mcdi.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249
  1. /****************************************************************************
  2. * Driver for Solarflare Solarstorm network controllers and boards
  3. * Copyright 2008-2011 Solarflare Communications Inc.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of the GNU General Public License version 2 as published
  7. * by the Free Software Foundation, incorporated herein by reference.
  8. */
  9. #include <linux/delay.h>
  10. #include "net_driver.h"
  11. #include "nic.h"
  12. #include "io.h"
  13. #include "regs.h"
  14. #include "mcdi_pcol.h"
  15. #include "phy.h"
  16. /**************************************************************************
  17. *
  18. * Management-Controller-to-Driver Interface
  19. *
  20. **************************************************************************
  21. */
  22. #define MCDI_RPC_TIMEOUT (10 * HZ)
  23. #define MCDI_PDU(efx) \
  24. (efx_port_num(efx) ? MC_SMEM_P1_PDU_OFST : MC_SMEM_P0_PDU_OFST)
  25. #define MCDI_DOORBELL(efx) \
  26. (efx_port_num(efx) ? MC_SMEM_P1_DOORBELL_OFST : MC_SMEM_P0_DOORBELL_OFST)
  27. #define MCDI_STATUS(efx) \
  28. (efx_port_num(efx) ? MC_SMEM_P1_STATUS_OFST : MC_SMEM_P0_STATUS_OFST)
  29. /* A reboot/assertion causes the MCDI status word to be set after the
  30. * command word is set or a REBOOT event is sent. If we notice a reboot
  31. * via these mechanisms then wait 10ms for the status word to be set. */
  32. #define MCDI_STATUS_DELAY_US 100
  33. #define MCDI_STATUS_DELAY_COUNT 100
  34. #define MCDI_STATUS_SLEEP_MS \
  35. (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
  36. #define SEQ_MASK \
  37. EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
  38. static inline struct efx_mcdi_iface *efx_mcdi(struct efx_nic *efx)
  39. {
  40. struct siena_nic_data *nic_data;
  41. EFX_BUG_ON_PARANOID(efx_nic_rev(efx) < EFX_REV_SIENA_A0);
  42. nic_data = efx->nic_data;
  43. return &nic_data->mcdi;
  44. }
  45. void efx_mcdi_init(struct efx_nic *efx)
  46. {
  47. struct efx_mcdi_iface *mcdi;
  48. if (efx_nic_rev(efx) < EFX_REV_SIENA_A0)
  49. return;
  50. mcdi = efx_mcdi(efx);
  51. init_waitqueue_head(&mcdi->wq);
  52. spin_lock_init(&mcdi->iface_lock);
  53. atomic_set(&mcdi->state, MCDI_STATE_QUIESCENT);
  54. mcdi->mode = MCDI_MODE_POLL;
  55. (void) efx_mcdi_poll_reboot(efx);
  56. }
  57. static void efx_mcdi_copyin(struct efx_nic *efx, unsigned cmd,
  58. const u8 *inbuf, size_t inlen)
  59. {
  60. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  61. unsigned pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
  62. unsigned doorbell = FR_CZ_MC_TREG_SMEM + MCDI_DOORBELL(efx);
  63. unsigned int i;
  64. efx_dword_t hdr;
  65. u32 xflags, seqno;
  66. BUG_ON(atomic_read(&mcdi->state) == MCDI_STATE_QUIESCENT);
  67. BUG_ON(inlen & 3 || inlen >= MC_SMEM_PDU_LEN);
  68. seqno = mcdi->seqno & SEQ_MASK;
  69. xflags = 0;
  70. if (mcdi->mode == MCDI_MODE_EVENTS)
  71. xflags |= MCDI_HEADER_XFLAGS_EVREQ;
  72. EFX_POPULATE_DWORD_6(hdr,
  73. MCDI_HEADER_RESPONSE, 0,
  74. MCDI_HEADER_RESYNC, 1,
  75. MCDI_HEADER_CODE, cmd,
  76. MCDI_HEADER_DATALEN, inlen,
  77. MCDI_HEADER_SEQ, seqno,
  78. MCDI_HEADER_XFLAGS, xflags);
  79. efx_writed(efx, &hdr, pdu);
  80. for (i = 0; i < inlen; i += 4)
  81. _efx_writed(efx, *((__le32 *)(inbuf + i)), pdu + 4 + i);
