  2308. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  2309. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  2310. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  2311. } else {
  2312. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  2313. i,
  2314. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  2315. le32_to_cpu(np->tx_ring.ex[i].buflow),
  2316. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  2317. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  2318. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  2319. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  2320. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  2321. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  2322. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  2323. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  2324. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  2325. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  2326. }
  2327. }
  2328. }
  2329. spin_lock_irq(&np->lock);
  2330. /* 1) stop tx engine */
  2331. nv_stop_tx(dev);
  2332. /* 2) complete any outstanding tx and do not give HW any limited tx pkts */
  2333. saved_tx_limit = np->tx_limit;
  2334. np->tx_limit = 0; /* prevent giving HW any limited pkts */
  2335. np->tx_stop = 0; /* prevent waking tx queue */
  2336. if (!nv_optimized(np))
  2337. nv_tx_done(dev, np->tx_ring_size);
  2338. else
  2339. nv_tx_done_optimized(dev, np->tx_ring_size);
  2340. /* save current HW postion */
  2341. if (np->tx_change_owner)
  2342. put_tx.ex = np->tx_change_owner->first_tx_desc;
  2343. else
  2344. put_tx = np->put_tx;
  2345. /* 3) clear all tx state */
  2346. nv_drain_tx(dev);
  2347. nv_init_tx(dev);
  2348. /* 4) restore state to current HW position */
  2349. np->get_tx = np->put_tx = put_tx;
  2350. np->tx_limit = saved_tx_limit;
  2351. /* 5) restart tx engine */
  2352. nv_start_tx(dev);
  2353. netif_wake_queue(dev);
  2354. spin_unlock_irq(&np->lock);
  2355. }
  2356. /*
  2357. * Called when the nic notices a mismatch between the actual data len on the
  2358. * wire and the len indicated in the 802 header
  2359. */
  2360. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  2361. {
  2362. int hdrlen; /* length of the 802 header */
  2363. int protolen; /* length as stored in the proto field */
  2364. /* 1) calculate len according to header */
  2365. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  2366. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  2367. hdrlen = VLAN_HLEN;
  2368. } else {
  2369. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  2370. hdrlen = ETH_HLEN;
  2371. }
  2372. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  2373. dev->name, datalen, protolen, hdrlen);
  2374. if (protolen > ETH_DATA_LEN)
  2375. return datalen; /* Value in proto field not a len, no checks possible */
  2376. protolen += hdrlen;
  2377. /* consistency checks: */
  2378. if (datalen > ETH_ZLEN) {
  2379. if (datalen >= protolen) {
  2380. /* more data on wire than in 802 header, trim of
  2381. * additional data.
  2382. */
  2383. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2384. dev->name, protolen);
  2385. return protolen;
  2386. } else {
  2387. /* less data on wire than mentioned in header.
  2388. * Discard the packet.
  2389. */
  2390. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  2391. dev->name);
  2392. return -1;
  2393. }
  2394. } else {
  2395. /* short packet. Accept only if 802 values are also short */
  2396. if (protolen > ETH_ZLEN) {
  2397. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  2398. dev->name);
  2399. return -1;
  2400. }
  2401. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2402. dev->name, datalen);
  2403. return datalen;
  2404. }
  2405. }
  2406. static int nv_rx_process(struct net_device *dev, int limit)
  2407. {
  2408. struct fe_priv *np = netdev_priv(dev);
  2409. u32 flags;
  2410. int rx_work = 0;
  2411. struct sk_buff *skb;
  2412. int len;
  2413. while((np->get_rx.orig != np->put_rx.orig) &&
  2414. !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
  2415. (rx_work < limit)) {
  2416. dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
  2417. dev->name, flags);
  2418. /*
  2419. * the packet is for us - immediately tear down the pci mapping.
  2420. * TODO: check if a prefetch of the first cacheline improves
  2421. * the performance.
  2422. */
  2423. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2424. np->get_rx_ctx->dma_len,
  2425. PCI_DMA_FROMDEVICE);
  2426. skb = np->get_rx_ctx->skb;
  2427. np->get_rx_ctx->skb = NULL;
  2428. {
  2429. int j;
  2430. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2431. for (j=0; j<64; j++) {
  2432. if ((j%16) == 0)
  2433. dprintk("\n%03x:", j);
  2434. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2435. }
  2436. dprintk("\n");
  2437. }
  2438. /* look at what we actually got: */
  2439. if (np->desc_ver == DESC_VER_1) {
  2440. if (likely(flags & NV_RX_DESCRIPTORVALID)) {
  2441. len = flags & LEN_MASK_V1;
  2442. if (unlikely(flags & NV_RX_ERROR)) {
  2443. if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
  2444. len = nv_getlen(dev, skb->data, len);
  2445. if (len < 0) {
  2446. dev->stats.rx_errors++;
  2447. dev_kfree_skb(skb);
  2448. goto next_pkt;
  2449. }
  2450. }
  2451. /* framing errors are soft errors */
  2452. else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
  2453. if (flags & NV_RX_SUBSTRACT1) {
  2454. len--;
  2455. }
  2456. }
  2457. /* the rest are hard errors */
  2458. else {
  2459. if (flags & NV_RX_MISSEDFRAME)
  2460. dev->stats.rx_missed_errors++;
  2461. if (flags & NV_RX_CRCERR)
  2462. dev->stats.rx_crc_errors++;
  2463. if (flags & NV_RX_OVERFLOW)
  2464. dev->stats.rx_over_errors++;
  2465. dev->stats.rx_errors++;
  2466. dev_kfree_skb(skb);
  2467. goto next_pkt;
  2468. }
  2469. }
  2470. } else {
  2471. dev_kfree_skb(skb);
  2472. goto next_pkt;
  2473. }
  2474. } else {
  2475. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2476. len = flags & LEN_MASK_V2;
  2477. if (unlikely(flags & NV_RX2_ERROR)) {
  2478. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2479. len = nv_getlen(dev, skb->data, len);
  2480. if (len < 0) {
  2481. dev->stats.rx_errors++;
  2482. dev_kfree_skb(skb);
  2483. goto next_pkt;
  2484. }
  2485. }
  2486. /* framing errors are soft errors */
  2487. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2488. if (flags & NV_RX2_SUBSTRACT1) {
  2489. len--;
  2490. }
  2491. }
  2492. /* the rest are hard errors */
  2493. else {
  2494. if (flags & NV_RX2_CRCERR)
  2495. dev->stats.rx_crc_errors++;
  2496. if (flags & NV_RX2_OVERFLOW)
  2497. dev->stats.rx_over_errors++;
  2498. dev->stats.rx_errors++;
  2499. dev_kfree_skb(skb);
  2500. goto next_pkt;
  2501. }
  2502. }
  2503. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2504. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2505. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2506. } else {
  2507. dev_kfree_skb(skb);
  2508. goto next_pkt;
  2509. }
  2510. }
  2511. /* got a valid packet - forward it to the network core */
  2512. skb_put(skb, len);
  2513. skb->protocol = eth_type_trans(skb, dev);
  2514. dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
  2515. dev->name, len, skb->protocol);
  2516. #ifdef CONFIG_FORCEDETH_NAPI
  2517. netif_receive_skb(skb);
  2518. #else
  2519. netif_rx(skb);
  2520. #endif
  2521. dev->stats.rx_packets++;
  2522. dev->stats.rx_bytes += len;
  2523. next_pkt:
  2524. if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
  2525. np->get_rx.orig = np->first_rx.orig;
  2526. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2527. np->get_rx_ctx = np->first_rx_ctx;
  2528. rx_work++;
  2529. }
  2530. return rx_work;
  2531. }
  2532. static int nv_rx_process_optimized(struct net_device *dev, int limit)
  2533. {
  2534. struct fe_priv *np = netdev_priv(dev);
  2535. u32 flags;
  2536. u32 vlanflags = 0;
  2537. int rx_work = 0;
  2538. struct sk_buff *skb;
  2539. int len;
  2540. while((np->get_rx.ex != np->put_rx.ex) &&
  2541. !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
  2542. (rx_work < limit)) {
  2543. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
  2544. dev->name, flags);
  2545. /*
  2546. * the packet is for us - immediately tear down the pci mapping.
  2547. * TODO: check if a prefetch of the first cacheline improves
  2548. * the performance.
  2549. */
  2550. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2551. np->get_rx_ctx->dma_len,
  2552. PCI_DMA_FROMDEVICE);
  2553. skb = np->get_rx_ctx->skb;
  2554. np->get_rx_ctx->skb = NULL;
  2555. {
  2556. int j;
  2557. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2558. for (j=0; j<64; j++) {
  2559. if ((j%16) == 0)
  2560. dprintk("\n%03x:", j);
  2561. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2562. }
  2563. dprintk("\n");
  2564. }
  2565. /* look at what we actually got: */
  2566. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2567. len = flags & LEN_MASK_V2;
  2568. if (unlikely(flags & NV_RX2_ERROR)) {
  2569. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2570. len = nv_getlen(dev, skb->data, len);
  2571. if (len < 0) {
  2572. dev_kfree_skb(skb);
  2573. goto next_pkt;
  2574. }
  2575. }
  2576. /* framing errors are soft errors */
  2577. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2578. if (flags & NV_RX2_SUBSTRACT1) {
  2579. len--;
  2580. }
  2581. }
  2582. /* the rest are hard errors */
  2583. else {
  2584. dev_kfree_skb(skb);
  2585. goto next_pkt;
  2586. }
  2587. }
  2588. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2589. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2590. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2591. /* got a valid packet - forward it to the network core */
  2592. skb_put(skb, len);
  2593. skb->protocol = eth_type_trans(skb, dev);
  2594. prefetch(skb->data);
  2595. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
  2596. dev->name, len, skb->protocol);
  2597. if (likely(!np->vlangrp)) {
  2598. #ifdef CONFIG_FORCEDETH_NAPI
  2599. netif_receive_skb(skb);
  2600. #else
  2601. netif_rx(skb);
  2602. #endif
  2603. } else {
  2604. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  2605. if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
  2606. #ifdef CONFIG_FORCEDETH_NAPI
  2607. vlan_hwaccel_receive_skb(skb, np->vlangrp,
  2608. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2609. #else
  2610. vlan_hwaccel_rx(skb, np->vlangrp,
  2611. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2612. #endif
  2613. } else {
  2614. #ifdef CONFIG_FORCEDETH_NAPI
  2615. netif_receive_skb(skb);
  2616. #else
  2617. netif_rx(skb);
  2618. #endif
  2619. }
  2620. }
  2621. dev->stats.rx_packets++;
  2622. dev->stats.rx_bytes += len;
  2623. } else {
  2624. dev_kfree_skb(skb);
  2625. }
  2626. next_pkt:
  2627. if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
  2628. np->get_rx.ex = np->first_rx.ex;
  2629. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2630. np->get_rx_ctx = np->first_rx_ctx;
  2631. rx_work++;
  2632. }
  2633. return rx_work;
  2634. }
  2635. static void set_bufsize(struct net_device *dev)
  2636. {
  2637. struct fe_priv *np = netdev_priv(dev);
  2638. if (dev->mtu <= ETH_DATA_LEN)
  2639. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  2640. else
  2641. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  2642. }
  2643. /*
  2644. * nv_change_mtu: dev->change_mtu function
  2645. * Called with dev_base_lock held for read.
  2646. */
  2647. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  2648. {
  2649. struct fe_priv *np = netdev_priv(dev);
  2650. int old_mtu;
  2651. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  2652. return -EINVAL;
  2653. old_mtu = dev->mtu;
  2654. dev->mtu = new_mtu;
  2655. /* return early if the buffer sizes will not change */
  2656. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  2657. return 0;
  2658. if (old_mtu == new_mtu)
  2659. return 0;
  2660. /* synchronized against open : rtnl_lock() held by caller */
  2661. if (netif_running(dev)) {
  2662. u8 __iomem *base = get_hwbase(dev);
  2663. /*
  2664. * It seems that the nic preloads valid ring entries into an
  2665. * internal buffer. The procedure for flushing everything is
  2666. * guessed, there is probably a simpler approach.
  2667. * Changing the MTU is a rare event, it shouldn't matter.
  2668. */
  2669. nv_disable_irq(dev);
  2670. nv_napi_disable(dev);
  2671. netif_tx_lock_bh(dev);
  2672. netif_addr_lock(dev);
  2673. spin_lock(&np->lock);
  2674. /* stop engines */
  2675. nv_stop_rxtx(dev);
  2676. nv_txrx_reset(dev);
  2677. /* drain rx queue */
  2678. nv_drain_rxtx(dev);
  2679. /* reinit driver view of the rx queue */
  2680. set_bufsize(dev);
  2681. if (nv_init_ring(dev)) {
  2682. if (!np->in_shutdown)
  2683. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2684. }
  2685. /* reinit nic view of the rx queue */
  2686. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2687. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2688. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2689. base + NvRegRingSizes);
  2690. pci_push(base);
  2691. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2692. pci_push(base);
  2693. /* restart rx engine */
  2694. nv_start_rxtx(dev);
  2695. spin_unlock(&np->lock);
  2696. netif_addr_unlock(dev);
  2697. netif_tx_unlock_bh(dev);
  2698. nv_napi_enable(dev);
  2699. nv_enable_irq(dev);
  2700. }
  2701. return 0;
  2702. }
  2703. static void nv_copy_mac_to_hw(struct net_device *dev)
  2704. {
  2705. u8 __iomem *base = get_hwbase(dev);
  2706. u32 mac[2];
  2707. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  2708. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  2709. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  2710. writel(mac[0], base + NvRegMacAddrA);
  2711. writel(mac[1], base + NvRegMacAddrB);
  2712. }
  2713. /*
  2714. * nv_set_mac_address: dev->set_mac_address function
  2715. * Called with rtnl_lock() held.
