dma.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555
  1. /*
  2. * EDMA3 support for DaVinci
  3. *
  4. * Copyright (C) 2006-2009 Texas Instruments.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/kernel.h>
  21. #include <linux/init.h>
  22. #include <linux/module.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/io.h>
  26. #include <linux/slab.h>
  27. #include <mach/edma.h>
  28. /* Offsets matching "struct edmacc_param" */
  29. #define PARM_OPT 0x00
  30. #define PARM_SRC 0x04
  31. #define PARM_A_B_CNT 0x08
  32. #define PARM_DST 0x0c
  33. #define PARM_SRC_DST_BIDX 0x10
  34. #define PARM_LINK_BCNTRLD 0x14
  35. #define PARM_SRC_DST_CIDX 0x18
  36. #define PARM_CCNT 0x1c
  37. #define PARM_SIZE 0x20
  38. /* Offsets for EDMA CC global channel registers and their shadows */
  39. #define SH_ER 0x00 /* 64 bits */
  40. #define SH_ECR 0x08 /* 64 bits */
  41. #define SH_ESR 0x10 /* 64 bits */
  42. #define SH_CER 0x18 /* 64 bits */
  43. #define SH_EER 0x20 /* 64 bits */
  44. #define SH_EECR 0x28 /* 64 bits */
  45. #define SH_EESR 0x30 /* 64 bits */
  46. #define SH_SER 0x38 /* 64 bits */
  47. #define SH_SECR 0x40 /* 64 bits */
  48. #define SH_IER 0x50 /* 64 bits */
  49. #define SH_IECR 0x58 /* 64 bits */
  50. #define SH_IESR 0x60 /* 64 bits */
  51. #define SH_IPR 0x68 /* 64 bits */
  52. #define SH_ICR 0x70 /* 64 bits */
  53. #define SH_IEVAL 0x78
  54. #define SH_QER 0x80
  55. #define SH_QEER 0x84
  56. #define SH_QEECR 0x88
  57. #define SH_QEESR 0x8c
  58. #define SH_QSER 0x90
  59. #define SH_QSECR 0x94
  60. #define SH_SIZE 0x200
  61. /* Offsets for EDMA CC global registers */
  62. #define EDMA_REV 0x0000
  63. #define EDMA_CCCFG 0x0004
  64. #define EDMA_QCHMAP 0x0200 /* 8 registers */
  65. #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
  66. #define EDMA_QDMAQNUM 0x0260
  67. #define EDMA_QUETCMAP 0x0280
  68. #define EDMA_QUEPRI 0x0284
  69. #define EDMA_EMR 0x0300 /* 64 bits */
  70. #define EDMA_EMCR 0x0308 /* 64 bits */
  71. #define EDMA_QEMR 0x0310
  72. #define EDMA_QEMCR 0x0314
  73. #define EDMA_CCERR 0x0318
  74. #define EDMA_CCERRCLR 0x031c
  75. #define EDMA_EEVAL 0x0320
  76. #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
  77. #define EDMA_QRAE 0x0380 /* 4 registers */
  78. #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
  79. #define EDMA_QSTAT 0x0600 /* 2 registers */
  80. #define EDMA_QWMTHRA 0x0620
  81. #define EDMA_QWMTHRB 0x0624
  82. #define EDMA_CCSTAT 0x0640
  83. #define EDMA_M 0x1000 /* global channel registers */
  84. #define EDMA_ECR 0x1008
  85. #define EDMA_ECRH 0x100C
  86. #define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
  87. #define EDMA_PARM 0x4000 /* 128 param entries */
  88. #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
  89. #define EDMA_DCHMAP 0x0100 /* 64 registers */
  90. #define CHMAP_EXIST BIT(24)
  91. #define EDMA_MAX_DMACH 64
  92. #define EDMA_MAX_PARAMENTRY 512
  93. #define EDMA_MAX_CC 2
  94. /*****************************************************************************/
  95. static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
  96. static inline unsigned int edma_read(unsigned ctlr, int offset)
  97. {
  98. return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
  99. }
  100. static inline void edma_write(unsigned ctlr, int offset, int val)
  101. {
  102. __raw_writel(val, edmacc_regs_base[ctlr] + offset);
  103. }
  104. static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
  105. unsigned or)
  106. {
  107. unsigned val = edma_read(ctlr, offset);
  108. val &= and;
  109. val |= or;
  110. edma_write(ctlr, offset, val);
  111. }
  112. static inline void edma_and(unsigned ctlr, int offset, unsigned and)
  113. {
  114. unsigned val = edma_read(ctlr, offset);
  115. val &= and;
  116. edma_write(ctlr, offset, val);
  117. }
  118. static inline void edma_or(unsigned ctlr, int offset, unsigned or)
  119. {
  120. unsigned val = edma_read(ctlr, offset);
  121. val |= or;
  122. edma_write(ctlr, offset, val);
  123. }
  124. static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
  125. {
  126. return edma_read(ctlr, offset + (i << 2));
  127. }
  128. static inline void edma_write_array(unsigned ctlr, int offset, int i,
  129. unsigned val)
  130. {
  131. edma_write(ctlr, offset + (i << 2), val);
  132. }
  133. static inline void edma_modify_array(unsigned ctlr, int offset, int i,
  134. unsigned and, unsigned or)
  135. {
  136. edma_modify(ctlr, offset + (i << 2), and, or);
  137. }
  138. static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
  139. {
  140. edma_or(ctlr, offset + (i << 2), or);
  141. }
  142. static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
  143. unsigned or)
  144. {
  145. edma_or(ctlr, offset + ((i*2 + j) << 2), or);
  146. }
  147. static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
  148. unsigned val)
  149. {
  150. edma_write(ctlr, offset + ((i*2 + j) << 2), val);
  151. }
  152. static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
  153. {
  154. return edma_read(ctlr, EDMA_SHADOW0 + offset);
  155. }
  156. static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
  157. int i)
  158. {
  159. return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
  160. }
  161. static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
  162. {
  163. edma_write(ctlr, EDMA_SHADOW0 + offset, val);
  164. }
  165. static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
  166. unsigned val)
  167. {
  168. edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
  169. }
  170. static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
  171. int param_no)
  172. {
  173. return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
  174. }
  175. static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
  176. unsigned val)
  177. {
  178. edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
  179. }
  180. static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
  181. unsigned and, unsigned or)
  182. {
  183. edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
  184. }
  185. static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
  186. unsigned and)
  187. {
  188. edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
  189. }
  190. static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
  191. unsigned or)
  192. {
  193. edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
  194. }
  195. /*****************************************************************************/
  196. /* actual number of DMA channels and slots on this silicon */
  197. struct edma {
  198. /* how many dma resources of each type */
  199. unsigned num_channels;
  200. unsigned num_region;
  201. unsigned num_slots;
  202. unsigned num_tc;
  203. unsigned num_cc;
  204. enum dma_event_q default_queue;
  205. /* list of channels with no even trigger; terminated by "-1" */
  206. const s8 *noevent;
  207. /* The edma_inuse bit for each PaRAM slot is clear unless the
  208. * channel is in use ... by ARM or DSP, for QDMA, or whatever.
