mmzone.h 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136
  1. #ifndef _LINUX_MMZONE_H
  2. #define _LINUX_MMZONE_H
  3. #ifndef __ASSEMBLY__
  4. #ifndef __GENERATING_BOUNDS_H
  5. #include <linux/spinlock.h>
  6. #include <linux/list.h>
  7. #include <linux/wait.h>
  8. #include <linux/bitops.h>
  9. #include <linux/cache.h>
  10. #include <linux/threads.h>
  11. #include <linux/numa.h>
  12. #include <linux/init.h>
  13. #include <linux/seqlock.h>
  14. #include <linux/nodemask.h>
  15. #include <linux/pageblock-flags.h>
  16. #include <generated/bounds.h>
  17. #include <asm/atomic.h>
  18. #include <asm/page.h>
  19. /* Free memory management - zoned buddy allocator. */
  20. #ifndef CONFIG_FORCE_MAX_ZONEORDER
  21. #define MAX_ORDER 11
  22. #else
  23. #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  24. #endif
  25. #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  26. /*
  27. * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  28. * costly to service. That is between allocation orders which should
  29. * coelesce naturally under reasonable reclaim pressure and those which
  30. * will not.
  31. */
  32. #define PAGE_ALLOC_COSTLY_ORDER 3
  33. #define MIGRATE_UNMOVABLE 0
  34. #define MIGRATE_RECLAIMABLE 1
  35. #define MIGRATE_MOVABLE 2
  36. #define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */
  37. #define MIGRATE_RESERVE 3
  38. #define MIGRATE_ISOLATE 4 /* can't allocate from here */
  39. #define MIGRATE_TYPES 5
  40. #define for_each_migratetype_order(order, type) \
  41. for (order = 0; order < MAX_ORDER; order++) \
  42. for (type = 0; type < MIGRATE_TYPES; type++)
  43. extern int page_group_by_mobility_disabled;
  44. static inline int get_pageblock_migratetype(struct page *page)
  45. {
  46. return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
  47. }
  48. struct free_area {
  49. struct list_head free_list[MIGRATE_TYPES];
  50. unsigned long nr_free;
  51. };
  52. struct pglist_data;
  53. /*
  54. * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  55. * So add a wild amount of padding here to ensure that they fall into separate
  56. * cachelines. There are very few zone structures in the machine, so space
  57. * consumption is not a concern here.
  58. */
  59. #if defined(CONFIG_SMP)
  60. struct zone_padding {
  61. char x[0];
  62. } ____cacheline_internodealigned_in_smp;
  63. #define ZONE_PADDING(name) struct zone_padding name;
  64. #else
  65. #define ZONE_PADDING(name)
  66. #endif
  67. enum zone_stat_item {
  68. /* First 128 byte cacheline (assuming 64 bit words) */
  69. NR_FREE_PAGES,
  70. NR_LRU_BASE,
  71. NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
  72. NR_ACTIVE_ANON, /* " " " " " */
  73. NR_INACTIVE_FILE, /* " " " " " */
  74. NR_ACTIVE_FILE, /* " " " " " */
  75. NR_UNEVICTABLE, /* " " " " " */
  76. NR_MLOCK, /* mlock()ed pages found and moved off LRU */
  77. NR_ANON_PAGES, /* Mapped anonymous pages */
  78. NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
  79. only modified from process context */
  80. NR_FILE_PAGES,
  81. NR_FILE_DIRTY,
  82. NR_WRITEBACK,
  83. NR_SLAB_RECLAIMABLE,
  84. NR_SLAB_UNRECLAIMABLE,
  85. NR_PAGETABLE, /* used for pagetables */
  86. NR_KERNEL_STACK,
  87. /* Second 128 byte cacheline */
  88. NR_UNSTABLE_NFS, /* NFS unstable pages */
  89. NR_BOUNCE,
  90. NR_VMSCAN_WRITE,
  91. NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
  92. NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
  93. NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
  94. NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
  95. #ifdef CONFIG_NUMA
  96. NUMA_HIT, /* allocated in intended node */
  97. NUMA_MISS, /* allocated in non intended node */
  98. NUMA_FOREIGN, /* was intended here, hit elsewhere */
  99. NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
  100. NUMA_LOCAL, /* allocation from local node */
  101. NUMA_OTHER, /* allocation from other node */
  102. #endif
  103. NR_VM_ZONE_STAT_ITEMS };
  104. /*
  105. * We do arithmetic on the LRU lists in various places in the code,
  106. * so it is important to keep the active lists LRU_ACTIVE higher in
  107. * the array than the corresponding inactive lists, and to keep
  108. * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
  109. *
  110. * This has to be kept in sync with the statistics in zone_stat_item
  111. * above and the descriptions in vmstat_text in mm/vmstat.c
  112. */
  113. #define LRU_BASE 0
  114. #define LRU_ACTIVE 1
  115. #define LRU_FILE 2