  2716. */
  2717. static int nv_set_mac_address(struct net_device *dev, void *addr)
  2718. {
  2719. struct fe_priv *np = netdev_priv(dev);
  2720. struct sockaddr *macaddr = (struct sockaddr*)addr;
  2721. if (!is_valid_ether_addr(macaddr->sa_data))
  2722. return -EADDRNOTAVAIL;
  2723. /* synchronized against open : rtnl_lock() held by caller */
  2724. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  2725. if (netif_running(dev)) {
  2726. netif_tx_lock_bh(dev);
  2727. netif_addr_lock(dev);
  2728. spin_lock_irq(&np->lock);
  2729. /* stop rx engine */
  2730. nv_stop_rx(dev);
  2731. /* set mac address */
  2732. nv_copy_mac_to_hw(dev);
  2733. /* restart rx engine */
  2734. nv_start_rx(dev);
  2735. spin_unlock_irq(&np->lock);
  2736. netif_addr_unlock(dev);
  2737. netif_tx_unlock_bh(dev);
  2738. } else {
  2739. nv_copy_mac_to_hw(dev);
  2740. }
  2741. return 0;
  2742. }
  2743. /*
  2744. * nv_set_multicast: dev->set_multicast function
  2745. * Called with netif_tx_lock held.
  2746. */
  2747. static void nv_set_multicast(struct net_device *dev)
  2748. {
  2749. struct fe_priv *np = netdev_priv(dev);
  2750. u8 __iomem *base = get_hwbase(dev);
  2751. u32 addr[2];
  2752. u32 mask[2];
  2753. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2754. memset(addr, 0, sizeof(addr));
  2755. memset(mask, 0, sizeof(mask));
  2756. if (dev->flags & IFF_PROMISC) {
  2757. pff |= NVREG_PFF_PROMISC;
  2758. } else {
  2759. pff |= NVREG_PFF_MYADDR;
  2760. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  2761. u32 alwaysOff[2];
  2762. u32 alwaysOn[2];
  2763. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2764. if (dev->flags & IFF_ALLMULTI) {
  2765. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2766. } else {
  2767. struct dev_mc_list *walk;
  2768. walk = dev->mc_list;
  2769. while (walk != NULL) {
  2770. u32 a, b;
  2771. a = le32_to_cpu(*(__le32 *) walk->dmi_addr);
  2772. b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4]));
  2773. alwaysOn[0] &= a;
  2774. alwaysOff[0] &= ~a;
  2775. alwaysOn[1] &= b;
  2776. alwaysOff[1] &= ~b;
  2777. walk = walk->next;
  2778. }
  2779. }
  2780. addr[0] = alwaysOn[0];
  2781. addr[1] = alwaysOn[1];
  2782. mask[0] = alwaysOn[0] | alwaysOff[0];
  2783. mask[1] = alwaysOn[1] | alwaysOff[1];
  2784. } else {
  2785. mask[0] = NVREG_MCASTMASKA_NONE;
  2786. mask[1] = NVREG_MCASTMASKB_NONE;
  2787. }
  2788. }
  2789. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2790. pff |= NVREG_PFF_ALWAYS;
  2791. spin_lock_irq(&np->lock);
  2792. nv_stop_rx(dev);
  2793. writel(addr[0], base + NvRegMulticastAddrA);
  2794. writel(addr[1], base + NvRegMulticastAddrB);
  2795. writel(mask[0], base + NvRegMulticastMaskA);
  2796. writel(mask[1], base + NvRegMulticastMaskB);
  2797. writel(pff, base + NvRegPacketFilterFlags);
  2798. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  2799. dev->name);
  2800. nv_start_rx(dev);
  2801. spin_unlock_irq(&np->lock);
  2802. }
  2803. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2804. {
  2805. struct fe_priv *np = netdev_priv(dev);
  2806. u8 __iomem *base = get_hwbase(dev);
  2807. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2808. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2809. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2810. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2811. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2812. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2813. } else {
  2814. writel(pff, base + NvRegPacketFilterFlags);
  2815. }
  2816. }
  2817. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2818. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2819. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2820. u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
  2821. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
  2822. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
  2823. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) {
  2824. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
  2825. /* limit the number of tx pause frames to a default of 8 */
  2826. writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit);
  2827. }
  2828. writel(pause_enable, base + NvRegTxPauseFrame);
  2829. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2830. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2831. } else {
  2832. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2833. writel(regmisc, base + NvRegMisc1);
  2834. }
  2835. }
  2836. }
  2837. /**
  2838. * nv_update_linkspeed: Setup the MAC according to the link partner
  2839. * @dev: Network device to be configured
  2840. *
  2841. * The function queries the PHY and checks if there is a link partner.
  2842. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2843. * set to 10 MBit HD.
  2844. *
  2845. * The function returns 0 if there is no link partner and 1 if there is
  2846. * a good link partner.
  2847. */
  2848. static int nv_update_linkspeed(struct net_device *dev)
  2849. {
  2850. struct fe_priv *np = netdev_priv(dev);
  2851. u8 __iomem *base = get_hwbase(dev);
  2852. int adv = 0;
  2853. int lpa = 0;
  2854. int adv_lpa, adv_pause, lpa_pause;
  2855. int newls = np->linkspeed;
  2856. int newdup = np->duplex;
  2857. int mii_status;
  2858. int retval = 0;
  2859. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2860. u32 txrxFlags = 0;
  2861. u32 phy_exp;
  2862. /* BMSR_LSTATUS is latched, read it twice:
  2863. * we want the current value.
  2864. */
  2865. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2866. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2867. if (!(mii_status & BMSR_LSTATUS)) {
  2868. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  2869. dev->name);
  2870. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2871. newdup = 0;
  2872. retval = 0;
  2873. goto set_speed;
  2874. }
  2875. if (np->autoneg == 0) {
  2876. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  2877. dev->name, np->fixed_mode);
  2878. if (np->fixed_mode & LPA_100FULL) {
  2879. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2880. newdup = 1;
  2881. } else if (np->fixed_mode & LPA_100HALF) {
  2882. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2883. newdup = 0;
  2884. } else if (np->fixed_mode & LPA_10FULL) {
  2885. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2886. newdup = 1;
  2887. } else {
  2888. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2889. newdup = 0;
  2890. }
  2891. retval = 1;
  2892. goto set_speed;
  2893. }
  2894. /* check auto negotiation is complete */
  2895. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2896. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2897. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2898. newdup = 0;
  2899. retval = 0;
  2900. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  2901. goto set_speed;
  2902. }
  2903. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2904. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2905. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  2906. dev->name, adv, lpa);
  2907. retval = 1;
  2908. if (np->gigabit == PHY_GIGABIT) {
  2909. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2910. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2911. if ((control_1000 & ADVERTISE_1000FULL) &&
  2912. (status_1000 & LPA_1000FULL)) {
  2913. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  2914. dev->name);
  2915. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2916. newdup = 1;
  2917. goto set_speed;
  2918. }
  2919. }
  2920. /* FIXME: handle parallel detection properly */
  2921. adv_lpa = lpa & adv;
  2922. if (adv_lpa & LPA_100FULL) {
  2923. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2924. newdup = 1;
  2925. } else if (adv_lpa & LPA_100HALF) {
  2926. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2927. newdup = 0;
  2928. } else if (adv_lpa & LPA_10FULL) {
  2929. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2930. newdup = 1;
  2931. } else if (adv_lpa & LPA_10HALF) {
  2932. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2933. newdup = 0;
  2934. } else {
  2935. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  2936. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2937. newdup = 0;
  2938. }
  2939. set_speed:
  2940. if (np->duplex == newdup && np->linkspeed == newls)
  2941. return retval;
  2942. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  2943. dev->name, np->linkspeed, np->duplex, newls, newdup);
  2944. np->duplex = newdup;
  2945. np->linkspeed = newls;
  2946. /* The transmitter and receiver must be restarted for safe update */
  2947. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
  2948. txrxFlags |= NV_RESTART_TX;
  2949. nv_stop_tx(dev);
  2950. }
  2951. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  2952. txrxFlags |= NV_RESTART_RX;
  2953. nv_stop_rx(dev);
  2954. }
  2955. if (np->gigabit == PHY_GIGABIT) {
  2956. phyreg = readl(base + NvRegSlotTime);
  2957. phyreg &= ~(0x3FF00);
  2958. if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
  2959. ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
  2960. phyreg |= NVREG_SLOTTIME_10_100_FULL;
  2961. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2962. phyreg |= NVREG_SLOTTIME_1000_FULL;
  2963. writel(phyreg, base + NvRegSlotTime);
  2964. }
  2965. phyreg = readl(base + NvRegPhyInterface);
  2966. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2967. if (np->duplex == 0)
  2968. phyreg |= PHY_HALF;
  2969. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2970. phyreg |= PHY_100;
  2971. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2972. phyreg |= PHY_1000;
  2973. writel(phyreg, base + NvRegPhyInterface);
  2974. phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
  2975. if (phyreg & PHY_RGMII) {
  2976. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
  2977. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2978. } else {
  2979. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
  2980. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
  2981. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
  2982. else
  2983. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
  2984. } else {
  2985. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2986. }
  2987. }
  2988. } else {
  2989. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
  2990. txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
  2991. else
  2992. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2993. }
  2994. writel(txreg, base + NvRegTxDeferral);
  2995. if (np->desc_ver == DESC_VER_1) {
  2996. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2997. } else {
  2998. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2999. txreg = NVREG_TX_WM_DESC2_3_1000;
  3000. else
  3001. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  3002. }
  3003. writel(txreg, base + NvRegTxWatermark);
  3004. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  3005. base + NvRegMisc1);
  3006. pci_push(base);
  3007. writel(np->linkspeed, base + NvRegLinkSpeed);
  3008. pci_push(base);
  3009. pause_flags = 0;
  3010. /* setup pause frame */
  3011. if (np->duplex != 0) {
  3012. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  3013. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  3014. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  3015. switch (adv_pause) {
  3016. case ADVERTISE_PAUSE_CAP:
  3017. if (lpa_pause & LPA_PAUSE_CAP) {
  3018. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3019. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3020. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3021. }
  3022. break;
  3023. case ADVERTISE_PAUSE_ASYM:
  3024. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  3025. {
  3026. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3027. }
  3028. break;
  3029. case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
  3030. if (lpa_pause & LPA_PAUSE_CAP)
  3031. {
  3032. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3033. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3034. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3035. }
  3036. if (lpa_pause == LPA_PAUSE_ASYM)
  3037. {
  3038. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3039. }
  3040. break;
  3041. }
  3042. } else {
  3043. pause_flags = np->pause_flags;
  3044. }
  3045. }
  3046. nv_update_pause(dev, pause_flags);
  3047. if (txrxFlags & NV_RESTART_TX)
  3048. nv_start_tx(dev);
  3049. if (txrxFlags & NV_RESTART_RX)
  3050. nv_start_rx(dev);
  3051. return retval;
  3052. }
  3053. static void nv_linkchange(struct net_device *dev)
  3054. {
  3055. if (nv_update_linkspeed(dev)) {
  3056. if (!netif_carrier_ok(dev)) {
  3057. netif_carrier_on(dev);
  3058. printk(KERN_INFO "%s: link up.\n", dev->name);
  3059. nv_start_rx(dev);
  3060. }
  3061. } else {
  3062. if (netif_carrier_ok(dev)) {
  3063. netif_carrier_off(dev);
  3064. printk(KERN_INFO "%s: link down.\n", dev->name);
  3065. nv_stop_rx(dev);
  3066. }
  3067. }
  3068. }
  3069. static void nv_link_irq(struct net_device *dev)
  3070. {
  3071. u8 __iomem *base = get_hwbase(dev);
  3072. u32 miistat;
  3073. miistat = readl(base + NvRegMIIStatus);
  3074. writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
  3075. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  3076. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  3077. nv_linkchange(dev);
  3078. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  3079. }
  3080. static void nv_msi_workaround(struct fe_priv *np)
  3081. {
  3082. /* Need to toggle the msi irq mask within the ethernet device,
  3083. * otherwise, future interrupts will not be detected.
  3084. */
  3085. if (np->msi_flags & NV_MSI_ENABLED) {
  3086. u8 __iomem *base = np->base;
  3087. writel(0, base + NvRegMSIIrqMask);
  3088. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3089. }
  3090. }
  3091. static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work)
  3092. {
  3093. struct fe_priv *np = netdev_priv(dev);
  3094. if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) {
  3095. if (total_work > NV_DYNAMIC_THRESHOLD) {
  3096. /* transition to poll based interrupts */
  3097. np->quiet_count = 0;
  3098. if (np->irqmask != NVREG_IRQMASK_CPU) {
  3099. np->irqmask = NVREG_IRQMASK_CPU;
  3100. return 1;
  3101. }
  3102. } else {
  3103. if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) {
  3104. np->quiet_count++;
  3105. } else {
  3106. /* reached a period of low activity, switch
  3107. to per tx/rx packet interrupts */
  3108. if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) {
  3109. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  3110. return 1;
  3111. }
  3112. }
  3113. }
  3114. }
  3115. return 0;
  3116. }
  3117. static irqreturn_t nv_nic_irq(int foo, void *data)
  3118. {
  3119. struct net_device *dev = (struct net_device *) data;
  3120. struct fe_priv *np = netdev_priv(dev);
  3121. u8 __iomem *base = get_hwbase(dev);
  3122. #ifndef CONFIG_FORCEDETH_NAPI
  3123. int total_work = 0;
  3124. int loop_count = 0;
  3125. #endif
  3126. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  3127. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3128. np->events = readl(base + NvRegIrqStatus);
  3129. writel(np->events, base + NvRegIrqStatus);
  3130. } else {
  3131. np->events = readl(base + NvRegMSIXIrqStatus);
  3132. writel(np->events, base + NvRegMSIXIrqStatus);
  3133. }
  3134. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
  3135. if (!(np->events & np->irqmask))
  3136. return IRQ_NONE;
  3137. nv_msi_workaround(np);
  3138. #ifdef CONFIG_FORCEDETH_NAPI
  3139. napi_schedule(&np->napi);
  3140. /* Disable furthur irq's
  3141. (msix not enabled with napi) */
  3142. writel(0, base + NvRegIrqMask);
  3143. #else
  3144. do
  3145. {
  3146. int work = 0;
  3147. if ((work = nv_rx_process(dev, RX_WORK_PER_LOOP))) {
  3148. if (unlikely(nv_alloc_rx(dev))) {
  3149. spin_lock(&np->lock);
  3150. if (!np->in_shutdown)
  3151. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3152. spin_unlock(&np->lock);
  3153. }
  3154. }
  3155. spin_lock(&np->lock);
  3156. work += nv_tx_done(dev, TX_WORK_PER_LOOP);
  3157. spin_unlock(&np->lock);
  3158. if (!work)
  3159. break;
  3160. total_work += work;
  3161. loop_count++;
  3162. }
  3163. while (loop_count < max_interrupt_work);
  3164. if (nv_change_interrupt_mode(dev, total_work)) {
  3165. /* setup new irq mask */
  3166. writel(np->irqmask, base + NvRegIrqMask);
  3167. }
  3168. if (unlikely(np->events & NVREG_IRQ_LINK)) {
  3169. spin_lock(&np->lock);
  3170. nv_link_irq(dev);
  3171. spin_unlock(&np->lock);
  3172. }
  3173. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3174. spin_lock(&np->lock);
  3175. nv_linkchange(dev);
  3176. spin_unlock(&np->lock);
  3177. np->link_timeout = jiffies + LINK_TIMEOUT;
  3178. }
  3179. if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
  3180. spin_lock(&np->lock);
  3181. /* disable interrupts on the nic */
  3182. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3183. writel(0, base + NvRegIrqMask);
  3184. else
  3185. writel(np->irqmask, base + NvRegIrqMask);
  3186. pci_push(base);
  3187. if (!np->in_shutdown) {
  3188. np->nic_poll_irq = np->irqmask;
  3189. np->recover_error = 1;
  3190. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3191. }
  3192. spin_unlock(&np->lock);
  3193. }
  3194. #endif
  3195. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  3196. return IRQ_HANDLED;
  3197. }
  3198. /**
  3199. * All _optimized functions are used to help increase performance
  3200. * (reduce CPU and increase throughput). They use descripter version 3,
  3201. * compiler directives, and reduce memory accesses.