  82. /* Ensure the payload is written out before the header */
  83. wmb();
  84. /* ring the doorbell with a distinctive value */
  85. _efx_writed(efx, (__force __le32) 0x45789abc, doorbell);
  86. }
  87. static void efx_mcdi_copyout(struct efx_nic *efx, u8 *outbuf, size_t outlen)
  88. {
  89. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  90. unsigned int pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
  91. int i;
  92. BUG_ON(atomic_read(&mcdi->state) == MCDI_STATE_QUIESCENT);
  93. BUG_ON(outlen & 3 || outlen >= MC_SMEM_PDU_LEN);
  94. for (i = 0; i < outlen; i += 4)
  95. *((__le32 *)(outbuf + i)) = _efx_readd(efx, pdu + 4 + i);
  96. }
  97. static int efx_mcdi_poll(struct efx_nic *efx)
  98. {
  99. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  100. unsigned long time, finish;
  101. unsigned int respseq, respcmd, error;
  102. unsigned int pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
  103. unsigned int rc, spins;
  104. efx_dword_t reg;
  105. /* Check for a reboot atomically with respect to efx_mcdi_copyout() */
  106. rc = -efx_mcdi_poll_reboot(efx);
  107. if (rc)
  108. goto out;
  109. /* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
  110. * because generally mcdi responses are fast. After that, back off
  111. * and poll once a jiffy (approximately)
  112. */
  113. spins = TICK_USEC;
  114. finish = jiffies + MCDI_RPC_TIMEOUT;
  115. while (1) {
  116. if (spins != 0) {
  117. --spins;
  118. udelay(1);
  119. } else {
  120. schedule_timeout_uninterruptible(1);
  121. }
  122. time = jiffies;
  123. rmb();
  124. efx_readd(efx, &reg, pdu);
  125. /* All 1's indicates that shared memory is in reset (and is
  126. * not a valid header). Wait for it to come out reset before
  127. * completing the command */
  128. if (EFX_DWORD_FIELD(reg, EFX_DWORD_0) != 0xffffffff &&
  129. EFX_DWORD_FIELD(reg, MCDI_HEADER_RESPONSE))
  130. break;
  131. if (time_after(time, finish))
  132. return -ETIMEDOUT;
  133. }
  134. mcdi->resplen = EFX_DWORD_FIELD(reg, MCDI_HEADER_DATALEN);
  135. respseq = EFX_DWORD_FIELD(reg, MCDI_HEADER_SEQ);
  136. respcmd = EFX_DWORD_FIELD(reg, MCDI_HEADER_CODE);
  137. error = EFX_DWORD_FIELD(reg, MCDI_HEADER_ERROR);
  138. if (error && mcdi->resplen == 0) {
  139. netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
  140. rc = EIO;
  141. } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
  142. netif_err(efx, hw, efx->net_dev,
  143. "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
  144. respseq, mcdi->seqno);
  145. rc = EIO;
  146. } else if (error) {
  147. efx_readd(efx, &reg, pdu + 4);
  148. switch (EFX_DWORD_FIELD(reg, EFX_DWORD_0)) {
  149. #define TRANSLATE_ERROR(name) \
  150. case MC_CMD_ERR_ ## name: \
  151. rc = name; \
  152. break
  153. TRANSLATE_ERROR(ENOENT);
  154. TRANSLATE_ERROR(EINTR);
  155. TRANSLATE_ERROR(EACCES);
  156. TRANSLATE_ERROR(EBUSY);
  157. TRANSLATE_ERROR(EINVAL);
  158. TRANSLATE_ERROR(EDEADLK);
  159. TRANSLATE_ERROR(ENOSYS);
  160. TRANSLATE_ERROR(ETIME);
  161. #undef TRANSLATE_ERROR
  162. default:
  163. rc = EIO;
  164. break;
  165. }
  166. } else
  167. rc = 0;
  168. out:
  169. mcdi->resprc = rc;
  170. if (rc)
  171. mcdi->resplen = 0;
  172. /* Return rc=0 like wait_event_timeout() */
  173. return 0;
  174. }
  175. /* Test and clear MC-rebooted flag for this port/function; reset
  176. * software state as necessary.