  116. enum lru_list {
  117. LRU_INACTIVE_ANON = LRU_BASE,
  118. LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
  119. LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
  120. LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
  121. LRU_UNEVICTABLE,
  122. NR_LRU_LISTS
  123. };
  124. #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
  125. #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
  126. static inline int is_file_lru(enum lru_list l)
  127. {
  128. return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
  129. }
  130. static inline int is_active_lru(enum lru_list l)
  131. {
  132. return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
  133. }
  134. static inline int is_unevictable_lru(enum lru_list l)
  135. {
  136. return (l == LRU_UNEVICTABLE);
  137. }
  138. enum zone_watermarks {
  139. WMARK_MIN,
  140. WMARK_LOW,
  141. WMARK_HIGH,
  142. NR_WMARK
  143. };
  144. #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
  145. #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
  146. #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
  147. struct per_cpu_pages {
  148. int count; /* number of pages in the list */
  149. int high; /* high watermark, emptying needed */
  150. int batch; /* chunk size for buddy add/remove */
  151. /* Lists of pages, one per migrate type stored on the pcp-lists */
  152. struct list_head lists[MIGRATE_PCPTYPES];
  153. };
  154. struct per_cpu_pageset {
  155. struct per_cpu_pages pcp;
  156. #ifdef CONFIG_NUMA
  157. s8 expire;
  158. #endif
  159. #ifdef CONFIG_SMP
  160. s8 stat_threshold;
  161. s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
  162. #endif
  163. } ____cacheline_aligned_in_smp;
  164. #ifdef CONFIG_NUMA
  165. #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
  166. #else
  167. #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
  168. #endif
  169. #endif /* !__GENERATING_BOUNDS.H */
  170. enum zone_type {
  171. #ifdef CONFIG_ZONE_DMA
  172. /*
  173. * ZONE_DMA is used when there are devices that are not able
  174. * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
  175. * carve out the portion of memory that is needed for these devices.
  176. * The range is arch specific.
  177. *
  178. * Some examples
  179. *
  180. * Architecture Limit
  181. * ---------------------------
  182. * parisc, ia64, sparc <4G
  183. * s390 <2G
  184. * arm Various
  185. * alpha Unlimited or 0-16MB.
  186. *
  187. * i386, x86_64 and multiple other arches
  188. * <16M.
  189. */
  190. ZONE_DMA,
  191. #endif
  192. #ifdef CONFIG_ZONE_DMA32
  193. /*
  194. * x86_64 needs two ZONE_DMAs because it supports devices that are
  195. * only able to do DMA to the lower 16M but also 32 bit devices that
  196. * can only do DMA areas below 4G.
  197. */
  198. ZONE_DMA32,
  199. #endif
  200. /*
  201. * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
  202. * performed on pages in ZONE_NORMAL if the DMA devices support
  203. * transfers to all addressable memory.
  204. */
  205. ZONE_NORMAL,
  206. #ifdef CONFIG_HIGHMEM
  207. /*
  208. * A memory area that is only addressable by the kernel through
  209. * mapping portions into its own address space. This is for example
  210. * used by i386 to allow the kernel to address the memory beyond
  211. * 900MB. The kernel will set up special mappings (page
  212. * table entries on i386) for each page that the kernel needs to
  213. * access.
  214. */
  215. ZONE_HIGHMEM,
  216. #endif
  217. ZONE_MOVABLE,
  218. __MAX_NR_ZONES
  219. };
  220. #ifndef __GENERATING_BOUNDS_H
  221. /*
  222. * When a memory allocation must conform to specific limitations (such
  223. * as being suitable for DMA) the caller will pass in hints to the
  224. * allocator in the gfp_mask, in the zone modifier bits. These bits
  225. * are used to select a priority ordered list of memory zones which
  226. * match the requested limits. See gfp_zone() in include/linux/gfp.h
  227. */
  228. #if MAX_NR_ZONES < 2
  229. #define ZONES_SHIFT 0
  230. #elif MAX_NR_ZONES <= 2
  231. #define ZONES_SHIFT 1
  232. #elif MAX_NR_ZONES <= 4
  233. #define ZONES_SHIFT 2
  234. #else
  235. #error ZONES_SHIFT -- too many zones configured adjust calculation
  236. #endif
  237. struct zone_reclaim_stat {
  238. /*
  239. * The pageout code in vmscan.c keeps track of how many of the
  240. * mem/swap backed and file backed pages are refeferenced.
  241. * The higher the rotated/scanned ratio, the more valuable
  242. * that cache is.