  3202. */
  3203. static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
  3204. {
  3205. struct net_device *dev = (struct net_device *) data;
  3206. struct fe_priv *np = netdev_priv(dev);
  3207. u8 __iomem *base = get_hwbase(dev);
  3208. #ifndef CONFIG_FORCEDETH_NAPI
  3209. int total_work = 0;
  3210. int loop_count = 0;
  3211. #endif
  3212. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
  3213. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3214. np->events = readl(base + NvRegIrqStatus);
  3215. writel(np->events, base + NvRegIrqStatus);
  3216. } else {
  3217. np->events = readl(base + NvRegMSIXIrqStatus);
  3218. writel(np->events, base + NvRegMSIXIrqStatus);
  3219. }
  3220. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
  3221. if (!(np->events & np->irqmask))
  3222. return IRQ_NONE;
  3223. nv_msi_workaround(np);
  3224. #ifdef CONFIG_FORCEDETH_NAPI
  3225. napi_schedule(&np->napi);
  3226. /* Disable furthur irq's
  3227. (msix not enabled with napi) */
  3228. writel(0, base + NvRegIrqMask);
  3229. #else
  3230. do
  3231. {
  3232. int work = 0;
  3233. if ((work = nv_rx_process_optimized(dev, RX_WORK_PER_LOOP))) {
  3234. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3235. spin_lock(&np->lock);
  3236. if (!np->in_shutdown)
  3237. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3238. spin_unlock(&np->lock);
  3239. }
  3240. }
  3241. spin_lock(&np->lock);
  3242. work += nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3243. spin_unlock(&np->lock);
  3244. if (!work)
  3245. break;
  3246. total_work += work;
  3247. loop_count++;
  3248. }
  3249. while (loop_count < max_interrupt_work);
  3250. if (nv_change_interrupt_mode(dev, total_work)) {
  3251. /* setup new irq mask */
  3252. writel(np->irqmask, base + NvRegIrqMask);
  3253. }
  3254. if (unlikely(np->events & NVREG_IRQ_LINK)) {
  3255. spin_lock(&np->lock);
  3256. nv_link_irq(dev);
  3257. spin_unlock(&np->lock);
  3258. }
  3259. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3260. spin_lock(&np->lock);
  3261. nv_linkchange(dev);
  3262. spin_unlock(&np->lock);
  3263. np->link_timeout = jiffies + LINK_TIMEOUT;
  3264. }
  3265. if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
  3266. spin_lock(&np->lock);
  3267. /* disable interrupts on the nic */
  3268. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3269. writel(0, base + NvRegIrqMask);
  3270. else
  3271. writel(np->irqmask, base + NvRegIrqMask);
  3272. pci_push(base);
  3273. if (!np->in_shutdown) {
  3274. np->nic_poll_irq = np->irqmask;
  3275. np->recover_error = 1;
  3276. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3277. }
  3278. spin_unlock(&np->lock);
  3279. }
  3280. #endif
  3281. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
  3282. return IRQ_HANDLED;
  3283. }
  3284. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  3285. {
  3286. struct net_device *dev = (struct net_device *) data;
  3287. struct fe_priv *np = netdev_priv(dev);
  3288. u8 __iomem *base = get_hwbase(dev);
  3289. u32 events;
  3290. int i;
  3291. unsigned long flags;
  3292. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  3293. for (i=0; ; i++) {
  3294. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  3295. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  3296. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  3297. if (!(events & np->irqmask))
  3298. break;
  3299. spin_lock_irqsave(&np->lock, flags);
  3300. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3301. spin_unlock_irqrestore(&np->lock, flags);
  3302. if (unlikely(i > max_interrupt_work)) {
  3303. spin_lock_irqsave(&np->lock, flags);
  3304. /* disable interrupts on the nic */
  3305. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  3306. pci_push(base);
  3307. if (!np->in_shutdown) {
  3308. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  3309. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3310. }
  3311. spin_unlock_irqrestore(&np->lock, flags);
  3312. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  3313. break;
  3314. }
  3315. }
  3316. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  3317. return IRQ_RETVAL(i);
  3318. }
  3319. #ifdef CONFIG_FORCEDETH_NAPI
  3320. static int nv_napi_poll(struct napi_struct *napi, int budget)
  3321. {
  3322. struct fe_priv *np = container_of(napi, struct fe_priv, napi);
  3323. struct net_device *dev = np->dev;
  3324. u8 __iomem *base = get_hwbase(dev);
  3325. unsigned long flags;
  3326. int retcode;
  3327. int tx_work, rx_work;
  3328. if (!nv_optimized(np)) {
  3329. spin_lock_irqsave(&np->lock, flags);
  3330. tx_work = nv_tx_done(dev, np->tx_ring_size);
  3331. spin_unlock_irqrestore(&np->lock, flags);
  3332. rx_work = nv_rx_process(dev, budget);
  3333. retcode = nv_alloc_rx(dev);
  3334. } else {
  3335. spin_lock_irqsave(&np->lock, flags);
  3336. tx_work = nv_tx_done_optimized(dev, np->tx_ring_size);
  3337. spin_unlock_irqrestore(&np->lock, flags);
  3338. rx_work = nv_rx_process_optimized(dev, budget);
  3339. retcode = nv_alloc_rx_optimized(dev);
  3340. }
  3341. if (retcode) {
  3342. spin_lock_irqsave(&np->lock, flags);
  3343. if (!np->in_shutdown)
  3344. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3345. spin_unlock_irqrestore(&np->lock, flags);
  3346. }
  3347. nv_change_interrupt_mode(dev, tx_work + rx_work);
  3348. if (unlikely(np->events & NVREG_IRQ_LINK)) {
  3349. spin_lock_irqsave(&np->lock, flags);
  3350. nv_link_irq(dev);
  3351. spin_unlock_irqrestore(&np->lock, flags);
  3352. }
  3353. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3354. spin_lock_irqsave(&np->lock, flags);
  3355. nv_linkchange(dev);
  3356. spin_unlock_irqrestore(&np->lock, flags);
  3357. np->link_timeout = jiffies + LINK_TIMEOUT;
  3358. }
  3359. if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
  3360. spin_lock_irqsave(&np->lock, flags);
  3361. if (!np->in_shutdown) {
  3362. np->nic_poll_irq = np->irqmask;
  3363. np->recover_error = 1;
  3364. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3365. }
  3366. spin_unlock_irqrestore(&np->lock, flags);
  3367. napi_complete(napi);
  3368. return rx_work;
  3369. }
  3370. if (rx_work < budget) {
  3371. /* re-enable interrupts
  3372. (msix not enabled in napi) */
  3373. napi_complete(napi);
  3374. writel(np->irqmask, base + NvRegIrqMask);
  3375. }
  3376. return rx_work;
  3377. }
  3378. #endif
  3379. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3380. {
  3381. struct net_device *dev = (struct net_device *) data;
  3382. struct fe_priv *np = netdev_priv(dev);
  3383. u8 __iomem *base = get_hwbase(dev);
  3384. u32 events;
  3385. int i;
  3386. unsigned long flags;
  3387. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  3388. for (i=0; ; i++) {
  3389. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3390. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  3391. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  3392. if (!(events & np->irqmask))
  3393. break;
  3394. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3395. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3396. spin_lock_irqsave(&np->lock, flags);
  3397. if (!np->in_shutdown)
  3398. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3399. spin_unlock_irqrestore(&np->lock, flags);
  3400. }
  3401. }
  3402. if (unlikely(i > max_interrupt_work)) {
  3403. spin_lock_irqsave(&np->lock, flags);
  3404. /* disable interrupts on the nic */
  3405. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3406. pci_push(base);
  3407. if (!np->in_shutdown) {
  3408. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  3409. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3410. }
  3411. spin_unlock_irqrestore(&np->lock, flags);
  3412. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  3413. break;
  3414. }
  3415. }
  3416. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  3417. return IRQ_RETVAL(i);
  3418. }
  3419. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  3420. {
  3421. struct net_device *dev = (struct net_device *) data;
  3422. struct fe_priv *np = netdev_priv(dev);
  3423. u8 __iomem *base = get_hwbase(dev);
  3424. u32 events;
  3425. int i;
  3426. unsigned long flags;
  3427. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  3428. for (i=0; ; i++) {
  3429. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  3430. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  3431. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3432. if (!(events & np->irqmask))
  3433. break;
  3434. /* check tx in case we reached max loop limit in tx isr */
  3435. spin_lock_irqsave(&np->lock, flags);
  3436. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3437. spin_unlock_irqrestore(&np->lock, flags);
  3438. if (events & NVREG_IRQ_LINK) {
  3439. spin_lock_irqsave(&np->lock, flags);
  3440. nv_link_irq(dev);
  3441. spin_unlock_irqrestore(&np->lock, flags);
  3442. }
  3443. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  3444. spin_lock_irqsave(&np->lock, flags);
  3445. nv_linkchange(dev);
  3446. spin_unlock_irqrestore(&np->lock, flags);
  3447. np->link_timeout = jiffies + LINK_TIMEOUT;
  3448. }
  3449. if (events & NVREG_IRQ_RECOVER_ERROR) {
  3450. spin_lock_irq(&np->lock);
  3451. /* disable interrupts on the nic */
  3452. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3453. pci_push(base);
  3454. if (!np->in_shutdown) {
  3455. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3456. np->recover_error = 1;
  3457. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3458. }
  3459. spin_unlock_irq(&np->lock);
  3460. break;
  3461. }
  3462. if (unlikely(i > max_interrupt_work)) {
  3463. spin_lock_irqsave(&np->lock, flags);
  3464. /* disable interrupts on the nic */
  3465. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3466. pci_push(base);
  3467. if (!np->in_shutdown) {
  3468. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3469. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3470. }
  3471. spin_unlock_irqrestore(&np->lock, flags);
  3472. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  3473. break;
  3474. }
  3475. }
  3476. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  3477. return IRQ_RETVAL(i);
  3478. }
  3479. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  3480. {
  3481. struct net_device *dev = (struct net_device *) data;
  3482. struct fe_priv *np = netdev_priv(dev);
  3483. u8 __iomem *base = get_hwbase(dev);
  3484. u32 events;
  3485. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  3486. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3487. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3488. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  3489. } else {
  3490. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3491. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  3492. }
  3493. pci_push(base);
  3494. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3495. if (!(events & NVREG_IRQ_TIMER))
  3496. return IRQ_RETVAL(0);
  3497. nv_msi_workaround(np);
  3498. spin_lock(&np->lock);
  3499. np->intr_test = 1;
  3500. spin_unlock(&np->lock);
  3501. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  3502. return IRQ_RETVAL(1);
  3503. }
  3504. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  3505. {
  3506. u8 __iomem *base = get_hwbase(dev);
  3507. int i;
  3508. u32 msixmap = 0;
  3509. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  3510. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  3511. * the remaining 8 interrupts.