  177. */
  178. int efx_mcdi_poll_reboot(struct efx_nic *efx)
  179. {
  180. unsigned int addr = FR_CZ_MC_TREG_SMEM + MCDI_STATUS(efx);
  181. efx_dword_t reg;
  182. uint32_t value;
  183. if (efx_nic_rev(efx) < EFX_REV_SIENA_A0)
  184. return false;
  185. efx_readd(efx, &reg, addr);
  186. value = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
  187. if (value == 0)
  188. return 0;
  189. /* MAC statistics have been cleared on the NIC; clear our copy
  190. * so that efx_update_diff_stat() can continue to work.
  191. */
  192. memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
  193. EFX_ZERO_DWORD(reg);
  194. efx_writed(efx, &reg, addr);
  195. if (value == MC_STATUS_DWORD_ASSERT)
  196. return -EINTR;
  197. else
  198. return -EIO;
  199. }
  200. static void efx_mcdi_acquire(struct efx_mcdi_iface *mcdi)
  201. {
  202. /* Wait until the interface becomes QUIESCENT and we win the race
  203. * to mark it RUNNING. */
  204. wait_event(mcdi->wq,
  205. atomic_cmpxchg(&mcdi->state,
  206. MCDI_STATE_QUIESCENT,
  207. MCDI_STATE_RUNNING)
  208. == MCDI_STATE_QUIESCENT);
  209. }
  210. static int efx_mcdi_await_completion(struct efx_nic *efx)
  211. {
  212. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  213. if (wait_event_timeout(
  214. mcdi->wq,
  215. atomic_read(&mcdi->state) == MCDI_STATE_COMPLETED,
  216. MCDI_RPC_TIMEOUT) == 0)
  217. return -ETIMEDOUT;
  218. /* Check if efx_mcdi_set_mode() switched us back to polled completions.
  219. * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
  220. * completed the request first, then we'll just end up completing the
  221. * request again, which is safe.
  222. *
  223. * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
  224. * wait_event_timeout() implicitly provides.
  225. */
  226. if (mcdi->mode == MCDI_MODE_POLL)
  227. return efx_mcdi_poll(efx);
  228. return 0;
  229. }
  230. static bool efx_mcdi_complete(struct efx_mcdi_iface *mcdi)
  231. {
  232. /* If the interface is RUNNING, then move to COMPLETED and wake any
  233. * waiters. If the interface isn't in RUNNING then we've received a
  234. * duplicate completion after we've already transitioned back to
  235. * QUIESCENT. [A subsequent invocation would increment seqno, so would
  236. * have failed the seqno check].
