i8254.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669
  1. /*
  2. * 8253/8254 interval timer emulation
  3. *
  4. * Copyright (c) 2003-2004 Fabrice Bellard
  5. * Copyright (c) 2006 Intel Corporation
  6. * Copyright (c) 2007 Keir Fraser, XenSource Inc
  7. * Copyright (c) 2008 Intel Corporation
  8. *
  9. * Permission is hereby granted, free of charge, to any person obtaining a copy
  10. * of this software and associated documentation files (the "Software"), to deal
  11. * in the Software without restriction, including without limitation the rights
  12. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  13. * copies of the Software, and to permit persons to whom the Software is
  14. * furnished to do so, subject to the following conditions:
  15. *
  16. * The above copyright notice and this permission notice shall be included in
  17. * all copies or substantial portions of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  22. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  23. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  24. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  25. * THE SOFTWARE.
  26. *
  27. * Authors:
  28. * Sheng Yang <sheng.yang@intel.com>
  29. * Based on QEMU and Xen.
  30. */
  31. #include <linux/kvm_host.h>
  32. #include "irq.h"
  33. #include "i8254.h"
  34. #ifndef CONFIG_X86_64
  35. #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
  36. #else
  37. #define mod_64(x, y) ((x) % (y))
  38. #endif
  39. #define RW_STATE_LSB 1
  40. #define RW_STATE_MSB 2
  41. #define RW_STATE_WORD0 3
  42. #define RW_STATE_WORD1 4
  43. /* Compute with 96 bit intermediate result: (a*b)/c */
  44. static u64 muldiv64(u64 a, u32 b, u32 c)
  45. {
  46. union {
  47. u64 ll;
  48. struct {
  49. u32 low, high;
  50. } l;
  51. } u, res;
  52. u64 rl, rh;
  53. u.ll = a;
  54. rl = (u64)u.l.low * (u64)b;
  55. rh = (u64)u.l.high * (u64)b;
  56. rh += (rl >> 32);
  57. res.l.high = div64_u64(rh, c);
  58. res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
  59. return res.ll;
  60. }
  61. static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
  62. {
  63. struct kvm_kpit_channel_state *c =
  64. &kvm->arch.vpit->pit_state.channels[channel];
  65. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  66. switch (c->mode) {
  67. default:
  68. case 0:
  69. case 4:
  70. /* XXX: just disable/enable counting */
  71. break;
  72. case 1:
  73. case 2:
  74. case 3:
  75. case 5:
  76. /* Restart counting on rising edge. */
  77. if (c->gate < val)
  78. c->count_load_time = ktime_get();
  79. break;
  80. }
  81. c->gate = val;
  82. }
  83. static int pit_get_gate(struct kvm *kvm, int channel)
  84. {
  85. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  86. return kvm->arch.vpit->pit_state.channels[channel].gate;
  87. }
  88. static int pit_get_count(struct kvm *kvm, int channel)
  89. {
  90. struct kvm_kpit_channel_state *c =
  91. &kvm->arch.vpit->pit_state.channels[channel];
  92. s64 d, t;
  93. int counter;
  94. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  95. t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
  96. d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
  97. switch (c->mode) {
  98. case 0:
  99. case 1:
  100. case 4:
  101. case 5:
  102. counter = (c->count - d) & 0xffff;
  103. break;
  104. case 3:
  105. /* XXX: may be incorrect for odd counts */
  106. counter = c->count - (mod_64((2 * d), c->count));
  107. break;
  108. default:
  109. counter = c->count - mod_64(d, c->count);
  110. break;
  111. }
  112. return counter;
  113. }
  114. static int pit_get_out(struct kvm *kvm, int channel)
  115. {
  116. struct kvm_kpit_channel_state *c =
  117. &kvm->arch.vpit->pit_state.channels[channel];
  118. s64 d, t;
  119. int out;
  120. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  121. t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
  122. d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
  123. switch (c->mode) {
  124. default:
  125. case 0:
  126. out = (d >= c->count);
  127. break;
  128. case 1:
  129. out = (d < c->count);
  130. break;
  131. case 2:
  132. out = ((mod_64(d, c->count) == 0) && (d != 0));
  133. break;
  134. case 3:
