fw-sbp2.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372
  1. /*
  2. * SBP2 driver (SCSI over IEEE1394)
  3. *
  4. * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software Foundation,
  18. * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19. */
  20. /*
  21. * The basic structure of this driver is based on the old storage driver,
  22. * drivers/ieee1394/sbp2.c, originally written by
  23. * James Goodwin <jamesg@filanet.com>
  24. * with later contributions and ongoing maintenance from
  25. * Ben Collins <bcollins@debian.org>,
  26. * Stefan Richter <stefanr@s5r6.in-berlin.de>
  27. * and many others.
  28. */
  29. #include <linux/kernel.h>
  30. #include <linux/module.h>
  31. #include <linux/moduleparam.h>
  32. #include <linux/mod_devicetable.h>
  33. #include <linux/device.h>
  34. #include <linux/scatterlist.h>
  35. #include <linux/dma-mapping.h>
  36. #include <linux/blkdev.h>
  37. #include <linux/string.h>
  38. #include <linux/stringify.h>
  39. #include <linux/timer.h>
  40. #include <linux/workqueue.h>
  41. #include <scsi/scsi.h>
  42. #include <scsi/scsi_cmnd.h>
  43. #include <scsi/scsi_device.h>
  44. #include <scsi/scsi_host.h>
  45. #include "fw-transaction.h"
  46. #include "fw-topology.h"
  47. #include "fw-device.h"
  48. /*
  49. * So far only bridges from Oxford Semiconductor are known to support
  50. * concurrent logins. Depending on firmware, four or two concurrent logins
  51. * are possible on OXFW911 and newer Oxsemi bridges.
  52. *
  53. * Concurrent logins are useful together with cluster filesystems.
  54. */
  55. static int sbp2_param_exclusive_login = 1;
  56. module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
  57. MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
  58. "(default = Y, use N for concurrent initiators)");
  59. /*
  60. * Flags for firmware oddities
  61. *
  62. * - 128kB max transfer
  63. * Limit transfer size. Necessary for some old bridges.
  64. *
  65. * - 36 byte inquiry
  66. * When scsi_mod probes the device, let the inquiry command look like that
  67. * from MS Windows.
  68. *
  69. * - skip mode page 8
  70. * Suppress sending of mode_sense for mode page 8 if the device pretends to
  71. * support the SCSI Primary Block commands instead of Reduced Block Commands.
  72. *
  73. * - fix capacity
  74. * Tell sd_mod to correct the last sector number reported by read_capacity.
  75. * Avoids access beyond actual disk limits on devices with an off-by-one bug.
  76. * Don't use this with devices which don't have this bug.
  77. *
  78. * - override internal blacklist
  79. * Instead of adding to the built-in blacklist, use only the workarounds
  80. * specified in the module load parameter.
  81. * Useful if a blacklist entry interfered with a non-broken device.
  82. */
  83. #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
  84. #define SBP2_WORKAROUND_INQUIRY_36 0x2
  85. #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
  86. #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
  87. #define SBP2_WORKAROUND_OVERRIDE 0x100
  88. static int sbp2_param_workarounds;
  89. module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
  90. MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
  91. ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
  92. ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
  93. ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
  94. ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
  95. ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
  96. ", or a combination)");
  97. /* I don't know why the SCSI stack doesn't define something like this... */
  98. typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
  99. static const char sbp2_driver_name[] = "sbp2";
  100. /*
  101. * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
  102. * and one struct scsi_device per sbp2_logical_unit.
  103. */
  104. struct sbp2_logical_unit {
  105. struct sbp2_target *tgt;
  106. struct list_head link;
  107. struct scsi_device *sdev;
  108. struct fw_address_handler address_handler;
  109. struct list_head orb_list;
  110. u64 command_block_agent_address;
  111. u16 lun;
  112. int login_id;
  113. /*
  114. * The generation is updated once we've logged in or reconnected
  115. * to the logical unit. Thus, I/O to the device will automatically
  116. * fail and get retried if it happens in a window where the device
  117. * is not ready, e.g. after a bus reset but before we reconnect.
  118. */
  119. int generation;
  120. int retries;
  121. struct delayed_work work;
  122. };
  123. /*
  124. * We create one struct sbp2_target per IEEE 1212 Unit Directory
  125. * and one struct Scsi_Host per sbp2_target.
