ar9003_mci.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/export.h>
  17. #include "hw.h"
  18. #include "ar9003_phy.h"
  19. #include "ar9003_mci.h"
  20. static void ar9003_mci_reset_req_wakeup(struct ath_hw *ah)
  21. {
  22. if (!AR_SREV_9462_20(ah))
  23. return;
  24. REG_RMW_FIELD(ah, AR_MCI_COMMAND2,
  25. AR_MCI_COMMAND2_RESET_REQ_WAKEUP, 1);
  26. udelay(1);
  27. REG_RMW_FIELD(ah, AR_MCI_COMMAND2,
  28. AR_MCI_COMMAND2_RESET_REQ_WAKEUP, 0);
  29. }
  30. static int ar9003_mci_wait_for_interrupt(struct ath_hw *ah, u32 address,
  31. u32 bit_position, int time_out)
  32. {
  33. struct ath_common *common = ath9k_hw_common(ah);
  34. while (time_out) {
  35. if (REG_READ(ah, address) & bit_position) {
  36. REG_WRITE(ah, address, bit_position);
  37. if (address == AR_MCI_INTERRUPT_RX_MSG_RAW) {
  38. if (bit_position &
  39. AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE)
  40. ar9003_mci_reset_req_wakeup(ah);
  41. if (bit_position &
  42. (AR_MCI_INTERRUPT_RX_MSG_SYS_SLEEPING |
  43. AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING))
  44. REG_WRITE(ah, AR_MCI_INTERRUPT_RAW,
  45. AR_MCI_INTERRUPT_REMOTE_SLEEP_UPDATE);
  46. REG_WRITE(ah, AR_MCI_INTERRUPT_RAW,
  47. AR_MCI_INTERRUPT_RX_MSG);
  48. }
  49. break;
  50. }
  51. udelay(10);
  52. time_out -= 10;
  53. if (time_out < 0)
  54. break;
  55. }
  56. if (time_out <= 0) {
  57. ath_dbg(common, MCI,
  58. "MCI Wait for Reg 0x%08x = 0x%08x timeout\n",
  59. address, bit_position);
  60. ath_dbg(common, MCI,
  61. "MCI INT_RAW = 0x%08x, RX_MSG_RAW = 0x%08x\n",
  62. REG_READ(ah, AR_MCI_INTERRUPT_RAW),
  63. REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_RAW));
  64. time_out = 0;
  65. }
  66. return time_out;
  67. }
  68. void ar9003_mci_remote_reset(struct ath_hw *ah, bool wait_done)
  69. {
  70. u32 payload[4] = { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffff00};
  71. if (!ATH9K_HW_CAP_MCI)
  72. return;
  73. ar9003_mci_send_message(ah, MCI_REMOTE_RESET, 0, payload, 16,
  74. wait_done, false);
  75. udelay(5);
  76. }
  77. void ar9003_mci_send_lna_transfer(struct ath_hw *ah, bool wait_done)
  78. {
  79. u32 payload = 0x00000000;
  80. if (!ATH9K_HW_CAP_MCI)
  81. return;
  82. ar9003_mci_send_message(ah, MCI_LNA_TRANS, 0, &payload, 1,
  83. wait_done, false);
  84. }
  85. static void ar9003_mci_send_req_wake(struct ath_hw *ah, bool wait_done)
  86. {
  87. ar9003_mci_send_message(ah, MCI_REQ_WAKE, MCI_FLAG_DISABLE_TIMESTAMP,
  88. NULL, 0, wait_done, false);
  89. udelay(5);
  90. }
  91. void ar9003_mci_send_sys_waking(struct ath_hw *ah, bool wait_done)
  92. {
  93. if (!ATH9K_HW_CAP_MCI)
  94. return;
  95. ar9003_mci_send_message(ah, MCI_SYS_WAKING, MCI_FLAG_DISABLE_TIMESTAMP,
  96. NULL, 0, wait_done, false);
  97. }
  98. static void ar9003_mci_send_lna_take(struct ath_hw *ah, bool wait_done)
  99. {
  100. u32 payload = 0x70000000;
  101. ar9003_mci_send_message(ah, MCI_LNA_TAKE, 0, &payload, 1,
  102. wait_done, false);
  103. }
  104. static void ar9003_mci_send_sys_sleeping(struct ath_hw *ah, bool wait_done)
  105. {
  106. ar9003_mci_send_message(ah, MCI_SYS_SLEEPING,
  107. MCI_FLAG_DISABLE_TIMESTAMP,
  108. NULL, 0, wait_done, false);
  109. }
  110. static void ar9003_mci_send_coex_version_query(struct ath_hw *ah,
  111. bool wait_done)
  112. {
  113. struct ath_common *common = ath9k_hw_common(ah);
  114. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  115. u32 payload[4] = {0, 0, 0, 0};
  116. if (!mci->bt_version_known &&
  117. (mci->bt_state != MCI_BT_SLEEP)) {
  118. ath_dbg(common, MCI, "MCI Send Coex version query\n");
  119. MCI_GPM_SET_TYPE_OPCODE(payload,
  120. MCI_GPM_COEX_AGENT, MCI_GPM_COEX_VERSION_QUERY);
  121. ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16,
  122. wait_done, true);
  123. }
  124. }
  125. static void ar9003_mci_send_coex_version_response(struct ath_hw *ah,
  126. bool wait_done)
  127. {
  128. struct ath_common *common = ath9k_hw_common(ah);
  129. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  130. u32 payload[4] = {0, 0, 0, 0};
  131. ath_dbg(common, MCI, "MCI Send Coex version response\n");
  132. MCI_GPM_SET_TYPE_OPCODE(payload, MCI_GPM_COEX_AGENT,
  133. MCI_GPM_COEX_VERSION_RESPONSE);
  134. *(((u8 *)payload) + MCI_GPM_COEX_B_MAJOR_VERSION) =
  135. mci->wlan_ver_major;
  136. *(((u8 *)payload) + MCI_GPM_COEX_B_MINOR_VERSION) =
  137. mci->wlan_ver_minor;
  138. ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16, wait_done, true);
  139. }
  140. static void ar9003_mci_send_coex_wlan_channels(struct ath_hw *ah,
  141. bool wait_done)
  142. {
  143. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  144. u32 *payload = &mci->wlan_channels[0];
  145. if ((mci->wlan_channels_update == true) &&
  146. (mci->bt_state != MCI_BT_SLEEP)) {
  147. MCI_GPM_SET_TYPE_OPCODE(payload,
  148. MCI_GPM_COEX_AGENT, MCI_GPM_COEX_WLAN_CHANNELS);
  149. ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16,
  150. wait_done, true);
  151. MCI_GPM_SET_TYPE_OPCODE(payload, 0xff, 0xff);
  152. }
  153. }
  154. static void ar9003_mci_send_coex_bt_status_query(struct ath_hw *ah,
  155. bool wait_done, u8 query_type)
  156. {
  157. struct ath_common *common = ath9k_hw_common(ah);
  158. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  159. u32 payload[4] = {0, 0, 0, 0};
  160. bool query_btinfo = !!(query_type & (MCI_GPM_COEX_QUERY_BT_ALL_INFO |
  161. MCI_GPM_COEX_QUERY_BT_TOPOLOGY));
  162. if (mci->bt_state != MCI_BT_SLEEP) {
  163. ath_dbg(common, MCI, "MCI Send Coex BT Status Query 0x%02X\n",
  164. query_type);
  165. MCI_GPM_SET_TYPE_OPCODE(payload,
  166. MCI_GPM_COEX_AGENT, MCI_GPM_COEX_STATUS_QUERY);
  167. *(((u8 *)payload) + MCI_GPM_COEX_B_BT_BITMAP) = query_type;
  168. /*
  169. * If bt_status_query message is not sent successfully,
  170. * then need_flush_btinfo should be set again.