  237. */
  238. if (atomic_cmpxchg(&mcdi->state,
  239. MCDI_STATE_RUNNING,
  240. MCDI_STATE_COMPLETED) == MCDI_STATE_RUNNING) {
  241. wake_up(&mcdi->wq);
  242. return true;
  243. }
  244. return false;
  245. }
  246. static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
  247. {
  248. atomic_set(&mcdi->state, MCDI_STATE_QUIESCENT);
  249. wake_up(&mcdi->wq);
  250. }
  251. static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
  252. unsigned int datalen, unsigned int errno)
  253. {
  254. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  255. bool wake = false;
  256. spin_lock(&mcdi->iface_lock);
  257. if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
  258. if (mcdi->credits)
  259. /* The request has been cancelled */
  260. --mcdi->credits;
  261. else
  262. netif_err(efx, hw, efx->net_dev,
  263. "MC response mismatch tx seq 0x%x rx "
  264. "seq 0x%x\n", seqno, mcdi->seqno);
  265. } else {
  266. mcdi->resprc = errno;
  267. mcdi->resplen = datalen;
  268. wake = true;
  269. }
  270. spin_unlock(&mcdi->iface_lock);
  271. if (wake)
  272. efx_mcdi_complete(mcdi);
  273. }
  274. int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
  275. const u8 *inbuf, size_t inlen, u8 *outbuf, size_t outlen,
  276. size_t *outlen_actual)
  277. {
  278. efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
  279. return efx_mcdi_rpc_finish(efx, cmd, inlen,
  280. outbuf, outlen, outlen_actual);
  281. }
  282. void efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd, const u8 *inbuf,
  283. size_t inlen)
  284. {
  285. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  286. BUG_ON(efx_nic_rev(efx) < EFX_REV_SIENA_A0);
  287. efx_mcdi_acquire(mcdi);
  288. /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
  289. spin_lock_bh(&mcdi->iface_lock);
  290. ++mcdi->seqno;
  291. spin_unlock_bh(&mcdi->iface_lock);
  292. efx_mcdi_copyin(efx, cmd, inbuf, inlen);
  293. }
  294. int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
  295. u8 *outbuf, size_t outlen, size_t *outlen_actual)
  296. {
  297. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  298. int rc;
  299. BUG_ON(efx_nic_rev(efx) < EFX_REV_SIENA_A0);
  300. if (mcdi->mode == MCDI_MODE_POLL)
  301. rc = efx_mcdi_poll(efx);
  302. else
  303. rc = efx_mcdi_await_completion(efx);
  304. if (rc != 0) {
  305. /* Close the race with efx_mcdi_ev_cpl() executing just too late
  306. * and completing a request we've just cancelled, by ensuring
  307. * that the seqno check therein fails.
  308. */
  309. spin_lock_bh(&mcdi->iface_lock);
  310. ++mcdi->seqno;
  311. ++mcdi->credits;
  312. spin_unlock_bh(&mcdi->iface_lock);
  313. netif_err(efx, hw, efx->net_dev,
  314. "MC command 0x%x inlen %d mode %d timed out\n",
  315. cmd, (int)inlen, mcdi->mode);
  316. } else {
  317. size_t resplen;
  318. /* At the very least we need a memory barrier here to ensure
  319. * we pick up changes from efx_mcdi_ev_cpl(). Protect against
  320. * a spurious efx_mcdi_ev_cpl() running concurrently by
  321. * acquiring the iface_lock. */
  322. spin_lock_bh(&mcdi->iface_lock);
  323. rc = -mcdi->resprc;
  324. resplen = mcdi->resplen;
  325. spin_unlock_bh(&mcdi->iface_lock);
  326. if (rc == 0) {
  327. efx_mcdi_copyout(efx, outbuf,
  328. min(outlen, mcdi->resplen + 3) & ~0x3);
  329. if (outlen_actual != NULL)
  330. *outlen_actual = resplen;
  331. } else if (cmd == MC_CMD_REBOOT && rc == -EIO)
  332. ; /* Don't reset if MC_CMD_REBOOT returns EIO */
  333. else if (rc == -EIO || rc == -EINTR) {
  334. netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n",
  335. -rc);
  336. efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
  337. } else
  338. netif_dbg(efx, hw, efx->net_dev,
  339. "MC command 0x%x inlen %d failed rc=%d\n",
  340. cmd, (int)inlen, -rc);
  341. if (rc == -EIO || rc == -EINTR) {
  342. msleep(MCDI_STATUS_SLEEP_MS);
  343. efx_mcdi_poll_reboot(efx);
  344. }
  345. }
  346. efx_mcdi_release(mcdi);
  347. return rc;
  348. }
  349. void efx_mcdi_mode_poll(struct efx_nic *efx)
  350. {
  351. struct efx_mcdi_iface *mcdi;
  352. if (efx_nic_rev(efx) < EFX_REV_SIENA_A0)
  353. return;
  354. mcdi = efx_mcdi(efx);
  355. if (mcdi->mode == MCDI_MODE_POLL)
  356. return;
  357. /* We can switch from event completion to polled completion, because
  358. * mcdi requests are always completed in shared memory. We do this by
  359. * switching the mode to POLL'd then completing the request.