  126. */
  127. struct sbp2_target {
  128. struct kref kref;
  129. struct fw_unit *unit;
  130. u64 management_agent_address;
  131. int directory_id;
  132. int node_id;
  133. int address_high;
  134. unsigned workarounds;
  135. struct list_head lu_list;
  136. };
  137. #define SBP2_MAX_SG_ELEMENT_LENGTH 0xf000
  138. #define SBP2_ORB_TIMEOUT 2000 /* Timeout in ms */
  139. #define SBP2_ORB_NULL 0x80000000
  140. #define SBP2_DIRECTION_TO_MEDIA 0x0
  141. #define SBP2_DIRECTION_FROM_MEDIA 0x1
  142. /* Unit directory keys */
  143. #define SBP2_CSR_FIRMWARE_REVISION 0x3c
  144. #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
  145. #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
  146. /* Management orb opcodes */
  147. #define SBP2_LOGIN_REQUEST 0x0
  148. #define SBP2_QUERY_LOGINS_REQUEST 0x1
  149. #define SBP2_RECONNECT_REQUEST 0x3
  150. #define SBP2_SET_PASSWORD_REQUEST 0x4
  151. #define SBP2_LOGOUT_REQUEST 0x7
  152. #define SBP2_ABORT_TASK_REQUEST 0xb
  153. #define SBP2_ABORT_TASK_SET 0xc
  154. #define SBP2_LOGICAL_UNIT_RESET 0xe
  155. #define SBP2_TARGET_RESET_REQUEST 0xf
  156. /* Offsets for command block agent registers */
  157. #define SBP2_AGENT_STATE 0x00
  158. #define SBP2_AGENT_RESET 0x04
  159. #define SBP2_ORB_POINTER 0x08
  160. #define SBP2_DOORBELL 0x10
  161. #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
  162. /* Status write response codes */
  163. #define SBP2_STATUS_REQUEST_COMPLETE 0x0
  164. #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
  165. #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
  166. #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
  167. #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
  168. #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
  169. #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
  170. #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
  171. #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
  172. #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
  173. #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
  174. #define STATUS_GET_DATA(v) ((v).data)
  175. struct sbp2_status {
  176. u32 status;
  177. u32 orb_low;
  178. u8 data[24];
  179. };
  180. struct sbp2_pointer {
  181. u32 high;
  182. u32 low;
  183. };
  184. struct sbp2_orb {
  185. struct fw_transaction t;
  186. struct kref kref;
  187. dma_addr_t request_bus;
  188. int rcode;
  189. struct sbp2_pointer pointer;
  190. void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
  191. struct list_head link;
  192. };
  193. #define MANAGEMENT_ORB_LUN(v) ((v))
  194. #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
  195. #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
  196. #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
  197. #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
  198. #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
  199. #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
  200. #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
  201. struct sbp2_management_orb {
  202. struct sbp2_orb base;
  203. struct {
  204. struct sbp2_pointer password;
  205. struct sbp2_pointer response;
  206. u32 misc;
  207. u32 length;
  208. struct sbp2_pointer status_fifo;
  209. } request;
  210. __be32 response[4];
  211. dma_addr_t response_bus;
  212. struct completion done;
  213. struct sbp2_status status;
  214. };
  215. #define LOGIN_RESPONSE_GET_LOGIN_ID(v) ((v).misc & 0xffff)
  216. #define LOGIN_RESPONSE_GET_LENGTH(v) (((v).misc >> 16) & 0xffff)
  217. struct sbp2_login_response {
  218. u32 misc;
  219. struct sbp2_pointer command_block_agent;
  220. u32 reconnect_hold;
  221. };
  222. #define COMMAND_ORB_DATA_SIZE(v) ((v))
  223. #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
  224. #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
  225. #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
  226. #define COMMAND_ORB_SPEED(v) ((v) << 24)
  227. #define COMMAND_ORB_DIRECTION(v) ((v) << 27)
  228. #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
  229. #define COMMAND_ORB_NOTIFY ((1) << 31)
  230. struct sbp2_command_orb {
  231. struct sbp2_orb base;
  232. struct {
  233. struct sbp2_pointer next;
  234. struct sbp2_pointer data_descriptor;
  235. u32 misc;
  236. u8 command_block[12];
  237. } request;
  238. struct scsi_cmnd *cmd;
  239. scsi_done_fn_t done;
  240. struct sbp2_logical_unit *lu;
  241. struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
  242. dma_addr_t page_table_bus;
  243. };
  244. /*
  245. * List of devices with known bugs.
  246. *
  247. * The firmware_revision field, masked with 0xffff00, is the best
  248. * indicator for the type of bridge chip of a device. It yields a few
  249. * false positives but this did not break correctly behaving devices
  250. * so far. We use ~0 as a wildcard, since the 24 bit values we get
  251. * from the config rom can never match that.
  252. */
  253. static const struct {
  254. u32 firmware_revision;
  255. u32 model;
  256. unsigned workarounds;
  257. } sbp2_workarounds_table[] = {
  258. /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
  259. .firmware_revision = 0x002800,
  260. .model = 0x001010,
  261. .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
  262. SBP2_WORKAROUND_MODE_SENSE_8,
  263. },
  264. /* Initio bridges, actually only needed for some older ones */ {
  265. .firmware_revision = 0x000200,
  266. .model = ~0,
  267. .workarounds = SBP2_WORKAROUND_INQUIRY_36,
  268. },
  269. /* Symbios bridge */ {
  270. .firmware_revision = 0xa0b800,
  271. .model = ~0,
  272. .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
  273. },
  274. /*
  275. * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
  276. * these iPods do not feature the read_capacity bug according
  277. * to one report. Read_capacity behaviour as well as model_id
  278. * could change due to Apple-supplied firmware updates though.
