rtc-sh.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644
  1. /*
  2. * SuperH On-Chip RTC Support
  3. *
  4. * Copyright (C) 2006 Paul Mundt
  5. * Copyright (C) 2006 Jamie Lenehan
  6. *
  7. * Based on the old arch/sh/kernel/cpu/rtc.c by:
  8. *
  9. * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org>
  10. * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
  11. *
  12. * This file is subject to the terms and conditions of the GNU General Public
  13. * License. See the file "COPYING" in the main directory of this archive
  14. * for more details.
  15. */
  16. #include <linux/module.h>
  17. #include <linux/kernel.h>
  18. #include <linux/bcd.h>
  19. #include <linux/rtc.h>
  20. #include <linux/init.h>
  21. #include <linux/platform_device.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/spinlock.h>
  25. #include <linux/io.h>
  26. #define DRV_NAME "sh-rtc"
  27. #define DRV_VERSION "0.1.2"
  28. #ifdef CONFIG_CPU_SH3
  29. #define rtc_reg_size sizeof(u16)
  30. #define RTC_BIT_INVERTED 0 /* No bug on SH7708, SH7709A */
  31. #elif defined(CONFIG_CPU_SH4)
  32. #define rtc_reg_size sizeof(u32)
  33. #define RTC_BIT_INVERTED 0x40 /* bug on SH7750, SH7750S */
  34. #endif
  35. #define RTC_REG(r) ((r) * rtc_reg_size)
  36. #define R64CNT RTC_REG(0)
  37. #define RSECCNT RTC_REG(1) /* RTC sec */
  38. #define RMINCNT RTC_REG(2) /* RTC min */
  39. #define RHRCNT RTC_REG(3) /* RTC hour */
  40. #define RWKCNT RTC_REG(4) /* RTC week */
  41. #define RDAYCNT RTC_REG(5) /* RTC day */
  42. #define RMONCNT RTC_REG(6) /* RTC month */
  43. #define RYRCNT RTC_REG(7) /* RTC year */
  44. #define RSECAR RTC_REG(8) /* ALARM sec */
  45. #define RMINAR RTC_REG(9) /* ALARM min */
  46. #define RHRAR RTC_REG(10) /* ALARM hour */
  47. #define RWKAR RTC_REG(11) /* ALARM week */
  48. #define RDAYAR RTC_REG(12) /* ALARM day */
  49. #define RMONAR RTC_REG(13) /* ALARM month */
  50. #define RCR1 RTC_REG(14) /* Control */
  51. #define RCR2 RTC_REG(15) /* Control */
  52. /* ALARM Bits - or with BCD encoded value */
  53. #define AR_ENB 0x80 /* Enable for alarm cmp */
  54. /* RCR1 Bits */
  55. #define RCR1_CF 0x80 /* Carry Flag */
  56. #define RCR1_CIE 0x10 /* Carry Interrupt Enable */
  57. #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */
  58. #define RCR1_AF 0x01 /* Alarm Flag */
  59. /* RCR2 Bits */
  60. #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */
  61. #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */
  62. #define RCR2_RTCEN 0x08 /* ENable RTC */
  63. #define RCR2_ADJ 0x04 /* ADJustment (30-second) */
  64. #define RCR2_RESET 0x02 /* Reset bit */
  65. #define RCR2_START 0x01 /* Start bit */
  66. struct sh_rtc {
  67. void __iomem *regbase;
  68. unsigned long regsize;
  69. struct resource *res;
  70. unsigned int alarm_irq, periodic_irq, carry_irq;
  71. struct rtc_device *rtc_dev;
  72. spinlock_t lock;
  73. int rearm_aie;
  74. };
  75. static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
  76. {
  77. struct platform_device *pdev = to_platform_device(dev_id);