  135. out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
  136. break;
  137. case 4:
  138. case 5:
  139. out = (d == c->count);
  140. break;
  141. }
  142. return out;
  143. }
  144. static void pit_latch_count(struct kvm *kvm, int channel)
  145. {
  146. struct kvm_kpit_channel_state *c =
  147. &kvm->arch.vpit->pit_state.channels[channel];
  148. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  149. if (!c->count_latched) {
  150. c->latched_count = pit_get_count(kvm, channel);
  151. c->count_latched = c->rw_mode;
  152. }
  153. }
  154. static void pit_latch_status(struct kvm *kvm, int channel)
  155. {
  156. struct kvm_kpit_channel_state *c =
  157. &kvm->arch.vpit->pit_state.channels[channel];
  158. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  159. if (!c->status_latched) {
  160. /* TODO: Return NULL COUNT (bit 6). */
  161. c->status = ((pit_get_out(kvm, channel) << 7) |
  162. (c->rw_mode << 4) |
  163. (c->mode << 1) |
  164. c->bcd);
  165. c->status_latched = 1;
  166. }
  167. }
  168. static int __pit_timer_fn(struct kvm_kpit_state *ps)
  169. {
  170. struct kvm_vcpu *vcpu0 = ps->pit->kvm->vcpus[0];
  171. struct kvm_kpit_timer *pt = &ps->pit_timer;
  172. if (!atomic_inc_and_test(&pt->pending))
  173. set_bit(KVM_REQ_PENDING_TIMER, &vcpu0->requests);
  174. if (!pt->reinject)
  175. atomic_set(&pt->pending, 1);
  176. if (vcpu0 && waitqueue_active(&vcpu0->wq))
  177. wake_up_interruptible(&vcpu0->wq);
  178. hrtimer_add_expires_ns(&pt->timer, pt->period);
  179. if (pt->period)
  180. ps->channels[0].count_load_time = ktime_get();
  181. return (pt->period == 0 ? 0 : 1);
  182. }
  183. int pit_has_pending_timer(struct kvm_vcpu *vcpu)
  184. {
  185. struct kvm_pit *pit = vcpu->kvm->arch.vpit;
  186. if (pit && vcpu->vcpu_id == 0 && pit->pit_state.irq_ack)
  187. return atomic_read(&pit->pit_state.pit_timer.pending);
  188. return 0;
  189. }
  190. static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
  191. {
  192. struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
  193. irq_ack_notifier);
  194. spin_lock(&ps->inject_lock);
  195. if (atomic_dec_return(&ps->pit_timer.pending) < 0)
  196. atomic_inc(&ps->pit_timer.pending);
  197. ps->irq_ack = 1;
  198. spin_unlock(&ps->inject_lock);
  199. }
  200. static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
  201. {
  202. struct kvm_kpit_state *ps;
  203. int restart_timer = 0;
  204. ps = container_of(data, struct kvm_kpit_state, pit_timer.timer);
  205. restart_timer = __pit_timer_fn(ps);
  206. if (restart_timer)
  207. return HRTIMER_RESTART;
  208. else
  209. return HRTIMER_NORESTART;
  210. }
  211. void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
  212. {
  213. struct kvm_pit *pit = vcpu->kvm->arch.vpit;
  214. struct hrtimer *timer;
  215. if (vcpu->vcpu_id != 0 || !pit)
  216. return;
  217. timer = &pit->pit_state.pit_timer.timer;
  218. if (hrtimer_cancel(timer))
  219. hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
  220. }
  221. static void destroy_pit_timer(struct kvm_kpit_timer *pt)
  222. {
  223. pr_debug("pit: execute del timer!\n");
  224. hrtimer_cancel(&pt->timer);
  225. }
  226. static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
  227. {
  228. struct kvm_kpit_timer *pt = &ps->pit_timer;
  229. s64 interval;
  230. interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
  231. pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);
  232. /* TODO The new value only affected after the retriggered */
  233. hrtimer_cancel(&pt->timer);
  234. pt->period = (is_period == 0) ? 0 : interval;
  235. pt->timer.function = pit_timer_fn;
  236. atomic_set(&pt->pending, 0);
  237. ps->irq_ack = 1;
  238. hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
  239. HRTIMER_MODE_ABS);
  240. }
  241. static void pit_load_count(struct kvm *kvm, int channel, u32 val)
  242. {
  243. struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
  244. WARN_ON(!mutex_is_locked(&ps->lock));
  245. pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
  246. /*
  247. * Though spec said the state of 8254 is undefined after power-up,
  248. * seems some tricky OS like Windows XP depends on IRQ0 interrupt
  249. * when booting up.