  209. */
  210. DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
  211. /* The edma_unused bit for each channel is clear unless
  212. * it is not being used on this platform. It uses a bit
  213. * of SOC-specific initialization code.
  214. */
  215. DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH);
  216. unsigned irq_res_start;
  217. unsigned irq_res_end;
  218. struct dma_interrupt_data {
  219. void (*callback)(unsigned channel, unsigned short ch_status,
  220. void *data);
  221. void *data;
  222. } intr_data[EDMA_MAX_DMACH];
  223. };
  224. static struct edma *edma_info[EDMA_MAX_CC];
  225. static int arch_num_cc;
  226. /* dummy param set used to (re)initialize parameter RAM slots */
  227. static const struct edmacc_param dummy_paramset = {
  228. .link_bcntrld = 0xffff,
  229. .ccnt = 1,
  230. };
  231. /*****************************************************************************/
  232. static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
  233. enum dma_event_q queue_no)
  234. {
  235. int bit = (ch_no & 0x7) * 4;
  236. /* default to low priority queue */
  237. if (queue_no == EVENTQ_DEFAULT)
  238. queue_no = edma_info[ctlr]->default_queue;
  239. queue_no &= 7;
  240. edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
  241. ~(0x7 << bit), queue_no << bit);
  242. }
  243. static void __init map_queue_tc(unsigned ctlr, int queue_no, int tc_no)
  244. {
  245. int bit = queue_no * 4;
  246. edma_modify(ctlr, EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit));
  247. }
  248. static void __init assign_priority_to_queue(unsigned ctlr, int queue_no,
  249. int priority)
  250. {
  251. int bit = queue_no * 4;
  252. edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
  253. ((priority & 0x7) << bit));
  254. }
  255. /**
  256. * map_dmach_param - Maps channel number to param entry number
  257. *
  258. * This maps the dma channel number to param entry numberter. In
  259. * other words using the DMA channel mapping registers a param entry
  260. * can be mapped to any channel
  261. *
  262. * Callers are responsible for ensuring the channel mapping logic is
  263. * included in that particular EDMA variant (Eg : dm646x)
  264. *
  265. */
  266. static void __init map_dmach_param(unsigned ctlr)
  267. {
  268. int i;
  269. for (i = 0; i < EDMA_MAX_DMACH; i++)
  270. edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
  271. }
  272. static inline void
  273. setup_dma_interrupt(unsigned lch,
  274. void (*callback)(unsigned channel, u16 ch_status, void *data),
  275. void *data)
  276. {
  277. unsigned ctlr;
  278. ctlr = EDMA_CTLR(lch);
  279. lch = EDMA_CHAN_SLOT(lch);
  280. if (!callback) {
  281. edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
  282. (1 << (lch & 0x1f)));
  283. }
  284. edma_info[ctlr]->intr_data[lch].callback = callback;
  285. edma_info[ctlr]->intr_data[lch].data = data;
  286. if (callback) {
  287. edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
  288. (1 << (lch & 0x1f)));
  289. edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
  290. (1 << (lch & 0x1f)));
  291. }
  292. }
  293. static int irq2ctlr(int irq)
  294. {
  295. if (irq >= edma_info[0]->irq_res_start &&
  296. irq <= edma_info[0]->irq_res_end)
  297. return 0;
  298. else if (irq >= edma_info[1]->irq_res_start &&
  299. irq <= edma_info[1]->irq_res_end)
  300. return 1;
  301. return -1;
  302. }
  303. /******************************************************************************
  304. *
  305. * DMA interrupt handler
  306. *
  307. *****************************************************************************/
  308. static irqreturn_t dma_irq_handler(int irq, void *data)
  309. {
  310. int i;
  311. unsigned ctlr;
  312. unsigned int cnt = 0;
  313. ctlr = irq2ctlr(irq);
  314. dev_dbg(data, "dma_irq_handler\n");
  315. if ((edma_shadow0_read_array(ctlr, SH_IPR, 0) == 0)
  316. && (edma_shadow0_read_array(ctlr, SH_IPR, 1) == 0))
  317. return IRQ_NONE;
  318. while (1) {
  319. int j;
  320. if (edma_shadow0_read_array(ctlr, SH_IPR, 0))
  321. j = 0;
  322. else if (edma_shadow0_read_array(ctlr, SH_IPR, 1))
  323. j = 1;
  324. else
  325. break;
  326. dev_dbg(data, "IPR%d %08x\n", j,
  327. edma_shadow0_read_array(ctlr, SH_IPR, j));
  328. for (i = 0; i < 32; i++) {
  329. int k = (j << 5) + i;
  330. if (edma_shadow0_read_array(ctlr, SH_IPR, j) &
  331. (1 << i)) {
  332. /* Clear the corresponding IPR bits */
  333. edma_shadow0_write_array(ctlr, SH_ICR, j,
  334. (1 << i));
  335. if (edma_info[ctlr]->intr_data[k].callback) {
  336. edma_info[ctlr]->intr_data[k].callback(
  337. k, DMA_COMPLETE,
  338. edma_info[ctlr]->intr_data[k].
  339. data);
  340. }
  341. }
  342. }
  343. cnt++;
  344. if (cnt > 10)
  345. break;
  346. }
  347. edma_shadow0_write(ctlr, SH_IEVAL, 1);
  348. return IRQ_HANDLED;
  349. }
  350. /******************************************************************************
  351. *
  352. * DMA error interrupt handler
  353. *
  354. *****************************************************************************/
  355. static irqreturn_t dma_ccerr_handler(int irq, void *data)
  356. {
  357. int i;
  358. unsigned ctlr;
  359. unsigned int cnt = 0;
  360. ctlr = irq2ctlr(irq);
  361. dev_dbg(data, "dma_ccerr_handler\n");
  362. if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
  363. (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
  364. (edma_read(ctlr, EDMA_QEMR) == 0) &&
  365. (edma_read(ctlr, EDMA_CCERR) == 0))
  366. return IRQ_NONE;
  367. while (1) {
  368. int j = -1;
  369. if (edma_read_array(ctlr, EDMA_EMR, 0))
  370. j = 0;
  371. else if (edma_read_array(ctlr, EDMA_EMR, 1))
  372. j = 1;
  373. if (j >= 0) {
  374. dev_dbg(data, "EMR%d %08x\n", j,
  375. edma_read_array(ctlr, EDMA_EMR, j));
  376. for (i = 0; i < 32; i++) {
  377. int k = (j << 5) + i;
  378. if (edma_read_array(ctlr, EDMA_EMR, j) &
  379. (1 << i)) {
  380. /* Clear the corresponding EMR bits */
  381. edma_write_array(ctlr, EDMA_EMCR, j,
  382. 1 << i);
  383. /* Clear any SER */
  384. edma_shadow0_write_array(ctlr, SH_SECR,
  385. j, (1 << i));
  386. if (edma_info[ctlr]->intr_data[k].