  243. *
  244. * The anon LRU stats live in [0], file LRU stats in [1]
  245. */
  246. unsigned long recent_rotated[2];
  247. unsigned long recent_scanned[2];
  248. /*
  249. * accumulated for batching
  250. */
  251. unsigned long nr_saved_scan[NR_LRU_LISTS];
  252. };
  253. struct zone {
  254. /* Fields commonly accessed by the page allocator */
  255. /* zone watermarks, access with *_wmark_pages(zone) macros */
  256. unsigned long watermark[NR_WMARK];
  257. /*
  258. * We don't know if the memory that we're going to allocate will be freeable
  259. * or/and it will be released eventually, so to avoid totally wasting several
  260. * GB of ram we must reserve some of the lower zone memory (otherwise we risk
  261. * to run OOM on the lower zones despite there's tons of freeable ram
  262. * on the higher zones). This array is recalculated at runtime if the
  263. * sysctl_lowmem_reserve_ratio sysctl changes.
  264. */
  265. unsigned long lowmem_reserve[MAX_NR_ZONES];
  266. #ifdef CONFIG_NUMA
  267. int node;
  268. /*
  269. * zone reclaim becomes active if more unmapped pages exist.
  270. */
  271. unsigned long min_unmapped_pages;
  272. unsigned long min_slab_pages;
  273. struct per_cpu_pageset *pageset[NR_CPUS];
  274. #else
  275. struct per_cpu_pageset pageset[NR_CPUS];
  276. #endif
  277. /*
  278. * free areas of different sizes
  279. */
  280. spinlock_t lock;
  281. #ifdef CONFIG_MEMORY_HOTPLUG
  282. /* see spanned/present_pages for more description */
  283. seqlock_t span_seqlock;
  284. #endif
  285. struct free_area free_area[MAX_ORDER];
  286. #ifndef CONFIG_SPARSEMEM
  287. /*
  288. * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
  289. * In SPARSEMEM, this map is stored in struct mem_section
  290. */
  291. unsigned long *pageblock_flags;
  292. #endif /* CONFIG_SPARSEMEM */
  293. ZONE_PADDING(_pad1_)
  294. /* Fields commonly accessed by the page reclaim scanner */
  295. spinlock_t lru_lock;
  296. struct zone_lru {
  297. struct list_head list;
  298. } lru[NR_LRU_LISTS];
  299. struct zone_reclaim_stat reclaim_stat;
  300. unsigned long pages_scanned; /* since last reclaim */
  301. unsigned long flags; /* zone flags, see below */
  302. /* Zone statistics */
  303. atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
  304. /*
  305. * prev_priority holds the scanning priority for this zone. It is
  306. * defined as the scanning priority at which we achieved our reclaim
  307. * target at the previous try_to_free_pages() or balance_pgdat()
  308. * invokation.
  309. *
  310. * We use prev_priority as a measure of how much stress page reclaim is
  311. * under - it drives the swappiness decision: whether to unmap mapped
  312. * pages.
  313. *
  314. * Access to both this field is quite racy even on uniprocessor. But
  315. * it is expected to average out OK.
  316. */
  317. int prev_priority;
  318. /*
  319. * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
  320. * this zone's LRU. Maintained by the pageout code.
  321. */
  322. unsigned int inactive_ratio;
  323. ZONE_PADDING(_pad2_)
  324. /* Rarely used or read-mostly fields */
  325. /*
  326. * wait_table -- the array holding the hash table
  327. * wait_table_hash_nr_entries -- the size of the hash table array
  328. * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
  329. *
  330. * The purpose of all these is to keep track of the people
  331. * waiting for a page to become available and make them
  332. * runnable again when possible. The trouble is that this
  333. * consumes a lot of space, especially when so few things
  334. * wait on pages at a given time. So instead of using
  335. * per-page waitqueues, we use a waitqueue hash table.
  336. *
  337. * The bucket discipline is to sleep on the same queue when
  338. * colliding and wake all in that wait queue when removing.
  339. * When something wakes, it must check to be sure its page is
  340. * truly available, a la thundering herd. The cost of a
  341. * collision is great, but given the expected load of the
  342. * table, they should be so rare as to be outweighed by the
  343. * benefits from the saved space.
  344. *
  345. * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
  346. * primary users of these fields, and in mm/page_alloc.c
  347. * free_area_init_core() performs the initialization of them.
  348. */
  349. wait_queue_head_t * wait_table;
  350. unsigned long wait_table_hash_nr_entries;
  351. unsigned long wait_table_bits;
  352. /*
  353. * Discontig memory support fields.