  279. */
  280. /* iPod 4th generation. */ {
  281. .firmware_revision = 0x0a2700,
  282. .model = 0x000021,
  283. .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
  284. },
  285. /* iPod mini */ {
  286. .firmware_revision = 0x0a2700,
  287. .model = 0x000023,
  288. .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
  289. },
  290. /* iPod Photo */ {
  291. .firmware_revision = 0x0a2700,
  292. .model = 0x00007e,
  293. .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
  294. }
  295. };
  296. static void
  297. free_orb(struct kref *kref)
  298. {
  299. struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
  300. kfree(orb);
  301. }
  302. static void
  303. sbp2_status_write(struct fw_card *card, struct fw_request *request,
  304. int tcode, int destination, int source,
  305. int generation, int speed,
  306. unsigned long long offset,
  307. void *payload, size_t length, void *callback_data)
  308. {
  309. struct sbp2_logical_unit *lu = callback_data;
  310. struct sbp2_orb *orb;
  311. struct sbp2_status status;
  312. size_t header_size;
  313. unsigned long flags;
  314. if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
  315. length == 0 || length > sizeof(status)) {
  316. fw_send_response(card, request, RCODE_TYPE_ERROR);
  317. return;
  318. }
  319. header_size = min(length, 2 * sizeof(u32));
  320. fw_memcpy_from_be32(&status, payload, header_size);
  321. if (length > header_size)
  322. memcpy(status.data, payload + 8, length - header_size);
  323. if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
  324. fw_notify("non-orb related status write, not handled\n");
  325. fw_send_response(card, request, RCODE_COMPLETE);
  326. return;
  327. }
  328. /* Lookup the orb corresponding to this status write. */
  329. spin_lock_irqsave(&card->lock, flags);
  330. list_for_each_entry(orb, &lu->orb_list, link) {
  331. if (STATUS_GET_ORB_HIGH(status) == 0 &&
  332. STATUS_GET_ORB_LOW(status) == orb->request_bus) {
  333. orb->rcode = RCODE_COMPLETE;
  334. list_del(&orb->link);
  335. break;
  336. }
  337. }
  338. spin_unlock_irqrestore(&card->lock, flags);
  339. if (&orb->link != &lu->orb_list)
  340. orb->callback(orb, &status);
  341. else
  342. fw_error("status write for unknown orb\n");
  343. kref_put(&orb->kref, free_orb);
  344. fw_send_response(card, request, RCODE_COMPLETE);
  345. }
  346. static void
  347. complete_transaction(struct fw_card *card, int rcode,
  348. void *payload, size_t length, void *data)
  349. {
  350. struct sbp2_orb *orb = data;
  351. unsigned long flags;
  352. /*
  353. * This is a little tricky. We can get the status write for
  354. * the orb before we get this callback. The status write
  355. * handler above will assume the orb pointer transaction was
  356. * successful and set the rcode to RCODE_COMPLETE for the orb.
  357. * So this callback only sets the rcode if it hasn't already
  358. * been set and only does the cleanup if the transaction
  359. * failed and we didn't already get a status write.
  360. */
  361. spin_lock_irqsave(&card->lock, flags);
  362. if (orb->rcode == -1)
  363. orb->rcode = rcode;
  364. if (orb->rcode != RCODE_COMPLETE) {
  365. list_del(&orb->link);
  366. spin_unlock_irqrestore(&card->lock, flags);
  367. orb->callback(orb, NULL);
  368. } else {
  369. spin_unlock_irqrestore(&card->lock, flags);
  370. }
  371. kref_put(&orb->kref, free_orb);
  372. }
  373. static void
  374. sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
  375. int node_id, int generation, u64 offset)
  376. {
  377. struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
  378. unsigned long flags;
  379. orb->pointer.high = 0;
  380. orb->pointer.low = orb->request_bus;
  381. fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
  382. spin_lock_irqsave(&device->card->lock, flags);
  383. list_add_tail(&orb->link, &lu->orb_list);
  384. spin_unlock_irqrestore(&device->card->lock, flags);
  385. /* Take a ref for the orb list and for the transaction callback. */
  386. kref_get(&orb->kref);
  387. kref_get(&orb->kref);
  388. fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
  389. node_id, generation, device->max_speed, offset,
  390. &orb->pointer, sizeof(orb->pointer),
  391. complete_transaction, orb);
  392. }
  393. static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
  394. {
  395. struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
  396. struct sbp2_orb *orb, *next;
  397. struct list_head list;
  398. unsigned long flags;
  399. int retval = -ENOENT;
  400. INIT_LIST_HEAD(&list);
  401. spin_lock_irqsave(&device->card->lock, flags);
  402. list_splice_init(&lu->orb_list, &list);
  403. spin_unlock_irqrestore(&device->card->lock, flags);
  404. list_for_each_entry_safe(orb, next, &list, link) {
  405. retval = 0;
  406. if (fw_cancel_transaction(device->card, &orb->t) == 0)
  407. continue;
  408. orb->rcode = RCODE_CANCELLED;
  409. orb->callback(orb, NULL);
  410. }
  411. return retval;
  412. }
  413. static void
  414. complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
  415. {
  416. struct sbp2_management_orb *orb =
  417. container_of(base_orb, struct sbp2_management_orb, base);
  418. if (status)
  419. memcpy(&orb->status, status, sizeof(*status));
  420. complete(&orb->done);
  421. }
  422. static int
  423. sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
  424. int generation, int function, int lun_or_login_id,
  425. void *response)
  426. {
  427. struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
  428. struct sbp2_management_orb *orb;
  429. int retval = -ENOMEM;
  430. orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
  431. if (orb == NULL)
  432. return -ENOMEM;
  433. kref_init(&orb->base.kref);
  434. orb->response_bus =
  435. dma_map_single(device->card->device, &orb->response,
  436. sizeof(orb->response), DMA_FROM_DEVICE);
  437. if (dma_mapping_error(orb->response_bus))
  438. goto fail_mapping_response;
  439. orb->request.response.high = 0;
  440. orb->request.response.low = orb->response_bus;
  441. orb->request.misc =
  442. MANAGEMENT_ORB_NOTIFY |
  443. MANAGEMENT_ORB_FUNCTION(function) |
  444. MANAGEMENT_ORB_LUN(lun_or_login_id);
  445. orb->request.length =
  446. MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
  447. orb->request.status_fifo.high = lu->address_handler.offset >> 32;
  448. orb->request.status_fifo.low = lu->address_handler.offset;