  387. callback) {
  388. edma_info[ctlr]->intr_data[k].
  389. callback(k,
  390. DMA_CC_ERROR,
  391. edma_info[ctlr]->intr_data
  392. [k].data);
  393. }
  394. }
  395. }
  396. } else if (edma_read(ctlr, EDMA_QEMR)) {
  397. dev_dbg(data, "QEMR %02x\n",
  398. edma_read(ctlr, EDMA_QEMR));
  399. for (i = 0; i < 8; i++) {
  400. if (edma_read(ctlr, EDMA_QEMR) & (1 << i)) {
  401. /* Clear the corresponding IPR bits */
  402. edma_write(ctlr, EDMA_QEMCR, 1 << i);
  403. edma_shadow0_write(ctlr, SH_QSECR,
  404. (1 << i));
  405. /* NOTE: not reported!! */
  406. }
  407. }
  408. } else if (edma_read(ctlr, EDMA_CCERR)) {
  409. dev_dbg(data, "CCERR %08x\n",
  410. edma_read(ctlr, EDMA_CCERR));
  411. /* FIXME: CCERR.BIT(16) ignored! much better
  412. * to just write CCERRCLR with CCERR value...
  413. */
  414. for (i = 0; i < 8; i++) {
  415. if (edma_read(ctlr, EDMA_CCERR) & (1 << i)) {
  416. /* Clear the corresponding IPR bits */
  417. edma_write(ctlr, EDMA_CCERRCLR, 1 << i);
  418. /* NOTE: not reported!! */
  419. }
  420. }
  421. }
  422. if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0)
  423. && (edma_read_array(ctlr, EDMA_EMR, 1) == 0)
  424. && (edma_read(ctlr, EDMA_QEMR) == 0)
  425. && (edma_read(ctlr, EDMA_CCERR) == 0)) {
  426. break;
  427. }
  428. cnt++;
  429. if (cnt > 10)
  430. break;
  431. }
  432. edma_write(ctlr, EDMA_EEVAL, 1);
  433. return IRQ_HANDLED;
  434. }
  435. /******************************************************************************
  436. *
  437. * Transfer controller error interrupt handlers
  438. *
  439. *****************************************************************************/
  440. #define tc_errs_handled false /* disabled as long as they're NOPs */
  441. static irqreturn_t dma_tc0err_handler(int irq, void *data)
  442. {
  443. dev_dbg(data, "dma_tc0err_handler\n");
  444. return IRQ_HANDLED;
  445. }
  446. static irqreturn_t dma_tc1err_handler(int irq, void *data)
  447. {
  448. dev_dbg(data, "dma_tc1err_handler\n");
  449. return IRQ_HANDLED;
  450. }
  451. static int reserve_contiguous_slots(int ctlr, unsigned int id,
  452. unsigned int num_slots,
  453. unsigned int start_slot)
  454. {
  455. int i, j;
  456. unsigned int count = num_slots;
  457. int stop_slot = start_slot;
  458. DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY);
  459. for (i = start_slot; i < edma_info[ctlr]->num_slots; ++i) {
  460. j = EDMA_CHAN_SLOT(i);
  461. if (!test_and_set_bit(j, edma_info[ctlr]->edma_inuse)) {
  462. /* Record our current beginning slot */
  463. if (count == num_slots)
  464. stop_slot = i;
  465. count--;
  466. set_bit(j, tmp_inuse);
  467. if (count == 0)
  468. break;
  469. } else {
  470. clear_bit(j, tmp_inuse);
  471. if (id == EDMA_CONT_PARAMS_FIXED_EXACT) {
  472. stop_slot = i;
  473. break;
  474. } else
  475. count = num_slots;
  476. }
  477. }
  478. /*
  479. * We have to clear any bits that we set
  480. * if we run out parameter RAM slots, i.e we do find a set
  481. * of contiguous parameter RAM slots but do not find the exact number
  482. * requested as we may reach the total number of parameter RAM slots
  483. */
  484. if (i == edma_info[ctlr]->num_slots)
  485. stop_slot = i;
  486. for (j = start_slot; j < stop_slot; j++)
  487. if (test_bit(j, tmp_inuse))
  488. clear_bit(j, edma_info[ctlr]->edma_inuse);
  489. if (count)
  490. return -EBUSY;
  491. for (j = i - num_slots + 1; j <= i; ++j)
  492. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j),
  493. &dummy_paramset, PARM_SIZE);
  494. return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1);
  495. }
  496. static int prepare_unused_channel_list(struct device *dev, void *data)
  497. {
  498. struct platform_device *pdev = to_platform_device(dev);
  499. int i, ctlr;
  500. for (i = 0; i < pdev->num_resources; i++) {
  501. if ((pdev->resource[i].flags & IORESOURCE_DMA) &&
  502. (int)pdev->resource[i].start >= 0) {
  503. ctlr = EDMA_CTLR(pdev->resource[i].start);
  504. clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
  505. edma_info[ctlr]->edma_unused);
  506. }
  507. }
  508. return 0;
  509. }
  510. /*-----------------------------------------------------------------------*/
  511. static bool unused_chan_list_done;
  512. /* Resource alloc/free: dma channels, parameter RAM slots */
  513. /**
  514. * edma_alloc_channel - allocate DMA channel and paired parameter RAM
  515. * @channel: specific channel to allocate; negative for "any unmapped channel"
  516. * @callback: optional; to be issued on DMA completion or errors
  517. * @data: passed to callback
  518. * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
  519. * Controller (TC) executes requests using this channel. Use
  520. * EVENTQ_DEFAULT unless you really need a high priority queue.
  521. *
  522. * This allocates a DMA channel and its associated parameter RAM slot.
  523. * The parameter RAM is initialized to hold a dummy transfer.
  524. *
  525. * Normal use is to pass a specific channel number as @channel, to make
  526. * use of hardware events mapped to that channel. When the channel will
  527. * be used only for software triggering or event chaining, channels not
  528. * mapped to hardware events (or mapped to unused events) are preferable.
  529. *
  530. * DMA transfers start from a channel using edma_start(), or by
  531. * chaining. When the transfer described in that channel's parameter RAM
  532. * slot completes, that slot's data may be reloaded through a link.
  533. *
  534. * DMA errors are only reported to the @callback associated with the
  535. * channel driving that transfer, but transfer completion callbacks can
  536. * be sent to another channel under control of the TCC field in
  537. * the option word of the transfer's parameter RAM set. Drivers must not
  538. * use DMA transfer completion callbacks for channels they did not allocate.