  250. * So here setting initialize rate for it, and not a specific number
  251. */
  252. if (val == 0)
  253. val = 0x10000;
  254. ps->channels[channel].count_load_time = ktime_get();
  255. ps->channels[channel].count = val;
  256. if (channel != 0)
  257. return;
  258. /* Two types of timer
  259. * mode 1 is one shot, mode 2 is period, otherwise del timer */
  260. switch (ps->channels[0].mode) {
  261. case 1:
  262. /* FIXME: enhance mode 4 precision */
  263. case 4:
  264. create_pit_timer(ps, val, 0);
  265. break;
  266. case 2:
  267. case 3:
  268. create_pit_timer(ps, val, 1);
  269. break;
  270. default:
  271. destroy_pit_timer(&ps->pit_timer);
  272. }
  273. }
  274. void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val)
  275. {
  276. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  277. pit_load_count(kvm, channel, val);
  278. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  279. }
  280. static void pit_ioport_write(struct kvm_io_device *this,
  281. gpa_t addr, int len, const void *data)
  282. {
  283. struct kvm_pit *pit = (struct kvm_pit *)this->private;
  284. struct kvm_kpit_state *pit_state = &pit->pit_state;
  285. struct kvm *kvm = pit->kvm;
  286. int channel, access;
  287. struct kvm_kpit_channel_state *s;
  288. u32 val = *(u32 *) data;
  289. val &= 0xff;
  290. addr &= KVM_PIT_CHANNEL_MASK;
  291. mutex_lock(&pit_state->lock);
  292. if (val != 0)
  293. pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
  294. (unsigned int)addr, len, val);
  295. if (addr == 3) {
  296. channel = val >> 6;
  297. if (channel == 3) {
  298. /* Read-Back Command. */
  299. for (channel = 0; channel < 3; channel++) {
  300. s = &pit_state->channels[channel];
  301. if (val & (2 << channel)) {
  302. if (!(val & 0x20))
  303. pit_latch_count(kvm, channel);
  304. if (!(val & 0x10))
  305. pit_latch_status(kvm, channel);
  306. }
  307. }
  308. } else {
  309. /* Select Counter <channel>. */
  310. s = &pit_state->channels[channel];
  311. access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
  312. if (access == 0) {
  313. pit_latch_count(kvm, channel);
  314. } else {
  315. s->rw_mode = access;
  316. s->read_state = access;
  317. s->write_state = access;
  318. s->mode = (val >> 1) & 7;
  319. if (s->mode > 5)
  320. s->mode -= 4;
  321. s->bcd = val & 1;
  322. }
  323. }
  324. } else {
  325. /* Write Count. */
  326. s = &pit_state->channels[addr];
  327. switch (s->write_state) {
  328. default:
  329. case RW_STATE_LSB:
  330. pit_load_count(kvm, addr, val);
  331. break;
  332. case RW_STATE_MSB:
  333. pit_load_count(kvm, addr, val << 8);
  334. break;
  335. case RW_STATE_WORD0:
  336. s->write_latch = val;
  337. s->write_state = RW_STATE_WORD1;
  338. break;
  339. case RW_STATE_WORD1:
  340. pit_load_count(kvm, addr, s->write_latch | (val << 8));
  341. s->write_state = RW_STATE_WORD0;
  342. break;
  343. }
  344. }
  345. mutex_unlock(&pit_state->lock);
  346. }
  347. static void pit_ioport_read(struct kvm_io_device *this,
  348. gpa_t addr, int len, void *data)
  349. {
  350. struct kvm_pit *pit = (struct kvm_pit *)this->private;
  351. struct kvm_kpit_state *pit_state = &pit->pit_state;
  352. struct kvm *kvm = pit->kvm;
  353. int ret, count;
  354. struct kvm_kpit_channel_state *s;
  355. addr &= KVM_PIT_CHANNEL_MASK;
  356. s = &pit_state->channels[addr];
  357. mutex_lock(&pit_state->lock);
  358. if (s->status_latched) {
  359. s->status_latched = 0;
  360. ret = s->status;
  361. } else if (s->count_latched) {
  362. switch (s->count_latched) {
  363. default:
  364. case RW_STATE_LSB:
  365. ret = s->latched_count & 0xff;
  366. s->count_latched = 0;
  367. break;
  368. case RW_STATE_MSB:
  369. ret = s->latched_count >> 8;
  370. s->count_latched = 0;
  371. break;
  372. case RW_STATE_WORD0:
  373. ret = s->latched_count & 0xff;
  374. s->count_latched = RW_STATE_MSB;
  375. break;
  376. }
  377. } else {
  378. switch (s->read_state) {
  379. default:
  380. case RW_STATE_LSB:
  381. count = pit_get_count(kvm, addr);
  382. ret = count & 0xff;
  383. break;
  384. case RW_STATE_MSB:
  385. count = pit_get_count(kvm, addr);
  386. ret = (count >> 8) & 0xff;
  387. break;
  388. case RW_STATE_WORD0:
  389. count = pit_get_count(kvm, addr);
  390. ret = count & 0xff;
  391. s->read_state = RW_STATE_WORD1;
  392. break;
  393. case RW_STATE_WORD1:
  394. count = pit_get_count(kvm, addr);
  395. ret = (count >> 8) & 0xff;
  396. s->read_state = RW_STATE_WORD0;
  397. break;
  398. }
  399. }
  400. if (len > sizeof(ret))
  401. len = sizeof(ret);
  402. memcpy(data, (char *)&ret, len);
  403. mutex_unlock(&pit_state->lock);
  404. }
  405. static int pit_in_range(struct kvm_io_device *this, gpa_t addr,
  406. int len, int is_write)
  407. {
  408. return ((addr >= KVM_PIT_BASE_ADDRESS) &&
  409. (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
  410. }
  411. static void speaker_ioport_write(struct kvm_io_device *this,
  412. gpa_t addr, int len, const void *data)
  413. {
  414. struct kvm_pit *pit = (struct kvm_pit *)this->private;
  415. struct kvm_kpit_state *pit_state = &pit->pit_state;
  416. struct kvm *kvm = pit->kvm;
  417. u32 val = *(u32 *) data;
  418. mutex_lock(&pit_state->lock);
  419. pit_state->speaker_data_on = (val >> 1) & 1;
  420. pit_set_gate(kvm, 2, val & 1);
  421. mutex_unlock(&pit_state->lock);
  422. }
  423. static void speaker_ioport_read(struct kvm_io_device *this,
  424. gpa_t addr, int len, void *data)
  425. {
  426. struct kvm_pit *pit = (struct kvm_pit *)this->private;
  427. struct kvm_kpit_state *pit_state = &pit->pit_state;
  428. struct kvm *kvm = pit->kvm;
  429. unsigned int refresh_clock;
  430. int ret;
  431. /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
  432. refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
  433. mutex_lock(&pit_state->lock);
  434. ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
  435. (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
  436. if (len > sizeof(ret))
  437. len = sizeof(ret);
  438. memcpy(data, (char *)&ret, len);
  439. mutex_unlock(&pit_state->lock);
  440. }
  441. static int speaker_in_range(struct kvm_io_device *this, gpa_t addr,
  442. int len, int is_write)
  443. {
  444. return (addr == KVM_SPEAKER_BASE_ADDRESS);
  445. }
  446. void kvm_pit_reset(struct kvm_pit *pit)
  447. {
  448. int i;
  449. struct kvm_kpit_channel_state *c;
  450. mutex_lock(&pit->pit_state.lock);
  451. for (i = 0; i < 3; i++) {
  452. c = &pit->pit_state.channels[i];
  453. c->mode = 0xff;
  454. c->gate = (i != 2);
  455. pit_load_count(pit->kvm, i, 0);
  456. }
  457. mutex_unlock(&pit->pit_state.lock);
  458. atomic_set(&pit->pit_state.pit_timer.pending, 0);
  459. pit->pit_state.irq_ack = 1;
  460. }
  461. static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
  462. {
  463. struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
  464. if (!mask) {
  465. atomic_set(&pit->pit_state.pit_timer.pending, 0);
  466. pit->pit_state.irq_ack = 1;
  467. }
  468. }
  469. struct kvm_pit *kvm_create_pit(struct kvm *kvm)
  470. {
  471. struct kvm_pit *pit;
  472. struct kvm_kpit_state *pit_state;