  449. if (function == SBP2_LOGIN_REQUEST) {
  450. /* Ask for 2^2 == 4 seconds reconnect grace period */
  451. orb->request.misc |=
  452. MANAGEMENT_ORB_RECONNECT(2) |
  453. MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login);
  454. }
  455. fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
  456. init_completion(&orb->done);
  457. orb->base.callback = complete_management_orb;
  458. orb->base.request_bus =
  459. dma_map_single(device->card->device, &orb->request,
  460. sizeof(orb->request), DMA_TO_DEVICE);
  461. if (dma_mapping_error(orb->base.request_bus))
  462. goto fail_mapping_request;
  463. sbp2_send_orb(&orb->base, lu, node_id, generation,
  464. lu->tgt->management_agent_address);
  465. wait_for_completion_timeout(&orb->done,
  466. msecs_to_jiffies(SBP2_ORB_TIMEOUT));
  467. retval = -EIO;
  468. if (sbp2_cancel_orbs(lu) == 0) {
  469. fw_error("orb reply timed out, rcode=0x%02x\n",
  470. orb->base.rcode);
  471. goto out;
  472. }
  473. if (orb->base.rcode != RCODE_COMPLETE) {
  474. fw_error("management write failed, rcode 0x%02x\n",
  475. orb->base.rcode);
  476. goto out;
  477. }
  478. if (STATUS_GET_RESPONSE(orb->status) != 0 ||
  479. STATUS_GET_SBP_STATUS(orb->status) != 0) {
  480. fw_error("error status: %d:%d\n",
  481. STATUS_GET_RESPONSE(orb->status),
  482. STATUS_GET_SBP_STATUS(orb->status));
  483. goto out;
  484. }
  485. retval = 0;
  486. out:
  487. dma_unmap_single(device->card->device, orb->base.request_bus,
  488. sizeof(orb->request), DMA_TO_DEVICE);
  489. fail_mapping_request:
  490. dma_unmap_single(device->card->device, orb->response_bus,
  491. sizeof(orb->response), DMA_FROM_DEVICE);
  492. fail_mapping_response:
  493. if (response)
  494. fw_memcpy_from_be32(response,
  495. orb->response, sizeof(orb->response));
  496. kref_put(&orb->base.kref, free_orb);
  497. return retval;
  498. }
  499. static void
  500. complete_agent_reset_write(struct fw_card *card, int rcode,
  501. void *payload, size_t length, void *data)
  502. {
  503. struct fw_transaction *t = data;
  504. kfree(t);
  505. }
  506. static int sbp2_agent_reset(struct sbp2_logical_unit *lu)
  507. {
  508. struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
  509. struct fw_transaction *t;
  510. static u32 zero;
  511. t = kzalloc(sizeof(*t), GFP_ATOMIC);
  512. if (t == NULL)
  513. return -ENOMEM;
  514. fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
  515. lu->tgt->node_id, lu->generation, device->max_speed,
  516. lu->command_block_agent_address + SBP2_AGENT_RESET,
  517. &zero, sizeof(zero), complete_agent_reset_write, t);
  518. return 0;
  519. }
  520. static void sbp2_release_target(struct kref *kref)
  521. {
  522. struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
  523. struct sbp2_logical_unit *lu, *next;
  524. struct Scsi_Host *shost =
  525. container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
  526. struct fw_device *device = fw_device(tgt->unit->device.parent);
  527. list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
  528. if (lu->sdev)
  529. scsi_remove_device(lu->sdev);
  530. if (!fw_device_is_shutdown(device))
  531. sbp2_send_management_orb(lu, tgt->node_id,
  532. lu->generation, SBP2_LOGOUT_REQUEST,
  533. lu->login_id, NULL);
  534. fw_core_remove_address_handler(&lu->address_handler);
  535. list_del(&lu->link);
  536. kfree(lu);
  537. }
  538. scsi_remove_host(shost);
  539. fw_notify("released %s\n", tgt->unit->device.bus_id);
  540. put_device(&tgt->unit->device);
  541. scsi_host_put(shost);
  542. }
  543. static struct workqueue_struct *sbp2_wq;
  544. /*
  545. * Always get the target's kref when scheduling work on one its units.
  546. * Each workqueue job is responsible to call sbp2_target_put() upon return.
  547. */
  548. static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
  549. {
  550. if (queue_delayed_work(sbp2_wq, &lu->work, delay))
  551. kref_get(&lu->tgt->kref);
  552. }
  553. static void sbp2_target_put(struct sbp2_target *tgt)
  554. {
  555. kref_put(&tgt->kref, sbp2_release_target);
  556. }
  557. static void sbp2_reconnect(struct work_struct *work);
  558. static void sbp2_login(struct work_struct *work)
  559. {
  560. struct sbp2_logical_unit *lu =
  561. container_of(work, struct sbp2_logical_unit, work.work);
  562. struct Scsi_Host *shost =
  563. container_of((void *)lu->tgt, struct Scsi_Host, hostdata[0]);
  564. struct scsi_device *sdev;
  565. struct scsi_lun eight_bytes_lun;
  566. struct fw_unit *unit = lu->tgt->unit;
  567. struct fw_device *device = fw_device(unit->device.parent);
  568. struct sbp2_login_response response;
  569. int generation, node_id, local_node_id;
  570. generation = device->generation;
  571. node_id = device->node_id;
  572. local_node_id = device->card->node_id;
  573. if (sbp2_send_management_orb(lu, node_id, generation,
  574. SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
  575. if (lu->retries++ < 5)
  576. sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
  577. else
  578. fw_error("failed to login to %s LUN %04x\n",
  579. unit->device.bus_id, lu->lun);
  580. goto out;
  581. }
  582. lu->generation = generation;
  583. lu->tgt->node_id = node_id;
  584. lu->tgt->address_high = local_node_id << 16;
  585. /* Get command block agent offset and login id. */
  586. lu->command_block_agent_address =
  587. ((u64) (response.command_block_agent.high & 0xffff) << 32) |
  588. response.command_block_agent.low;
  589. lu->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
  590. fw_notify("logged in to %s LUN %04x (%d retries)\n",
  591. unit->device.bus_id, lu->lun, lu->retries);
  592. #if 0
  593. /* FIXME: The linux1394 sbp2 does this last step. */
  594. sbp2_set_busy_timeout(scsi_id);
  595. #endif
  596. PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
  597. sbp2_agent_reset(lu);
  598. memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
  599. eight_bytes_lun.scsi_lun[0] = (lu->lun >> 8) & 0xff;
  600. eight_bytes_lun.scsi_lun[1] = lu->lun & 0xff;
  601. sdev = __scsi_add_device(shost, 0, 0,
  602. scsilun_to_int(&eight_bytes_lun), lu);
  603. if (IS_ERR(sdev)) {
  604. sbp2_send_management_orb(lu, node_id, generation,
  605. SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
  606. /*
  607. * Set this back to sbp2_login so we fall back and
  608. * retry login on bus reset.