  539. * (The same applies to TCC codes used in transfer chaining.)
  540. *
  541. * Returns the number of the channel, else negative errno.
  542. */
  543. int edma_alloc_channel(int channel,
  544. void (*callback)(unsigned channel, u16 ch_status, void *data),
  545. void *data,
  546. enum dma_event_q eventq_no)
  547. {
  548. unsigned i, done = 0, ctlr = 0;
  549. int ret = 0;
  550. if (!unused_chan_list_done) {
  551. /*
  552. * Scan all the platform devices to find out the EDMA channels
  553. * used and clear them in the unused list, making the rest
  554. * available for ARM usage.
  555. */
  556. ret = bus_for_each_dev(&platform_bus_type, NULL, NULL,
  557. prepare_unused_channel_list);
  558. if (ret < 0)
  559. return ret;
  560. unused_chan_list_done = true;
  561. }
  562. if (channel >= 0) {
  563. ctlr = EDMA_CTLR(channel);
  564. channel = EDMA_CHAN_SLOT(channel);
  565. }
  566. if (channel < 0) {
  567. for (i = 0; i < arch_num_cc; i++) {
  568. channel = 0;
  569. for (;;) {
  570. channel = find_next_bit(edma_info[i]->
  571. edma_unused,
  572. edma_info[i]->num_channels,
  573. channel);
  574. if (channel == edma_info[i]->num_channels)
  575. break;
  576. if (!test_and_set_bit(channel,
  577. edma_info[i]->edma_inuse)) {
  578. done = 1;
  579. ctlr = i;
  580. break;
  581. }
  582. channel++;
  583. }
  584. if (done)
  585. break;
  586. }
  587. if (!done)
  588. return -ENOMEM;
  589. } else if (channel >= edma_info[ctlr]->num_channels) {
  590. return -EINVAL;
  591. } else if (test_and_set_bit(channel, edma_info[ctlr]->edma_inuse)) {
  592. return -EBUSY;
  593. }
  594. /* ensure access through shadow region 0 */
  595. edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, 1 << (channel & 0x1f));
  596. /* ensure no events are pending */
  597. edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
  598. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
  599. &dummy_paramset, PARM_SIZE);
  600. if (callback)
  601. setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
  602. callback, data);
  603. map_dmach_queue(ctlr, channel, eventq_no);
  604. return EDMA_CTLR_CHAN(ctlr, channel);
  605. }
  606. EXPORT_SYMBOL(edma_alloc_channel);
  607. /**
  608. * edma_free_channel - deallocate DMA channel
  609. * @channel: dma channel returned from edma_alloc_channel()
  610. *
  611. * This deallocates the DMA channel and associated parameter RAM slot
  612. * allocated by edma_alloc_channel().
  613. *
  614. * Callers are responsible for ensuring the channel is inactive, and
  615. * will not be reactivated by linking, chaining, or software calls to
  616. * edma_start().
  617. */
  618. void edma_free_channel(unsigned channel)
  619. {
  620. unsigned ctlr;
  621. ctlr = EDMA_CTLR(channel);
  622. channel = EDMA_CHAN_SLOT(channel);
  623. if (channel >= edma_info[ctlr]->num_channels)
  624. return;
  625. setup_dma_interrupt(channel, NULL, NULL);
  626. /* REVISIT should probably take out of shadow region 0 */
  627. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
  628. &dummy_paramset, PARM_SIZE);
  629. clear_bit(channel, edma_info[ctlr]->edma_inuse);
  630. }
  631. EXPORT_SYMBOL(edma_free_channel);
  632. /**
  633. * edma_alloc_slot - allocate DMA parameter RAM
  634. * @slot: specific slot to allocate; negative for "any unused slot"
  635. *
  636. * This allocates a parameter RAM slot, initializing it to hold a
  637. * dummy transfer. Slots allocated using this routine have not been
  638. * mapped to a hardware DMA channel, and will normally be used by
  639. * linking to them from a slot associated with a DMA channel.
  640. *
  641. * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
  642. * slots may be allocated on behalf of DSP firmware.
  643. *
  644. * Returns the number of the slot, else negative errno.
  645. */
  646. int edma_alloc_slot(unsigned ctlr, int slot)
  647. {
  648. if (slot >= 0)
  649. slot = EDMA_CHAN_SLOT(slot);
  650. if (slot < 0) {
  651. slot = edma_info[ctlr]->num_channels;
  652. for (;;) {
  653. slot = find_next_zero_bit(edma_info[ctlr]->edma_inuse,
  654. edma_info[ctlr]->num_slots, slot);
  655. if (slot == edma_info[ctlr]->num_slots)
  656. return -ENOMEM;
  657. if (!test_and_set_bit(slot,
  658. edma_info[ctlr]->edma_inuse))
  659. break;
  660. }
  661. } else if (slot < edma_info[ctlr]->num_channels ||
  662. slot >= edma_info[ctlr]->num_slots) {
  663. return -EINVAL;
  664. } else if (test_and_set_bit(slot, edma_info[ctlr]->edma_inuse)) {
  665. return -EBUSY;
  666. }
  667. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
  668. &dummy_paramset, PARM_SIZE);
  669. return EDMA_CTLR_CHAN(ctlr, slot);
  670. }
  671. EXPORT_SYMBOL(edma_alloc_slot);
  672. /**
  673. * edma_free_slot - deallocate DMA parameter RAM
  674. * @slot: parameter RAM slot returned from edma_alloc_slot()
  675. *
  676. * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
  677. * Callers are responsible for ensuring the slot is inactive, and will
  678. * not be activated.
  679. */
  680. void edma_free_slot(unsigned slot)
  681. {
  682. unsigned ctlr;
  683. ctlr = EDMA_CTLR(slot);
  684. slot = EDMA_CHAN_SLOT(slot);
  685. if (slot < edma_info[ctlr]->num_channels ||
  686. slot >= edma_info[ctlr]->num_slots)
  687. return;
  688. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
  689. &dummy_paramset, PARM_SIZE);
  690. clear_bit(slot, edma_info[ctlr]->edma_inuse);
  691. }
  692. EXPORT_SYMBOL(edma_free_slot);
  693. /**
  694. * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
  695. * The API will return the starting point of a set of
  696. * contiguous parameter RAM slots that have been requested
  697. *
  698. * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
  699. * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
  700. * @count: number of contiguous Paramter RAM slots
  701. * @slot - the start value of Parameter RAM slot that should be passed if id
  702. * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
  703. *
  704. * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
  705. * contiguous Parameter RAM slots from parameter RAM 64 in the case of
  706. * DaVinci SOCs and 32 in the case of DA8xx SOCs.
  707. *
  708. * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
  709. * set of contiguous parameter RAM slots from the "slot" that is passed as an
  710. * argument to the API.