  171. */
  172. if (!ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16,
  173. wait_done, true)) {
  174. if (query_btinfo) {
  175. mci->need_flush_btinfo = true;
  176. ath_dbg(common, MCI,
  177. "MCI send bt_status_query fail, set flush flag again\n");
  178. }
  179. }
  180. if (query_btinfo)
  181. mci->query_bt = false;
  182. }
  183. }
  184. void ar9003_mci_send_coex_halt_bt_gpm(struct ath_hw *ah, bool halt,
  185. bool wait_done)
  186. {
  187. struct ath_common *common = ath9k_hw_common(ah);
  188. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  189. u32 payload[4] = {0, 0, 0, 0};
  190. if (!ATH9K_HW_CAP_MCI)
  191. return;
  192. ath_dbg(common, MCI, "MCI Send Coex %s BT GPM\n",
  193. (halt) ? "halt" : "unhalt");
  194. MCI_GPM_SET_TYPE_OPCODE(payload,
  195. MCI_GPM_COEX_AGENT, MCI_GPM_COEX_HALT_BT_GPM);
  196. if (halt) {
  197. mci->query_bt = true;
  198. /* Send next unhalt no matter halt sent or not */
  199. mci->unhalt_bt_gpm = true;
  200. mci->need_flush_btinfo = true;
  201. *(((u8 *)payload) + MCI_GPM_COEX_B_HALT_STATE) =
  202. MCI_GPM_COEX_BT_GPM_HALT;
  203. } else
  204. *(((u8 *)payload) + MCI_GPM_COEX_B_HALT_STATE) =
  205. MCI_GPM_COEX_BT_GPM_UNHALT;
  206. ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16, wait_done, true);
  207. }
  208. static void ar9003_mci_prep_interface(struct ath_hw *ah)
  209. {
  210. struct ath_common *common = ath9k_hw_common(ah);
  211. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  212. u32 saved_mci_int_en;
  213. u32 mci_timeout = 150;
  214. mci->bt_state = MCI_BT_SLEEP;
  215. saved_mci_int_en = REG_READ(ah, AR_MCI_INTERRUPT_EN);
  216. REG_WRITE(ah, AR_MCI_INTERRUPT_EN, 0);
  217. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
  218. REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_RAW));
  219. REG_WRITE(ah, AR_MCI_INTERRUPT_RAW,
  220. REG_READ(ah, AR_MCI_INTERRUPT_RAW));
  221. /* Remote Reset */
  222. ath_dbg(common, MCI, "MCI Reset sequence start\n");
  223. ath_dbg(common, MCI, "MCI send REMOTE_RESET\n");
  224. ar9003_mci_remote_reset(ah, true);
  225. ath_dbg(common, MCI, "MCI Send REQ_WAKE to remoter(BT)\n");
  226. ar9003_mci_send_req_wake(ah, true);
  227. if (ar9003_mci_wait_for_interrupt(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
  228. AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING, 500)) {
  229. ath_dbg(common, MCI, "MCI SYS_WAKING from remote(BT)\n");
  230. mci->bt_state = MCI_BT_AWAKE;
  231. /*
  232. * we don't need to send more remote_reset at this moment.
  233. * If BT receive first remote_reset, then BT HW will
  234. * be cleaned up and will be able to receive req_wake
  235. * and BT HW will respond sys_waking.
  236. * In this case, WLAN will receive BT's HW sys_waking.
  237. * Otherwise, if BT SW missed initial remote_reset,
  238. * that remote_reset will still clean up BT MCI RX,
  239. * and the req_wake will wake BT up,
  240. * and BT SW will respond this req_wake with a remote_reset and
  241. * sys_waking. In this case, WLAN will receive BT's SW
  242. * sys_waking. In either case, BT's RX is cleaned up. So we
  243. * don't need to reply BT's remote_reset now, if any.
  244. * Similarly, if in any case, WLAN can receive BT's sys_waking,
  245. * that means WLAN's RX is also fine.
  246. */
  247. /* Send SYS_WAKING to BT */
  248. ath_dbg(common, MCI, "MCI send SW SYS_WAKING to remote BT\n");
  249. ar9003_mci_send_sys_waking(ah, true);
  250. udelay(10);
  251. /*
  252. * Set BT priority interrupt value to be 0xff to
  253. * avoid having too many BT PRIORITY interrupts.
  254. */
  255. REG_WRITE(ah, AR_MCI_BT_PRI0, 0xFFFFFFFF);
  256. REG_WRITE(ah, AR_MCI_BT_PRI1, 0xFFFFFFFF);
  257. REG_WRITE(ah, AR_MCI_BT_PRI2, 0xFFFFFFFF);
  258. REG_WRITE(ah, AR_MCI_BT_PRI3, 0xFFFFFFFF);
  259. REG_WRITE(ah, AR_MCI_BT_PRI, 0X000000FF);
  260. /*
  261. * A contention reset will be received after send out
  262. * sys_waking. Also BT priority interrupt bits will be set.
  263. * Clear those bits before the next step.
  264. */
  265. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
  266. AR_MCI_INTERRUPT_RX_MSG_CONT_RST);
  267. REG_WRITE(ah, AR_MCI_INTERRUPT_RAW,
  268. AR_MCI_INTERRUPT_BT_PRI);
  269. if (mci->is_2g) {
  270. /* Send LNA_TRANS */
  271. ath_dbg(common, MCI, "MCI send LNA_TRANS to BT\n");
  272. ar9003_mci_send_lna_transfer(ah, true);
  273. udelay(5);
  274. }
  275. if ((mci->is_2g && !mci->update_2g5g)) {
  276. if (ar9003_mci_wait_for_interrupt(ah,
  277. AR_MCI_INTERRUPT_RX_MSG_RAW,
  278. AR_MCI_INTERRUPT_RX_MSG_LNA_INFO,
  279. mci_timeout))
  280. ath_dbg(common, MCI,
  281. "MCI WLAN has control over the LNA & BT obeys it\n");
  282. else
  283. ath_dbg(common, MCI,
  284. "MCI BT didn't respond to LNA_TRANS\n");
  285. }
  286. }
  287. /* Clear the extra redundant SYS_WAKING from BT */
  288. if ((mci->bt_state == MCI_BT_AWAKE) &&
  289. (REG_READ_FIELD(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
  290. AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING)) &&
  291. (REG_READ_FIELD(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
  292. AR_MCI_INTERRUPT_RX_MSG_SYS_SLEEPING) == 0)) {
  293. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
  294. AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING);
  295. REG_WRITE(ah, AR_MCI_INTERRUPT_RAW,
  296. AR_MCI_INTERRUPT_REMOTE_SLEEP_UPDATE);
  297. }
  298. REG_WRITE(ah, AR_MCI_INTERRUPT_EN, saved_mci_int_en);
  299. }
  300. void ar9003_mci_disable_interrupt(struct ath_hw *ah)
  301. {
  302. if (!ATH9K_HW_CAP_MCI)
  303. return;
  304. REG_WRITE(ah, AR_MCI_INTERRUPT_EN, 0);
  305. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
  306. }
  307. void ar9003_mci_enable_interrupt(struct ath_hw *ah)
  308. {
  309. if (!ATH9K_HW_CAP_MCI)
  310. return;
  311. REG_WRITE(ah, AR_MCI_INTERRUPT_EN, AR_MCI_INTERRUPT_DEFAULT);
  312. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
  313. AR_MCI_INTERRUPT_RX_MSG_DEFAULT);
  314. }
  315. bool ar9003_mci_check_int(struct ath_hw *ah, u32 ints)
  316. {
  317. u32 intr;
  318. if (!ATH9K_HW_CAP_MCI)
  319. return false;
  320. intr = REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_RAW);
  321. return ((intr & ints) == ints);
  322. }
  323. void ar9003_mci_get_interrupt(struct ath_hw *ah, u32 *raw_intr,
  324. u32 *rx_msg_intr)
  325. {
  326. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  327. if (!ATH9K_HW_CAP_MCI)