  609. */
  610. PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
  611. } else {
  612. lu->sdev = sdev;
  613. scsi_device_put(sdev);
  614. }
  615. out:
  616. sbp2_target_put(lu->tgt);
  617. }
  618. static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
  619. {
  620. struct sbp2_logical_unit *lu;
  621. lu = kmalloc(sizeof(*lu), GFP_KERNEL);
  622. if (!lu)
  623. return -ENOMEM;
  624. lu->address_handler.length = 0x100;
  625. lu->address_handler.address_callback = sbp2_status_write;
  626. lu->address_handler.callback_data = lu;
  627. if (fw_core_add_address_handler(&lu->address_handler,
  628. &fw_high_memory_region) < 0) {
  629. kfree(lu);
  630. return -ENOMEM;
  631. }
  632. lu->tgt = tgt;
  633. lu->sdev = NULL;
  634. lu->lun = lun_entry & 0xffff;
  635. lu->retries = 0;
  636. INIT_LIST_HEAD(&lu->orb_list);
  637. INIT_DELAYED_WORK(&lu->work, sbp2_login);
  638. list_add_tail(&lu->link, &tgt->lu_list);
  639. return 0;
  640. }
  641. static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
  642. {
  643. struct fw_csr_iterator ci;
  644. int key, value;
  645. fw_csr_iterator_init(&ci, directory);
  646. while (fw_csr_iterator_next(&ci, &key, &value))
  647. if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
  648. sbp2_add_logical_unit(tgt, value) < 0)
  649. return -ENOMEM;
  650. return 0;
  651. }
  652. static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
  653. u32 *model, u32 *firmware_revision)
  654. {
  655. struct fw_csr_iterator ci;
  656. int key, value;
  657. fw_csr_iterator_init(&ci, directory);
  658. while (fw_csr_iterator_next(&ci, &key, &value)) {
  659. switch (key) {
  660. case CSR_DEPENDENT_INFO | CSR_OFFSET:
  661. tgt->management_agent_address =
  662. CSR_REGISTER_BASE + 4 * value;
  663. break;
  664. case CSR_DIRECTORY_ID:
  665. tgt->directory_id = value;
  666. break;
  667. case CSR_MODEL:
  668. *model = value;
  669. break;
  670. case SBP2_CSR_FIRMWARE_REVISION:
  671. *firmware_revision = value;
  672. break;
  673. case SBP2_CSR_LOGICAL_UNIT_NUMBER:
  674. if (sbp2_add_logical_unit(tgt, value) < 0)
  675. return -ENOMEM;
  676. break;
  677. case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
  678. if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
  679. return -ENOMEM;
  680. break;
  681. }
  682. }
  683. return 0;
  684. }
  685. static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
  686. u32 firmware_revision)
  687. {
  688. int i;
  689. unsigned w = sbp2_param_workarounds;
  690. if (w)
  691. fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
  692. "if you need the workarounds parameter for %s\n",
  693. tgt->unit->device.bus_id);
  694. if (w & SBP2_WORKAROUND_OVERRIDE)
  695. goto out;
  696. for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
  697. if (sbp2_workarounds_table[i].firmware_revision !=
  698. (firmware_revision & 0xffffff00))
  699. continue;
  700. if (sbp2_workarounds_table[i].model != model &&
  701. sbp2_workarounds_table[i].model != ~0)
  702. continue;
  703. w |= sbp2_workarounds_table[i].workarounds;
  704. break;
  705. }
  706. out:
  707. if (w)
  708. fw_notify("Workarounds for %s: 0x%x "
  709. "(firmware_revision 0x%06x, model_id 0x%06x)\n",
  710. tgt->unit->device.bus_id,
  711. w, firmware_revision, model);
  712. tgt->workarounds = w;
  713. }
  714. static struct scsi_host_template scsi_driver_template;
  715. static int sbp2_probe(struct device *dev)
  716. {
  717. struct fw_unit *unit = fw_unit(dev);
  718. struct fw_device *device = fw_device(unit->device.parent);
  719. struct sbp2_target *tgt;
  720. struct sbp2_logical_unit *lu;
  721. struct Scsi_Host *shost;
  722. u32 model, firmware_revision;
  723. shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
  724. if (shost == NULL)
  725. return -ENOMEM;
  726. tgt = (struct sbp2_target *)shost->hostdata;
  727. unit->device.driver_data = tgt;
  728. tgt->unit = unit;
  729. kref_init(&tgt->kref);
  730. INIT_LIST_HEAD(&tgt->lu_list);
  731. if (fw_device_enable_phys_dma(device) < 0)
  732. goto fail_shost_put;
  733. if (scsi_add_host(shost, &unit->device) < 0)
  734. goto fail_shost_put;
  735. /* Initialize to values that won't match anything in our table. */
  736. firmware_revision = 0xff000000;
  737. model = 0xff000000;
  738. /* implicit directory ID */
  739. tgt->directory_id = ((unit->directory - device->config_rom) * 4
  740. + CSR_CONFIG_ROM) & 0xffffff;
  741. if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
  742. &firmware_revision) < 0)
  743. goto fail_tgt_put;
  744. sbp2_init_workarounds(tgt, model, firmware_revision);
  745. get_device(&unit->device);
  746. /* Do the login in a workqueue so we can easily reschedule retries. */
  747. list_for_each_entry(lu, &tgt->lu_list, link)
  748. sbp2_queue_work(lu, 0);
  749. return 0;
  750. fail_tgt_put:
  751. sbp2_target_put(tgt);
  752. return -ENOMEM;
  753. fail_shost_put:
  754. scsi_host_put(shost);
  755. return -ENOMEM;
  756. }
  757. static int sbp2_remove(struct device *dev)
  758. {
  759. struct fw_unit *unit = fw_unit(dev);
  760. struct sbp2_target *tgt = unit->device.driver_data;
  761. sbp2_target_put(tgt);
  762. return 0;
  763. }
  764. static void sbp2_reconnect(struct work_struct *work)
  765. {
  766. struct sbp2_logical_unit *lu =
  767. container_of(work, struct sbp2_logical_unit, work.work);
  768. struct fw_unit *unit = lu->tgt->unit;
  769. struct fw_device *device = fw_device(unit->device.parent);
  770. int generation, node_id, local_node_id;
  771. generation = device->generation;
  772. node_id = device->node_id;
  773. local_node_id = device->card->node_id;
  774. if (sbp2_send_management_orb(lu, node_id, generation,
  775. SBP2_RECONNECT_REQUEST,
  776. lu->login_id, NULL) < 0) {
  777. if (lu->retries++ >= 5) {
  778. fw_error("failed to reconnect to %s\n",
  779. unit->device.bus_id);
  780. /* Fall back and try to log in again. */
  781. lu->retries = 0;
  782. PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
  783. }
  784. sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
  785. goto out;
  786. }
  787. lu->generation = generation;
  788. lu->tgt->node_id = node_id;
  789. lu->tgt->address_high = local_node_id << 16;
  790. fw_notify("reconnected to %s LUN %04x (%d retries)\n",
  791. unit->device.bus_id, lu->lun, lu->retries);
  792. sbp2_agent_reset(lu);
  793. sbp2_cancel_orbs(lu);
  794. out:
  795. sbp2_target_put(lu->tgt);
  796. }
  797. static void sbp2_update(struct fw_unit *unit)
  798. {
  799. struct sbp2_target *tgt = unit->device.driver_data;
  800. struct sbp2_logical_unit *lu;
  801. fw_device_enable_phys_dma(fw_device(unit->device.parent));
  802. /*
  803. * Fw-core serializes sbp2_update() against sbp2_remove().
  804. * Iteration over tgt->lu_list is therefore safe here.
  805. */
  806. list_for_each_entry(lu, &tgt->lu_list, link) {
  807. lu->retries = 0;
  808. sbp2_queue_work(lu, 0);
  809. }
  810. }
  811. #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
  812. #define SBP2_SW_VERSION_ENTRY 0x00010483
  813. static const struct fw_device_id sbp2_id_table[] = {
  814. {
  815. .match_flags = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
  816. .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
  817. .version = SBP2_SW_VERSION_ENTRY,
  818. },
  819. { }
  820. };
  821. static struct fw_driver sbp2_driver = {
  822. .driver = {
  823. .owner = THIS_MODULE,
  824. .name = sbp2_driver_name,
  825. .bus = &fw_bus_type,
  826. .probe = sbp2_probe,
  827. .remove = sbp2_remove,
  828. },
  829. .update = sbp2_update,
  830. .id_table = sbp2_id_table,
  831. };
  832. static unsigned int
  833. sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
  834. {
  835. int sam_status;
  836. sense_data[0] = 0x70;
  837. sense_data[1] = 0x0;
  838. sense_data[2] = sbp2_status[1];
  839. sense_data[3] = sbp2_status[4];
  840. sense_data[4] = sbp2_status[5];
  841. sense_data[5] = sbp2_status[6];
  842. sense_data[6] = sbp2_status[7];
  843. sense_data[7] = 10;
  844. sense_data[8] = sbp2_status[8];
  845. sense_data[9] = sbp2_status[9];
  846. sense_data[10] = sbp2_status[10];
  847. sense_data[11] = sbp2_status[11];
  848. sense_data[12] = sbp2_status[2];
  849. sense_data[13] = sbp2_status[3];
  850. sense_data[14] = sbp2_status[12];
  851. sense_data[15] = sbp2_status[13];
  852. sam_status = sbp2_status[0] & 0x3f;
  853. switch (sam_status) {
  854. case SAM_STAT_GOOD:
  855. case SAM_STAT_CHECK_CONDITION:
  856. case SAM_STAT_CONDITION_MET:
  857. case SAM_STAT_BUSY:
  858. case SAM_STAT_RESERVATION_CONFLICT:
  859. case SAM_STAT_COMMAND_TERMINATED:
  860. return DID_OK << 16 | sam_status;
  861. default:
  862. return DID_ERROR << 16;
  863. }
  864. }
  865. static void
  866. complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
  867. {
  868. struct sbp2_command_orb *orb =
  869. container_of(base_orb, struct sbp2_command_orb, base);
  870. struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
  871. int result;
  872. if (status != NULL) {
  873. if (STATUS_GET_DEAD(*status))
  874. sbp2_agent_reset(orb->lu);
  875. switch (STATUS_GET_RESPONSE(*status)) {
  876. case SBP2_STATUS_REQUEST_COMPLETE:
  877. result = DID_OK << 16;
  878. break;
  879. case SBP2_STATUS_TRANSPORT_FAILURE:
  880. result = DID_BUS_BUSY << 16;
  881. break;
  882. case SBP2_STATUS_ILLEGAL_REQUEST:
  883. case SBP2_STATUS_VENDOR_DEPENDENT:
  884. default:
  885. result = DID_ERROR << 16;
  886. break;
  887. }
  888. if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
  889. result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
  890. orb->cmd->sense_buffer);
  891. } else {
  892. /*
  893. * If the orb completes with status == NULL, something
  894. * went wrong, typically a bus reset happened mid-orb
  895. * or when sending the write (less likely).