  711. *
  712. * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
  713. * starts looking for a set of contiguous parameter RAMs from the "slot"
  714. * that is passed as an argument to the API. On failure the API will try to
  715. * find a set of contiguous Parameter RAM slots from the remaining Parameter
  716. * RAM slots
  717. */
  718. int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
  719. {
  720. /*
  721. * The start slot requested should be greater than
  722. * the number of channels and lesser than the total number
  723. * of slots
  724. */
  725. if ((id != EDMA_CONT_PARAMS_ANY) &&
  726. (slot < edma_info[ctlr]->num_channels ||
  727. slot >= edma_info[ctlr]->num_slots))
  728. return -EINVAL;
  729. /*
  730. * The number of parameter RAM slots requested cannot be less than 1
  731. * and cannot be more than the number of slots minus the number of
  732. * channels
  733. */
  734. if (count < 1 || count >
  735. (edma_info[ctlr]->num_slots - edma_info[ctlr]->num_channels))
  736. return -EINVAL;
  737. switch (id) {
  738. case EDMA_CONT_PARAMS_ANY:
  739. return reserve_contiguous_slots(ctlr, id, count,
  740. edma_info[ctlr]->num_channels);
  741. case EDMA_CONT_PARAMS_FIXED_EXACT:
  742. case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
  743. return reserve_contiguous_slots(ctlr, id, count, slot);
  744. default:
  745. return -EINVAL;
  746. }
  747. }
  748. EXPORT_SYMBOL(edma_alloc_cont_slots);
  749. /**
  750. * edma_free_cont_slots - deallocate DMA parameter RAM slots
  751. * @slot: first parameter RAM of a set of parameter RAM slots to be freed
  752. * @count: the number of contiguous parameter RAM slots to be freed
  753. *
  754. * This deallocates the parameter RAM slots allocated by
  755. * edma_alloc_cont_slots.
  756. * Callers/applications need to keep track of sets of contiguous
  757. * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
  758. * API.
  759. * Callers are responsible for ensuring the slots are inactive, and will
  760. * not be activated.
  761. */
  762. int edma_free_cont_slots(unsigned slot, int count)
  763. {
  764. unsigned ctlr, slot_to_free;
  765. int i;
  766. ctlr = EDMA_CTLR(slot);
  767. slot = EDMA_CHAN_SLOT(slot);
  768. if (slot < edma_info[ctlr]->num_channels ||
  769. slot >= edma_info[ctlr]->num_slots ||
  770. count < 1)
  771. return -EINVAL;
  772. for (i = slot; i < slot + count; ++i) {
  773. ctlr = EDMA_CTLR(i);
  774. slot_to_free = EDMA_CHAN_SLOT(i);
  775. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free),
  776. &dummy_paramset, PARM_SIZE);
  777. clear_bit(slot_to_free, edma_info[ctlr]->edma_inuse);
  778. }
  779. return 0;
  780. }
  781. EXPORT_SYMBOL(edma_free_cont_slots);
  782. /*-----------------------------------------------------------------------*/
  783. /* Parameter RAM operations (i) -- read/write partial slots */
  784. /**
  785. * edma_set_src - set initial DMA source address in parameter RAM slot
  786. * @slot: parameter RAM slot being configured
  787. * @src_port: physical address of source (memory, controller FIFO, etc)
  788. * @addressMode: INCR, except in very rare cases
  789. * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
  790. * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
  791. *
  792. * Note that the source address is modified during the DMA transfer
  793. * according to edma_set_src_index().
  794. */
  795. void edma_set_src(unsigned slot, dma_addr_t src_port,
  796. enum address_mode mode, enum fifo_width width)
  797. {
  798. unsigned ctlr;
  799. ctlr = EDMA_CTLR(slot);
  800. slot = EDMA_CHAN_SLOT(slot);
  801. if (slot < edma_info[ctlr]->num_slots) {
  802. unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
  803. if (mode) {
  804. /* set SAM and program FWID */
  805. i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
  806. } else {
  807. /* clear SAM */
  808. i &= ~SAM;
  809. }
  810. edma_parm_write(ctlr, PARM_OPT, slot, i);
  811. /* set the source port address
  812. in source register of param structure */
  813. edma_parm_write(ctlr, PARM_SRC, slot, src_port);
  814. }
  815. }
  816. EXPORT_SYMBOL(edma_set_src);
  817. /**
  818. * edma_set_dest - set initial DMA destination address in parameter RAM slot
  819. * @slot: parameter RAM slot being configured
  820. * @dest_port: physical address of destination (memory, controller FIFO, etc)
  821. * @addressMode: INCR, except in very rare cases
  822. * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
  823. * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
  824. *
  825. * Note that the destination address is modified during the DMA transfer
  826. * according to edma_set_dest_index().
  827. */
  828. void edma_set_dest(unsigned slot, dma_addr_t dest_port,
  829. enum address_mode mode, enum fifo_width width)
  830. {
  831. unsigned ctlr;
  832. ctlr = EDMA_CTLR(slot);
  833. slot = EDMA_CHAN_SLOT(slot);
  834. if (slot < edma_info[ctlr]->num_slots) {
  835. unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
  836. if (mode) {
  837. /* set DAM and program FWID */
  838. i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
  839. } else {
  840. /* clear DAM */
  841. i &= ~DAM;
  842. }
  843. edma_parm_write(ctlr, PARM_OPT, slot, i);
  844. /* set the destination port address
  845. in dest register of param structure */
  846. edma_parm_write(ctlr, PARM_DST, slot, dest_port);
  847. }
  848. }
  849. EXPORT_SYMBOL(edma_set_dest);
  850. /**
  851. * edma_get_position - returns the current transfer points
  852. * @slot: parameter RAM slot being examined
  853. * @src: pointer to source port position
  854. * @dst: pointer to destination port position
  855. *
  856. * Returns current source and destination addresses for a particular
  857. * parameter RAM slot. Its channel should not be active when this is called.
  858. */
  859. void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst)
  860. {
  861. struct edmacc_param temp;
  862. unsigned ctlr;
  863. ctlr = EDMA_CTLR(slot);
  864. slot = EDMA_CHAN_SLOT(slot);
  865. edma_read_slot(EDMA_CTLR_CHAN(ctlr, slot), &temp);
  866. if (src != NULL)
  867. *src = temp.src;
  868. if (dst != NULL)
  869. *dst = temp.dst;
  870. }
  871. EXPORT_SYMBOL(edma_get_position);
  872. /**
  873. * edma_set_src_index - configure DMA source address indexing
  874. * @slot: parameter RAM slot being configured
  875. * @src_bidx: byte offset between source arrays in a frame
  876. * @src_cidx: byte offset between source frames in a block
  877. *
  878. * Offsets are specified to support either contiguous or discontiguous
  879. * memory transfers, or repeated access to a hardware register, as needed.
  880. * When accessing hardware registers, both offsets are normally zero.