  360. * efx_mcdi_await_completion() will then call efx_mcdi_poll().
  361. *
  362. * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
  363. * which efx_mcdi_complete() provides for us.
  364. */
  365. mcdi->mode = MCDI_MODE_POLL;
  366. efx_mcdi_complete(mcdi);
  367. }
  368. void efx_mcdi_mode_event(struct efx_nic *efx)
  369. {
  370. struct efx_mcdi_iface *mcdi;
  371. if (efx_nic_rev(efx) < EFX_REV_SIENA_A0)
  372. return;
  373. mcdi = efx_mcdi(efx);
  374. if (mcdi->mode == MCDI_MODE_EVENTS)
  375. return;
  376. /* We can't switch from polled to event completion in the middle of a
  377. * request, because the completion method is specified in the request.
  378. * So acquire the interface to serialise the requestors. We don't need
  379. * to acquire the iface_lock to change the mode here, but we do need a
  380. * write memory barrier ensure that efx_mcdi_rpc() sees it, which
  381. * efx_mcdi_acquire() provides.
  382. */
  383. efx_mcdi_acquire(mcdi);
  384. mcdi->mode = MCDI_MODE_EVENTS;
  385. efx_mcdi_release(mcdi);
  386. }
  387. static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
  388. {
  389. struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
  390. /* If there is an outstanding MCDI request, it has been terminated
  391. * either by a BADASSERT or REBOOT event. If the mcdi interface is
  392. * in polled mode, then do nothing because the MC reboot handler will
  393. * set the header correctly. However, if the mcdi interface is waiting
  394. * for a CMDDONE event it won't receive it [and since all MCDI events
  395. * are sent to the same queue, we can't be racing with
  396. * efx_mcdi_ev_cpl()]
  397. *
  398. * There's a race here with efx_mcdi_rpc(), because we might receive
  399. * a REBOOT event *before* the request has been copied out. In polled
  400. * mode (during startup) this is irrelevant, because efx_mcdi_complete()
  401. * is ignored. In event mode, this condition is just an edge-case of
  402. * receiving a REBOOT event after posting the MCDI request. Did the mc
  403. * reboot before or after the copyout? The best we can do always is
  404. * just return failure.
  405. */
  406. spin_lock(&mcdi->iface_lock);
  407. if (efx_mcdi_complete(mcdi)) {
  408. if (mcdi->mode == MCDI_MODE_EVENTS) {
  409. mcdi->resprc = rc;
  410. mcdi->resplen = 0;
  411. ++mcdi->credits;
  412. }
  413. } else {
  414. int count;
  415. /* Nobody was waiting for an MCDI request, so trigger a reset */
  416. efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
  417. /* Consume the status word since efx_mcdi_rpc_finish() won't */
  418. for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
  419. if (efx_mcdi_poll_reboot(efx))
  420. break;
  421. udelay(MCDI_STATUS_DELAY_US);
  422. }
  423. }
  424. spin_unlock(&mcdi->iface_lock);
  425. }
  426. static unsigned int efx_mcdi_event_link_speed[] = {
  427. [MCDI_EVENT_LINKCHANGE_SPEED_100M] = 100,
  428. [MCDI_EVENT_LINKCHANGE_SPEED_1G] = 1000,
  429. [MCDI_EVENT_LINKCHANGE_SPEED_10G] = 10000,
  430. };
  431. static void efx_mcdi_process_link_change(struct efx_nic *efx, efx_qword_t *ev)
  432. {
  433. u32 flags, fcntl, speed, lpa;
  434. speed = EFX_QWORD_FIELD(*ev, MCDI_EVENT_LINKCHANGE_SPEED);
  435. EFX_BUG_ON_PARANOID(speed >= ARRAY_SIZE(efx_mcdi_event_link_speed));
  436. speed = efx_mcdi_event_link_speed[speed];
  437. flags = EFX_QWORD_FIELD(*ev, MCDI_EVENT_LINKCHANGE_LINK_FLAGS);
  438. fcntl = EFX_QWORD_FIELD(*ev, MCDI_EVENT_LINKCHANGE_FCNTL);
  439. lpa = EFX_QWORD_FIELD(*ev, MCDI_EVENT_LINKCHANGE_LP_CAP);
  440. /* efx->link_state is only modified by efx_mcdi_phy_get_link(),
  441. * which is only run after flushing the event queues. Therefore, it
  442. * is safe to modify the link state outside of the mac_lock here.