  3512. */
  3513. for (i = 0; i < 8; i++) {
  3514. if ((irqmask >> i) & 0x1) {
  3515. msixmap |= vector << (i << 2);
  3516. }
  3517. }
  3518. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  3519. msixmap = 0;
  3520. for (i = 0; i < 8; i++) {
  3521. if ((irqmask >> (i + 8)) & 0x1) {
  3522. msixmap |= vector << (i << 2);
  3523. }
  3524. }
  3525. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  3526. }
  3527. static int nv_request_irq(struct net_device *dev, int intr_test)
  3528. {
  3529. struct fe_priv *np = get_nvpriv(dev);
  3530. u8 __iomem *base = get_hwbase(dev);
  3531. int ret = 1;
  3532. int i;
  3533. irqreturn_t (*handler)(int foo, void *data);
  3534. if (intr_test) {
  3535. handler = nv_nic_irq_test;
  3536. } else {
  3537. if (nv_optimized(np))
  3538. handler = nv_nic_irq_optimized;
  3539. else
  3540. handler = nv_nic_irq;
  3541. }
  3542. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  3543. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3544. np->msi_x_entry[i].entry = i;
  3545. }
  3546. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  3547. np->msi_flags |= NV_MSI_X_ENABLED;
  3548. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  3549. /* Request irq for rx handling */
  3550. sprintf(np->name_rx, "%s-rx", dev->name);
  3551. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
  3552. &nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev) != 0) {
  3553. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  3554. pci_disable_msix(np->pci_dev);
  3555. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3556. goto out_err;
  3557. }
  3558. /* Request irq for tx handling */
  3559. sprintf(np->name_tx, "%s-tx", dev->name);
  3560. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
  3561. &nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev) != 0) {
  3562. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  3563. pci_disable_msix(np->pci_dev);
  3564. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3565. goto out_free_rx;
  3566. }
  3567. /* Request irq for link and timer handling */
  3568. sprintf(np->name_other, "%s-other", dev->name);
  3569. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector,
  3570. &nv_nic_irq_other, IRQF_SHARED, np->name_other, dev) != 0) {
  3571. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  3572. pci_disable_msix(np->pci_dev);
  3573. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3574. goto out_free_tx;
  3575. }
  3576. /* map interrupts to their respective vector */
  3577. writel(0, base + NvRegMSIXMap0);
  3578. writel(0, base + NvRegMSIXMap1);
  3579. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3580. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3581. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3582. } else {
  3583. /* Request irq for all interrupts */
  3584. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3585. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3586. pci_disable_msix(np->pci_dev);
  3587. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3588. goto out_err;
  3589. }
  3590. /* map interrupts to vector 0 */
  3591. writel(0, base + NvRegMSIXMap0);
  3592. writel(0, base + NvRegMSIXMap1);
  3593. }
  3594. }
  3595. }
  3596. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  3597. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  3598. np->msi_flags |= NV_MSI_ENABLED;
  3599. dev->irq = np->pci_dev->irq;
  3600. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3601. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3602. pci_disable_msi(np->pci_dev);
  3603. np->msi_flags &= ~NV_MSI_ENABLED;
  3604. dev->irq = np->pci_dev->irq;
  3605. goto out_err;
  3606. }
  3607. /* map interrupts to vector 0 */
  3608. writel(0, base + NvRegMSIMap0);
  3609. writel(0, base + NvRegMSIMap1);
  3610. /* enable msi vector 0 */
  3611. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3612. }
  3613. }
  3614. if (ret != 0) {
  3615. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
  3616. goto out_err;
  3617. }
  3618. return 0;
  3619. out_free_tx:
  3620. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3621. out_free_rx:
  3622. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3623. out_err:
  3624. return 1;
  3625. }
  3626. static void nv_free_irq(struct net_device *dev)
  3627. {
  3628. struct fe_priv *np = get_nvpriv(dev);
  3629. int i;
  3630. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3631. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3632. free_irq(np->msi_x_entry[i].vector, dev);
  3633. }
  3634. pci_disable_msix(np->pci_dev);
  3635. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3636. } else {
  3637. free_irq(np->pci_dev->irq, dev);
  3638. if (np->msi_flags & NV_MSI_ENABLED) {
  3639. pci_disable_msi(np->pci_dev);
  3640. np->msi_flags &= ~NV_MSI_ENABLED;
  3641. }
  3642. }
  3643. }
  3644. static void nv_do_nic_poll(unsigned long data)
  3645. {
  3646. struct net_device *dev = (struct net_device *) data;
  3647. struct fe_priv *np = netdev_priv(dev);
  3648. u8 __iomem *base = get_hwbase(dev);
  3649. u32 mask = 0;
  3650. /*
  3651. * First disable irq(s) and then
  3652. * reenable interrupts on the nic, we have to do this before calling
  3653. * nv_nic_irq because that may decide to do otherwise
  3654. */
  3655. if (!using_multi_irqs(dev)) {
  3656. if (np->msi_flags & NV_MSI_X_ENABLED)
  3657. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3658. else
  3659. disable_irq_lockdep(np->pci_dev->irq);
  3660. mask = np->irqmask;
  3661. } else {
  3662. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3663. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3664. mask |= NVREG_IRQ_RX_ALL;
  3665. }
  3666. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3667. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3668. mask |= NVREG_IRQ_TX_ALL;
  3669. }
  3670. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3671. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3672. mask |= NVREG_IRQ_OTHER;
  3673. }
  3674. }
  3675. /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
  3676. if (np->recover_error) {
  3677. np->recover_error = 0;
  3678. printk(KERN_INFO "%s: MAC in recoverable error state\n", dev->name);
  3679. if (netif_running(dev)) {
  3680. netif_tx_lock_bh(dev);
  3681. netif_addr_lock(dev);
  3682. spin_lock(&np->lock);
  3683. /* stop engines */
  3684. nv_stop_rxtx(dev);
  3685. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  3686. nv_mac_reset(dev);
  3687. nv_txrx_reset(dev);
  3688. /* drain rx queue */
  3689. nv_drain_rxtx(dev);
  3690. /* reinit driver view of the rx queue */
  3691. set_bufsize(dev);
  3692. if (nv_init_ring(dev)) {
  3693. if (!np->in_shutdown)
  3694. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3695. }
  3696. /* reinit nic view of the rx queue */
  3697. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3698. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3699. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3700. base + NvRegRingSizes);
  3701. pci_push(base);
  3702. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3703. pci_push(base);
  3704. /* clear interrupts */
  3705. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3706. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3707. else
  3708. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3709. /* restart rx engine */
  3710. nv_start_rxtx(dev);
  3711. spin_unlock(&np->lock);
  3712. netif_addr_unlock(dev);
  3713. netif_tx_unlock_bh(dev);
  3714. }
  3715. }
  3716. writel(mask, base + NvRegIrqMask);
  3717. pci_push(base);
  3718. if (!using_multi_irqs(dev)) {
  3719. np->nic_poll_irq = 0;
  3720. if (nv_optimized(np))
  3721. nv_nic_irq_optimized(0, dev);
  3722. else
  3723. nv_nic_irq(0, dev);
  3724. if (np->msi_flags & NV_MSI_X_ENABLED)
  3725. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3726. else
  3727. enable_irq_lockdep(np->pci_dev->irq);
  3728. } else {
  3729. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3730. np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL;
  3731. nv_nic_irq_rx(0, dev);
  3732. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3733. }
  3734. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3735. np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL;
  3736. nv_nic_irq_tx(0, dev);
  3737. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3738. }
  3739. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3740. np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
  3741. nv_nic_irq_other(0, dev);
  3742. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3743. }
  3744. }
  3745. }
  3746. #ifdef CONFIG_NET_POLL_CONTROLLER
  3747. static void nv_poll_controller(struct net_device *dev)
  3748. {
  3749. nv_do_nic_poll((unsigned long) dev);
  3750. }
  3751. #endif
  3752. static void nv_do_stats_poll(unsigned long data)
  3753. {
  3754. struct net_device *dev = (struct net_device *) data;
  3755. struct fe_priv *np = netdev_priv(dev);
  3756. nv_get_hw_stats(dev);
  3757. if (!np->in_shutdown)
  3758. mod_timer(&np->stats_poll,
  3759. round_jiffies(jiffies + STATS_INTERVAL));
  3760. }
  3761. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3762. {
  3763. struct fe_priv *np = netdev_priv(dev);
  3764. strcpy(info->driver, DRV_NAME);
  3765. strcpy(info->version, FORCEDETH_VERSION);
  3766. strcpy(info->bus_info, pci_name(np->pci_dev));
  3767. }
  3768. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3769. {
  3770. struct fe_priv *np = netdev_priv(dev);
  3771. wolinfo->supported = WAKE_MAGIC;
  3772. spin_lock_irq(&np->lock);
  3773. if (np->wolenabled)
  3774. wolinfo->wolopts = WAKE_MAGIC;
  3775. spin_unlock_irq(&np->lock);
  3776. }
  3777. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3778. {
  3779. struct fe_priv *np = netdev_priv(dev);
  3780. u8 __iomem *base = get_hwbase(dev);
  3781. u32 flags = 0;
  3782. if (wolinfo->wolopts == 0) {
  3783. np->wolenabled = 0;
  3784. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  3785. np->wolenabled = 1;
  3786. flags = NVREG_WAKEUPFLAGS_ENABLE;
  3787. }
  3788. if (netif_running(dev)) {
  3789. spin_lock_irq(&np->lock);
  3790. writel(flags, base + NvRegWakeUpFlags);
  3791. spin_unlock_irq(&np->lock);
  3792. }
  3793. return 0;
  3794. }
  3795. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3796. {
  3797. struct fe_priv *np = netdev_priv(dev);
  3798. int adv;
  3799. spin_lock_irq(&np->lock);
  3800. ecmd->port = PORT_MII;
  3801. if (!netif_running(dev)) {
  3802. /* We do not track link speed / duplex setting if the
  3803. * interface is disabled. Force a link check */
  3804. if (nv_update_linkspeed(dev)) {
  3805. if (!netif_carrier_ok(dev))
  3806. netif_carrier_on(dev);
  3807. } else {
  3808. if (netif_carrier_ok(dev))
  3809. netif_carrier_off(dev);
  3810. }
  3811. }
  3812. if (netif_carrier_ok(dev)) {
  3813. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  3814. case NVREG_LINKSPEED_10:
  3815. ecmd->speed = SPEED_10;
  3816. break;
  3817. case NVREG_LINKSPEED_100:
  3818. ecmd->speed = SPEED_100;
  3819. break;
  3820. case NVREG_LINKSPEED_1000:
  3821. ecmd->speed = SPEED_1000;
  3822. break;
  3823. }
  3824. ecmd->duplex = DUPLEX_HALF;
  3825. if (np->duplex)
  3826. ecmd->duplex = DUPLEX_FULL;
  3827. } else {
  3828. ecmd->speed = -1;
  3829. ecmd->duplex = -1;
  3830. }
  3831. ecmd->autoneg = np->autoneg;
  3832. ecmd->advertising = ADVERTISED_MII;
  3833. if (np->autoneg) {
  3834. ecmd->advertising |= ADVERTISED_Autoneg;
  3835. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3836. if (adv & ADVERTISE_10HALF)
  3837. ecmd->advertising |= ADVERTISED_10baseT_Half;
  3838. if (adv & ADVERTISE_10FULL)
  3839. ecmd->advertising |= ADVERTISED_10baseT_Full;
  3840. if (adv & ADVERTISE_100HALF)
  3841. ecmd->advertising |= ADVERTISED_100baseT_Half;
  3842. if (adv & ADVERTISE_100FULL)
  3843. ecmd->advertising |= ADVERTISED_100baseT_Full;
  3844. if (np->gigabit == PHY_GIGABIT) {
  3845. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3846. if (adv & ADVERTISE_1000FULL)
  3847. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  3848. }
  3849. }
  3850. ecmd->supported = (SUPPORTED_Autoneg |
  3851. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  3852. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  3853. SUPPORTED_MII);
  3854. if (np->gigabit == PHY_GIGABIT)
  3855. ecmd->supported |= SUPPORTED_1000baseT_Full;
  3856. ecmd->phy_address = np->phyaddr;
  3857. ecmd->transceiver = XCVR_EXTERNAL;
  3858. /* ignore maxtxpkt, maxrxpkt for now */
  3859. spin_unlock_irq(&np->lock);
  3860. return 0;
  3861. }
  3862. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3863. {
  3864. struct fe_priv *np = netdev_priv(dev);
  3865. if (ecmd->port != PORT_MII)
  3866. return -EINVAL;
  3867. if (ecmd->transceiver != XCVR_EXTERNAL)
  3868. return -EINVAL;
  3869. if (ecmd->phy_address != np->phyaddr) {
  3870. /* TODO: support switching between multiple phys. Should be
  3871. * trivial, but not enabled due to lack of test hardware. */
  3872. return -EINVAL;
  3873. }
  3874. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3875. u32 mask;
  3876. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  3877. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  3878. if (np->gigabit == PHY_GIGABIT)
  3879. mask |= ADVERTISED_1000baseT_Full;
  3880. if ((ecmd->advertising & mask) == 0)
  3881. return -EINVAL;
  3882. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  3883. /* Note: autonegotiation disable, speed 1000 intentionally
  3884. * forbidden - noone should need that. */
  3885. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  3886. return -EINVAL;
  3887. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  3888. return -EINVAL;
  3889. } else {
  3890. return -EINVAL;
  3891. }
  3892. netif_carrier_off(dev);
  3893. if (netif_running(dev)) {
  3894. unsigned long flags;
  3895. nv_disable_irq(dev);
  3896. netif_tx_lock_bh(dev);
  3897. netif_addr_lock(dev);
  3898. /* with plain spinlock lockdep complains */
  3899. spin_lock_irqsave(&np->lock, flags);
  3900. /* stop engines */
  3901. /* FIXME:
  3902. * this can take some time, and interrupts are disabled
  3903. * due to spin_lock_irqsave, but let's hope no daemon
  3904. * is going to change the settings very often...