  78. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  79. unsigned int tmp, events = 0;
  80. spin_lock(&rtc->lock);
  81. tmp = readb(rtc->regbase + RCR1);
  82. tmp &= ~RCR1_CF;
  83. if (rtc->rearm_aie) {
  84. if (tmp & RCR1_AF)
  85. tmp &= ~RCR1_AF; /* try to clear AF again */
  86. else {
  87. tmp |= RCR1_AIE; /* AF has cleared, rearm IRQ */
  88. rtc->rearm_aie = 0;
  89. }
  90. }
  91. writeb(tmp, rtc->regbase + RCR1);
  92. rtc_update_irq(&rtc->rtc_dev->class_dev, 1, events);
  93. spin_unlock(&rtc->lock);
  94. return IRQ_HANDLED;
  95. }
  96. static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
  97. {
  98. struct platform_device *pdev = to_platform_device(dev_id);
  99. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  100. unsigned int tmp, events = 0;
  101. spin_lock(&rtc->lock);
  102. tmp = readb(rtc->regbase + RCR1);
  103. /*
  104. * If AF is set then the alarm has triggered. If we clear AF while
  105. * the alarm time still matches the RTC time then AF will
  106. * immediately be set again, and if AIE is enabled then the alarm
  107. * interrupt will immediately be retrigger. So we clear AIE here
  108. * and use rtc->rearm_aie so that the carry interrupt will keep
  109. * trying to clear AF and once it stays cleared it'll re-enable
  110. * AIE.
  111. */
  112. if (tmp & RCR1_AF) {
  113. events |= RTC_AF | RTC_IRQF;
  114. tmp &= ~(RCR1_AF|RCR1_AIE);
  115. writeb(tmp, rtc->regbase + RCR1);
  116. rtc->rearm_aie = 1;
  117. rtc_update_irq(&rtc->rtc_dev->class_dev, 1, events);
  118. }
  119. spin_unlock(&rtc->lock);
  120. return IRQ_HANDLED;
  121. }
  122. static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
  123. {
  124. struct platform_device *pdev = to_platform_device(dev_id);
  125. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  126. spin_lock(&rtc->lock);
  127. rtc_update_irq(&rtc->rtc_dev->class_dev, 1, RTC_PF | RTC_IRQF);
  128. spin_unlock(&rtc->lock);
  129. return IRQ_HANDLED;
  130. }
  131. static inline void sh_rtc_setpie(struct device *dev, unsigned int enable)
  132. {
  133. struct sh_rtc *rtc = dev_get_drvdata(dev);
  134. unsigned int tmp;
  135. spin_lock_irq(&rtc->lock);
  136. tmp = readb(rtc->regbase + RCR2);
  137. if (enable) {
  138. tmp &= ~RCR2_PESMASK;
  139. tmp |= RCR2_PEF | (2 << 4);
  140. } else
  141. tmp &= ~(RCR2_PESMASK | RCR2_PEF);
  142. writeb(tmp, rtc->regbase + RCR2);
  143. spin_unlock_irq(&rtc->lock);
  144. }
  145. static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
  146. {
  147. struct sh_rtc *rtc = dev_get_drvdata(dev);
  148. unsigned int tmp;
  149. spin_lock_irq(&rtc->lock);
  150. tmp = readb(rtc->regbase + RCR1);
  151. if (!enable) {
  152. tmp &= ~RCR1_AIE;
  153. rtc->rearm_aie = 0;
  154. } else if (rtc->rearm_aie == 0)
  155. tmp |= RCR1_AIE;
  156. writeb(tmp, rtc->regbase + RCR1);
  157. spin_unlock_irq(&rtc->lock);
  158. }
  159. static int sh_rtc_open(struct device *dev)
  160. {
  161. struct sh_rtc *rtc = dev_get_drvdata(dev);
  162. unsigned int tmp;
  163. int ret;
  164. tmp = readb(rtc->regbase + RCR1);
  165. tmp &= ~RCR1_CF;