  354. */
  355. struct pglist_data *zone_pgdat;
  356. /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
  357. unsigned long zone_start_pfn;
  358. /*
  359. * zone_start_pfn, spanned_pages and present_pages are all
  360. * protected by span_seqlock. It is a seqlock because it has
  361. * to be read outside of zone->lock, and it is done in the main
  362. * allocator path. But, it is written quite infrequently.
  363. *
  364. * The lock is declared along with zone->lock because it is
  365. * frequently read in proximity to zone->lock. It's good to
  366. * give them a chance of being in the same cacheline.
  367. */
  368. unsigned long spanned_pages; /* total size, including holes */
  369. unsigned long present_pages; /* amount of memory (excluding holes) */
  370. /*
  371. * rarely used fields:
  372. */
  373. const char *name;
  374. } ____cacheline_internodealigned_in_smp;
  375. typedef enum {
  376. ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */
  377. ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
  378. ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
  379. } zone_flags_t;
  380. static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
  381. {
  382. set_bit(flag, &zone->flags);
  383. }
  384. static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
  385. {
  386. return test_and_set_bit(flag, &zone->flags);
  387. }
  388. static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
  389. {
  390. clear_bit(flag, &zone->flags);
  391. }
  392. static inline int zone_is_all_unreclaimable(const struct zone *zone)
  393. {
  394. return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
  395. }
  396. static inline int zone_is_reclaim_locked(const struct zone *zone)
  397. {
  398. return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
  399. }
  400. static inline int zone_is_oom_locked(const struct zone *zone)
  401. {
  402. return test_bit(ZONE_OOM_LOCKED, &zone->flags);
  403. }
  404. /*
  405. * The "priority" of VM scanning is how much of the queues we will scan in one
  406. * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
  407. * queues ("queue_length >> 12") during an aging round.
  408. */
  409. #define DEF_PRIORITY 12
  410. /* Maximum number of zones on a zonelist */
  411. #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
  412. #ifdef CONFIG_NUMA
  413. /*
  414. * The NUMA zonelists are doubled becausse we need zonelists that restrict the
  415. * allocations to a single node for GFP_THISNODE.
  416. *
  417. * [0] : Zonelist with fallback
  418. * [1] : No fallback (GFP_THISNODE)
  419. */
  420. #define MAX_ZONELISTS 2
  421. /*
  422. * We cache key information from each zonelist for smaller cache
  423. * footprint when scanning for free pages in get_page_from_freelist().
  424. *
  425. * 1) The BITMAP fullzones tracks which zones in a zonelist have come
  426. * up short of free memory since the last time (last_fullzone_zap)
  427. * we zero'd fullzones.
  428. * 2) The array z_to_n[] maps each zone in the zonelist to its node
  429. * id, so that we can efficiently evaluate whether that node is
  430. * set in the current tasks mems_allowed.
  431. *
  432. * Both fullzones and z_to_n[] are one-to-one with the zonelist,
  433. * indexed by a zones offset in the zonelist zones[] array.
  434. *
  435. * The get_page_from_freelist() routine does two scans. During the
  436. * first scan, we skip zones whose corresponding bit in 'fullzones'
  437. * is set or whose corresponding node in current->mems_allowed (which
  438. * comes from cpusets) is not set. During the second scan, we bypass
  439. * this zonelist_cache, to ensure we look methodically at each zone.
  440. *
  441. * Once per second, we zero out (zap) fullzones, forcing us to
  442. * reconsider nodes that might have regained more free memory.
  443. * The field last_full_zap is the time we last zapped fullzones.
  444. *
  445. * This mechanism reduces the amount of time we waste repeatedly
  446. * reexaming zones for free memory when they just came up low on
  447. * memory momentarilly ago.
  448. *
  449. * The zonelist_cache struct members logically belong in struct
  450. * zonelist. However, the mempolicy zonelists constructed for
  451. * MPOL_BIND are intentionally variable length (and usually much
  452. * shorter). A general purpose mechanism for handling structs with
  453. * multiple variable length members is more mechanism than we want
  454. * here. We resort to some special case hackery instead.
  455. *
  456. * The MPOL_BIND zonelists don't need this zonelist_cache (in good
  457. * part because they are shorter), so we put the fixed length stuff
  458. * at the front of the zonelist struct, ending in a variable length
  459. * zones[], as is needed by MPOL_BIND.
  460. *
  461. * Then we put the optional zonelist cache on the end of the zonelist
  462. * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
  463. * the fixed length portion at the front of the struct. This pointer
  464. * both enables us to find the zonelist cache, and in the case of
  465. * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
  466. * to know that the zonelist cache is not there.
  467. *
  468. * The end result is that struct zonelists come in two flavors:
  469. * 1) The full, fixed length version, shown below, and
  470. * 2) The custom zonelists for MPOL_BIND.