  3905. * Worst case:
  3906. * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
  3907. * + some minor delays, which is up to a second approximately
  3908. */
  3909. nv_stop_rxtx(dev);
  3910. spin_unlock_irqrestore(&np->lock, flags);
  3911. netif_addr_unlock(dev);
  3912. netif_tx_unlock_bh(dev);
  3913. }
  3914. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3915. int adv, bmcr;
  3916. np->autoneg = 1;
  3917. /* advertise only what has been requested */
  3918. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3919. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3920. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  3921. adv |= ADVERTISE_10HALF;
  3922. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  3923. adv |= ADVERTISE_10FULL;
  3924. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  3925. adv |= ADVERTISE_100HALF;
  3926. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  3927. adv |= ADVERTISE_100FULL;
  3928. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3929. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3930. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3931. adv |= ADVERTISE_PAUSE_ASYM;
  3932. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3933. if (np->gigabit == PHY_GIGABIT) {
  3934. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3935. adv &= ~ADVERTISE_1000FULL;
  3936. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  3937. adv |= ADVERTISE_1000FULL;
  3938. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3939. }
  3940. if (netif_running(dev))
  3941. printk(KERN_INFO "%s: link down.\n", dev->name);
  3942. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3943. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3944. bmcr |= BMCR_ANENABLE;
  3945. /* reset the phy in order for settings to stick,
  3946. * and cause autoneg to start */
  3947. if (phy_reset(dev, bmcr)) {
  3948. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3949. return -EINVAL;
  3950. }
  3951. } else {
  3952. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3953. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3954. }
  3955. } else {
  3956. int adv, bmcr;
  3957. np->autoneg = 0;
  3958. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3959. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3960. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  3961. adv |= ADVERTISE_10HALF;
  3962. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  3963. adv |= ADVERTISE_10FULL;
  3964. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  3965. adv |= ADVERTISE_100HALF;
  3966. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  3967. adv |= ADVERTISE_100FULL;
  3968. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3969. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  3970. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3971. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3972. }
  3973. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  3974. adv |= ADVERTISE_PAUSE_ASYM;
  3975. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3976. }
  3977. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3978. np->fixed_mode = adv;
  3979. if (np->gigabit == PHY_GIGABIT) {
  3980. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3981. adv &= ~ADVERTISE_1000FULL;
  3982. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3983. }
  3984. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3985. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  3986. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  3987. bmcr |= BMCR_FULLDPLX;
  3988. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  3989. bmcr |= BMCR_SPEED100;
  3990. if (np->phy_oui == PHY_OUI_MARVELL) {
  3991. /* reset the phy in order for forced mode settings to stick */
  3992. if (phy_reset(dev, bmcr)) {
  3993. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3994. return -EINVAL;
  3995. }
  3996. } else {
  3997. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3998. if (netif_running(dev)) {
  3999. /* Wait a bit and then reconfigure the nic. */
  4000. udelay(10);
  4001. nv_linkchange(dev);
  4002. }
  4003. }
  4004. }
  4005. if (netif_running(dev)) {
  4006. nv_start_rxtx(dev);
  4007. nv_enable_irq(dev);
  4008. }
  4009. return 0;
  4010. }
  4011. #define FORCEDETH_REGS_VER 1
  4012. static int nv_get_regs_len(struct net_device *dev)
  4013. {
  4014. struct fe_priv *np = netdev_priv(dev);
  4015. return np->register_size;
  4016. }
  4017. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  4018. {
  4019. struct fe_priv *np = netdev_priv(dev);
  4020. u8 __iomem *base = get_hwbase(dev);
  4021. u32 *rbuf = buf;
  4022. int i;
  4023. regs->version = FORCEDETH_REGS_VER;
  4024. spin_lock_irq(&np->lock);
  4025. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  4026. rbuf[i] = readl(base + i*sizeof(u32));
  4027. spin_unlock_irq(&np->lock);
  4028. }
  4029. static int nv_nway_reset(struct net_device *dev)
  4030. {
  4031. struct fe_priv *np = netdev_priv(dev);
  4032. int ret;
  4033. if (np->autoneg) {
  4034. int bmcr;
  4035. netif_carrier_off(dev);
  4036. if (netif_running(dev)) {
  4037. nv_disable_irq(dev);
  4038. netif_tx_lock_bh(dev);
  4039. netif_addr_lock(dev);
  4040. spin_lock(&np->lock);
  4041. /* stop engines */
  4042. nv_stop_rxtx(dev);
  4043. spin_unlock(&np->lock);
  4044. netif_addr_unlock(dev);
  4045. netif_tx_unlock_bh(dev);
  4046. printk(KERN_INFO "%s: link down.\n", dev->name);
  4047. }
  4048. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4049. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  4050. bmcr |= BMCR_ANENABLE;
  4051. /* reset the phy in order for settings to stick*/
  4052. if (phy_reset(dev, bmcr)) {
  4053. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  4054. return -EINVAL;
  4055. }
  4056. } else {
  4057. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4058. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4059. }
  4060. if (netif_running(dev)) {
  4061. nv_start_rxtx(dev);
  4062. nv_enable_irq(dev);
  4063. }
  4064. ret = 0;
  4065. } else {
  4066. ret = -EINVAL;
  4067. }
  4068. return ret;
  4069. }
  4070. static int nv_set_tso(struct net_device *dev, u32 value)
  4071. {
  4072. struct fe_priv *np = netdev_priv(dev);
  4073. if ((np->driver_data & DEV_HAS_CHECKSUM))
  4074. return ethtool_op_set_tso(dev, value);
  4075. else
  4076. return -EOPNOTSUPP;
  4077. }
  4078. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  4079. {
  4080. struct fe_priv *np = netdev_priv(dev);
  4081. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  4082. ring->rx_mini_max_pending = 0;
  4083. ring->rx_jumbo_max_pending = 0;
  4084. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  4085. ring->rx_pending = np->rx_ring_size;
  4086. ring->rx_mini_pending = 0;
  4087. ring->rx_jumbo_pending = 0;
  4088. ring->tx_pending = np->tx_ring_size;
  4089. }
  4090. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  4091. {
  4092. struct fe_priv *np = netdev_priv(dev);
  4093. u8 __iomem *base = get_hwbase(dev);
  4094. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  4095. dma_addr_t ring_addr;
  4096. if (ring->rx_pending < RX_RING_MIN ||
  4097. ring->tx_pending < TX_RING_MIN ||
  4098. ring->rx_mini_pending != 0 ||
  4099. ring->rx_jumbo_pending != 0 ||
  4100. (np->desc_ver == DESC_VER_1 &&
  4101. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  4102. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  4103. (np->desc_ver != DESC_VER_1 &&
  4104. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  4105. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  4106. return -EINVAL;
  4107. }
  4108. /* allocate new rings */
  4109. if (!nv_optimized(np)) {
  4110. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  4111. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  4112. &ring_addr);
  4113. } else {
  4114. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  4115. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  4116. &ring_addr);
  4117. }
  4118. rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
  4119. tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
  4120. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  4121. /* fall back to old rings */
  4122. if (!nv_optimized(np)) {
  4123. if (rxtx_ring)
  4124. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  4125. rxtx_ring, ring_addr);
  4126. } else {
  4127. if (rxtx_ring)
  4128. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  4129. rxtx_ring, ring_addr);
  4130. }
  4131. if (rx_skbuff)
  4132. kfree(rx_skbuff);
  4133. if (tx_skbuff)
  4134. kfree(tx_skbuff);
  4135. goto exit;
  4136. }
  4137. if (netif_running(dev)) {
  4138. nv_disable_irq(dev);
  4139. nv_napi_disable(dev);
  4140. netif_tx_lock_bh(dev);
  4141. netif_addr_lock(dev);
  4142. spin_lock(&np->lock);
  4143. /* stop engines */
  4144. nv_stop_rxtx(dev);
  4145. nv_txrx_reset(dev);
  4146. /* drain queues */
  4147. nv_drain_rxtx(dev);
  4148. /* delete queues */
  4149. free_rings(dev);
  4150. }
  4151. /* set new values */
  4152. np->rx_ring_size = ring->rx_pending;
  4153. np->tx_ring_size = ring->tx_pending;
  4154. if (!nv_optimized(np)) {
  4155. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  4156. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4157. } else {
  4158. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  4159. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4160. }
  4161. np->rx_skb = (struct nv_skb_map*)rx_skbuff;
  4162. np->tx_skb = (struct nv_skb_map*)tx_skbuff;
  4163. np->ring_addr = ring_addr;
  4164. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  4165. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  4166. if (netif_running(dev)) {
  4167. /* reinit driver view of the queues */
  4168. set_bufsize(dev);
  4169. if (nv_init_ring(dev)) {
  4170. if (!np->in_shutdown)
  4171. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4172. }
  4173. /* reinit nic view of the queues */
  4174. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4175. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4176. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4177. base + NvRegRingSizes);
  4178. pci_push(base);
  4179. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4180. pci_push(base);
  4181. /* restart engines */
  4182. nv_start_rxtx(dev);
  4183. spin_unlock(&np->lock);
  4184. netif_addr_unlock(dev);
  4185. netif_tx_unlock_bh(dev);
  4186. nv_napi_enable(dev);
  4187. nv_enable_irq(dev);
  4188. }
  4189. return 0;
  4190. exit:
  4191. return -ENOMEM;
  4192. }
  4193. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4194. {
  4195. struct fe_priv *np = netdev_priv(dev);
  4196. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  4197. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  4198. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  4199. }
  4200. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4201. {
  4202. struct fe_priv *np = netdev_priv(dev);
  4203. int adv, bmcr;
  4204. if ((!np->autoneg && np->duplex == 0) ||
  4205. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  4206. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  4207. dev->name);
  4208. return -EINVAL;
  4209. }
  4210. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  4211. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  4212. return -EINVAL;
  4213. }
  4214. netif_carrier_off(dev);
  4215. if (netif_running(dev)) {
  4216. nv_disable_irq(dev);
  4217. netif_tx_lock_bh(dev);
  4218. netif_addr_lock(dev);
  4219. spin_lock(&np->lock);
  4220. /* stop engines */
  4221. nv_stop_rxtx(dev);
  4222. spin_unlock(&np->lock);
  4223. netif_addr_unlock(dev);
  4224. netif_tx_unlock_bh(dev);
  4225. }
  4226. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  4227. if (pause->rx_pause)
  4228. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  4229. if (pause->tx_pause)
  4230. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  4231. if (np->autoneg && pause->autoneg) {
  4232. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  4233. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  4234. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  4235. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  4236. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  4237. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  4238. adv |= ADVERTISE_PAUSE_ASYM;
  4239. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  4240. if (netif_running(dev))
  4241. printk(KERN_INFO "%s: link down.\n", dev->name);
  4242. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4243. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4244. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4245. } else {
  4246. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  4247. if (pause->rx_pause)
  4248. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  4249. if (pause->tx_pause)
  4250. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  4251. if (!netif_running(dev))
  4252. nv_update_linkspeed(dev);
  4253. else
  4254. nv_update_pause(dev, np->pause_flags);
  4255. }
  4256. if (netif_running(dev)) {
  4257. nv_start_rxtx(dev);
  4258. nv_enable_irq(dev);
  4259. }
  4260. return 0;
  4261. }
  4262. static u32 nv_get_rx_csum(struct net_device *dev)
  4263. {
  4264. struct fe_priv *np = netdev_priv(dev);
  4265. return (np->rx_csum) != 0;
  4266. }
  4267. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  4268. {
  4269. struct fe_priv *np = netdev_priv(dev);
  4270. u8 __iomem *base = get_hwbase(dev);
  4271. int retcode = 0;
  4272. if (np->driver_data & DEV_HAS_CHECKSUM) {
  4273. if (data) {
  4274. np->rx_csum = 1;
  4275. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4276. } else {
  4277. np->rx_csum = 0;
  4278. /* vlan is dependent on rx checksum offload */
  4279. if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
  4280. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  4281. }
  4282. if (netif_running(dev)) {
  4283. spin_lock_irq(&np->lock);
  4284. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4285. spin_unlock_irq(&np->lock);
  4286. }
  4287. } else {
  4288. return -EINVAL;
  4289. }
  4290. return retcode;
  4291. }
  4292. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  4293. {
  4294. struct fe_priv *np = netdev_priv(dev);
  4295. if (np->driver_data & DEV_HAS_CHECKSUM)
  4296. return ethtool_op_set_tx_csum(dev, data);
  4297. else
  4298. return -EOPNOTSUPP;
  4299. }
  4300. static int nv_set_sg(struct net_device *dev, u32 data)
  4301. {
  4302. struct fe_priv *np = netdev_priv(dev);
  4303. if (np->driver_data & DEV_HAS_CHECKSUM)
  4304. return ethtool_op_set_sg(dev, data);
  4305. else
  4306. return -EOPNOTSUPP;
  4307. }
  4308. static int nv_get_sset_count(struct net_device *dev, int sset)
  4309. {
  4310. struct fe_priv *np = netdev_priv(dev);
  4311. switch (sset) {
  4312. case ETH_SS_TEST:
  4313. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  4314. return NV_TEST_COUNT_EXTENDED;
  4315. else
  4316. return NV_TEST_COUNT_BASE;
  4317. case ETH_SS_STATS:
  4318. if (np->driver_data & DEV_HAS_STATISTICS_V3)
  4319. return NV_DEV_STATISTICS_V3_COUNT;
  4320. else if (np->driver_data & DEV_HAS_STATISTICS_V2)
  4321. return NV_DEV_STATISTICS_V2_COUNT;
  4322. else if (np->driver_data & DEV_HAS_STATISTICS_V1)
  4323. return NV_DEV_STATISTICS_V1_COUNT;
  4324. else
  4325. return 0;
  4326. default:
  4327. return -EOPNOTSUPP;
  4328. }
  4329. }
  4330. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  4331. {
  4332. struct fe_priv *np = netdev_priv(dev);
  4333. /* update stats */
  4334. nv_do_stats_poll((unsigned long)dev);
  4335. memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
  4336. }
  4337. static int nv_link_test(struct net_device *dev)
  4338. {
  4339. struct fe_priv *np = netdev_priv(dev);
  4340. int mii_status;
  4341. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4342. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4343. /* check phy link status */
  4344. if (!(mii_status & BMSR_LSTATUS))
  4345. return 0;
  4346. else
  4347. return 1;
  4348. }
  4349. static int nv_register_test(struct net_device *dev)
  4350. {
  4351. u8 __iomem *base = get_hwbase(dev);
  4352. int i = 0;
  4353. u32 orig_read, new_read;
  4354. do {
  4355. orig_read = readl(base + nv_registers_test[i].reg);
  4356. /* xor with mask to toggle bits */
  4357. orig_read ^= nv_registers_test[i].mask;
  4358. writel(orig_read, base + nv_registers_test[i].reg);
  4359. new_read = readl(base + nv_registers_test[i].reg);
  4360. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  4361. return 0;
  4362. /* restore original value */
  4363. orig_read ^= nv_registers_test[i].mask;
  4364. writel(orig_read, base + nv_registers_test[i].reg);
  4365. } while (nv_registers_test[++i].reg != 0);
  4366. return 1;
  4367. }
  4368. static int nv_interrupt_test(struct net_device *dev)
  4369. {
  4370. struct fe_priv *np = netdev_priv(dev);
  4371. u8 __iomem *base = get_hwbase(dev);
  4372. int ret = 1;
  4373. int testcnt;