  443. */
  444. efx_mcdi_phy_decode_link(efx, &efx->link_state, speed, flags, fcntl);
  445. efx_mcdi_phy_check_fcntl(efx, lpa);
  446. efx_link_status_changed(efx);
  447. }
  448. /* Called from falcon_process_eventq for MCDI events */
  449. void efx_mcdi_process_event(struct efx_channel *channel,
  450. efx_qword_t *event)
  451. {
  452. struct efx_nic *efx = channel->efx;
  453. int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
  454. u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
  455. switch (code) {
  456. case MCDI_EVENT_CODE_BADSSERT:
  457. netif_err(efx, hw, efx->net_dev,
  458. "MC watchdog or assertion failure at 0x%x\n", data);
  459. efx_mcdi_ev_death(efx, EINTR);
  460. break;
  461. case MCDI_EVENT_CODE_PMNOTICE:
  462. netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
  463. break;
  464. case MCDI_EVENT_CODE_CMDDONE:
  465. efx_mcdi_ev_cpl(efx,
  466. MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
  467. MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
  468. MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
  469. break;
  470. case MCDI_EVENT_CODE_LINKCHANGE:
  471. efx_mcdi_process_link_change(efx, event);
  472. break;
  473. case MCDI_EVENT_CODE_SENSOREVT:
  474. efx_mcdi_sensor_event(efx, event);
  475. break;
  476. case MCDI_EVENT_CODE_SCHEDERR:
  477. netif_info(efx, hw, efx->net_dev,
  478. "MC Scheduler error address=0x%x\n", data);
  479. break;
  480. case MCDI_EVENT_CODE_REBOOT:
  481. netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
  482. efx_mcdi_ev_death(efx, EIO);
  483. break;
  484. case MCDI_EVENT_CODE_MAC_STATS_DMA:
  485. /* MAC stats are gather lazily. We can ignore this. */
  486. break;
  487. case MCDI_EVENT_CODE_FLR:
  488. efx_sriov_flr(efx, MCDI_EVENT_FIELD(*event, FLR_VF));
  489. break;
  490. case MCDI_EVENT_CODE_PTP_RX:
  491. case MCDI_EVENT_CODE_PTP_FAULT:
  492. case MCDI_EVENT_CODE_PTP_PPS:
  493. efx_ptp_event(efx, event);
  494. break;
  495. default:
  496. netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n",
  497. code);
  498. }
  499. }
  500. /**************************************************************************
  501. *
  502. * Specific request functions
  503. *
  504. **************************************************************************
  505. */
  506. void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
  507. {
  508. MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
  509. size_t outlength;
  510. const __le16 *ver_words;
  511. int rc;
  512. BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
  513. rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
  514. outbuf, sizeof(outbuf), &outlength);
  515. if (rc)
  516. goto fail;
  517. if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
  518. rc = -EIO;
  519. goto fail;
  520. }
  521. ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
  522. snprintf(buf, len, "%u.%u.%u.%u",
  523. le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]),
  524. le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3]));
  525. return;
  526. fail:
  527. netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  528. buf[0] = 0;
  529. }
  530. int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
  531. bool *was_attached)
  532. {
  533. MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
  534. MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_OUT_LEN);
  535. size_t outlen;
  536. int rc;
  537. MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
  538. driver_operating ? 1 : 0);
  539. MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
  540. rc = efx_mcdi_rpc(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
  541. outbuf, sizeof(outbuf), &outlen);
  542. if (rc)
  543. goto fail;
  544. if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
  545. rc = -EIO;
  546. goto fail;
  547. }
  548. if (was_attached != NULL)
  549. *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
  550. return 0;
  551. fail:
  552. netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  553. return rc;
  554. }
  555. int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
  556. u16 *fw_subtype_list, u32 *capabilities)
  557. {
  558. MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
  559. size_t outlen, offset, i;
  560. int port_num = efx_port_num(efx);
  561. int rc;
  562. BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
  563. rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
  564. outbuf, sizeof(outbuf), &outlen);
  565. if (rc)
  566. goto fail;
  567. if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
  568. rc = -EIO;
  569. goto fail;
  570. }
  571. offset = (port_num)
  572. ? MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST
  573. : MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST;
  574. if (mac_address)
  575. memcpy(mac_address, outbuf + offset, ETH_ALEN);
  576. if (fw_subtype_list) {