  328. return;
  329. *raw_intr = mci->raw_intr;
  330. *rx_msg_intr = mci->rx_msg_intr;
  331. /* Clean int bits after the values are read. */
  332. mci->raw_intr = 0;
  333. mci->rx_msg_intr = 0;
  334. }
  335. EXPORT_SYMBOL(ar9003_mci_get_interrupt);
  336. void ar9003_mci_get_isr(struct ath_hw *ah, enum ath9k_int *masked)
  337. {
  338. struct ath_common *common = ath9k_hw_common(ah);
  339. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  340. u32 raw_intr, rx_msg_intr;
  341. rx_msg_intr = REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_RAW);
  342. raw_intr = REG_READ(ah, AR_MCI_INTERRUPT_RAW);
  343. if ((raw_intr == 0xdeadbeef) || (rx_msg_intr == 0xdeadbeef)) {
  344. ath_dbg(common, MCI,
  345. "MCI gets 0xdeadbeef during int processing\n");
  346. } else {
  347. mci->rx_msg_intr |= rx_msg_intr;
  348. mci->raw_intr |= raw_intr;
  349. *masked |= ATH9K_INT_MCI;
  350. if (rx_msg_intr & AR_MCI_INTERRUPT_RX_MSG_CONT_INFO)
  351. mci->cont_status = REG_READ(ah, AR_MCI_CONT_STATUS);
  352. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW, rx_msg_intr);
  353. REG_WRITE(ah, AR_MCI_INTERRUPT_RAW, raw_intr);
  354. }
  355. }
  356. void ar9003_mci_2g5g_changed(struct ath_hw *ah, bool is_2g)
  357. {
  358. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  359. if (!ATH9K_HW_CAP_MCI)
  360. return;
  361. if (!mci->update_2g5g &&
  362. (mci->is_2g != is_2g))
  363. mci->update_2g5g = true;
  364. mci->is_2g = is_2g;
  365. }
  366. static bool ar9003_mci_is_gpm_valid(struct ath_hw *ah, u32 msg_index)
  367. {
  368. struct ath_common *common = ath9k_hw_common(ah);
  369. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  370. u32 *payload;
  371. u32 recv_type, offset;
  372. if (msg_index == MCI_GPM_INVALID)
  373. return false;
  374. offset = msg_index << 4;
  375. payload = (u32 *)(mci->gpm_buf + offset);
  376. recv_type = MCI_GPM_TYPE(payload);
  377. if (recv_type == MCI_GPM_RSVD_PATTERN) {
  378. ath_dbg(common, MCI, "MCI Skip RSVD GPM\n");
  379. return false;
  380. }
  381. return true;
  382. }
  383. static void ar9003_mci_observation_set_up(struct ath_hw *ah)
  384. {
  385. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  386. if (mci->config & ATH_MCI_CONFIG_MCI_OBS_MCI) {
  387. ath9k_hw_cfg_output(ah, 3,
  388. AR_GPIO_OUTPUT_MUX_AS_MCI_WLAN_DATA);
  389. ath9k_hw_cfg_output(ah, 2, AR_GPIO_OUTPUT_MUX_AS_MCI_WLAN_CLK);
  390. ath9k_hw_cfg_output(ah, 1, AR_GPIO_OUTPUT_MUX_AS_MCI_BT_DATA);
  391. ath9k_hw_cfg_output(ah, 0, AR_GPIO_OUTPUT_MUX_AS_MCI_BT_CLK);
  392. } else if (mci->config & ATH_MCI_CONFIG_MCI_OBS_TXRX) {
  393. ath9k_hw_cfg_output(ah, 3, AR_GPIO_OUTPUT_MUX_AS_WL_IN_TX);
  394. ath9k_hw_cfg_output(ah, 2, AR_GPIO_OUTPUT_MUX_AS_WL_IN_RX);
  395. ath9k_hw_cfg_output(ah, 1, AR_GPIO_OUTPUT_MUX_AS_BT_IN_TX);
  396. ath9k_hw_cfg_output(ah, 0, AR_GPIO_OUTPUT_MUX_AS_BT_IN_RX);
  397. ath9k_hw_cfg_output(ah, 5, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  398. } else if (mci->config & ATH_MCI_CONFIG_MCI_OBS_BT) {
  399. ath9k_hw_cfg_output(ah, 3, AR_GPIO_OUTPUT_MUX_AS_BT_IN_TX);
  400. ath9k_hw_cfg_output(ah, 2, AR_GPIO_OUTPUT_MUX_AS_BT_IN_RX);
  401. ath9k_hw_cfg_output(ah, 1, AR_GPIO_OUTPUT_MUX_AS_MCI_BT_DATA);
  402. ath9k_hw_cfg_output(ah, 0, AR_GPIO_OUTPUT_MUX_AS_MCI_BT_CLK);
  403. } else
  404. return;
  405. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  406. if (AR_SREV_9462_20_OR_LATER(ah)) {
  407. REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL,
  408. AR_GLB_DS_JTAG_DISABLE, 1);
  409. REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL,
  410. AR_GLB_WLAN_UART_INTF_EN, 0);
  411. REG_SET_BIT(ah, AR_GLB_GPIO_CONTROL,
  412. ATH_MCI_CONFIG_MCI_OBS_GPIO);
  413. }
  414. REG_RMW_FIELD(ah, AR_BTCOEX_CTRL2, AR_BTCOEX_CTRL2_GPIO_OBS_SEL, 0);
  415. REG_RMW_FIELD(ah, AR_BTCOEX_CTRL2, AR_BTCOEX_CTRL2_MAC_BB_OBS_SEL, 1);
  416. REG_WRITE(ah, AR_OBS, 0x4b);
  417. REG_RMW_FIELD(ah, AR_DIAG_SW, AR_DIAG_OBS_PT_SEL1, 0x03);
  418. REG_RMW_FIELD(ah, AR_DIAG_SW, AR_DIAG_OBS_PT_SEL2, 0x01);
  419. REG_RMW_FIELD(ah, AR_MACMISC, AR_MACMISC_MISC_OBS_BUS_LSB, 0x02);
  420. REG_RMW_FIELD(ah, AR_MACMISC, AR_MACMISC_MISC_OBS_BUS_MSB, 0x03);
  421. REG_RMW_FIELD(ah, AR_PHY_TEST_CTL_STATUS,
  422. AR_PHY_TEST_CTL_DEBUGPORT_SEL, 0x07);
  423. }
  424. static bool ar9003_mci_send_coex_bt_flags(struct ath_hw *ah, bool wait_done,
  425. u8 opcode, u32 bt_flags)
  426. {
  427. struct ath_common *common = ath9k_hw_common(ah);
  428. u32 pld[4] = {0, 0, 0, 0};
  429. MCI_GPM_SET_TYPE_OPCODE(pld,
  430. MCI_GPM_COEX_AGENT, MCI_GPM_COEX_BT_UPDATE_FLAGS);
  431. *(((u8 *)pld) + MCI_GPM_COEX_B_BT_FLAGS_OP) = opcode;
  432. *(((u8 *)pld) + MCI_GPM_COEX_W_BT_FLAGS + 0) = bt_flags & 0xFF;
  433. *(((u8 *)pld) + MCI_GPM_COEX_W_BT_FLAGS + 1) = (bt_flags >> 8) & 0xFF;
  434. *(((u8 *)pld) + MCI_GPM_COEX_W_BT_FLAGS + 2) = (bt_flags >> 16) & 0xFF;
  435. *(((u8 *)pld) + MCI_GPM_COEX_W_BT_FLAGS + 3) = (bt_flags >> 24) & 0xFF;
  436. ath_dbg(common, MCI,
  437. "MCI BT_MCI_FLAGS: Send Coex BT Update Flags %s 0x%08x\n",
  438. opcode == MCI_GPM_COEX_BT_FLAGS_READ ? "READ" :
  439. opcode == MCI_GPM_COEX_BT_FLAGS_SET ? "SET" : "CLEAR",
  440. bt_flags);
  441. return ar9003_mci_send_message(ah, MCI_GPM, 0, pld, 16,
  442. wait_done, true);
  443. }
  444. void ar9003_mci_reset(struct ath_hw *ah, bool en_int, bool is_2g,
  445. bool is_full_sleep)
  446. {
  447. struct ath_common *common = ath9k_hw_common(ah);
  448. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  449. u32 regval, thresh;
  450. if (!ATH9K_HW_CAP_MCI)
  451. return;
  452. ath_dbg(common, MCI, "MCI full_sleep = %d, is_2g = %d\n",
  453. is_full_sleep, is_2g);
  454. /*
  455. * GPM buffer and scheduling message buffer are not allocated
  456. */
  457. if (!mci->gpm_addr && !mci->sched_addr) {
  458. ath_dbg(common, MCI,
  459. "MCI GPM and schedule buffers are not allocated\n");
  460. return;
  461. }
  462. if (REG_READ(ah, AR_BTCOEX_CTRL) == 0xdeadbeef) {
  463. ath_dbg(common, MCI, "MCI it's deadbeef, quit mci_reset\n");
  464. return;
  465. }
  466. /* Program MCI DMA related registers */
  467. REG_WRITE(ah, AR_MCI_GPM_0, mci->gpm_addr);
  468. REG_WRITE(ah, AR_MCI_GPM_1, mci->gpm_len);
  469. REG_WRITE(ah, AR_MCI_SCHD_TABLE_0, mci->sched_addr);
  470. /*
  471. * To avoid MCI state machine be affected by incoming remote MCI msgs,
  472. * MCI mode will be enabled later, right before reset the MCI TX and RX.