  4374. u32 save_msi_flags, save_poll_interval = 0;
  4375. if (netif_running(dev)) {
  4376. /* free current irq */
  4377. nv_free_irq(dev);
  4378. save_poll_interval = readl(base+NvRegPollingInterval);
  4379. }
  4380. /* flag to test interrupt handler */
  4381. np->intr_test = 0;
  4382. /* setup test irq */
  4383. save_msi_flags = np->msi_flags;
  4384. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  4385. np->msi_flags |= 0x001; /* setup 1 vector */
  4386. if (nv_request_irq(dev, 1))
  4387. return 0;
  4388. /* setup timer interrupt */
  4389. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4390. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4391. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4392. /* wait for at least one interrupt */
  4393. msleep(100);
  4394. spin_lock_irq(&np->lock);
  4395. /* flag should be set within ISR */
  4396. testcnt = np->intr_test;
  4397. if (!testcnt)
  4398. ret = 2;
  4399. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4400. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  4401. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4402. else
  4403. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4404. spin_unlock_irq(&np->lock);
  4405. nv_free_irq(dev);
  4406. np->msi_flags = save_msi_flags;
  4407. if (netif_running(dev)) {
  4408. writel(save_poll_interval, base + NvRegPollingInterval);
  4409. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4410. /* restore original irq */
  4411. if (nv_request_irq(dev, 0))
  4412. return 0;
  4413. }
  4414. return ret;
  4415. }
  4416. static int nv_loopback_test(struct net_device *dev)
  4417. {
  4418. struct fe_priv *np = netdev_priv(dev);
  4419. u8 __iomem *base = get_hwbase(dev);
  4420. struct sk_buff *tx_skb, *rx_skb;
  4421. dma_addr_t test_dma_addr;
  4422. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  4423. u32 flags;
  4424. int len, i, pkt_len;
  4425. u8 *pkt_data;
  4426. u32 filter_flags = 0;
  4427. u32 misc1_flags = 0;
  4428. int ret = 1;
  4429. if (netif_running(dev)) {
  4430. nv_disable_irq(dev);
  4431. filter_flags = readl(base + NvRegPacketFilterFlags);
  4432. misc1_flags = readl(base + NvRegMisc1);
  4433. } else {
  4434. nv_txrx_reset(dev);
  4435. }
  4436. /* reinit driver view of the rx queue */
  4437. set_bufsize(dev);
  4438. nv_init_ring(dev);
  4439. /* setup hardware for loopback */
  4440. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  4441. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  4442. /* reinit nic view of the rx queue */
  4443. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4444. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4445. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4446. base + NvRegRingSizes);
  4447. pci_push(base);
  4448. /* restart rx engine */
  4449. nv_start_rxtx(dev);
  4450. /* setup packet for tx */
  4451. pkt_len = ETH_DATA_LEN;
  4452. tx_skb = dev_alloc_skb(pkt_len);
  4453. if (!tx_skb) {
  4454. printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
  4455. " of %s\n", dev->name);
  4456. ret = 0;
  4457. goto out;
  4458. }
  4459. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  4460. skb_tailroom(tx_skb),
  4461. PCI_DMA_FROMDEVICE);
  4462. pkt_data = skb_put(tx_skb, pkt_len);
  4463. for (i = 0; i < pkt_len; i++)
  4464. pkt_data[i] = (u8)(i & 0xff);
  4465. if (!nv_optimized(np)) {
  4466. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  4467. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4468. } else {
  4469. np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
  4470. np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
  4471. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4472. }
  4473. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4474. pci_push(get_hwbase(dev));
  4475. msleep(500);
  4476. /* check for rx of the packet */
  4477. if (!nv_optimized(np)) {
  4478. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  4479. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  4480. } else {
  4481. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  4482. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  4483. }
  4484. if (flags & NV_RX_AVAIL) {
  4485. ret = 0;
  4486. } else if (np->desc_ver == DESC_VER_1) {
  4487. if (flags & NV_RX_ERROR)
  4488. ret = 0;
  4489. } else {
  4490. if (flags & NV_RX2_ERROR) {
  4491. ret = 0;
  4492. }
  4493. }
  4494. if (ret) {
  4495. if (len != pkt_len) {
  4496. ret = 0;
  4497. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  4498. dev->name, len, pkt_len);
  4499. } else {
  4500. rx_skb = np->rx_skb[0].skb;
  4501. for (i = 0; i < pkt_len; i++) {
  4502. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  4503. ret = 0;
  4504. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  4505. dev->name, i);
  4506. break;
  4507. }
  4508. }
  4509. }
  4510. } else {
  4511. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  4512. }
  4513. pci_unmap_page(np->pci_dev, test_dma_addr,
  4514. (skb_end_pointer(tx_skb) - tx_skb->data),
  4515. PCI_DMA_TODEVICE);
  4516. dev_kfree_skb_any(tx_skb);
  4517. out:
  4518. /* stop engines */
  4519. nv_stop_rxtx(dev);
  4520. nv_txrx_reset(dev);
  4521. /* drain rx queue */
  4522. nv_drain_rxtx(dev);
  4523. if (netif_running(dev)) {
  4524. writel(misc1_flags, base + NvRegMisc1);
  4525. writel(filter_flags, base + NvRegPacketFilterFlags);
  4526. nv_enable_irq(dev);
  4527. }
  4528. return ret;
  4529. }
  4530. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  4531. {
  4532. struct fe_priv *np = netdev_priv(dev);
  4533. u8 __iomem *base = get_hwbase(dev);
  4534. int result;
  4535. memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
  4536. if (!nv_link_test(dev)) {
  4537. test->flags |= ETH_TEST_FL_FAILED;
  4538. buffer[0] = 1;
  4539. }
  4540. if (test->flags & ETH_TEST_FL_OFFLINE) {
  4541. if (netif_running(dev)) {
  4542. netif_stop_queue(dev);
  4543. nv_napi_disable(dev);
  4544. netif_tx_lock_bh(dev);
  4545. netif_addr_lock(dev);
  4546. spin_lock_irq(&np->lock);
  4547. nv_disable_hw_interrupts(dev, np->irqmask);
  4548. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  4549. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4550. } else {
  4551. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4552. }
  4553. /* stop engines */
  4554. nv_stop_rxtx(dev);
  4555. nv_txrx_reset(dev);
  4556. /* drain rx queue */
  4557. nv_drain_rxtx(dev);
  4558. spin_unlock_irq(&np->lock);
  4559. netif_addr_unlock(dev);
  4560. netif_tx_unlock_bh(dev);
  4561. }
  4562. if (!nv_register_test(dev)) {
  4563. test->flags |= ETH_TEST_FL_FAILED;
  4564. buffer[1] = 1;
  4565. }
  4566. result = nv_interrupt_test(dev);
  4567. if (result != 1) {
  4568. test->flags |= ETH_TEST_FL_FAILED;
  4569. buffer[2] = 1;
  4570. }
  4571. if (result == 0) {
  4572. /* bail out */
  4573. return;
  4574. }
  4575. if (!nv_loopback_test(dev)) {
  4576. test->flags |= ETH_TEST_FL_FAILED;
  4577. buffer[3] = 1;
  4578. }
  4579. if (netif_running(dev)) {
  4580. /* reinit driver view of the rx queue */
  4581. set_bufsize(dev);
  4582. if (nv_init_ring(dev)) {
  4583. if (!np->in_shutdown)
  4584. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4585. }
  4586. /* reinit nic view of the rx queue */
  4587. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4588. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4589. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4590. base + NvRegRingSizes);
  4591. pci_push(base);
  4592. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4593. pci_push(base);
  4594. /* restart rx engine */
  4595. nv_start_rxtx(dev);
  4596. netif_start_queue(dev);
  4597. nv_napi_enable(dev);
  4598. nv_enable_hw_interrupts(dev, np->irqmask);
  4599. }
  4600. }
  4601. }
  4602. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  4603. {
  4604. switch (stringset) {
  4605. case ETH_SS_STATS:
  4606. memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
  4607. break;
  4608. case ETH_SS_TEST:
  4609. memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
  4610. break;
  4611. }
  4612. }
  4613. static const struct ethtool_ops ops = {
  4614. .get_drvinfo = nv_get_drvinfo,
  4615. .get_link = ethtool_op_get_link,
  4616. .get_wol = nv_get_wol,
  4617. .set_wol = nv_set_wol,
  4618. .get_settings = nv_get_settings,
  4619. .set_settings = nv_set_settings,
  4620. .get_regs_len = nv_get_regs_len,
  4621. .get_regs = nv_get_regs,
  4622. .nway_reset = nv_nway_reset,
  4623. .set_tso = nv_set_tso,
  4624. .get_ringparam = nv_get_ringparam,
  4625. .set_ringparam = nv_set_ringparam,
  4626. .get_pauseparam = nv_get_pauseparam,
  4627. .set_pauseparam = nv_set_pauseparam,
  4628. .get_rx_csum = nv_get_rx_csum,
  4629. .set_rx_csum = nv_set_rx_csum,
  4630. .set_tx_csum = nv_set_tx_csum,
  4631. .set_sg = nv_set_sg,
  4632. .get_strings = nv_get_strings,
  4633. .get_ethtool_stats = nv_get_ethtool_stats,
  4634. .get_sset_count = nv_get_sset_count,
  4635. .self_test = nv_self_test,
  4636. };
  4637. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  4638. {
  4639. struct fe_priv *np = get_nvpriv(dev);
  4640. spin_lock_irq(&np->lock);
  4641. /* save vlan group */
  4642. np->vlangrp = grp;
  4643. if (grp) {
  4644. /* enable vlan on MAC */
  4645. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  4646. } else {
  4647. /* disable vlan on MAC */
  4648. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  4649. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  4650. }
  4651. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4652. spin_unlock_irq(&np->lock);
  4653. }
  4654. /* The mgmt unit and driver use a semaphore to access the phy during init */
  4655. static int nv_mgmt_acquire_sema(struct net_device *dev)
  4656. {
  4657. struct fe_priv *np = netdev_priv(dev);
  4658. u8 __iomem *base = get_hwbase(dev);
  4659. int i;
  4660. u32 tx_ctrl, mgmt_sema;
  4661. for (i = 0; i < 10; i++) {
  4662. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  4663. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  4664. break;
  4665. msleep(500);
  4666. }
  4667. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  4668. return 0;
  4669. for (i = 0; i < 2; i++) {
  4670. tx_ctrl = readl(base + NvRegTransmitterControl);
  4671. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  4672. writel(tx_ctrl, base + NvRegTransmitterControl);
  4673. /* verify that semaphore was acquired */
  4674. tx_ctrl = readl(base + NvRegTransmitterControl);
  4675. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  4676. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) {
  4677. np->mgmt_sema = 1;
  4678. return 1;
  4679. }
  4680. else
  4681. udelay(50);
  4682. }
  4683. return 0;
  4684. }
  4685. static void nv_mgmt_release_sema(struct net_device *dev)
  4686. {
  4687. struct fe_priv *np = netdev_priv(dev);
  4688. u8 __iomem *base = get_hwbase(dev);
  4689. u32 tx_ctrl;
  4690. if (np->driver_data & DEV_HAS_MGMT_UNIT) {
  4691. if (np->mgmt_sema) {
  4692. tx_ctrl = readl(base + NvRegTransmitterControl);
  4693. tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ;
  4694. writel(tx_ctrl, base + NvRegTransmitterControl);
  4695. }
  4696. }
  4697. }
  4698. static int nv_mgmt_get_version(struct net_device *dev)
  4699. {
  4700. struct fe_priv *np = netdev_priv(dev);
  4701. u8 __iomem *base = get_hwbase(dev);
  4702. u32 data_ready = readl(base + NvRegTransmitterControl);
  4703. u32 data_ready2 = 0;
  4704. unsigned long start;
  4705. int ready = 0;
  4706. writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion);
  4707. writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl);
  4708. start = jiffies;
  4709. while (time_before(jiffies, start + 5*HZ)) {
  4710. data_ready2 = readl(base + NvRegTransmitterControl);
  4711. if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) {
  4712. ready = 1;
  4713. break;
  4714. }
  4715. schedule_timeout_uninterruptible(1);
  4716. }
  4717. if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR))
  4718. return 0;
  4719. np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION;
  4720. return 1;
  4721. }
  4722. static int nv_open(struct net_device *dev)
  4723. {
  4724. struct fe_priv *np = netdev_priv(dev);
  4725. u8 __iomem *base = get_hwbase(dev);
  4726. int ret = 1;
  4727. int oom, i;
  4728. u32 low;
  4729. dprintk(KERN_DEBUG "nv_open: begin\n");
  4730. /* power up phy */
  4731. mii_rw(dev, np->phyaddr, MII_BMCR,
  4732. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);
  4733. /* erase previous misconfiguration */
  4734. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  4735. nv_mac_reset(dev);
  4736. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4737. writel(0, base + NvRegMulticastAddrB);
  4738. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4739. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4740. writel(0, base + NvRegPacketFilterFlags);
  4741. writel(0, base + NvRegTransmitterControl);
  4742. writel(0, base + NvRegReceiverControl);
  4743. writel(0, base + NvRegAdapterControl);
  4744. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  4745. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  4746. /* initialize descriptor rings */
  4747. set_bufsize(dev);
  4748. oom = nv_init_ring(dev);
  4749. writel(0, base + NvRegLinkSpeed);
  4750. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4751. nv_txrx_reset(dev);
  4752. writel(0, base + NvRegUnknownSetupReg6);
  4753. np->in_shutdown = 0;
  4754. /* give hw rings */
  4755. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4756. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4757. base + NvRegRingSizes);
  4758. writel(np->linkspeed, base + NvRegLinkSpeed);
  4759. if (np->desc_ver == DESC_VER_1)
  4760. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  4761. else
  4762. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  4763. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4764. writel(np->vlanctl_bits, base + NvRegVlanControl);
  4765. pci_push(base);
  4766. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  4767. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  4768. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  4769. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  4770. writel(0, base + NvRegMIIMask);
  4771. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4772. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4773. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  4774. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  4775. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  4776. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4777. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  4778. get_random_bytes(&low, sizeof(low));
  4779. low &= NVREG_SLOTTIME_MASK;
  4780. if (np->desc_ver == DESC_VER_1) {
  4781. writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
  4782. } else {
  4783. if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
  4784. /* setup legacy backoff */
  4785. writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
  4786. } else {
  4787. writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
  4788. nv_gear_backoff_reseed(dev);
  4789. }
  4790. }
  4791. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  4792. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  4793. if (poll_interval == -1) {
  4794. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  4795. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  4796. else
  4797. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4798. }
  4799. else
  4800. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  4801. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4802. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  4803. base + NvRegAdapterControl);
  4804. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  4805. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  4806. if (np->wolenabled)
  4807. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  4808. i = readl(base + NvRegPowerState);
  4809. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  4810. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  4811. pci_push(base);
  4812. udelay(10);
  4813. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  4814. nv_disable_hw_interrupts(dev, np->irqmask);
  4815. pci_push(base);
  4816. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4817. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4818. pci_push(base);
  4819. if (nv_request_irq(dev, 0)) {
  4820. goto out_drain;
  4821. }
  4822. /* ask for interrupts */
  4823. nv_enable_hw_interrupts(dev, np->irqmask);
  4824. spin_lock_irq(&np->lock);
  4825. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4826. writel(0, base + NvRegMulticastAddrB);
  4827. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4828. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4829. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4830. /* One manual link speed update: Interrupts are enabled, future link
  4831. * speed changes cause interrupts and are handled by nv_link_irq().