  166. tmp |= RCR1_CIE;
  167. writeb(tmp, rtc->regbase + RCR1);
  168. ret = request_irq(rtc->periodic_irq, sh_rtc_periodic, IRQF_DISABLED,
  169. "sh-rtc period", dev);
  170. if (unlikely(ret)) {
  171. dev_err(dev, "request period IRQ failed with %d, IRQ %d\n",
  172. ret, rtc->periodic_irq);
  173. return ret;
  174. }
  175. ret = request_irq(rtc->carry_irq, sh_rtc_interrupt, IRQF_DISABLED,
  176. "sh-rtc carry", dev);
  177. if (unlikely(ret)) {
  178. dev_err(dev, "request carry IRQ failed with %d, IRQ %d\n",
  179. ret, rtc->carry_irq);
  180. free_irq(rtc->periodic_irq, dev);
  181. goto err_bad_carry;
  182. }
  183. ret = request_irq(rtc->alarm_irq, sh_rtc_alarm, IRQF_DISABLED,
  184. "sh-rtc alarm", dev);
  185. if (unlikely(ret)) {
  186. dev_err(dev, "request alarm IRQ failed with %d, IRQ %d\n",
  187. ret, rtc->alarm_irq);
  188. goto err_bad_alarm;
  189. }
  190. return 0;
  191. err_bad_alarm:
  192. free_irq(rtc->carry_irq, dev);
  193. err_bad_carry:
  194. free_irq(rtc->periodic_irq, dev);
  195. return ret;
  196. }
  197. static void sh_rtc_release(struct device *dev)
  198. {
  199. struct sh_rtc *rtc = dev_get_drvdata(dev);
  200. sh_rtc_setpie(dev, 0);
  201. sh_rtc_setaie(dev, 0);
  202. free_irq(rtc->periodic_irq, dev);
  203. free_irq(rtc->carry_irq, dev);
  204. free_irq(rtc->alarm_irq, dev);
  205. }
  206. static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
  207. {
  208. struct sh_rtc *rtc = dev_get_drvdata(dev);
  209. unsigned int tmp;
  210. tmp = readb(rtc->regbase + RCR1);
  211. seq_printf(seq, "alarm_IRQ\t: %s\n",
  212. (tmp & RCR1_AIE) ? "yes" : "no");
  213. seq_printf(seq, "carry_IRQ\t: %s\n",
  214. (tmp & RCR1_CIE) ? "yes" : "no");
  215. tmp = readb(rtc->regbase + RCR2);
  216. seq_printf(seq, "periodic_IRQ\t: %s\n",
  217. (tmp & RCR2_PEF) ? "yes" : "no");
  218. return 0;
  219. }
  220. static int sh_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
  221. {
  222. unsigned int ret = -ENOIOCTLCMD;
  223. switch (cmd) {
  224. case RTC_PIE_OFF:
  225. case RTC_PIE_ON:
  226. sh_rtc_setpie(dev, cmd == RTC_PIE_ON);
  227. ret = 0;
  228. break;
  229. case RTC_AIE_OFF:
  230. case RTC_AIE_ON:
  231. sh_rtc_setaie(dev, cmd == RTC_AIE_ON);
  232. ret = 0;
  233. break;
  234. }
  235. return ret;
  236. }
  237. static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
  238. {
  239. struct platform_device *pdev = to_platform_device(dev);
  240. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  241. unsigned int sec128, sec2, yr, yr100, cf_bit;
  242. do {
  243. unsigned int tmp;
  244. spin_lock_irq(&rtc->lock);
  245. tmp = readb(rtc->regbase + RCR1);
  246. tmp &= ~RCR1_CF; /* Clear CF-bit */
  247. tmp |= RCR1_CIE;
  248. writeb(tmp, rtc->regbase + RCR1);
  249. sec128 = readb(rtc->regbase + R64CNT);
  250. tm->tm_sec = BCD2BIN(readb(rtc->regbase + RSECCNT));
  251. tm->tm_min = BCD2BIN(readb(rtc->regbase + RMINCNT));
  252. tm->tm_hour = BCD2BIN(readb(rtc->regbase + RHRCNT));
  253. tm->tm_wday = BCD2BIN(readb(rtc->regbase + RWKCNT));
  254. tm->tm_mday = BCD2BIN(readb(rtc->regbase + RDAYCNT));