  881. */
  882. void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
  883. {
  884. unsigned ctlr;
  885. ctlr = EDMA_CTLR(slot);
  886. slot = EDMA_CHAN_SLOT(slot);
  887. if (slot < edma_info[ctlr]->num_slots) {
  888. edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
  889. 0xffff0000, src_bidx);
  890. edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
  891. 0xffff0000, src_cidx);
  892. }
  893. }
  894. EXPORT_SYMBOL(edma_set_src_index);
  895. /**
  896. * edma_set_dest_index - configure DMA destination address indexing
  897. * @slot: parameter RAM slot being configured
  898. * @dest_bidx: byte offset between destination arrays in a frame
  899. * @dest_cidx: byte offset between destination frames in a block
  900. *
  901. * Offsets are specified to support either contiguous or discontiguous
  902. * memory transfers, or repeated access to a hardware register, as needed.
  903. * When accessing hardware registers, both offsets are normally zero.
  904. */
  905. void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
  906. {
  907. unsigned ctlr;
  908. ctlr = EDMA_CTLR(slot);
  909. slot = EDMA_CHAN_SLOT(slot);
  910. if (slot < edma_info[ctlr]->num_slots) {
  911. edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
  912. 0x0000ffff, dest_bidx << 16);
  913. edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
  914. 0x0000ffff, dest_cidx << 16);
  915. }
  916. }
  917. EXPORT_SYMBOL(edma_set_dest_index);
  918. /**
  919. * edma_set_transfer_params - configure DMA transfer parameters
  920. * @slot: parameter RAM slot being configured
  921. * @acnt: how many bytes per array (at least one)
  922. * @bcnt: how many arrays per frame (at least one)
  923. * @ccnt: how many frames per block (at least one)
  924. * @bcnt_rld: used only for A-Synchronized transfers; this specifies
  925. * the value to reload into bcnt when it decrements to zero
  926. * @sync_mode: ASYNC or ABSYNC
  927. *
  928. * See the EDMA3 documentation to understand how to configure and link
  929. * transfers using the fields in PaRAM slots. If you are not doing it
  930. * all at once with edma_write_slot(), you will use this routine
  931. * plus two calls each for source and destination, setting the initial
  932. * address and saying how to index that address.
  933. *
  934. * An example of an A-Synchronized transfer is a serial link using a
  935. * single word shift register. In that case, @acnt would be equal to
  936. * that word size; the serial controller issues a DMA synchronization
  937. * event to transfer each word, and memory access by the DMA transfer
  938. * controller will be word-at-a-time.
  939. *
  940. * An example of an AB-Synchronized transfer is a device using a FIFO.
  941. * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
  942. * The controller with the FIFO issues DMA synchronization events when
  943. * the FIFO threshold is reached, and the DMA transfer controller will
  944. * transfer one frame to (or from) the FIFO. It will probably use
  945. * efficient burst modes to access memory.
  946. */
  947. void edma_set_transfer_params(unsigned slot,
  948. u16 acnt, u16 bcnt, u16 ccnt,
  949. u16 bcnt_rld, enum sync_dimension sync_mode)
  950. {
  951. unsigned ctlr;
  952. ctlr = EDMA_CTLR(slot);
  953. slot = EDMA_CHAN_SLOT(slot);
  954. if (slot < edma_info[ctlr]->num_slots) {
  955. edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
  956. 0x0000ffff, bcnt_rld << 16);
  957. if (sync_mode == ASYNC)
  958. edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
  959. else
  960. edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
  961. /* Set the acount, bcount, ccount registers */
  962. edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
  963. edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
  964. }
  965. }
  966. EXPORT_SYMBOL(edma_set_transfer_params);
  967. /**
  968. * edma_link - link one parameter RAM slot to another
  969. * @from: parameter RAM slot originating the link
  970. * @to: parameter RAM slot which is the link target
  971. *
  972. * The originating slot should not be part of any active DMA transfer.
  973. */
  974. void edma_link(unsigned from, unsigned to)
  975. {
  976. unsigned ctlr_from, ctlr_to;
  977. ctlr_from = EDMA_CTLR(from);
  978. from = EDMA_CHAN_SLOT(from);
  979. ctlr_to = EDMA_CTLR(to);
  980. to = EDMA_CHAN_SLOT(to);
  981. if (from >= edma_info[ctlr_from]->num_slots)
  982. return;
  983. if (to >= edma_info[ctlr_to]->num_slots)
  984. return;
  985. edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
  986. PARM_OFFSET(to));
  987. }
  988. EXPORT_SYMBOL(edma_link);
  989. /**
  990. * edma_unlink - cut link from one parameter RAM slot
  991. * @from: parameter RAM slot originating the link
  992. *
  993. * The originating slot should not be part of any active DMA transfer.
  994. * Its link is set to 0xffff.
  995. */
  996. void edma_unlink(unsigned from)
  997. {
  998. unsigned ctlr;
  999. ctlr = EDMA_CTLR(from);
  1000. from = EDMA_CHAN_SLOT(from);
  1001. if (from >= edma_info[ctlr]->num_slots)
  1002. return;
  1003. edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
  1004. }
  1005. EXPORT_SYMBOL(edma_unlink);
  1006. /*-----------------------------------------------------------------------*/
  1007. /* Parameter RAM operations (ii) -- read/write whole parameter sets */
  1008. /**
  1009. * edma_write_slot - write parameter RAM data for slot
  1010. * @slot: number of parameter RAM slot being modified
  1011. * @param: data to be written into parameter RAM slot
  1012. *
  1013. * Use this to assign all parameters of a transfer at once. This
  1014. * allows more efficient setup of transfers than issuing multiple
  1015. * calls to set up those parameters in small pieces, and provides
  1016. * complete control over all transfer options.
  1017. */
  1018. void edma_write_slot(unsigned slot, const struct edmacc_param *param)
  1019. {
  1020. unsigned ctlr;
  1021. ctlr = EDMA_CTLR(slot);
  1022. slot = EDMA_CHAN_SLOT(slot);
  1023. if (slot >= edma_info[ctlr]->num_slots)
  1024. return;
  1025. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
  1026. PARM_SIZE);
  1027. }
  1028. EXPORT_SYMBOL(edma_write_slot);
  1029. /**
  1030. * edma_read_slot - read parameter RAM data from slot
  1031. * @slot: number of parameter RAM slot being copied
  1032. * @param: where to store copy of parameter RAM data
  1033. *
  1034. * Use this to read data from a parameter RAM slot, perhaps to
  1035. * save them as a template for later reuse.