  896. */
  897. result = DID_BUS_BUSY << 16;
  898. }
  899. dma_unmap_single(device->card->device, orb->base.request_bus,
  900. sizeof(orb->request), DMA_TO_DEVICE);
  901. if (scsi_sg_count(orb->cmd) > 0)
  902. dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
  903. scsi_sg_count(orb->cmd),
  904. orb->cmd->sc_data_direction);
  905. if (orb->page_table_bus != 0)
  906. dma_unmap_single(device->card->device, orb->page_table_bus,
  907. sizeof(orb->page_table), DMA_TO_DEVICE);
  908. orb->cmd->result = result;
  909. orb->done(orb->cmd);
  910. }
  911. static int
  912. sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
  913. struct sbp2_logical_unit *lu)
  914. {
  915. struct scatterlist *sg;
  916. int sg_len, l, i, j, count;
  917. dma_addr_t sg_addr;
  918. sg = scsi_sglist(orb->cmd);
  919. count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
  920. orb->cmd->sc_data_direction);
  921. if (count == 0)
  922. goto fail;
  923. /*
  924. * Handle the special case where there is only one element in
  925. * the scatter list by converting it to an immediate block
  926. * request. This is also a workaround for broken devices such
  927. * as the second generation iPod which doesn't support page
  928. * tables.
  929. */
  930. if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
  931. orb->request.data_descriptor.high = lu->tgt->address_high;
  932. orb->request.data_descriptor.low = sg_dma_address(sg);
  933. orb->request.misc |= COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
  934. return 0;
  935. }
  936. /*
  937. * Convert the scatterlist to an sbp2 page table. If any
  938. * scatterlist entries are too big for sbp2, we split them as we
  939. * go. Even if we ask the block I/O layer to not give us sg
  940. * elements larger than 65535 bytes, some IOMMUs may merge sg elements
  941. * during DMA mapping, and Linux currently doesn't prevent this.
  942. */
  943. for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) {
  944. sg_len = sg_dma_len(sg);
  945. sg_addr = sg_dma_address(sg);
  946. while (sg_len) {
  947. /* FIXME: This won't get us out of the pinch. */
  948. if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
  949. fw_error("page table overflow\n");
  950. goto fail_page_table;
  951. }
  952. l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
  953. orb->page_table[j].low = sg_addr;
  954. orb->page_table[j].high = (l << 16);
  955. sg_addr += l;
  956. sg_len -= l;
  957. j++;
  958. }
  959. }
  960. fw_memcpy_to_be32(orb->page_table, orb->page_table,
  961. sizeof(orb->page_table[0]) * j);
  962. orb->page_table_bus =
  963. dma_map_single(device->card->device, orb->page_table,
  964. sizeof(orb->page_table), DMA_TO_DEVICE);
  965. if (dma_mapping_error(orb->page_table_bus))
  966. goto fail_page_table;
  967. /*
  968. * The data_descriptor pointer is the one case where we need
  969. * to fill in the node ID part of the address. All other
  970. * pointers assume that the data referenced reside on the
  971. * initiator (i.e. us), but data_descriptor can refer to data
  972. * on other nodes so we need to put our ID in descriptor.high.
  973. */
  974. orb->request.data_descriptor.high = lu->tgt->address_high;
  975. orb->request.data_descriptor.low = orb->page_table_bus;
  976. orb->request.misc |=
  977. COMMAND_ORB_PAGE_TABLE_PRESENT |
  978. COMMAND_ORB_DATA_SIZE(j);
  979. return 0;
  980. fail_page_table:
  981. dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
  982. orb->cmd->sc_data_direction);
  983. fail:
  984. return -ENOMEM;
  985. }
  986. /* SCSI stack integration */
  987. static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
  988. {
  989. struct sbp2_logical_unit *lu = cmd->device->hostdata;
  990. struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
  991. struct sbp2_command_orb *orb;
  992. unsigned max_payload;
  993. int retval = SCSI_MLQUEUE_HOST_BUSY;
  994. /*
  995. * Bidirectional commands are not yet implemented, and unknown
  996. * transfer direction not handled.
  997. */
  998. if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
  999. fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
  1000. cmd->result = DID_ERROR << 16;
  1001. done(cmd);
  1002. return 0;
  1003. }
  1004. orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
  1005. if (orb == NULL) {
  1006. fw_notify("failed to alloc orb\n");
  1007. return SCSI_MLQUEUE_HOST_BUSY;
  1008. }
  1009. /* Initialize rcode to something not RCODE_COMPLETE. */
  1010. orb->base.rcode = -1;
  1011. kref_init(&orb->base.kref);
  1012. orb->lu = lu;
  1013. orb->done = done;
  1014. orb->cmd = cmd;
  1015. orb->request.next.high = SBP2_ORB_NULL;
  1016. orb->request.next.low = 0x0;
  1017. /*
  1018. * At speed 100 we can do 512 bytes per packet, at speed 200,
  1019. * 1024 bytes per packet etc. The SBP-2 max_payload field
  1020. * specifies the max payload size as 2 ^ (max_payload + 2), so
  1021. * if we set this to max_speed + 7, we get the right value.