  473. */
  474. regval = SM(1, AR_BTCOEX_CTRL_AR9462_MODE) |
  475. SM(1, AR_BTCOEX_CTRL_WBTIMER_EN) |
  476. SM(1, AR_BTCOEX_CTRL_PA_SHARED) |
  477. SM(1, AR_BTCOEX_CTRL_LNA_SHARED) |
  478. SM(2, AR_BTCOEX_CTRL_NUM_ANTENNAS) |
  479. SM(3, AR_BTCOEX_CTRL_RX_CHAIN_MASK) |
  480. SM(0, AR_BTCOEX_CTRL_1_CHAIN_ACK) |
  481. SM(0, AR_BTCOEX_CTRL_1_CHAIN_BCN) |
  482. SM(0, AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN);
  483. if (is_2g && (AR_SREV_9462_20(ah)) &&
  484. !(mci->config & ATH_MCI_CONFIG_DISABLE_OSLA)) {
  485. regval |= SM(1, AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN);
  486. ath_dbg(common, MCI, "MCI sched one step look ahead\n");
  487. if (!(mci->config &
  488. ATH_MCI_CONFIG_DISABLE_AGGR_THRESH)) {
  489. thresh = MS(mci->config,
  490. ATH_MCI_CONFIG_AGGR_THRESH);
  491. thresh &= 7;
  492. regval |= SM(1,
  493. AR_BTCOEX_CTRL_TIME_TO_NEXT_BT_THRESH_EN);
  494. regval |= SM(thresh, AR_BTCOEX_CTRL_AGGR_THRESH);
  495. REG_RMW_FIELD(ah, AR_MCI_SCHD_TABLE_2,
  496. AR_MCI_SCHD_TABLE_2_HW_BASED, 1);
  497. REG_RMW_FIELD(ah, AR_MCI_SCHD_TABLE_2,
  498. AR_MCI_SCHD_TABLE_2_MEM_BASED, 1);
  499. } else
  500. ath_dbg(common, MCI, "MCI sched aggr thresh: off\n");
  501. } else
  502. ath_dbg(common, MCI, "MCI SCHED one step look ahead off\n");
  503. REG_WRITE(ah, AR_BTCOEX_CTRL, regval);
  504. if (AR_SREV_9462_20(ah)) {
  505. REG_SET_BIT(ah, AR_PHY_GLB_CONTROL,
  506. AR_BTCOEX_CTRL_SPDT_ENABLE);
  507. REG_RMW_FIELD(ah, AR_BTCOEX_CTRL3,
  508. AR_BTCOEX_CTRL3_CONT_INFO_TIMEOUT, 20);
  509. }
  510. REG_RMW_FIELD(ah, AR_BTCOEX_CTRL2, AR_BTCOEX_CTRL2_RX_DEWEIGHT, 1);
  511. REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
  512. thresh = MS(mci->config, ATH_MCI_CONFIG_CLK_DIV);
  513. REG_RMW_FIELD(ah, AR_MCI_TX_CTRL, AR_MCI_TX_CTRL_CLK_DIV, thresh);
  514. REG_SET_BIT(ah, AR_BTCOEX_CTRL, AR_BTCOEX_CTRL_MCI_MODE_EN);
  515. /* Resetting the Rx and Tx paths of MCI */
  516. regval = REG_READ(ah, AR_MCI_COMMAND2);
  517. regval |= SM(1, AR_MCI_COMMAND2_RESET_TX);
  518. REG_WRITE(ah, AR_MCI_COMMAND2, regval);
  519. udelay(1);
  520. regval &= ~SM(1, AR_MCI_COMMAND2_RESET_TX);
  521. REG_WRITE(ah, AR_MCI_COMMAND2, regval);
  522. if (is_full_sleep) {
  523. ar9003_mci_mute_bt(ah);
  524. udelay(100);
  525. }
  526. regval |= SM(1, AR_MCI_COMMAND2_RESET_RX);
  527. REG_WRITE(ah, AR_MCI_COMMAND2, regval);
  528. udelay(1);
  529. regval &= ~SM(1, AR_MCI_COMMAND2_RESET_RX);
  530. REG_WRITE(ah, AR_MCI_COMMAND2, regval);
  531. ar9003_mci_state(ah, MCI_STATE_INIT_GPM_OFFSET, NULL);
  532. REG_WRITE(ah, AR_MCI_MSG_ATTRIBUTES_TABLE,
  533. (SM(0xe801, AR_MCI_MSG_ATTRIBUTES_TABLE_INVALID_HDR) |
  534. SM(0x0000, AR_MCI_MSG_ATTRIBUTES_TABLE_CHECKSUM)));
  535. REG_CLR_BIT(ah, AR_MCI_TX_CTRL,
  536. AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE);
  537. if (AR_SREV_9462_20_OR_LATER(ah))
  538. ar9003_mci_observation_set_up(ah);
  539. mci->ready = true;
  540. ar9003_mci_prep_interface(ah);
  541. if (en_int)
  542. ar9003_mci_enable_interrupt(ah);
  543. }
  544. void ar9003_mci_mute_bt(struct ath_hw *ah)
  545. {
  546. struct ath_common *common = ath9k_hw_common(ah);
  547. if (!ATH9K_HW_CAP_MCI)
  548. return;
  549. /* disable all MCI messages */
  550. REG_WRITE(ah, AR_MCI_MSG_ATTRIBUTES_TABLE, 0xffff0000);
  551. REG_WRITE(ah, AR_BTCOEX_WL_WEIGHTS0, 0xffffffff);
  552. REG_WRITE(ah, AR_BTCOEX_WL_WEIGHTS1, 0xffffffff);
  553. REG_WRITE(ah, AR_BTCOEX_WL_WEIGHTS2, 0xffffffff);
  554. REG_WRITE(ah, AR_BTCOEX_WL_WEIGHTS3, 0xffffffff);
  555. REG_SET_BIT(ah, AR_MCI_TX_CTRL, AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE);
  556. /* wait pending HW messages to flush out */
  557. udelay(10);
  558. /*
  559. * Send LNA_TAKE and SYS_SLEEPING when
  560. * 1. reset not after resuming from full sleep
  561. * 2. before reset MCI RX, to quiet BT and avoid MCI RX misalignment
  562. */
  563. ath_dbg(common, MCI, "MCI Send LNA take\n");
  564. ar9003_mci_send_lna_take(ah, true);
  565. udelay(5);
  566. ath_dbg(common, MCI, "MCI Send sys sleeping\n");
  567. ar9003_mci_send_sys_sleeping(ah, true);
  568. }
  569. void ar9003_mci_sync_bt_state(struct ath_hw *ah)
  570. {
  571. struct ath_common *common = ath9k_hw_common(ah);
  572. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  573. u32 cur_bt_state;
  574. if (!ATH9K_HW_CAP_MCI)
  575. return;
  576. cur_bt_state = ar9003_mci_state(ah, MCI_STATE_REMOTE_SLEEP, NULL);
  577. if (mci->bt_state != cur_bt_state) {
  578. ath_dbg(common, MCI,
  579. "MCI BT state mismatches. old: %d, new: %d\n",
  580. mci->bt_state, cur_bt_state);
  581. mci->bt_state = cur_bt_state;
  582. }
  583. if (mci->bt_state != MCI_BT_SLEEP) {
  584. ar9003_mci_send_coex_version_query(ah, true);
  585. ar9003_mci_send_coex_wlan_channels(ah, true);
  586. if (mci->unhalt_bt_gpm == true) {
  587. ath_dbg(common, MCI, "MCI unhalt BT GPM\n");
  588. ar9003_mci_send_coex_halt_bt_gpm(ah, false, true);
  589. }
  590. }
  591. }
  592. static void ar9003_mci_send_2g5g_status(struct ath_hw *ah, bool wait_done)
  593. {
  594. struct ath_common *common = ath9k_hw_common(ah);
  595. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  596. u32 new_flags, to_set, to_clear;
  597. if (AR_SREV_9462_20(ah) &&
  598. mci->update_2g5g &&
  599. (mci->bt_state != MCI_BT_SLEEP)) {
  600. if (mci->is_2g) {
  601. new_flags = MCI_2G_FLAGS;