  4832. */
  4833. {
  4834. u32 miistat;
  4835. miistat = readl(base + NvRegMIIStatus);
  4836. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4837. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  4838. }
  4839. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  4840. * to init hw */
  4841. np->linkspeed = 0;
  4842. ret = nv_update_linkspeed(dev);
  4843. nv_start_rxtx(dev);
  4844. netif_start_queue(dev);
  4845. nv_napi_enable(dev);
  4846. if (ret) {
  4847. netif_carrier_on(dev);
  4848. } else {
  4849. printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
  4850. netif_carrier_off(dev);
  4851. }
  4852. if (oom)
  4853. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4854. /* start statistics timer */
  4855. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4856. mod_timer(&np->stats_poll,
  4857. round_jiffies(jiffies + STATS_INTERVAL));
  4858. spin_unlock_irq(&np->lock);
  4859. return 0;
  4860. out_drain:
  4861. nv_drain_rxtx(dev);
  4862. return ret;
  4863. }
  4864. static int nv_close(struct net_device *dev)
  4865. {
  4866. struct fe_priv *np = netdev_priv(dev);
  4867. u8 __iomem *base;
  4868. spin_lock_irq(&np->lock);
  4869. np->in_shutdown = 1;
  4870. spin_unlock_irq(&np->lock);
  4871. nv_napi_disable(dev);
  4872. synchronize_irq(np->pci_dev->irq);
  4873. del_timer_sync(&np->oom_kick);
  4874. del_timer_sync(&np->nic_poll);
  4875. del_timer_sync(&np->stats_poll);
  4876. netif_stop_queue(dev);
  4877. spin_lock_irq(&np->lock);
  4878. nv_stop_rxtx(dev);
  4879. nv_txrx_reset(dev);
  4880. /* disable interrupts on the nic or we will lock up */
  4881. base = get_hwbase(dev);
  4882. nv_disable_hw_interrupts(dev, np->irqmask);
  4883. pci_push(base);
  4884. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  4885. spin_unlock_irq(&np->lock);
  4886. nv_free_irq(dev);
  4887. nv_drain_rxtx(dev);
  4888. if (np->wolenabled || !phy_power_down) {
  4889. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4890. nv_start_rx(dev);
  4891. } else {
  4892. /* power down phy */
  4893. mii_rw(dev, np->phyaddr, MII_BMCR,
  4894. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
  4895. }
  4896. /* FIXME: power down nic */
  4897. return 0;
  4898. }
  4899. static const struct net_device_ops nv_netdev_ops = {
  4900. .ndo_open = nv_open,
  4901. .ndo_stop = nv_close,
  4902. .ndo_get_stats = nv_get_stats,
  4903. .ndo_start_xmit = nv_start_xmit,
  4904. .ndo_tx_timeout = nv_tx_timeout,
  4905. .ndo_change_mtu = nv_change_mtu,
  4906. .ndo_validate_addr = eth_validate_addr,
  4907. .ndo_set_mac_address = nv_set_mac_address,
  4908. .ndo_set_multicast_list = nv_set_multicast,
  4909. .ndo_vlan_rx_register = nv_vlan_rx_register,
  4910. #ifdef CONFIG_NET_POLL_CONTROLLER
  4911. .ndo_poll_controller = nv_poll_controller,
  4912. #endif
  4913. };
  4914. static const struct net_device_ops nv_netdev_ops_optimized = {
  4915. .ndo_open = nv_open,
  4916. .ndo_stop = nv_close,
  4917. .ndo_get_stats = nv_get_stats,
  4918. .ndo_start_xmit = nv_start_xmit_optimized,
  4919. .ndo_tx_timeout = nv_tx_timeout,
  4920. .ndo_change_mtu = nv_change_mtu,
  4921. .ndo_validate_addr = eth_validate_addr,
  4922. .ndo_set_mac_address = nv_set_mac_address,
  4923. .ndo_set_multicast_list = nv_set_multicast,
  4924. .ndo_vlan_rx_register = nv_vlan_rx_register,
  4925. #ifdef CONFIG_NET_POLL_CONTROLLER
  4926. .ndo_poll_controller = nv_poll_controller,
  4927. #endif
  4928. };
  4929. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  4930. {
  4931. struct net_device *dev;
  4932. struct fe_priv *np;
  4933. unsigned long addr;
  4934. u8 __iomem *base;
  4935. int err, i;
  4936. u32 powerstate, txreg;
  4937. u32 phystate_orig = 0, phystate;
  4938. int phyinitialized = 0;
  4939. static int printed_version;
  4940. if (!printed_version++)
  4941. printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
  4942. " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
  4943. dev = alloc_etherdev(sizeof(struct fe_priv));
  4944. err = -ENOMEM;
  4945. if (!dev)
  4946. goto out;
  4947. np = netdev_priv(dev);
  4948. np->dev = dev;
  4949. np->pci_dev = pci_dev;
  4950. spin_lock_init(&np->lock);
  4951. SET_NETDEV_DEV(dev, &pci_dev->dev);
  4952. init_timer(&np->oom_kick);
  4953. np->oom_kick.data = (unsigned long) dev;
  4954. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  4955. init_timer(&np->nic_poll);
  4956. np->nic_poll.data = (unsigned long) dev;
  4957. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  4958. init_timer(&np->stats_poll);
  4959. np->stats_poll.data = (unsigned long) dev;
  4960. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  4961. err = pci_enable_device(pci_dev);
  4962. if (err)
  4963. goto out_free;
  4964. pci_set_master(pci_dev);
  4965. err = pci_request_regions(pci_dev, DRV_NAME);
  4966. if (err < 0)
  4967. goto out_disable;
  4968. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4969. np->register_size = NV_PCI_REGSZ_VER3;
  4970. else if (id->driver_data & DEV_HAS_STATISTICS_V1)
  4971. np->register_size = NV_PCI_REGSZ_VER2;
  4972. else
  4973. np->register_size = NV_PCI_REGSZ_VER1;
  4974. err = -EINVAL;
  4975. addr = 0;
  4976. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  4977. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  4978. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  4979. pci_resource_len(pci_dev, i),
  4980. pci_resource_flags(pci_dev, i));
  4981. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  4982. pci_resource_len(pci_dev, i) >= np->register_size) {
  4983. addr = pci_resource_start(pci_dev, i);
  4984. break;
  4985. }
  4986. }
  4987. if (i == DEVICE_COUNT_RESOURCE) {
  4988. dev_printk(KERN_INFO, &pci_dev->dev,
  4989. "Couldn't find register window\n");
  4990. goto out_relreg;
  4991. }
  4992. /* copy of driver data */
  4993. np->driver_data = id->driver_data;
  4994. /* copy of device id */
  4995. np->device_id = id->device;
  4996. /* handle different descriptor versions */
  4997. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  4998. /* packet format 3: supports 40-bit addressing */
  4999. np->desc_ver = DESC_VER_3;
  5000. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  5001. if (dma_64bit) {
  5002. if (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(39)))
  5003. dev_printk(KERN_INFO, &pci_dev->dev,
  5004. "64-bit DMA failed, using 32-bit addressing\n");
  5005. else
  5006. dev->features |= NETIF_F_HIGHDMA;
  5007. if (pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(39))) {
  5008. dev_printk(KERN_INFO, &pci_dev->dev,
  5009. "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
  5010. }
  5011. }
  5012. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  5013. /* packet format 2: supports jumbo frames */
  5014. np->desc_ver = DESC_VER_2;
  5015. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  5016. } else {
  5017. /* original packet format */
  5018. np->desc_ver = DESC_VER_1;
  5019. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  5020. }
  5021. np->pkt_limit = NV_PKTLIMIT_1;
  5022. if (id->driver_data & DEV_HAS_LARGEDESC)
  5023. np->pkt_limit = NV_PKTLIMIT_2;
  5024. if (id->driver_data & DEV_HAS_CHECKSUM) {
  5025. np->rx_csum = 1;
  5026. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  5027. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  5028. dev->features |= NETIF_F_TSO;
  5029. }
  5030. np->vlanctl_bits = 0;
  5031. if (id->driver_data & DEV_HAS_VLAN) {
  5032. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  5033. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  5034. }
  5035. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  5036. if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
  5037. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
  5038. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
  5039. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  5040. }
  5041. err = -ENOMEM;
  5042. np->base = ioremap(addr, np->register_size);
  5043. if (!np->base)
  5044. goto out_relreg;
  5045. dev->base_addr = (unsigned long)np->base;
  5046. dev->irq = pci_dev->irq;
  5047. np->rx_ring_size = RX_RING_DEFAULT;
  5048. np->tx_ring_size = TX_RING_DEFAULT;
  5049. if (!nv_optimized(np)) {
  5050. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  5051. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  5052. &np->ring_addr);
  5053. if (!np->rx_ring.orig)
  5054. goto out_unmap;
  5055. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  5056. } else {
  5057. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  5058. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  5059. &np->ring_addr);
  5060. if (!np->rx_ring.ex)
  5061. goto out_unmap;
  5062. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  5063. }
  5064. np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  5065. np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  5066. if (!np->rx_skb || !np->tx_skb)
  5067. goto out_freering;
  5068. if (!nv_optimized(np))
  5069. dev->netdev_ops = &nv_netdev_ops;
  5070. else
  5071. dev->netdev_ops = &nv_netdev_ops_optimized;
  5072. #ifdef CONFIG_FORCEDETH_NAPI
  5073. netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
  5074. #endif
  5075. SET_ETHTOOL_OPS(dev, &ops);
  5076. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  5077. pci_set_drvdata(pci_dev, dev);
  5078. /* read the mac address */
  5079. base = get_hwbase(dev);
  5080. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  5081. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  5082. /* check the workaround bit for correct mac address order */
  5083. txreg = readl(base + NvRegTransmitPoll);
  5084. if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
  5085. /* mac address is already in correct order */
  5086. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  5087. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  5088. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  5089. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  5090. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  5091. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  5092. } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
  5093. /* mac address is already in correct order */
  5094. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  5095. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  5096. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  5097. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  5098. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  5099. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  5100. /*
  5101. * Set orig mac address back to the reversed version.
  5102. * This flag will be cleared during low power transition.
  5103. * Therefore, we should always put back the reversed address.
  5104. */
  5105. np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
  5106. (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
  5107. np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
  5108. } else {
  5109. /* need to reverse mac address to correct order */
  5110. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  5111. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  5112. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  5113. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  5114. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  5115. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  5116. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  5117. printk(KERN_DEBUG "nv_probe: set workaround bit for reversed mac addr\n");
  5118. }
  5119. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  5120. if (!is_valid_ether_addr(dev->perm_addr)) {
  5121. /*
  5122. * Bad mac address. At least one bios sets the mac address
  5123. * to 01:23:45:67:89:ab
  5124. */
  5125. dev_printk(KERN_ERR, &pci_dev->dev,
  5126. "Invalid Mac address detected: %pM\n",
  5127. dev->dev_addr);
  5128. dev_printk(KERN_ERR, &pci_dev->dev,
  5129. "Please complain to your hardware vendor. Switching to a random MAC.\n");
  5130. dev->dev_addr[0] = 0x00;
  5131. dev->dev_addr[1] = 0x00;
  5132. dev->dev_addr[2] = 0x6c;
  5133. get_random_bytes(&dev->dev_addr[3], 3);
  5134. }
  5135. dprintk(KERN_DEBUG "%s: MAC Address %pM\n",
  5136. pci_name(pci_dev), dev->dev_addr);
  5137. /* set mac address */
  5138. nv_copy_mac_to_hw(dev);
  5139. /* Workaround current PCI init glitch: wakeup bits aren't
  5140. * being set from PCI PM capability.