  577. /* Byte-swap and truncate or zero-pad as necessary */
  578. offset = MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_OFST;
  579. for (i = 0;
  580. i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM;
  581. i++) {
  582. fw_subtype_list[i] =
  583. (offset + 2 <= outlen) ?
  584. le16_to_cpup((__le16 *)(outbuf + offset)) : 0;
  585. offset += 2;
  586. }
  587. }
  588. if (capabilities) {
  589. if (port_num)
  590. *capabilities = MCDI_DWORD(outbuf,
  591. GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
  592. else
  593. *capabilities = MCDI_DWORD(outbuf,
  594. GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
  595. }
  596. return 0;
  597. fail:
  598. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
  599. __func__, rc, (int)outlen);
  600. return rc;
  601. }
  602. int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
  603. {
  604. MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
  605. u32 dest = 0;
  606. int rc;
  607. if (uart)
  608. dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
  609. if (evq)
  610. dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
  611. MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
  612. MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
  613. BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
  614. rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
  615. NULL, 0, NULL);
  616. if (rc)
  617. goto fail;
  618. return 0;
  619. fail:
  620. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  621. return rc;
  622. }
  623. int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
  624. {
  625. MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
  626. size_t outlen;
  627. int rc;
  628. BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
  629. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
  630. outbuf, sizeof(outbuf), &outlen);
  631. if (rc)
  632. goto fail;
  633. if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
  634. rc = -EIO;
  635. goto fail;
  636. }
  637. *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
  638. return 0;
  639. fail:
  640. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
  641. __func__, rc);
  642. return rc;
  643. }
  644. int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
  645. size_t *size_out, size_t *erase_size_out,
  646. bool *protected_out)
  647. {
  648. MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
  649. MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
  650. size_t outlen;
  651. int rc;
  652. MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
  653. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
  654. outbuf, sizeof(outbuf), &outlen);
  655. if (rc)
  656. goto fail;
  657. if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
  658. rc = -EIO;
  659. goto fail;
  660. }
  661. *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
  662. *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
  663. *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
  664. (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
  665. return 0;
  666. fail:
  667. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  668. return rc;
  669. }
  670. int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
  671. {
  672. MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN);
  673. int rc;
  674. MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
  675. BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
  676. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
  677. NULL, 0, NULL);
  678. if (rc)
  679. goto fail;
  680. return 0;
  681. fail:
  682. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  683. return rc;
  684. }
  685. int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
  686. loff_t offset, u8 *buffer, size_t length)
  687. {
  688. MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN);
  689. MCDI_DECLARE_BUF(outbuf,
  690. MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
  691. size_t outlen;
  692. int rc;
  693. MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
  694. MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
  695. MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
  696. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
  697. outbuf, sizeof(outbuf), &outlen);
  698. if (rc)
  699. goto fail;
  700. memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
  701. return 0;
  702. fail:
  703. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  704. return rc;
  705. }
  706. int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
  707. loff_t offset, const u8 *buffer, size_t length)
  708. {
  709. MCDI_DECLARE_BUF(inbuf,
  710. MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
  711. int rc;
  712. MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
  713. MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
  714. MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