  602. to_clear = MCI_2G_FLAGS_CLEAR_MASK;
  603. to_set = MCI_2G_FLAGS_SET_MASK;
  604. } else {
  605. new_flags = MCI_5G_FLAGS;
  606. to_clear = MCI_5G_FLAGS_CLEAR_MASK;
  607. to_set = MCI_5G_FLAGS_SET_MASK;
  608. }
  609. ath_dbg(common, MCI,
  610. "MCI BT_MCI_FLAGS: %s 0x%08x clr=0x%08x, set=0x%08x\n",
  611. mci->is_2g ? "2G" : "5G", new_flags, to_clear, to_set);
  612. if (to_clear)
  613. ar9003_mci_send_coex_bt_flags(ah, wait_done,
  614. MCI_GPM_COEX_BT_FLAGS_CLEAR, to_clear);
  615. if (to_set)
  616. ar9003_mci_send_coex_bt_flags(ah, wait_done,
  617. MCI_GPM_COEX_BT_FLAGS_SET, to_set);
  618. }
  619. }
  620. static void ar9003_mci_queue_unsent_gpm(struct ath_hw *ah, u8 header,
  621. u32 *payload, bool queue)
  622. {
  623. struct ath_common *common = ath9k_hw_common(ah);
  624. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  625. u8 type, opcode;
  626. if (queue) {
  627. if (payload)
  628. ath_dbg(common, MCI,
  629. "MCI ERROR: Send fail: %02x: %02x %02x %02x\n",
  630. header,
  631. *(((u8 *)payload) + 4),
  632. *(((u8 *)payload) + 5),
  633. *(((u8 *)payload) + 6));
  634. else
  635. ath_dbg(common, MCI, "MCI ERROR: Send fail: %02x\n",
  636. header);
  637. }
  638. /* check if the message is to be queued */
  639. if (header != MCI_GPM)
  640. return;
  641. type = MCI_GPM_TYPE(payload);
  642. opcode = MCI_GPM_OPCODE(payload);
  643. if (type != MCI_GPM_COEX_AGENT)
  644. return;
  645. switch (opcode) {
  646. case MCI_GPM_COEX_BT_UPDATE_FLAGS:
  647. if (*(((u8 *)payload) + MCI_GPM_COEX_B_BT_FLAGS_OP) ==
  648. MCI_GPM_COEX_BT_FLAGS_READ)
  649. break;
  650. mci->update_2g5g = queue;
  651. if (queue)
  652. ath_dbg(common, MCI,
  653. "MCI BT_MCI_FLAGS: 2G5G status <queued> %s\n",
  654. mci->is_2g ? "2G" : "5G");
  655. else
  656. ath_dbg(common, MCI,
  657. "MCI BT_MCI_FLAGS: 2G5G status <sent> %s\n",
  658. mci->is_2g ? "2G" : "5G");
  659. break;
  660. case MCI_GPM_COEX_WLAN_CHANNELS:
  661. mci->wlan_channels_update = queue;
  662. if (queue)
  663. ath_dbg(common, MCI, "MCI WLAN channel map <queued>\n");
  664. else
  665. ath_dbg(common, MCI, "MCI WLAN channel map <sent>\n");
  666. break;
  667. case MCI_GPM_COEX_HALT_BT_GPM:
  668. if (*(((u8 *)payload) + MCI_GPM_COEX_B_HALT_STATE) ==
  669. MCI_GPM_COEX_BT_GPM_UNHALT) {
  670. mci->unhalt_bt_gpm = queue;
  671. if (queue)
  672. ath_dbg(common, MCI,
  673. "MCI UNHALT BT GPM <queued>\n");
  674. else {
  675. mci->halted_bt_gpm = false;
  676. ath_dbg(common, MCI,
  677. "MCI UNHALT BT GPM <sent>\n");
  678. }
  679. }
  680. if (*(((u8 *)payload) + MCI_GPM_COEX_B_HALT_STATE) ==
  681. MCI_GPM_COEX_BT_GPM_HALT) {
  682. mci->halted_bt_gpm = !queue;
  683. if (queue)
  684. ath_dbg(common, MCI,
  685. "MCI HALT BT GPM <not sent>\n");
  686. else
  687. ath_dbg(common, MCI,
  688. "MCI UNHALT BT GPM <sent>\n");
  689. }
  690. break;
  691. default:
  692. break;
  693. }
  694. }
  695. void ar9003_mci_2g5g_switch(struct ath_hw *ah, bool wait_done)
  696. {
  697. struct ath_common *common = ath9k_hw_common(ah);
  698. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  699. if (!ATH9K_HW_CAP_MCI)
  700. return;
  701. if (mci->update_2g5g) {
  702. if (mci->is_2g) {
  703. ar9003_mci_send_2g5g_status(ah, true);
  704. ath_dbg(common, MCI, "MCI Send LNA trans\n");
  705. ar9003_mci_send_lna_transfer(ah, true);
  706. udelay(5);
  707. REG_CLR_BIT(ah, AR_MCI_TX_CTRL,
  708. AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE);
  709. if (AR_SREV_9462_20(ah)) {
  710. REG_CLR_BIT(ah, AR_PHY_GLB_CONTROL,
  711. AR_BTCOEX_CTRL_BT_OWN_SPDT_CTRL);
  712. if (!(mci->config &
  713. ATH_MCI_CONFIG_DISABLE_OSLA)) {
  714. REG_SET_BIT(ah, AR_BTCOEX_CTRL,
  715. AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN);
  716. }
  717. }
  718. } else {
  719. ath_dbg(common, MCI, "MCI Send LNA take\n");
  720. ar9003_mci_send_lna_take(ah, true);
  721. udelay(5);
  722. REG_SET_BIT(ah, AR_MCI_TX_CTRL,
  723. AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE);
  724. if (AR_SREV_9462_20(ah)) {
  725. REG_SET_BIT(ah, AR_PHY_GLB_CONTROL,
  726. AR_BTCOEX_CTRL_BT_OWN_SPDT_CTRL);
  727. REG_CLR_BIT(ah, AR_BTCOEX_CTRL,
  728. AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN);
  729. }
  730. ar9003_mci_send_2g5g_status(ah, true);
  731. }
  732. }
  733. }
  734. bool ar9003_mci_send_message(struct ath_hw *ah, u8 header, u32 flag,
  735. u32 *payload, u8 len, bool wait_done,
  736. bool check_bt)
  737. {
  738. struct ath_common *common = ath9k_hw_common(ah);
  739. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  740. bool msg_sent = false;
  741. u32 regval;
  742. u32 saved_mci_int_en;
  743. int i;
  744. if (!ATH9K_HW_CAP_MCI)
  745. return false;
  746. saved_mci_int_en = REG_READ(ah, AR_MCI_INTERRUPT_EN);
  747. regval = REG_READ(ah, AR_BTCOEX_CTRL);
  748. if ((regval == 0xdeadbeef) || !(regval & AR_BTCOEX_CTRL_MCI_MODE_EN)) {
  749. ath_dbg(common, MCI,
  750. "MCI Not sending 0x%x. MCI is not enabled. full_sleep = %d\n",
  751. header,
  752. (ah->power_mode == ATH9K_PM_FULL_SLEEP) ? 1 : 0);
  753. ar9003_mci_queue_unsent_gpm(ah, header, payload, true);
  754. return false;
  755. } else if (check_bt && (mci->bt_state == MCI_BT_SLEEP)) {
  756. ath_dbg(common, MCI,
  757. "MCI Don't send message 0x%x. BT is in sleep state\n",
  758. header);
  759. ar9003_mci_queue_unsent_gpm(ah, header, payload, true);