  255. tm->tm_mon = BCD2BIN(readb(rtc->regbase + RMONCNT)) - 1;
  256. #if defined(CONFIG_CPU_SH4)
  257. yr = readw(rtc->regbase + RYRCNT);
  258. yr100 = BCD2BIN(yr >> 8);
  259. yr &= 0xff;
  260. #else
  261. yr = readb(rtc->regbase + RYRCNT);
  262. yr100 = BCD2BIN((yr == 0x99) ? 0x19 : 0x20);
  263. #endif
  264. tm->tm_year = (yr100 * 100 + BCD2BIN(yr)) - 1900;
  265. sec2 = readb(rtc->regbase + R64CNT);
  266. cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
  267. spin_unlock_irq(&rtc->lock);
  268. } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
  269. #if RTC_BIT_INVERTED != 0
  270. if ((sec128 & RTC_BIT_INVERTED))
  271. tm->tm_sec--;
  272. #endif
  273. dev_dbg(&dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
  274. "mday=%d, mon=%d, year=%d, wday=%d\n",
  275. __FUNCTION__,
  276. tm->tm_sec, tm->tm_min, tm->tm_hour,
  277. tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
  278. if (rtc_valid_tm(tm) < 0)
  279. dev_err(dev, "invalid date\n");
  280. return 0;
  281. }
  282. static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
  283. {
  284. struct platform_device *pdev = to_platform_device(dev);
  285. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  286. unsigned int tmp;
  287. int year;
  288. spin_lock_irq(&rtc->lock);
  289. /* Reset pre-scaler & stop RTC */
  290. tmp = readb(rtc->regbase + RCR2);
  291. tmp |= RCR2_RESET;
  292. writeb(tmp, rtc->regbase + RCR2);
  293. writeb(BIN2BCD(tm->tm_sec), rtc->regbase + RSECCNT);
  294. writeb(BIN2BCD(tm->tm_min), rtc->regbase + RMINCNT);
  295. writeb(BIN2BCD(tm->tm_hour), rtc->regbase + RHRCNT);
  296. writeb(BIN2BCD(tm->tm_wday), rtc->regbase + RWKCNT);
  297. writeb(BIN2BCD(tm->tm_mday), rtc->regbase + RDAYCNT);
  298. writeb(BIN2BCD(tm->tm_mon + 1), rtc->regbase + RMONCNT);
  299. #ifdef CONFIG_CPU_SH3
  300. year = tm->tm_year % 100;
  301. writeb(BIN2BCD(year), rtc->regbase + RYRCNT);
  302. #else
  303. year = (BIN2BCD((tm->tm_year + 1900) / 100) << 8) |
  304. BIN2BCD(tm->tm_year % 100);
  305. writew(year, rtc->regbase + RYRCNT);
  306. #endif
  307. /* Start RTC */
  308. tmp = readb(rtc->regbase + RCR2);
  309. tmp &= ~RCR2_RESET;
  310. tmp |= RCR2_RTCEN | RCR2_START;
  311. writeb(tmp, rtc->regbase + RCR2);
  312. spin_unlock_irq(&rtc->lock);
  313. return 0;
  314. }
  315. static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
  316. {
  317. unsigned int byte;
  318. int value = 0xff; /* return 0xff for ignored values */
  319. byte = readb(rtc->regbase + reg_off);
  320. if (byte & AR_ENB) {
  321. byte &= ~AR_ENB; /* strip the enable bit */
  322. value = BCD2BIN(byte);
  323. }
  324. return value;
  325. }
  326. static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
  327. {
  328. struct platform_device *pdev = to_platform_device(dev);
  329. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  330. struct rtc_time* tm = &wkalrm->time;
  331. spin_lock_irq(&rtc->lock);
  332. tm->tm_sec = sh_rtc_read_alarm_value(rtc, RSECAR);
  333. tm->tm_min = sh_rtc_read_alarm_value(rtc, RMINAR);