  471. * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
  472. *
  473. * Even though there may be multiple CPU cores on a node modifying
  474. * fullzones or last_full_zap in the same zonelist_cache at the same
  475. * time, we don't lock it. This is just hint data - if it is wrong now
  476. * and then, the allocator will still function, perhaps a bit slower.
  477. */
  478. struct zonelist_cache {
  479. unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
  480. DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
  481. unsigned long last_full_zap; /* when last zap'd (jiffies) */
  482. };
  483. #else
  484. #define MAX_ZONELISTS 1
  485. struct zonelist_cache;
  486. #endif
  487. /*
  488. * This struct contains information about a zone in a zonelist. It is stored
  489. * here to avoid dereferences into large structures and lookups of tables
  490. */
  491. struct zoneref {
  492. struct zone *zone; /* Pointer to actual zone */
  493. int zone_idx; /* zone_idx(zoneref->zone) */
  494. };
  495. /*
  496. * One allocation request operates on a zonelist. A zonelist
  497. * is a list of zones, the first one is the 'goal' of the
  498. * allocation, the other zones are fallback zones, in decreasing
  499. * priority.
  500. *
  501. * If zlcache_ptr is not NULL, then it is just the address of zlcache,
  502. * as explained above. If zlcache_ptr is NULL, there is no zlcache.
  503. * *
  504. * To speed the reading of the zonelist, the zonerefs contain the zone index
  505. * of the entry being read. Helper functions to access information given
  506. * a struct zoneref are
  507. *
  508. * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
  509. * zonelist_zone_idx() - Return the index of the zone for an entry
  510. * zonelist_node_idx() - Return the index of the node for an entry
  511. */
  512. struct zonelist {
  513. struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
  514. struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
  515. #ifdef CONFIG_NUMA
  516. struct zonelist_cache zlcache; // optional ...
  517. #endif
  518. };
  519. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  520. struct node_active_region {
  521. unsigned long start_pfn;
  522. unsigned long end_pfn;
  523. int nid;
  524. };
  525. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  526. #ifndef CONFIG_DISCONTIGMEM
  527. /* The array of struct pages - for discontigmem use pgdat->lmem_map */
  528. extern struct page *mem_map;
  529. #endif
  530. /*
  531. * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
  532. * (mostly NUMA machines?) to denote a higher-level memory zone than the
  533. * zone denotes.
  534. *
  535. * On NUMA machines, each NUMA node would have a pg_data_t to describe
  536. * it's memory layout.
  537. *
  538. * Memory statistics and page replacement data structures are maintained on a
  539. * per-zone basis.
  540. */
  541. struct bootmem_data;
  542. typedef struct pglist_data {
  543. struct zone node_zones[MAX_NR_ZONES];
  544. struct zonelist node_zonelists[MAX_ZONELISTS];
  545. int nr_zones;
  546. #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
  547. struct page *node_mem_map;
  548. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  549. struct page_cgroup *node_page_cgroup;
  550. #endif
  551. #endif
  552. struct bootmem_data *bdata;
  553. #ifdef CONFIG_MEMORY_HOTPLUG
  554. /*
  555. * Must be held any time you expect node_start_pfn, node_present_pages
  556. * or node_spanned_pages stay constant. Holding this will also
  557. * guarantee that any pfn_valid() stays that way.
  558. *
  559. * Nests above zone->lock and zone->size_seqlock.