  760. return false;
  761. }
  762. if (wait_done)
  763. REG_WRITE(ah, AR_MCI_INTERRUPT_EN, 0);
  764. /* Need to clear SW_MSG_DONE raw bit before wait */
  765. REG_WRITE(ah, AR_MCI_INTERRUPT_RAW,
  766. (AR_MCI_INTERRUPT_SW_MSG_DONE |
  767. AR_MCI_INTERRUPT_MSG_FAIL_MASK));
  768. if (payload) {
  769. for (i = 0; (i * 4) < len; i++)
  770. REG_WRITE(ah, (AR_MCI_TX_PAYLOAD0 + i * 4),
  771. *(payload + i));
  772. }
  773. REG_WRITE(ah, AR_MCI_COMMAND0,
  774. (SM((flag & MCI_FLAG_DISABLE_TIMESTAMP),
  775. AR_MCI_COMMAND0_DISABLE_TIMESTAMP) |
  776. SM(len, AR_MCI_COMMAND0_LEN) |
  777. SM(header, AR_MCI_COMMAND0_HEADER)));
  778. if (wait_done &&
  779. !(ar9003_mci_wait_for_interrupt(ah, AR_MCI_INTERRUPT_RAW,
  780. AR_MCI_INTERRUPT_SW_MSG_DONE, 500)))
  781. ar9003_mci_queue_unsent_gpm(ah, header, payload, true);
  782. else {
  783. ar9003_mci_queue_unsent_gpm(ah, header, payload, false);
  784. msg_sent = true;
  785. }
  786. if (wait_done)
  787. REG_WRITE(ah, AR_MCI_INTERRUPT_EN, saved_mci_int_en);
  788. return msg_sent;
  789. }
  790. EXPORT_SYMBOL(ar9003_mci_send_message);
  791. void ar9003_mci_setup(struct ath_hw *ah, u32 gpm_addr, void *gpm_buf,
  792. u16 len, u32 sched_addr)
  793. {
  794. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  795. if (!ATH9K_HW_CAP_MCI)
  796. return;
  797. mci->gpm_addr = gpm_addr;
  798. mci->gpm_buf = gpm_buf;
  799. mci->gpm_len = len;
  800. mci->sched_addr = sched_addr;
  801. ar9003_mci_reset(ah, true, true, true);
  802. }
  803. EXPORT_SYMBOL(ar9003_mci_setup);
  804. void ar9003_mci_cleanup(struct ath_hw *ah)
  805. {
  806. if (!ATH9K_HW_CAP_MCI)
  807. return;
  808. /* Turn off MCI and Jupiter mode. */
  809. REG_WRITE(ah, AR_BTCOEX_CTRL, 0x00);
  810. ar9003_mci_disable_interrupt(ah);
  811. }
  812. EXPORT_SYMBOL(ar9003_mci_cleanup);
  813. static void ar9003_mci_process_gpm_extra(struct ath_hw *ah, u8 gpm_type,
  814. u8 gpm_opcode, u32 *p_gpm)
  815. {
  816. struct ath_common *common = ath9k_hw_common(ah);
  817. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  818. u8 *p_data = (u8 *) p_gpm;
  819. if (gpm_type != MCI_GPM_COEX_AGENT)
  820. return;
  821. switch (gpm_opcode) {
  822. case MCI_GPM_COEX_VERSION_QUERY:
  823. ath_dbg(common, MCI, "MCI Recv GPM COEX Version Query\n");
  824. ar9003_mci_send_coex_version_response(ah, true);
  825. break;
  826. case MCI_GPM_COEX_VERSION_RESPONSE:
  827. ath_dbg(common, MCI, "MCI Recv GPM COEX Version Response\n");
  828. mci->bt_ver_major =
  829. *(p_data + MCI_GPM_COEX_B_MAJOR_VERSION);
  830. mci->bt_ver_minor =
  831. *(p_data + MCI_GPM_COEX_B_MINOR_VERSION);
  832. mci->bt_version_known = true;
  833. ath_dbg(common, MCI, "MCI BT Coex version: %d.%d\n",
  834. mci->bt_ver_major, mci->bt_ver_minor);
  835. break;
  836. case MCI_GPM_COEX_STATUS_QUERY:
  837. ath_dbg(common, MCI,
  838. "MCI Recv GPM COEX Status Query = 0x%02X\n",
  839. *(p_data + MCI_GPM_COEX_B_WLAN_BITMAP));
  840. mci->wlan_channels_update = true;
  841. ar9003_mci_send_coex_wlan_channels(ah, true);
  842. break;
  843. case MCI_GPM_COEX_BT_PROFILE_INFO:
  844. mci->query_bt = true;
  845. ath_dbg(common, MCI, "MCI Recv GPM COEX BT_Profile_Info\n");
  846. break;
  847. case MCI_GPM_COEX_BT_STATUS_UPDATE:
  848. mci->query_bt = true;
  849. ath_dbg(common, MCI,
  850. "MCI Recv GPM COEX BT_Status_Update SEQ=%d (drop&query)\n",
  851. *(p_gpm + 3));
  852. break;
  853. default:
  854. break;
  855. }
  856. }
  857. u32 ar9003_mci_wait_for_gpm(struct ath_hw *ah, u8 gpm_type,
  858. u8 gpm_opcode, int time_out)
  859. {
  860. struct ath_common *common = ath9k_hw_common(ah);
  861. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  862. u32 *p_gpm = NULL, mismatch = 0, more_data;
  863. u32 offset;
  864. u8 recv_type = 0, recv_opcode = 0;
  865. bool b_is_bt_cal_done = (gpm_type == MCI_GPM_BT_CAL_DONE);
  866. if (!ATH9K_HW_CAP_MCI)
  867. return 0;
  868. more_data = time_out ? MCI_GPM_NOMORE : MCI_GPM_MORE;
  869. while (time_out > 0) {
  870. if (p_gpm) {
  871. MCI_GPM_RECYCLE(p_gpm);
  872. p_gpm = NULL;
  873. }
  874. if (more_data != MCI_GPM_MORE)
  875. time_out = ar9003_mci_wait_for_interrupt(ah,
  876. AR_MCI_INTERRUPT_RX_MSG_RAW,
  877. AR_MCI_INTERRUPT_RX_MSG_GPM,
  878. time_out);
  879. if (!time_out)
  880. break;
  881. offset = ar9003_mci_state(ah,
  882. MCI_STATE_NEXT_GPM_OFFSET, &more_data);
  883. if (offset == MCI_GPM_INVALID)
  884. continue;
  885. p_gpm = (u32 *) (mci->gpm_buf + offset);
  886. recv_type = MCI_GPM_TYPE(p_gpm);
  887. recv_opcode = MCI_GPM_OPCODE(p_gpm);
  888. if (MCI_GPM_IS_CAL_TYPE(recv_type)) {
  889. if (recv_type == gpm_type) {
  890. if ((gpm_type == MCI_GPM_BT_CAL_DONE) &&
  891. !b_is_bt_cal_done) {
  892. gpm_type = MCI_GPM_BT_CAL_GRANT;
  893. ath_dbg(common, MCI,
  894. "MCI Recv BT_CAL_DONE wait BT_CAL_GRANT\n");
  895. continue;
  896. }
  897. break;
  898. }
  899. } else if ((recv_type == gpm_type) &&
  900. (recv_opcode == gpm_opcode))
  901. break;
  902. /* not expected message */
  903. /*
  904. * check if it's cal_grant
  905. *
  906. * When we're waiting for cal_grant in reset routine,
  907. * it's possible that BT sends out cal_request at the
  908. * same time. Since BT's calibration doesn't happen
  909. * that often, we'll let BT completes calibration then
  910. * we continue to wait for cal_grant from BT.