  334. tm->tm_hour = sh_rtc_read_alarm_value(rtc, RHRAR);
  335. tm->tm_wday = sh_rtc_read_alarm_value(rtc, RWKAR);
  336. tm->tm_mday = sh_rtc_read_alarm_value(rtc, RDAYAR);
  337. tm->tm_mon = sh_rtc_read_alarm_value(rtc, RMONAR);
  338. if (tm->tm_mon > 0)
  339. tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
  340. tm->tm_year = 0xffff;
  341. spin_unlock_irq(&rtc->lock);
  342. return 0;
  343. }
  344. static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
  345. int value, int reg_off)
  346. {
  347. /* < 0 for a value that is ignored */
  348. if (value < 0)
  349. writeb(0, rtc->regbase + reg_off);
  350. else
  351. writeb(BIN2BCD(value) | AR_ENB, rtc->regbase + reg_off);
  352. }
  353. static int sh_rtc_check_alarm(struct rtc_time* tm)
  354. {
  355. /*
  356. * The original rtc says anything > 0xc0 is "don't care" or "match
  357. * all" - most users use 0xff but rtc-dev uses -1 for the same thing.
  358. * The original rtc doesn't support years - some things use -1 and
  359. * some 0xffff. We use -1 to make out tests easier.
  360. */
  361. if (tm->tm_year == 0xffff)
  362. tm->tm_year = -1;
  363. if (tm->tm_mon >= 0xff)
  364. tm->tm_mon = -1;
  365. if (tm->tm_mday >= 0xff)
  366. tm->tm_mday = -1;
  367. if (tm->tm_wday >= 0xff)
  368. tm->tm_wday = -1;
  369. if (tm->tm_hour >= 0xff)
  370. tm->tm_hour = -1;
  371. if (tm->tm_min >= 0xff)
  372. tm->tm_min = -1;
  373. if (tm->tm_sec >= 0xff)
  374. tm->tm_sec = -1;
  375. if (tm->tm_year > 9999 ||
  376. tm->tm_mon >= 12 ||
  377. tm->tm_mday == 0 || tm->tm_mday >= 32 ||
  378. tm->tm_wday >= 7 ||
  379. tm->tm_hour >= 24 ||
  380. tm->tm_min >= 60 ||
  381. tm->tm_sec >= 60)
  382. return -EINVAL;
  383. return 0;
  384. }
  385. static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
  386. {
  387. struct platform_device *pdev = to_platform_device(dev);
  388. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  389. unsigned int rcr1;
  390. struct rtc_time *tm = &wkalrm->time;
  391. int mon, err;
  392. err = sh_rtc_check_alarm(tm);
  393. if (unlikely(err < 0))
  394. return err;
  395. spin_lock_irq(&rtc->lock);
  396. /* disable alarm interrupt and clear flag */
  397. rcr1 = readb(rtc->regbase + RCR1);
  398. rcr1 &= ~RCR1_AF;
  399. writeb(rcr1 & ~RCR1_AIE, rtc->regbase + RCR1);
  400. rtc->rearm_aie = 0;
  401. /* set alarm time */
  402. sh_rtc_write_alarm_value(rtc, tm->tm_sec, RSECAR);
  403. sh_rtc_write_alarm_value(rtc, tm->tm_min, RMINAR);
  404. sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
  405. sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
  406. sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
  407. mon = tm->tm_mon;
  408. if (mon >= 0)
  409. mon += 1;
  410. sh_rtc_write_alarm_value(rtc, mon, RMONAR);
  411. /* Restore interrupt activation status */
  412. writeb(rcr1, rtc->regbase + RCR1);
  413. spin_unlock_irq(&rtc->lock);
  414. return 0;
  415. }
  416. static struct rtc_class_ops sh_rtc_ops = {
  417. .open = sh_rtc_open,
  418. .release = sh_rtc_release,
  419. .ioctl = sh_rtc_ioctl,