  5141. */
  5142. device_init_wakeup(&pci_dev->dev, 1);
  5143. /* disable WOL */
  5144. writel(0, base + NvRegWakeUpFlags);
  5145. np->wolenabled = 0;
  5146. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  5147. /* take phy and nic out of low power mode */
  5148. powerstate = readl(base + NvRegPowerState2);
  5149. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  5150. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  5151. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  5152. pci_dev->revision >= 0xA3)
  5153. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  5154. writel(powerstate, base + NvRegPowerState2);
  5155. }
  5156. if (np->desc_ver == DESC_VER_1) {
  5157. np->tx_flags = NV_TX_VALID;
  5158. } else {
  5159. np->tx_flags = NV_TX2_VALID;
  5160. }
  5161. np->msi_flags = 0;
  5162. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  5163. np->msi_flags |= NV_MSI_CAPABLE;
  5164. }
  5165. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  5166. /* msix has had reported issues when modifying irqmask
  5167. as in the case of napi, therefore, disable for now
  5168. */
  5169. #ifndef CONFIG_FORCEDETH_NAPI
  5170. np->msi_flags |= NV_MSI_X_CAPABLE;
  5171. #endif
  5172. }
  5173. if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) {
  5174. np->irqmask = NVREG_IRQMASK_CPU;
  5175. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5176. np->msi_flags |= 0x0001;
  5177. } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC &&
  5178. !(id->driver_data & DEV_NEED_TIMERIRQ)) {
  5179. /* start off in throughput mode */
  5180. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  5181. /* remove support for msix mode */
  5182. np->msi_flags &= ~NV_MSI_X_CAPABLE;
  5183. } else {
  5184. optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  5185. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  5186. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5187. np->msi_flags |= 0x0003;
  5188. }
  5189. if (id->driver_data & DEV_NEED_TIMERIRQ)
  5190. np->irqmask |= NVREG_IRQ_TIMER;
  5191. if (id->driver_data & DEV_NEED_LINKTIMER) {
  5192. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  5193. np->need_linktimer = 1;
  5194. np->link_timeout = jiffies + LINK_TIMEOUT;
  5195. } else {
  5196. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  5197. np->need_linktimer = 0;
  5198. }
  5199. /* Limit the number of tx's outstanding for hw bug */
  5200. if (id->driver_data & DEV_NEED_TX_LIMIT) {
  5201. np->tx_limit = 1;
  5202. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  5203. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  5204. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  5205. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  5206. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  5207. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  5208. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  5209. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_39) &&
  5210. pci_dev->revision >= 0xA2)
  5211. np->tx_limit = 0;
  5212. }
  5213. /* clear phy state and temporarily halt phy interrupts */
  5214. writel(0, base + NvRegMIIMask);
  5215. phystate = readl(base + NvRegAdapterControl);
  5216. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  5217. phystate_orig = 1;
  5218. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  5219. writel(phystate, base + NvRegAdapterControl);
  5220. }
  5221. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  5222. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  5223. /* management unit running on the mac? */
  5224. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) &&
  5225. (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) &&
  5226. nv_mgmt_acquire_sema(dev) &&
  5227. nv_mgmt_get_version(dev)) {
  5228. np->mac_in_use = 1;
  5229. if (np->mgmt_version > 0) {
  5230. np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE;
  5231. }
  5232. dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n",
  5233. pci_name(pci_dev), np->mac_in_use);
  5234. /* management unit setup the phy already? */
  5235. if (np->mac_in_use &&
  5236. ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  5237. NVREG_XMITCTL_SYNC_PHY_INIT)) {
  5238. /* phy is inited by mgmt unit */
  5239. phyinitialized = 1;
  5240. dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n",
  5241. pci_name(pci_dev));
  5242. } else {
  5243. /* we need to init the phy */
  5244. }
  5245. }
  5246. }
  5247. /* find a suitable phy */
  5248. for (i = 1; i <= 32; i++) {
  5249. int id1, id2;
  5250. int phyaddr = i & 0x1F;
  5251. spin_lock_irq(&np->lock);
  5252. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  5253. spin_unlock_irq(&np->lock);
  5254. if (id1 < 0 || id1 == 0xffff)
  5255. continue;
  5256. spin_lock_irq(&np->lock);
  5257. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  5258. spin_unlock_irq(&np->lock);
  5259. if (id2 < 0 || id2 == 0xffff)
  5260. continue;
  5261. np->phy_model = id2 & PHYID2_MODEL_MASK;
  5262. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  5263. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  5264. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  5265. pci_name(pci_dev), id1, id2, phyaddr);
  5266. np->phyaddr = phyaddr;
  5267. np->phy_oui = id1 | id2;
  5268. /* Realtek hardcoded phy id1 to all zero's on certain phys */
  5269. if (np->phy_oui == PHY_OUI_REALTEK2)
  5270. np->phy_oui = PHY_OUI_REALTEK;
  5271. /* Setup phy revision for Realtek */
  5272. if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
  5273. np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
  5274. break;
  5275. }
  5276. if (i == 33) {
  5277. dev_printk(KERN_INFO, &pci_dev->dev,
  5278. "open: Could not find a valid PHY.\n");
  5279. goto out_error;
  5280. }
  5281. if (!phyinitialized) {
  5282. /* reset it */
  5283. phy_init(dev);
  5284. } else {
  5285. /* see if it is a gigabit phy */
  5286. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  5287. if (mii_status & PHY_GIGABIT) {
  5288. np->gigabit = PHY_GIGABIT;
  5289. }
  5290. }
  5291. /* set default link speed settings */
  5292. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  5293. np->duplex = 0;
  5294. np->autoneg = 1;
  5295. err = register_netdev(dev);
  5296. if (err) {
  5297. dev_printk(KERN_INFO, &pci_dev->dev,
  5298. "unable to register netdev: %d\n", err);
  5299. goto out_error;
  5300. }
  5301. dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
  5302. "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
  5303. dev->name,
  5304. np->phy_oui,
  5305. np->phyaddr,
  5306. dev->dev_addr[0],
  5307. dev->dev_addr[1],
  5308. dev->dev_addr[2],
  5309. dev->dev_addr[3],
  5310. dev->dev_addr[4],
  5311. dev->dev_addr[5]);
  5312. dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
  5313. dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
  5314. dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ?
  5315. "csum " : "",
  5316. dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
  5317. "vlan " : "",
  5318. id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
  5319. id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
  5320. id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
  5321. np->gigabit == PHY_GIGABIT ? "gbit " : "",
  5322. np->need_linktimer ? "lnktim " : "",
  5323. np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
  5324. np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
  5325. np->desc_ver);
  5326. return 0;
  5327. out_error:
  5328. if (phystate_orig)
  5329. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  5330. pci_set_drvdata(pci_dev, NULL);
  5331. out_freering:
  5332. free_rings(dev);
  5333. out_unmap:
  5334. iounmap(get_hwbase(dev));
  5335. out_relreg:
  5336. pci_release_regions(pci_dev);
  5337. out_disable:
  5338. pci_disable_device(pci_dev);
  5339. out_free:
  5340. free_netdev(dev);
  5341. out:
  5342. return err;
  5343. }
  5344. static void nv_restore_phy(struct net_device *dev)
  5345. {
  5346. struct fe_priv *np = netdev_priv(dev);
  5347. u16 phy_reserved, mii_control;
  5348. if (np->phy_oui == PHY_OUI_REALTEK &&
  5349. np->phy_model == PHY_MODEL_REALTEK_8201 &&
  5350. phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  5351. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
  5352. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  5353. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  5354. phy_reserved |= PHY_REALTEK_INIT8;
  5355. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
  5356. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
  5357. /* restart auto negotiation */
  5358. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  5359. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  5360. mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
  5361. }
  5362. }
  5363. static void nv_restore_mac_addr(struct pci_dev *pci_dev)
  5364. {
  5365. struct net_device *dev = pci_get_drvdata(pci_dev);
  5366. struct fe_priv *np = netdev_priv(dev);
  5367. u8 __iomem *base = get_hwbase(dev);
  5368. /* special op: write back the misordered MAC address - otherwise
  5369. * the next nv_probe would see a wrong address.
  5370. */
  5371. writel(np->orig_mac[0], base + NvRegMacAddrA);
  5372. writel(np->orig_mac[1], base + NvRegMacAddrB);
  5373. writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  5374. base + NvRegTransmitPoll);
  5375. }
  5376. static void __devexit nv_remove(struct pci_dev *pci_dev)
  5377. {
  5378. struct net_device *dev = pci_get_drvdata(pci_dev);
  5379. unregister_netdev(dev);
  5380. nv_restore_mac_addr(pci_dev);
  5381. /* restore any phy related changes */
  5382. nv_restore_phy(dev);
  5383. nv_mgmt_release_sema(dev);
  5384. /* free all structures */
  5385. free_rings(dev);
  5386. iounmap(get_hwbase(dev));
  5387. pci_release_regions(pci_dev);
  5388. pci_disable_device(pci_dev);
  5389. free_netdev(dev);
  5390. pci_set_drvdata(pci_dev, NULL);
  5391. }
  5392. #ifdef CONFIG_PM
  5393. static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
  5394. {
  5395. struct net_device *dev = pci_get_drvdata(pdev);
  5396. struct fe_priv *np = netdev_priv(dev);
  5397. u8 __iomem *base = get_hwbase(dev);
  5398. int i;
  5399. if (netif_running(dev)) {
  5400. // Gross.
  5401. nv_close(dev);
  5402. }
  5403. netif_device_detach(dev);
  5404. /* save non-pci configuration space */
  5405. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  5406. np->saved_config_space[i] = readl(base + i*sizeof(u32));
  5407. pci_save_state(pdev);
  5408. pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
  5409. pci_disable_device(pdev);
  5410. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  5411. return 0;
  5412. }
  5413. static int nv_resume(struct pci_dev *pdev)
  5414. {
  5415. struct net_device *dev = pci_get_drvdata(pdev);
  5416. struct fe_priv *np = netdev_priv(dev);
  5417. u8 __iomem *base = get_hwbase(dev);
  5418. int i, rc = 0;
  5419. pci_set_power_state(pdev, PCI_D0);
  5420. pci_restore_state(pdev);
  5421. /* ack any pending wake events, disable PME */
  5422. pci_enable_wake(pdev, PCI_D0, 0);
  5423. /* restore non-pci configuration space */
  5424. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  5425. writel(np->saved_config_space[i], base+i*sizeof(u32));
  5426. pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE);
  5427. /* restore phy state, including autoneg */
  5428. phy_init(dev);
  5429. netif_device_attach(dev);
  5430. if (netif_running(dev)) {
  5431. rc = nv_open(dev);
  5432. nv_set_multicast(dev);
  5433. }
  5434. return rc;
  5435. }
  5436. static void nv_shutdown(struct pci_dev *pdev)
  5437. {
  5438. struct net_device *dev = pci_get_drvdata(pdev);
  5439. struct fe_priv *np = netdev_priv(dev);
  5440. if (netif_running(dev))
  5441. nv_close(dev);
  5442. /*
  5443. * Restore the MAC so a kernel started by kexec won't get confused.
  5444. * If we really go for poweroff, we must not restore the MAC,
  5445. * otherwise the MAC for WOL will be reversed at least on some boards.
  5446. */
  5447. if (system_state != SYSTEM_POWER_OFF) {
  5448. nv_restore_mac_addr(pdev);
  5449. }
  5450. pci_disable_device(pdev);
  5451. /*
  5452. * Apparently it is not possible to reinitialise from D3 hot,
  5453. * only put the device into D3 if we really go for poweroff.
  5454. */
  5455. if (system_state == SYSTEM_POWER_OFF) {
  5456. if (pci_enable_wake(pdev, PCI_D3cold, np->wolenabled))
  5457. pci_enable_wake(pdev, PCI_D3hot, np->wolenabled);
  5458. pci_set_power_state(pdev, PCI_D3hot);
  5459. }
  5460. }
  5461. #else
  5462. #define nv_suspend NULL
  5463. #define nv_shutdown NULL
  5464. #define nv_resume NULL
  5465. #endif /* CONFIG_PM */
  5466. static struct pci_device_id pci_tbl[] = {
  5467. { /* nForce Ethernet Controller */
  5468. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  5469. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5470. },
  5471. { /* nForce2 Ethernet Controller */
  5472. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  5473. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5474. },
  5475. { /* nForce3 Ethernet Controller */
  5476. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  5477. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5478. },
  5479. { /* nForce3 Ethernet Controller */
  5480. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  5481. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5482. },
  5483. { /* nForce3 Ethernet Controller */
  5484. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  5485. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5486. },
  5487. { /* nForce3 Ethernet Controller */
  5488. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  5489. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5490. },
  5491. { /* nForce3 Ethernet Controller */
  5492. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  5493. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5494. },
  5495. { /* CK804 Ethernet Controller */
  5496. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  5497. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5498. },
  5499. { /* CK804 Ethernet Controller */
  5500. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  5501. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5502. },
  5503. { /* MCP04 Ethernet Controller */
  5504. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  5505. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5506. },
  5507. { /* MCP04 Ethernet Controller */
  5508. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  5509. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5510. },
  5511. { /* MCP51 Ethernet Controller */
  5512. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  5513. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  5514. },
  5515. { /* MCP51 Ethernet Controller */
  5516. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  5517. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  5518. },
  5519. { /* MCP55 Ethernet Controller */
  5520. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  5521. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
  5522. },
  5523. { /* MCP55 Ethernet Controller */
  5524. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  5525. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
  5526. },
  5527. { /* MCP61 Ethernet Controller */
  5528. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
  5529. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5530. },
  5531. { /* MCP61 Ethernet Controller */
  5532. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
  5533. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5534. },
  5535. { /* MCP61 Ethernet Controller */
  5536. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
  5537. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5538. },
  5539. { /* MCP61 Ethernet Controller */
  5540. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
  5541. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5542. },
  5543. { /* MCP65 Ethernet Controller */
  5544. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
  5545. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5546. },
  5547. { /* MCP65 Ethernet Controller */
  5548. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
  5549. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5550. },
  5551. { /* MCP65 Ethernet Controller */
  5552. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
  5553. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5554. },
  5555. { /* MCP65 Ethernet Controller */
  5556. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
  5557. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5558. },
  5559. { /* MCP67 Ethernet Controller */
  5560. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
  5561. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5562. },
  5563. { /* MCP67 Ethernet Controller */
  5564. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
  5565. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5566. },
  5567. { /* MCP67 Ethernet Controller */
  5568. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
  5569. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5570. },
  5571. { /* MCP67 Ethernet Controller */
  5572. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
  5573. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5574. },
  5575. { /* MCP73 Ethernet Controller */
  5576. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_28),
  5577. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5578. },
  5579. { /* MCP73 Ethernet Controller */
  5580. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_29),
  5581. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5582. },
  5583. { /* MCP73 Ethernet Controller */
  5584. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_30),
  5585. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5586. },
  5587. { /* MCP73 Ethernet Controller */
  5588. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_31),
  5589. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5590. },
  5591. { /* MCP77 Ethernet Controller */
  5592. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_32),
  5593. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5594. },
  5595. { /* MCP77 Ethernet Controller */
  5596. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_33),
  5597. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5598. },
  5599. { /* MCP77 Ethernet Controller */
  5600. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_34),
  5601. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5602. },
  5603. { /* MCP77 Ethernet Controller */
  5604. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_35),
  5605. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5606. },
  5607. { /* MCP79 Ethernet Controller */
  5608. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_36),
  5609. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5610. },
  5611. { /* MCP79 Ethernet Controller */
  5612. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_37),
  5613. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5614. },
  5615. { /* MCP79 Ethernet Controller */
  5616. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_38),
  5617. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5618. },
  5619. { /* MCP79 Ethernet Controller */
  5620. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_39),
  5621. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5622. },
  5623. {0,},
  5624. };
  5625. static struct pci_driver driver = {
  5626. .name = DRV_NAME,
  5627. .id_table = pci_tbl,
  5628. .probe = nv_probe,
  5629. .remove = __devexit_p(nv_remove),
  5630. .suspend = nv_suspend,
  5631. .resume = nv_resume,
  5632. .shutdown = nv_shutdown,
  5633. };
  5634. static int __init init_nic(void)
  5635. {
  5636. return pci_register_driver(&driver);
  5637. }
  5638. static void __exit exit_nic(void)
  5639. {
  5640. pci_unregister_driver(&driver);
  5641. }
  5642. module_param(max_interrupt_work, int, 0);
  5643. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  5644. module_param(optimization_mode, int, 0);
  5645. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load.");
  5646. module_param(poll_interval, int, 0);
  5647. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  5648. module_param(msi, int, 0);
  5649. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5650. module_param(msix, int, 0);
  5651. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5652. module_param(dma_64bit, int, 0);
  5653. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  5654. module_param(phy_cross, int, 0);
  5655. MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
  5656. module_param(phy_power_down, int, 0);
  5657. MODULE_PARM_DESC(phy_power_down, "Power down phy and disable link when interface is down (1), or leave phy powered up (0).");
  5658. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  5659. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  5660. MODULE_LICENSE("GPL");
  5661. MODULE_DEVICE_TABLE(pci, pci_tbl);
  5662. module_init(init_nic);
  5663. module_exit(exit_nic);