  911. * Orginal: Wait BT_CAL_GRANT.
  912. * New: Receive BT_CAL_REQ -> send WLAN_CAL_GRANT->wait
  913. * BT_CAL_DONE -> Wait BT_CAL_GRANT.
  914. */
  915. if ((gpm_type == MCI_GPM_BT_CAL_GRANT) &&
  916. (recv_type == MCI_GPM_BT_CAL_REQ)) {
  917. u32 payload[4] = {0, 0, 0, 0};
  918. gpm_type = MCI_GPM_BT_CAL_DONE;
  919. ath_dbg(common, MCI,
  920. "MCI Rcv BT_CAL_REQ, send WLAN_CAL_GRANT\n");
  921. MCI_GPM_SET_CAL_TYPE(payload,
  922. MCI_GPM_WLAN_CAL_GRANT);
  923. ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16,
  924. false, false);
  925. ath_dbg(common, MCI, "MCI now wait for BT_CAL_DONE\n");
  926. continue;
  927. } else {
  928. ath_dbg(common, MCI, "MCI GPM subtype not match 0x%x\n",
  929. *(p_gpm + 1));
  930. mismatch++;
  931. ar9003_mci_process_gpm_extra(ah, recv_type,
  932. recv_opcode, p_gpm);
  933. }
  934. }
  935. if (p_gpm) {
  936. MCI_GPM_RECYCLE(p_gpm);
  937. p_gpm = NULL;
  938. }
  939. if (time_out <= 0) {
  940. time_out = 0;
  941. ath_dbg(common, MCI,
  942. "MCI GPM received timeout, mismatch = %d\n", mismatch);
  943. } else
  944. ath_dbg(common, MCI, "MCI Receive GPM type=0x%x, code=0x%x\n",
  945. gpm_type, gpm_opcode);
  946. while (more_data == MCI_GPM_MORE) {
  947. ath_dbg(common, MCI, "MCI discard remaining GPM\n");
  948. offset = ar9003_mci_state(ah, MCI_STATE_NEXT_GPM_OFFSET,
  949. &more_data);
  950. if (offset == MCI_GPM_INVALID)
  951. break;
  952. p_gpm = (u32 *) (mci->gpm_buf + offset);
  953. recv_type = MCI_GPM_TYPE(p_gpm);
  954. recv_opcode = MCI_GPM_OPCODE(p_gpm);
  955. if (!MCI_GPM_IS_CAL_TYPE(recv_type))
  956. ar9003_mci_process_gpm_extra(ah, recv_type,
  957. recv_opcode, p_gpm);
  958. MCI_GPM_RECYCLE(p_gpm);
  959. }
  960. return time_out;
  961. }
  962. u32 ar9003_mci_state(struct ath_hw *ah, u32 state_type, u32 *p_data)
  963. {
  964. struct ath_common *common = ath9k_hw_common(ah);
  965. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  966. u32 value = 0, more_gpm = 0, gpm_ptr;
  967. u8 query_type;
  968. if (!ATH9K_HW_CAP_MCI)
  969. return 0;
  970. switch (state_type) {
  971. case MCI_STATE_ENABLE:
  972. if (mci->ready) {
  973. value = REG_READ(ah, AR_BTCOEX_CTRL);
  974. if ((value == 0xdeadbeef) || (value == 0xffffffff))
  975. value = 0;
  976. }
  977. value &= AR_BTCOEX_CTRL_MCI_MODE_EN;
  978. break;
  979. case MCI_STATE_INIT_GPM_OFFSET:
  980. value = MS(REG_READ(ah, AR_MCI_GPM_1), AR_MCI_GPM_WRITE_PTR);
  981. ath_dbg(common, MCI, "MCI GPM initial WRITE_PTR=%d\n", value);
  982. mci->gpm_idx = value;
  983. break;
  984. case MCI_STATE_NEXT_GPM_OFFSET:
  985. case MCI_STATE_LAST_GPM_OFFSET:
  986. /*
  987. * This could be useful to avoid new GPM message interrupt which
  988. * may lead to spurious interrupt after power sleep, or multiple
  989. * entry of ath_mci_intr().
  990. * Adding empty GPM check by returning HAL_MCI_GPM_INVALID can
  991. * alleviate this effect, but clearing GPM RX interrupt bit is
  992. * safe, because whether this is called from hw or driver code
  993. * there must be an interrupt bit set/triggered initially
  994. */
  995. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
  996. AR_MCI_INTERRUPT_RX_MSG_GPM);
  997. gpm_ptr = MS(REG_READ(ah, AR_MCI_GPM_1), AR_MCI_GPM_WRITE_PTR);
  998. value = gpm_ptr;
  999. if (value == 0)
  1000. value = mci->gpm_len - 1;
  1001. else if (value >= mci->gpm_len) {
  1002. if (value != 0xFFFF) {
  1003. value = 0;
  1004. ath_dbg(common, MCI,
  1005. "MCI GPM offset out of range\n");
  1006. }
  1007. } else
  1008. value--;
  1009. if (value == 0xFFFF) {
  1010. value = MCI_GPM_INVALID;
  1011. more_gpm = MCI_GPM_NOMORE;
  1012. ath_dbg(common, MCI,
  1013. "MCI GPM ptr invalid @ptr=%d, offset=%d, more=GPM_NOMORE\n",
  1014. gpm_ptr, value);
  1015. } else if (state_type == MCI_STATE_NEXT_GPM_OFFSET) {
  1016. if (gpm_ptr == mci->gpm_idx) {
  1017. value = MCI_GPM_INVALID;
  1018. more_gpm = MCI_GPM_NOMORE;
  1019. ath_dbg(common, MCI,
  1020. "MCI GPM message not available @ptr=%d, @offset=%d, more=GPM_NOMORE\n",
  1021. gpm_ptr, value);
  1022. } else {
  1023. for (;;) {
  1024. u32 temp_index;
  1025. /* skip reserved GPM if any */
  1026. if (value != mci->gpm_idx)
  1027. more_gpm = MCI_GPM_MORE;
  1028. else
  1029. more_gpm = MCI_GPM_NOMORE;
  1030. temp_index = mci->gpm_idx;
  1031. mci->gpm_idx++;
  1032. if (mci->gpm_idx >=
  1033. mci->gpm_len)
  1034. mci->gpm_idx = 0;
  1035. ath_dbg(common, MCI,
  1036. "MCI GPM message got ptr=%d, @offset=%d, more=%d\n",
  1037. gpm_ptr, temp_index,
  1038. (more_gpm == MCI_GPM_MORE));
  1039. if (ar9003_mci_is_gpm_valid(ah,
  1040. temp_index)) {
  1041. value = temp_index;
  1042. break;
  1043. }
  1044. if (more_gpm == MCI_GPM_NOMORE) {
  1045. value = MCI_GPM_INVALID;
  1046. break;
  1047. }
  1048. }
  1049. }
  1050. if (p_data)
  1051. *p_data = more_gpm;
  1052. }
  1053. if (value != MCI_GPM_INVALID)
  1054. value <<= 4;
  1055. break;
  1056. case MCI_STATE_LAST_SCHD_MSG_OFFSET:
  1057. value = MS(REG_READ(ah, AR_MCI_RX_STATUS),
  1058. AR_MCI_RX_LAST_SCHD_MSG_INDEX);
  1059. /* Make it in bytes */
  1060. value <<= 4;
  1061. break;
  1062. case MCI_STATE_REMOTE_SLEEP:
  1063. value = MS(REG_READ(ah, AR_MCI_RX_STATUS),
  1064. AR_MCI_RX_REMOTE_SLEEP) ?
  1065. MCI_BT_SLEEP : MCI_BT_AWAKE;
  1066. break;
  1067. case MCI_STATE_CONT_RSSI_POWER:
  1068. value = MS(mci->cont_status, AR_MCI_CONT_RSSI_POWER);
  1069. break;
  1070. case MCI_STATE_CONT_PRIORITY:
  1071. value = MS(mci->cont_status, AR_MCI_CONT_RRIORITY);
  1072. break;
  1073. case MCI_STATE_CONT_TXRX:
  1074. value = MS(mci->cont_status, AR_MCI_CONT_TXRX);
  1075. break;
  1076. case MCI_STATE_BT:
  1077. value = mci->bt_state;
  1078. break;
  1079. case MCI_STATE_SET_BT_SLEEP:
  1080. mci->bt_state = MCI_BT_SLEEP;
  1081. break;
  1082. case MCI_STATE_SET_BT_AWAKE:
  1083. mci->bt_state = MCI_BT_AWAKE;
  1084. ar9003_mci_send_coex_version_query(ah, true);
  1085. ar9003_mci_send_coex_wlan_channels(ah, true);
  1086. if (mci->unhalt_bt_gpm) {
  1087. ath_dbg(common, MCI, "MCI unhalt BT GPM\n");
  1088. ar9003_mci_send_coex_halt_bt_gpm(ah, false, true);
  1089. }
  1090. ar9003_mci_2g5g_switch(ah, true);
  1091. break;
  1092. case MCI_STATE_SET_BT_CAL_START:
  1093. mci->bt_state = MCI_BT_CAL_START;
  1094. break;
  1095. case MCI_STATE_SET_BT_CAL:
  1096. mci->bt_state = MCI_BT_CAL;
  1097. break;
  1098. case MCI_STATE_RESET_REQ_WAKE:
  1099. ar9003_mci_reset_req_wakeup(ah);
  1100. mci->update_2g5g = true;
  1101. if ((AR_SREV_9462_20_OR_LATER(ah)) &&
  1102. (mci->config & ATH_MCI_CONFIG_MCI_OBS_MASK)) {
  1103. /* Check if we still have control of the GPIOs */
  1104. if ((REG_READ(ah, AR_GLB_GPIO_CONTROL) &
  1105. ATH_MCI_CONFIG_MCI_OBS_GPIO) !=
  1106. ATH_MCI_CONFIG_MCI_OBS_GPIO) {
  1107. ath_dbg(common, MCI,
  1108. "MCI reconfigure observation\n");
  1109. ar9003_mci_observation_set_up(ah);
  1110. }
  1111. }
  1112. break;
  1113. case MCI_STATE_SEND_WLAN_COEX_VERSION:
  1114. ar9003_mci_send_coex_version_response(ah, true);
  1115. break;
  1116. case MCI_STATE_SET_BT_COEX_VERSION:
  1117. if (!p_data)
  1118. ath_dbg(common, MCI,
  1119. "MCI Set BT Coex version with NULL data!!\n");
  1120. else {
  1121. mci->bt_ver_major = (*p_data >> 8) & 0xff;
  1122. mci->bt_ver_minor = (*p_data) & 0xff;
  1123. mci->bt_version_known = true;
  1124. ath_dbg(common, MCI, "MCI BT version set: %d.%d\n",
  1125. mci->bt_ver_major, mci->bt_ver_minor);
  1126. }
  1127. break;
  1128. case MCI_STATE_SEND_WLAN_CHANNELS:
  1129. if (p_data) {
  1130. if (((mci->wlan_channels[1] & 0xffff0000) ==
  1131. (*(p_data + 1) & 0xffff0000)) &&
  1132. (mci->wlan_channels[2] == *(p_data + 2)) &&
  1133. (mci->wlan_channels[3] == *(p_data + 3)))
  1134. break;
  1135. mci->wlan_channels[0] = *p_data++;
  1136. mci->wlan_channels[1] = *p_data++;
  1137. mci->wlan_channels[2] = *p_data++;
  1138. mci->wlan_channels[3] = *p_data++;
  1139. }
  1140. mci->wlan_channels_update = true;
  1141. ar9003_mci_send_coex_wlan_channels(ah, true);
  1142. break;
  1143. case MCI_STATE_SEND_VERSION_QUERY:
  1144. ar9003_mci_send_coex_version_query(ah, true);
  1145. break;
  1146. case MCI_STATE_SEND_STATUS_QUERY:
  1147. query_type = MCI_GPM_COEX_QUERY_BT_TOPOLOGY;
  1148. ar9003_mci_send_coex_bt_status_query(ah, true, query_type);
  1149. break;
  1150. case MCI_STATE_NEED_FLUSH_BT_INFO:
  1151. /*
  1152. * btcoex_hw.mci.unhalt_bt_gpm means whether it's
  1153. * needed to send UNHALT message. It's set whenever
  1154. * there's a request to send HALT message.
  1155. * mci_halted_bt_gpm means whether HALT message is sent
  1156. * out successfully.
  1157. *
  1158. * Checking (mci_unhalt_bt_gpm == false) instead of
  1159. * checking (ah->mci_halted_bt_gpm == false) will make
  1160. * sure currently is in UNHALT-ed mode and BT can
  1161. * respond to status query.
  1162. */
  1163. value = (!mci->unhalt_bt_gpm &&
  1164. mci->need_flush_btinfo) ? 1 : 0;
  1165. if (p_data)
  1166. mci->need_flush_btinfo =
  1167. (*p_data != 0) ? true : false;
  1168. break;
  1169. case MCI_STATE_RECOVER_RX:
  1170. ath_dbg(common, MCI, "MCI hw RECOVER_RX\n");
  1171. ar9003_mci_prep_interface(ah);
  1172. mci->query_bt = true;
  1173. mci->need_flush_btinfo = true;
  1174. ar9003_mci_send_coex_wlan_channels(ah, true);
  1175. ar9003_mci_2g5g_switch(ah, true);
  1176. break;
  1177. case MCI_STATE_NEED_FTP_STOMP:
  1178. value = !(mci->config & ATH_MCI_CONFIG_DISABLE_FTP_STOMP);
  1179. break;
  1180. case MCI_STATE_NEED_TUNING:
  1181. value = !(mci->config & ATH_MCI_CONFIG_DISABLE_TUNING);
  1182. break;
  1183. default:
  1184. break;
  1185. }
  1186. return value;
  1187. }
  1188. EXPORT_SYMBOL(ar9003_mci_state);