  560. */
  561. spinlock_t node_size_lock;
  562. #endif
  563. unsigned long node_start_pfn;
  564. unsigned long node_present_pages; /* total number of physical pages */
  565. unsigned long node_spanned_pages; /* total size of physical page
  566. range, including holes */
  567. int node_id;
  568. wait_queue_head_t kswapd_wait;
  569. struct task_struct *kswapd;
  570. int kswapd_max_order;
  571. } pg_data_t;
  572. #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
  573. #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
  574. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  575. #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
  576. #else
  577. #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
  578. #endif
  579. #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
  580. #include <linux/memory_hotplug.h>
  581. void get_zone_counts(unsigned long *active, unsigned long *inactive,
  582. unsigned long *free);
  583. void build_all_zonelists(void);
  584. void wakeup_kswapd(struct zone *zone, int order);
  585. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  586. int classzone_idx, int alloc_flags);
  587. enum memmap_context {
  588. MEMMAP_EARLY,
  589. MEMMAP_HOTPLUG,
  590. };
  591. extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
  592. unsigned long size,
  593. enum memmap_context context);
  594. #ifdef CONFIG_HAVE_MEMORY_PRESENT
  595. void memory_present(int nid, unsigned long start, unsigned long end);
  596. #else
  597. static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
  598. #endif
  599. #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
  600. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  601. #endif
  602. /*
  603. * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
  604. */
  605. #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
  606. static inline int populated_zone(struct zone *zone)
  607. {
  608. return (!!zone->present_pages);
  609. }
  610. extern int movable_zone;
  611. static inline int zone_movable_is_highmem(void)
  612. {
  613. #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
  614. return movable_zone == ZONE_HIGHMEM;
  615. #else
  616. return 0;
  617. #endif
  618. }
  619. static inline int is_highmem_idx(enum zone_type idx)
  620. {
  621. #ifdef CONFIG_HIGHMEM
  622. return (idx == ZONE_HIGHMEM ||
  623. (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
  624. #else
  625. return 0;
  626. #endif
  627. }
  628. static inline int is_normal_idx(enum zone_type idx)
  629. {
  630. return (idx == ZONE_NORMAL);
  631. }
  632. /**
  633. * is_highmem - helper function to quickly check if a struct zone is a
  634. * highmem zone or not. This is an attempt to keep references
  635. * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
  636. * @zone - pointer to struct zone variable
  637. */
  638. static inline int is_highmem(struct zone *zone)
  639. {
  640. #ifdef CONFIG_HIGHMEM
  641. int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
  642. return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
  643. (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
  644. zone_movable_is_highmem());
  645. #else
  646. return 0;
  647. #endif
  648. }
  649. static inline int is_normal(struct zone *zone)
  650. {
  651. return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
  652. }
  653. static inline int is_dma32(struct zone *zone)
  654. {
  655. #ifdef CONFIG_ZONE_DMA32
  656. return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
  657. #else
  658. return 0;
  659. #endif
  660. }
  661. static inline int is_dma(struct zone *zone)
  662. {
  663. #ifdef CONFIG_ZONE_DMA
  664. return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
  665. #else
  666. return 0;
  667. #endif
  668. }
  669. /* These two functions are used to setup the per zone pages min values */
  670. struct ctl_table;
  671. int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
  672. void __user *, size_t *, loff_t *);
  673. extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
  674. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
  675. void __user *, size_t *, loff_t *);
  676. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
  677. void __user *, size_t *, loff_t *);
  678. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
  679. void __user *, size_t *, loff_t *);
  680. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
  681. void __user *, size_t *, loff_t *);
  682. extern int numa_zonelist_order_handler(struct ctl_table *, int,
  683. void __user *, size_t *, loff_t *);
  684. extern char numa_zonelist_order[];
  685. #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
  686. #ifndef CONFIG_NEED_MULTIPLE_NODES
  687. extern struct pglist_data contig_page_data;
  688. #define NODE_DATA(nid) (&contig_page_data)
  689. #define NODE_MEM_MAP(nid) mem_map
  690. #else /* CONFIG_NEED_MULTIPLE_NODES */
  691. #include <asm/mmzone.h>
  692. #endif /* !CONFIG_NEED_MULTIPLE_NODES */
  693. extern struct pglist_data *first_online_pgdat(void);
  694. extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
  695. extern struct zone *next_zone(struct zone *zone);
  696. /**
  697. * for_each_online_pgdat - helper macro to iterate over all online nodes
  698. * @pgdat - pointer to a pg_data_t variable
  699. */
  700. #define for_each_online_pgdat(pgdat) \
  701. for (pgdat = first_online_pgdat(); \
  702. pgdat; \
  703. pgdat = next_online_pgdat(pgdat))
  704. /**
  705. * for_each_zone - helper macro to iterate over all memory zones
  706. * @zone - pointer to struct zone variable
  707. *
  708. * The user only needs to declare the zone variable, for_each_zone
  709. * fills it in.
  710. */
  711. #define for_each_zone(zone) \
  712. for (zone = (first_online_pgdat())->node_zones; \
  713. zone; \
  714. zone = next_zone(zone))
  715. #define for_each_populated_zone(zone) \
  716. for (zone = (first_online_pgdat())->node_zones; \
  717. zone; \
  718. zone = next_zone(zone)) \
  719. if (!populated_zone(zone)) \
  720. ; /* do nothing */ \
  721. else
  722. static inline struct zone *zonelist_zone(struct zoneref *zoneref)
  723. {
  724. return zoneref->zone;
  725. }
  726. static inline int zonelist_zone_idx(struct zoneref *zoneref)
  727. {
  728. return zoneref->zone_idx;
  729. }
  730. static inline int zonelist_node_idx(struct zoneref *zoneref)
  731. {
  732. #ifdef CONFIG_NUMA
  733. /* zone_to_nid not available in this context */
  734. return zoneref->zone->node;
  735. #else
  736. return 0;
  737. #endif /* CONFIG_NUMA */
  738. }
  739. /**
  740. * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
  741. * @z - The cursor used as a starting point for the search
  742. * @highest_zoneidx - The zone index of the highest zone to return
  743. * @nodes - An optional nodemask to filter the zonelist with
  744. * @zone - The first suitable zone found is returned via this parameter
  745. *
  746. * This function returns the next zone at or below a given zone index that is
  747. * within the allowed nodemask using a cursor as the starting point for the
  748. * search. The zoneref returned is a cursor that represents the current zone
  749. * being examined. It should be advanced by one before calling
  750. * next_zones_zonelist again.