  1022. */
  1023. max_payload = min(device->max_speed + 7,
  1024. device->card->max_receive - 1);
  1025. orb->request.misc =
  1026. COMMAND_ORB_MAX_PAYLOAD(max_payload) |
  1027. COMMAND_ORB_SPEED(device->max_speed) |
  1028. COMMAND_ORB_NOTIFY;
  1029. if (cmd->sc_data_direction == DMA_FROM_DEVICE)
  1030. orb->request.misc |=
  1031. COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
  1032. else if (cmd->sc_data_direction == DMA_TO_DEVICE)
  1033. orb->request.misc |=
  1034. COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
  1035. if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
  1036. goto out;
  1037. fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
  1038. memset(orb->request.command_block,
  1039. 0, sizeof(orb->request.command_block));
  1040. memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
  1041. orb->base.callback = complete_command_orb;
  1042. orb->base.request_bus =
  1043. dma_map_single(device->card->device, &orb->request,
  1044. sizeof(orb->request), DMA_TO_DEVICE);
  1045. if (dma_mapping_error(orb->base.request_bus))
  1046. goto out;
  1047. sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
  1048. lu->command_block_agent_address + SBP2_ORB_POINTER);
  1049. retval = 0;
  1050. out:
  1051. kref_put(&orb->base.kref, free_orb);
  1052. return retval;
  1053. }
  1054. static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
  1055. {
  1056. struct sbp2_logical_unit *lu = sdev->hostdata;
  1057. sdev->allow_restart = 1;
  1058. /*
  1059. * Update the dma alignment (minimum alignment requirements for
  1060. * start and end of DMA transfers) to be a sector
  1061. */
  1062. blk_queue_update_dma_alignment(sdev->request_queue, 511);
  1063. if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
  1064. sdev->inquiry_len = 36;
  1065. return 0;
  1066. }
  1067. static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
  1068. {
  1069. struct sbp2_logical_unit *lu = sdev->hostdata;
  1070. sdev->use_10_for_rw = 1;
  1071. if (sdev->type == TYPE_ROM)
  1072. sdev->use_10_for_ms = 1;
  1073. if (sdev->type == TYPE_DISK &&
  1074. lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
  1075. sdev->skip_ms_page_8 = 1;
  1076. if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
  1077. sdev->fix_capacity = 1;
  1078. if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
  1079. blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
  1080. return 0;
  1081. }
  1082. /*
  1083. * Called by scsi stack when something has really gone wrong. Usually
  1084. * called when a command has timed-out for some reason.
  1085. */
  1086. static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
  1087. {
  1088. struct sbp2_logical_unit *lu = cmd->device->hostdata;
  1089. fw_notify("sbp2_scsi_abort\n");
  1090. sbp2_agent_reset(lu);
  1091. sbp2_cancel_orbs(lu);
  1092. return SUCCESS;
  1093. }
  1094. /*
  1095. * Format of /sys/bus/scsi/devices/.../ieee1394_id:
  1096. * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
  1097. *
  1098. * This is the concatenation of target port identifier and logical unit
  1099. * identifier as per SAM-2...SAM-4 annex A.
  1100. */
  1101. static ssize_t
  1102. sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
  1103. char *buf)
  1104. {
  1105. struct scsi_device *sdev = to_scsi_device(dev);
  1106. struct sbp2_logical_unit *lu;
  1107. struct fw_device *device;
  1108. if (!sdev)
  1109. return 0;
  1110. lu = sdev->hostdata;
  1111. device = fw_device(lu->tgt->unit->device.parent);
  1112. return sprintf(buf, "%08x%08x:%06x:%04x\n",
  1113. device->config_rom[3], device->config_rom[4],
  1114. lu->tgt->directory_id, lu->lun);
  1115. }
  1116. static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
  1117. static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
  1118. &dev_attr_ieee1394_id,
  1119. NULL
  1120. };
  1121. static struct scsi_host_template scsi_driver_template = {
  1122. .module = THIS_MODULE,
  1123. .name = "SBP-2 IEEE-1394",
  1124. .proc_name = sbp2_driver_name,
  1125. .queuecommand = sbp2_scsi_queuecommand,
  1126. .slave_alloc = sbp2_scsi_slave_alloc,
  1127. .slave_configure = sbp2_scsi_slave_configure,
  1128. .eh_abort_handler = sbp2_scsi_abort,
  1129. .this_id = -1,
  1130. .sg_tablesize = SG_ALL,
  1131. .use_clustering = ENABLE_CLUSTERING,
  1132. .cmd_per_lun = 1,
  1133. .can_queue = 1,
  1134. .sdev_attrs = sbp2_scsi_sysfs_attrs,
  1135. };
  1136. MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
  1137. MODULE_DESCRIPTION("SCSI over IEEE1394");
  1138. MODULE_LICENSE("GPL");
  1139. MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
  1140. /* Provide a module alias so root-on-sbp2 initrds don't break. */
  1141. #ifndef CONFIG_IEEE1394_SBP2_MODULE
  1142. MODULE_ALIAS("sbp2");
  1143. #endif
  1144. static int __init sbp2_init(void)
  1145. {
  1146. sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
  1147. if (!sbp2_wq)
  1148. return -ENOMEM;
  1149. return driver_register(&sbp2_driver.driver);
  1150. }
  1151. static void __exit sbp2_cleanup(void)
  1152. {
  1153. driver_unregister(&sbp2_driver.driver);
  1154. destroy_workqueue(sbp2_wq);
  1155. }
  1156. module_init(sbp2_init);
  1157. module_exit(sbp2_cleanup);