  473. pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
  474. if (!pit)
  475. return NULL;
  476. pit->irq_source_id = kvm_request_irq_source_id(kvm);
  477. if (pit->irq_source_id < 0) {
  478. kfree(pit);
  479. return NULL;
  480. }
  481. mutex_init(&pit->pit_state.lock);
  482. mutex_lock(&pit->pit_state.lock);
  483. spin_lock_init(&pit->pit_state.inject_lock);
  484. /* Initialize PIO device */
  485. pit->dev.read = pit_ioport_read;
  486. pit->dev.write = pit_ioport_write;
  487. pit->dev.in_range = pit_in_range;
  488. pit->dev.private = pit;
  489. kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
  490. pit->speaker_dev.read = speaker_ioport_read;
  491. pit->speaker_dev.write = speaker_ioport_write;
  492. pit->speaker_dev.in_range = speaker_in_range;
  493. pit->speaker_dev.private = pit;
  494. kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev);
  495. kvm->arch.vpit = pit;
  496. pit->kvm = kvm;
  497. pit_state = &pit->pit_state;
  498. pit_state->pit = pit;
  499. hrtimer_init(&pit_state->pit_timer.timer,
  500. CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  501. pit_state->irq_ack_notifier.gsi = 0;
  502. pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
  503. kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
  504. pit_state->pit_timer.reinject = true;
  505. mutex_unlock(&pit->pit_state.lock);
  506. kvm_pit_reset(pit);
  507. pit->mask_notifier.func = pit_mask_notifer;
  508. kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
  509. return pit;
  510. }
  511. void kvm_free_pit(struct kvm *kvm)
  512. {
  513. struct hrtimer *timer;
  514. if (kvm->arch.vpit) {
  515. kvm_unregister_irq_mask_notifier(kvm, 0,
  516. &kvm->arch.vpit->mask_notifier);
  517. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  518. timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
  519. hrtimer_cancel(timer);
  520. kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
  521. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  522. kfree(kvm->arch.vpit);
  523. }
  524. }
  525. static void __inject_pit_timer_intr(struct kvm *kvm)
  526. {
  527. struct kvm_vcpu *vcpu;
  528. int i;
  529. mutex_lock(&kvm->lock);
  530. kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
  531. kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
  532. mutex_unlock(&kvm->lock);
  533. /*
  534. * Provides NMI watchdog support via Virtual Wire mode.
  535. * The route is: PIT -> PIC -> LVT0 in NMI mode.
  536. *
  537. * Note: Our Virtual Wire implementation is simplified, only
  538. * propagating PIT interrupts to all VCPUs when they have set
  539. * LVT0 to NMI delivery. Other PIC interrupts are just sent to
  540. * VCPU0, and only if its LVT0 is in EXTINT mode.
  541. */
  542. if (kvm->arch.vapics_in_nmi_mode > 0)
  543. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  544. vcpu = kvm->vcpus[i];
  545. if (vcpu)
  546. kvm_apic_nmi_wd_deliver(vcpu);
  547. }
  548. }
  549. void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
  550. {
  551. struct kvm_pit *pit = vcpu->kvm->arch.vpit;
  552. struct kvm *kvm = vcpu->kvm;
  553. struct kvm_kpit_state *ps;
  554. if (vcpu && pit) {
  555. int inject = 0;
  556. ps = &pit->pit_state;
  557. /* Try to inject pending interrupts when
  558. * last one has been acked.
  559. */
  560. spin_lock(&ps->inject_lock);
  561. if (atomic_read(&ps->pit_timer.pending) && ps->irq_ack) {
  562. ps->irq_ack = 0;
  563. inject = 1;
  564. }
  565. spin_unlock(&ps->inject_lock);
  566. if (inject)
  567. __inject_pit_timer_intr(kvm);
  568. }
  569. }