  1036. */
  1037. void edma_read_slot(unsigned slot, struct edmacc_param *param)
  1038. {
  1039. unsigned ctlr;
  1040. ctlr = EDMA_CTLR(slot);
  1041. slot = EDMA_CHAN_SLOT(slot);
  1042. if (slot >= edma_info[ctlr]->num_slots)
  1043. return;
  1044. memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
  1045. PARM_SIZE);
  1046. }
  1047. EXPORT_SYMBOL(edma_read_slot);
  1048. /*-----------------------------------------------------------------------*/
  1049. /* Various EDMA channel control operations */
  1050. /**
  1051. * edma_pause - pause dma on a channel
  1052. * @channel: on which edma_start() has been called
  1053. *
  1054. * This temporarily disables EDMA hardware events on the specified channel,
  1055. * preventing them from triggering new transfers on its behalf
  1056. */
  1057. void edma_pause(unsigned channel)
  1058. {
  1059. unsigned ctlr;
  1060. ctlr = EDMA_CTLR(channel);
  1061. channel = EDMA_CHAN_SLOT(channel);
  1062. if (channel < edma_info[ctlr]->num_channels) {
  1063. unsigned int mask = (1 << (channel & 0x1f));
  1064. edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
  1065. }
  1066. }
  1067. EXPORT_SYMBOL(edma_pause);
  1068. /**
  1069. * edma_resume - resumes dma on a paused channel
  1070. * @channel: on which edma_pause() has been called
  1071. *
  1072. * This re-enables EDMA hardware events on the specified channel.
  1073. */
  1074. void edma_resume(unsigned channel)
  1075. {
  1076. unsigned ctlr;
  1077. ctlr = EDMA_CTLR(channel);
  1078. channel = EDMA_CHAN_SLOT(channel);
  1079. if (channel < edma_info[ctlr]->num_channels) {
  1080. unsigned int mask = (1 << (channel & 0x1f));
  1081. edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
  1082. }
  1083. }
  1084. EXPORT_SYMBOL(edma_resume);
  1085. /**
  1086. * edma_start - start dma on a channel
  1087. * @channel: channel being activated
  1088. *
  1089. * Channels with event associations will be triggered by their hardware
  1090. * events, and channels without such associations will be triggered by
  1091. * software. (At this writing there is no interface for using software
  1092. * triggers except with channels that don't support hardware triggers.)
  1093. *
  1094. * Returns zero on success, else negative errno.
  1095. */
  1096. int edma_start(unsigned channel)
  1097. {
  1098. unsigned ctlr;
  1099. ctlr = EDMA_CTLR(channel);
  1100. channel = EDMA_CHAN_SLOT(channel);
  1101. if (channel < edma_info[ctlr]->num_channels) {
  1102. int j = channel >> 5;
  1103. unsigned int mask = (1 << (channel & 0x1f));
  1104. /* EDMA channels without event association */
  1105. if (test_bit(channel, edma_info[ctlr]->edma_unused)) {
  1106. pr_debug("EDMA: ESR%d %08x\n", j,
  1107. edma_shadow0_read_array(ctlr, SH_ESR, j));
  1108. edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
  1109. return 0;
  1110. }
  1111. /* EDMA channel with event association */
  1112. pr_debug("EDMA: ER%d %08x\n", j,
  1113. edma_shadow0_read_array(ctlr, SH_ER, j));
  1114. /* Clear any pending error */
  1115. edma_write_array(ctlr, EDMA_EMCR, j, mask);
  1116. /* Clear any SER */
  1117. edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
  1118. edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
  1119. pr_debug("EDMA: EER%d %08x\n", j,
  1120. edma_shadow0_read_array(ctlr, SH_EER, j));
  1121. return 0;
  1122. }
  1123. return -EINVAL;
  1124. }
  1125. EXPORT_SYMBOL(edma_start);
  1126. /**
  1127. * edma_stop - stops dma on the channel passed
  1128. * @channel: channel being deactivated
  1129. *
  1130. * When @lch is a channel, any active transfer is paused and
  1131. * all pending hardware events are cleared. The current transfer
  1132. * may not be resumed, and the channel's Parameter RAM should be
  1133. * reinitialized before being reused.
  1134. */
  1135. void edma_stop(unsigned channel)
  1136. {
  1137. unsigned ctlr;
  1138. ctlr = EDMA_CTLR(channel);
  1139. channel = EDMA_CHAN_SLOT(channel);
  1140. if (channel < edma_info[ctlr]->num_channels) {
  1141. int j = channel >> 5;
  1142. unsigned int mask = (1 << (channel & 0x1f));
  1143. edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
  1144. edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
  1145. edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
  1146. edma_write_array(ctlr, EDMA_EMCR, j, mask);
  1147. pr_debug("EDMA: EER%d %08x\n", j,
  1148. edma_shadow0_read_array(ctlr, SH_EER, j));
  1149. /* REVISIT: consider guarding against inappropriate event
  1150. * chaining by overwriting with dummy_paramset.
  1151. */
  1152. }
  1153. }
  1154. EXPORT_SYMBOL(edma_stop);
  1155. /******************************************************************************
  1156. *
  1157. * It cleans ParamEntry qand bring back EDMA to initial state if media has
  1158. * been removed before EDMA has finished.It is usedful for removable media.
  1159. * Arguments:
  1160. * ch_no - channel no
  1161. *
  1162. * Return: zero on success, or corresponding error no on failure
  1163. *
  1164. * FIXME this should not be needed ... edma_stop() should suffice.