  751. */
  752. struct zoneref *next_zones_zonelist(struct zoneref *z,
  753. enum zone_type highest_zoneidx,
  754. nodemask_t *nodes,
  755. struct zone **zone);
  756. /**
  757. * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
  758. * @zonelist - The zonelist to search for a suitable zone
  759. * @highest_zoneidx - The zone index of the highest zone to return
  760. * @nodes - An optional nodemask to filter the zonelist with
  761. * @zone - The first suitable zone found is returned via this parameter
  762. *
  763. * This function returns the first zone at or below a given zone index that is
  764. * within the allowed nodemask. The zoneref returned is a cursor that can be
  765. * used to iterate the zonelist with next_zones_zonelist by advancing it by
  766. * one before calling.
  767. */
  768. static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
  769. enum zone_type highest_zoneidx,
  770. nodemask_t *nodes,
  771. struct zone **zone)
  772. {
  773. return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
  774. zone);
  775. }
  776. /**
  777. * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
  778. * @zone - The current zone in the iterator
  779. * @z - The current pointer within zonelist->zones being iterated
  780. * @zlist - The zonelist being iterated
  781. * @highidx - The zone index of the highest zone to return
  782. * @nodemask - Nodemask allowed by the allocator
  783. *
  784. * This iterator iterates though all zones at or below a given zone index and
  785. * within a given nodemask
  786. */
  787. #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
  788. for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
  789. zone; \
  790. z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
  791. /**
  792. * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
  793. * @zone - The current zone in the iterator
  794. * @z - The current pointer within zonelist->zones being iterated
  795. * @zlist - The zonelist being iterated
  796. * @highidx - The zone index of the highest zone to return
  797. *
  798. * This iterator iterates though all zones at or below a given zone index.
  799. */
  800. #define for_each_zone_zonelist(zone, z, zlist, highidx) \
  801. for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
  802. #ifdef CONFIG_SPARSEMEM
  803. #include <asm/sparsemem.h>
  804. #endif
  805. #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
  806. !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
  807. static inline unsigned long early_pfn_to_nid(unsigned long pfn)
  808. {
  809. return 0;
  810. }
  811. #endif
  812. #ifdef CONFIG_FLATMEM
  813. #define pfn_to_nid(pfn) (0)
  814. #endif
  815. #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
  816. #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
  817. #ifdef CONFIG_SPARSEMEM
  818. /*
  819. * SECTION_SHIFT #bits space required to store a section #
  820. *
  821. * PA_SECTION_SHIFT physical address to/from section number
  822. * PFN_SECTION_SHIFT pfn to/from section number
  823. */
  824. #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
  825. #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
  826. #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
  827. #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
  828. #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
  829. #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
  830. #define SECTION_BLOCKFLAGS_BITS \
  831. ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
  832. #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
  833. #error Allocator MAX_ORDER exceeds SECTION_SIZE
  834. #endif
  835. struct page;
  836. struct page_cgroup;
  837. struct mem_section {
  838. /*
  839. * This is, logically, a pointer to an array of struct
  840. * pages. However, it is stored with some other magic.
  841. * (see sparse.c::sparse_init_one_section())
  842. *
  843. * Additionally during early boot we encode node id of
  844. * the location of the section here to guide allocation.
  845. * (see sparse.c::memory_present())
  846. *
  847. * Making it a UL at least makes someone do a cast
  848. * before using it wrong.
  849. */
  850. unsigned long section_mem_map;
  851. /* See declaration of similar field in struct zone */
  852. unsigned long *pageblock_flags;
  853. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  854. /*
  855. * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
  856. * section. (see memcontrol.h/page_cgroup.h about this.)
  857. */
  858. struct page_cgroup *page_cgroup;
  859. unsigned long pad;
  860. #endif
  861. };
  862. #ifdef CONFIG_SPARSEMEM_EXTREME
  863. #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
  864. #else
  865. #define SECTIONS_PER_ROOT 1
  866. #endif
  867. #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
  868. #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
  869. #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
  870. #ifdef CONFIG_SPARSEMEM_EXTREME
  871. extern struct mem_section *mem_section[NR_SECTION_ROOTS];
  872. #else
  873. extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
  874. #endif
  875. static inline struct mem_section *__nr_to_section(unsigned long nr)
  876. {
  877. if (!mem_section[SECTION_NR_TO_ROOT(nr)])
  878. return NULL;
  879. return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
  880. }
  881. extern int __section_nr(struct mem_section* ms);
  882. extern unsigned long usemap_size(void);
  883. /*
  884. * We use the lower bits of the mem_map pointer to store
  885. * a little bit of information. There should be at least
  886. * 3 bits here due to 32-bit alignment.
