uaccess_pt.c 3.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153
  1. /*
  2. * arch/s390/lib/uaccess_pt.c
  3. *
  4. * User access functions based on page table walks.
  5. *
  6. * Copyright IBM Corp. 2006
  7. * Author(s): Gerald Schaefer (gerald.schaefer@de.ibm.com)
  8. */
  9. #include <linux/errno.h>
  10. #include <asm/uaccess.h>
  11. #include <linux/mm.h>
  12. #include <asm/futex.h>
  13. static inline int __handle_fault(struct mm_struct *mm, unsigned long address,
  14. int write_access)
  15. {
  16. struct vm_area_struct *vma;
  17. int ret = -EFAULT;
  18. down_read(&mm->mmap_sem);
  19. vma = find_vma(mm, address);
  20. if (unlikely(!vma))
  21. goto out;
  22. if (unlikely(vma->vm_start > address)) {
  23. if (!(vma->vm_flags & VM_GROWSDOWN))
  24. goto out;
  25. if (expand_stack(vma, address))
  26. goto out;
  27. }
  28. if (!write_access) {
  29. /* page not present, check vm flags */
  30. if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
  31. goto out;
  32. } else {
  33. if (!(vma->vm_flags & VM_WRITE))
  34. goto out;
  35. }
  36. survive:
  37. switch (handle_mm_fault(mm, vma, address, write_access)) {
  38. case VM_FAULT_MINOR:
  39. current->min_flt++;
  40. break;
  41. case VM_FAULT_MAJOR:
  42. current->maj_flt++;
  43. break;
  44. case VM_FAULT_SIGBUS:
  45. goto out_sigbus;
  46. case VM_FAULT_OOM:
  47. goto out_of_memory;
  48. default:
  49. BUG();
  50. }
  51. ret = 0;
  52. out:
  53. up_read(&mm->mmap_sem);
  54. return ret;
  55. out_of_memory:
  56. up_read(&mm->mmap_sem);
  57. if (current->pid == 1) {
  58. yield();
  59. goto survive;
  60. }
  61. printk("VM: killing process %s\n", current->comm);
  62. return ret;
  63. out_sigbus:
  64. up_read(&mm->mmap_sem);
  65. current->thread.prot_addr = address;
  66. current->thread.trap_no = 0x11;
  67. force_sig(SIGBUS, current);
  68. return ret;
  69. }
  70. static inline size_t __user_copy_pt(unsigned long uaddr, void *kptr,
  71. size_t n, int write_user)
  72. {
  73. struct mm_struct *mm = current->mm;
  74. unsigned long offset, pfn, done, size;
  75. pgd_t *pgd;
  76. pmd_t *pmd;
  77. pte_t *pte;
  78. void *from, *to;
  79. done = 0;
  80. retry:
  81. spin_lock(&mm->page_table_lock);
  82. do {
  83. pgd = pgd_offset(mm, uaddr);
  84. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  85. goto fault;
  86. pmd = pmd_offset(pgd, uaddr);
  87. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  88. goto fault;
  89. pte = pte_offset_map(pmd, uaddr);
  90. if (!pte || !pte_present(*pte) ||
  91. (write_user && !pte_write(*pte)))
  92. goto fault;
  93. pfn = pte_pfn(*pte);
  94. if (!pfn_valid(pfn))
  95. goto out;
  96. offset = uaddr & (PAGE_SIZE - 1);
  97. size = min(n - done, PAGE_SIZE - offset);
  98. if (write_user) {
  99. to = (void *)((pfn << PAGE_SHIFT) + offset);
  100. from = kptr + done;
  101. } else {
  102. from = (void *)((pfn << PAGE_SHIFT) + offset);
  103. to = kptr + done;
  104. }
  105. memcpy(to, from, size);
  106. done += size;
  107. uaddr += size;
  108. } while (done < n);
  109. out:
  110. spin_unlock(&mm->page_table_lock);
  111. return n - done;
  112. fault:
  113. spin_unlock(&mm->page_table_lock);
  114. if (__handle_fault(mm, uaddr, write_user))
  115. return n - done;
  116. goto retry;
  117. }
  118. size_t copy_from_user_pt(size_t n, const void __user *from, void *to)
  119. {
  120. size_t rc;
  121. if (segment_eq(get_fs(), KERNEL_DS)) {
  122. memcpy(to, (void __kernel __force *) from, n);
  123. return 0;
  124. }
  125. rc = __user_copy_pt((unsigned long) from, to, n, 0);
  126. if (unlikely(rc))
  127. memset(to + n - rc, 0, rc);
  128. return rc;
  129. }
  130. size_t copy_to_user_pt(size_t n, void __user *to, const void *from)
  131. {
  132. if (segment_eq(get_fs(), KERNEL_DS)) {
  133. memcpy((void __kernel __force *) to, from, n);
  134. return 0;
  135. }
  136. return __user_copy_pt((unsigned long) to, (void *) from, n, 1);
  137. }