  420. .read_time = sh_rtc_read_time,
  421. .set_time = sh_rtc_set_time,
  422. .read_alarm = sh_rtc_read_alarm,
  423. .set_alarm = sh_rtc_set_alarm,
  424. .proc = sh_rtc_proc,
  425. };
  426. static int __devinit sh_rtc_probe(struct platform_device *pdev)
  427. {
  428. struct sh_rtc *rtc;
  429. struct resource *res;
  430. int ret = -ENOENT;
  431. rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL);
  432. if (unlikely(!rtc))
  433. return -ENOMEM;
  434. spin_lock_init(&rtc->lock);
  435. rtc->periodic_irq = platform_get_irq(pdev, 0);
  436. if (unlikely(rtc->periodic_irq < 0)) {
  437. dev_err(&pdev->dev, "No IRQ for period\n");
  438. goto err_badres;
  439. }
  440. rtc->carry_irq = platform_get_irq(pdev, 1);
  441. if (unlikely(rtc->carry_irq < 0)) {
  442. dev_err(&pdev->dev, "No IRQ for carry\n");
  443. goto err_badres;
  444. }
  445. rtc->alarm_irq = platform_get_irq(pdev, 2);
  446. if (unlikely(rtc->alarm_irq < 0)) {
  447. dev_err(&pdev->dev, "No IRQ for alarm\n");
  448. goto err_badres;
  449. }
  450. res = platform_get_resource(pdev, IORESOURCE_IO, 0);
  451. if (unlikely(res == NULL)) {
  452. dev_err(&pdev->dev, "No IO resource\n");
  453. goto err_badres;
  454. }
  455. rtc->regsize = res->end - res->start + 1;
  456. rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name);
  457. if (unlikely(!rtc->res)) {
  458. ret = -EBUSY;
  459. goto err_badres;
  460. }
  461. rtc->regbase = (void __iomem *)rtc->res->start;
  462. if (unlikely(!rtc->regbase)) {
  463. ret = -EINVAL;
  464. goto err_badmap;
  465. }
  466. rtc->rtc_dev = rtc_device_register("sh", &pdev->dev,
  467. &sh_rtc_ops, THIS_MODULE);
  468. if (IS_ERR(rtc)) {
  469. ret = PTR_ERR(rtc->rtc_dev);
  470. goto err_badmap;
  471. }
  472. platform_set_drvdata(pdev, rtc);
  473. return 0;
  474. err_badmap:
  475. release_resource(rtc->res);
  476. err_badres:
  477. kfree(rtc);
  478. return ret;
  479. }
  480. static int __devexit sh_rtc_remove(struct platform_device *pdev)
  481. {
  482. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  483. if (likely(rtc->rtc_dev))
  484. rtc_device_unregister(rtc->rtc_dev);
  485. sh_rtc_setpie(&pdev->dev, 0);
  486. sh_rtc_setaie(&pdev->dev, 0);
  487. release_resource(rtc->res);
  488. platform_set_drvdata(pdev, NULL);
  489. kfree(rtc);
  490. return 0;
  491. }
  492. static struct platform_driver sh_rtc_platform_driver = {
  493. .driver = {
  494. .name = DRV_NAME,
  495. .owner = THIS_MODULE,
  496. },
  497. .probe = sh_rtc_probe,
  498. .remove = __devexit_p(sh_rtc_remove),
  499. };
  500. static int __init sh_rtc_init(void)
  501. {
  502. return platform_driver_register(&sh_rtc_platform_driver);
  503. }
  504. static void __exit sh_rtc_exit(void)
  505. {
  506. platform_driver_unregister(&sh_rtc_platform_driver);
  507. }
  508. module_init(sh_rtc_init);
  509. module_exit(sh_rtc_exit);
  510. MODULE_DESCRIPTION("SuperH on-chip RTC driver");
  511. MODULE_VERSION(DRV_VERSION);
  512. MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, Jamie Lenehan <lenehan@twibble.org>");
  513. MODULE_LICENSE("GPL");