  887. */
  888. #define SECTION_MARKED_PRESENT (1UL<<0)
  889. #define SECTION_HAS_MEM_MAP (1UL<<1)
  890. #define SECTION_MAP_LAST_BIT (1UL<<2)
  891. #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
  892. #define SECTION_NID_SHIFT 2
  893. static inline struct page *__section_mem_map_addr(struct mem_section *section)
  894. {
  895. unsigned long map = section->section_mem_map;
  896. map &= SECTION_MAP_MASK;
  897. return (struct page *)map;
  898. }
  899. static inline int present_section(struct mem_section *section)
  900. {
  901. return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
  902. }
  903. static inline int present_section_nr(unsigned long nr)
  904. {
  905. return present_section(__nr_to_section(nr));
  906. }
  907. static inline int valid_section(struct mem_section *section)
  908. {
  909. return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
  910. }
  911. static inline int valid_section_nr(unsigned long nr)
  912. {
  913. return valid_section(__nr_to_section(nr));
  914. }
  915. static inline struct mem_section *__pfn_to_section(unsigned long pfn)
  916. {
  917. return __nr_to_section(pfn_to_section_nr(pfn));
  918. }
  919. static inline int pfn_valid(unsigned long pfn)
  920. {
  921. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  922. return 0;
  923. return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
  924. }
  925. static inline int pfn_present(unsigned long pfn)
  926. {
  927. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  928. return 0;
  929. return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
  930. }
  931. /*
  932. * These are _only_ used during initialisation, therefore they
  933. * can use __initdata ... They could have names to indicate
  934. * this restriction.
  935. */
  936. #ifdef CONFIG_NUMA
  937. #define pfn_to_nid(pfn) \
  938. ({ \
  939. unsigned long __pfn_to_nid_pfn = (pfn); \
  940. page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
  941. })
  942. #else
  943. #define pfn_to_nid(pfn) (0)
  944. #endif
  945. #define early_pfn_valid(pfn) pfn_valid(pfn)
  946. void sparse_init(void);
  947. #else
  948. #define sparse_init() do {} while (0)
  949. #define sparse_index_init(_sec, _nid) do {} while (0)
  950. #endif /* CONFIG_SPARSEMEM */
  951. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  952. bool early_pfn_in_nid(unsigned long pfn, int nid);
  953. #else
  954. #define early_pfn_in_nid(pfn, nid) (1)
  955. #endif
  956. #ifndef early_pfn_valid
  957. #define early_pfn_valid(pfn) (1)
  958. #endif
  959. void memory_present(int nid, unsigned long start, unsigned long end);
  960. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  961. /*
  962. * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
  963. * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
  964. * pfn_valid_within() should be used in this case; we optimise this away
  965. * when we have no holes within a MAX_ORDER_NR_PAGES block.
  966. */
  967. #ifdef CONFIG_HOLES_IN_ZONE
  968. #define pfn_valid_within(pfn) pfn_valid(pfn)
  969. #else
  970. #define pfn_valid_within(pfn) (1)
  971. #endif
  972. #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
  973. /*
  974. * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
  975. * associated with it or not. In FLATMEM, it is expected that holes always
  976. * have valid memmap as long as there is valid PFNs either side of the hole.
  977. * In SPARSEMEM, it is assumed that a valid section has a memmap for the
  978. * entire section.
  979. *
  980. * However, an ARM, and maybe other embedded architectures in the future
  981. * free memmap backing holes to save memory on the assumption the memmap is
  982. * never used. The page_zone linkages are then broken even though pfn_valid()
  983. * returns true. A walker of the full memmap must then do this additional
  984. * check to ensure the memmap they are looking at is sane by making sure
  985. * the zone and PFN linkages are still valid. This is expensive, but walkers
  986. * of the full memmap are extremely rare.
  987. */
  988. int memmap_valid_within(unsigned long pfn,
  989. struct page *page, struct zone *zone);
  990. #else
  991. static inline int memmap_valid_within(unsigned long pfn,
  992. struct page *page, struct zone *zone)
  993. {
  994. return 1;
  995. }
  996. #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
  997. #endif /* !__GENERATING_BOUNDS.H */
  998. #endif /* !__ASSEMBLY__ */
  999. #endif /* _LINUX_MMZONE_H */