  1165. *
  1166. *****************************************************************************/
  1167. void edma_clean_channel(unsigned channel)
  1168. {
  1169. unsigned ctlr;
  1170. ctlr = EDMA_CTLR(channel);
  1171. channel = EDMA_CHAN_SLOT(channel);
  1172. if (channel < edma_info[ctlr]->num_channels) {
  1173. int j = (channel >> 5);
  1174. unsigned int mask = 1 << (channel & 0x1f);
  1175. pr_debug("EDMA: EMR%d %08x\n", j,
  1176. edma_read_array(ctlr, EDMA_EMR, j));
  1177. edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
  1178. /* Clear the corresponding EMR bits */
  1179. edma_write_array(ctlr, EDMA_EMCR, j, mask);
  1180. /* Clear any SER */
  1181. edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
  1182. edma_write(ctlr, EDMA_CCERRCLR, (1 << 16) | 0x3);
  1183. }
  1184. }
  1185. EXPORT_SYMBOL(edma_clean_channel);
  1186. /*
  1187. * edma_clear_event - clear an outstanding event on the DMA channel
  1188. * Arguments:
  1189. * channel - channel number
  1190. */
  1191. void edma_clear_event(unsigned channel)
  1192. {
  1193. unsigned ctlr;
  1194. ctlr = EDMA_CTLR(channel);
  1195. channel = EDMA_CHAN_SLOT(channel);
  1196. if (channel >= edma_info[ctlr]->num_channels)
  1197. return;
  1198. if (channel < 32)
  1199. edma_write(ctlr, EDMA_ECR, 1 << channel);
  1200. else
  1201. edma_write(ctlr, EDMA_ECRH, 1 << (channel - 32));
  1202. }
  1203. EXPORT_SYMBOL(edma_clear_event);
  1204. /*-----------------------------------------------------------------------*/
  1205. static int __init edma_probe(struct platform_device *pdev)
  1206. {
  1207. struct edma_soc_info *info = pdev->dev.platform_data;
  1208. const s8 (*queue_priority_mapping)[2];
  1209. const s8 (*queue_tc_mapping)[2];
  1210. int i, j, found = 0;
  1211. int status = -1;
  1212. int irq[EDMA_MAX_CC] = {0, 0};
  1213. int err_irq[EDMA_MAX_CC] = {0, 0};
  1214. struct resource *r[EDMA_MAX_CC] = {NULL};
  1215. resource_size_t len[EDMA_MAX_CC];
  1216. char res_name[10];
  1217. char irq_name[10];
  1218. if (!info)
  1219. return -ENODEV;
  1220. for (j = 0; j < EDMA_MAX_CC; j++) {
  1221. sprintf(res_name, "edma_cc%d", j);
  1222. r[j] = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  1223. res_name);
  1224. if (!r[j]) {
  1225. if (found)
  1226. break;
  1227. else
  1228. return -ENODEV;
  1229. } else
  1230. found = 1;
  1231. len[j] = resource_size(r[j]);
  1232. r[j] = request_mem_region(r[j]->start, len[j],
  1233. dev_name(&pdev->dev));
  1234. if (!r[j]) {
  1235. status = -EBUSY;
  1236. goto fail1;
  1237. }
  1238. edmacc_regs_base[j] = ioremap(r[j]->start, len[j]);
  1239. if (!edmacc_regs_base[j]) {
  1240. status = -EBUSY;
  1241. goto fail1;
  1242. }
  1243. edma_info[j] = kmalloc(sizeof(struct edma), GFP_KERNEL);
  1244. if (!edma_info[j]) {
  1245. status = -ENOMEM;
  1246. goto fail1;
  1247. }
  1248. memset(edma_info[j], 0, sizeof(struct edma));
  1249. edma_info[j]->num_channels = min_t(unsigned, info[j].n_channel,
  1250. EDMA_MAX_DMACH);
  1251. edma_info[j]->num_slots = min_t(unsigned, info[j].n_slot,
  1252. EDMA_MAX_PARAMENTRY);
  1253. edma_info[j]->num_cc = min_t(unsigned, info[j].n_cc,
  1254. EDMA_MAX_CC);
  1255. edma_info[j]->default_queue = info[j].default_queue;
  1256. if (!edma_info[j]->default_queue)
  1257. edma_info[j]->default_queue = EVENTQ_1;
  1258. dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
  1259. edmacc_regs_base[j]);
  1260. for (i = 0; i < edma_info[j]->num_slots; i++)
  1261. memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
  1262. &dummy_paramset, PARM_SIZE);
  1263. /* Mark all channels as unused */
  1264. memset(edma_info[j]->edma_unused, 0xff,
  1265. sizeof(edma_info[j]->edma_unused));
  1266. sprintf(irq_name, "edma%d", j);
  1267. irq[j] = platform_get_irq_byname(pdev, irq_name);
  1268. edma_info[j]->irq_res_start = irq[j];
  1269. status = request_irq(irq[j], dma_irq_handler, 0, "edma",
  1270. &pdev->dev);
  1271. if (status < 0) {
  1272. dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
  1273. irq[j], status);
  1274. goto fail;
  1275. }
  1276. sprintf(irq_name, "edma%d_err", j);
  1277. err_irq[j] = platform_get_irq_byname(pdev, irq_name);
  1278. edma_info[j]->irq_res_end = err_irq[j];
  1279. status = request_irq(err_irq[j], dma_ccerr_handler, 0,
  1280. "edma_error", &pdev->dev);
  1281. if (status < 0) {
  1282. dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
  1283. err_irq[j], status);
  1284. goto fail;
  1285. }
  1286. /* Everything lives on transfer controller 1 until otherwise
  1287. * specified. This way, long transfers on the low priority queue
  1288. * started by the codec engine will not cause audio defects.
  1289. */
  1290. for (i = 0; i < edma_info[j]->num_channels; i++)
  1291. map_dmach_queue(j, i, EVENTQ_1);
  1292. queue_tc_mapping = info[j].queue_tc_mapping;
  1293. queue_priority_mapping = info[j].queue_priority_mapping;
  1294. /* Event queue to TC mapping */
  1295. for (i = 0; queue_tc_mapping[i][0] != -1; i++)
  1296. map_queue_tc(j, queue_tc_mapping[i][0],
  1297. queue_tc_mapping[i][1]);
  1298. /* Event queue priority mapping */
  1299. for (i = 0; queue_priority_mapping[i][0] != -1; i++)
  1300. assign_priority_to_queue(j,
  1301. queue_priority_mapping[i][0],
  1302. queue_priority_mapping[i][1]);
  1303. /* Map the channel to param entry if channel mapping logic
  1304. * exist
  1305. */
  1306. if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
  1307. map_dmach_param(j);
  1308. for (i = 0; i < info[j].n_region; i++) {
  1309. edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
  1310. edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
  1311. edma_write_array(j, EDMA_QRAE, i, 0x0);
  1312. }
  1313. arch_num_cc++;
  1314. }
  1315. if (tc_errs_handled) {
  1316. status = request_irq(IRQ_TCERRINT0, dma_tc0err_handler, 0,
  1317. "edma_tc0", &pdev->dev);
  1318. if (status < 0) {
  1319. dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
  1320. IRQ_TCERRINT0, status);
  1321. return status;
  1322. }
  1323. status = request_irq(IRQ_TCERRINT, dma_tc1err_handler, 0,
  1324. "edma_tc1", &pdev->dev);
  1325. if (status < 0) {
  1326. dev_dbg(&pdev->dev, "request_irq %d --> %d\n",
  1327. IRQ_TCERRINT, status);
  1328. return status;
  1329. }
  1330. }
  1331. return 0;
  1332. fail:
  1333. for (i = 0; i < EDMA_MAX_CC; i++) {
  1334. if (err_irq[i])
  1335. free_irq(err_irq[i], &pdev->dev);
  1336. if (irq[i])
  1337. free_irq(irq[i], &pdev->dev);
  1338. }
  1339. fail1:
  1340. for (i = 0; i < EDMA_MAX_CC; i++) {
  1341. if (r[i])
  1342. release_mem_region(r[i]->start, len[i]);
  1343. if (edmacc_regs_base[i])
  1344. iounmap(edmacc_regs_base[i]);
  1345. kfree(edma_info[i]);
  1346. }
  1347. return status;
  1348. }
  1349. static struct platform_driver edma_driver = {
  1350. .driver.name = "edma",
  1351. };
  1352. static int __init edma_init(void)
  1353. {
  1354. return platform_driver_probe(&edma_driver, edma_probe);
  1355. }
  1356. arch_initcall(edma_init);