  715. memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
  716. BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
  717. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
  718. ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
  719. NULL, 0, NULL);
  720. if (rc)
  721. goto fail;
  722. return 0;
  723. fail:
  724. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  725. return rc;
  726. }
  727. int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
  728. loff_t offset, size_t length)
  729. {
  730. MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
  731. int rc;
  732. MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
  733. MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
  734. MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
  735. BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
  736. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
  737. NULL, 0, NULL);
  738. if (rc)
  739. goto fail;
  740. return 0;
  741. fail:
  742. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  743. return rc;
  744. }
  745. int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
  746. {
  747. MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN);
  748. int rc;
  749. MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
  750. BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0);
  751. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
  752. NULL, 0, NULL);
  753. if (rc)
  754. goto fail;
  755. return 0;
  756. fail:
  757. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  758. return rc;
  759. }
  760. static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
  761. {
  762. MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
  763. MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
  764. int rc;
  765. MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
  766. rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
  767. outbuf, sizeof(outbuf), NULL);
  768. if (rc)
  769. return rc;
  770. switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
  771. case MC_CMD_NVRAM_TEST_PASS:
  772. case MC_CMD_NVRAM_TEST_NOTSUPP:
  773. return 0;
  774. default:
  775. return -EIO;
  776. }
  777. }
  778. int efx_mcdi_nvram_test_all(struct efx_nic *efx)
  779. {
  780. u32 nvram_types;
  781. unsigned int type;
  782. int rc;
  783. rc = efx_mcdi_nvram_types(efx, &nvram_types);
  784. if (rc)
  785. goto fail1;
  786. type = 0;
  787. while (nvram_types != 0) {
  788. if (nvram_types & 1) {
  789. rc = efx_mcdi_nvram_test(efx, type);
  790. if (rc)
  791. goto fail2;
  792. }
  793. type++;
  794. nvram_types >>= 1;
  795. }
  796. return 0;
  797. fail2:
  798. netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
  799. __func__, type);
  800. fail1:
  801. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  802. return rc;
  803. }
  804. static int efx_mcdi_read_assertion(struct efx_nic *efx)
  805. {
  806. MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
  807. MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
  808. unsigned int flags, index, ofst;
  809. const char *reason;
  810. size_t outlen;
  811. int retry;
  812. int rc;
  813. /* Attempt to read any stored assertion state before we reboot
  814. * the mcfw out of the assertion handler. Retry twice, once
  815. * because a boot-time assertion might cause this command to fail
  816. * with EINTR. And once again because GET_ASSERTS can race with
  817. * MC_CMD_REBOOT running on the other port. */
  818. retry = 2;
  819. do {
  820. MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
  821. rc = efx_mcdi_rpc(efx, MC_CMD_GET_ASSERTS,
  822. inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
  823. outbuf, sizeof(outbuf), &outlen);
  824. } while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
  825. if (rc)
  826. return rc;
  827. if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
  828. return -EIO;
  829. /* Print out any recorded assertion state */
  830. flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
  831. if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
  832. return 0;
  833. reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
  834. ? "system-level assertion"
  835. : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
  836. ? "thread-level assertion"
  837. : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
  838. ? "watchdog reset"
  839. : "unknown assertion";
  840. netif_err(efx, hw, efx->net_dev,
  841. "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
  842. MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
  843. MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
  844. /* Print out the registers */
  845. ofst = MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_OFST;
  846. for (index = 1; index < 32; index++) {
  847. netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n", index,
  848. MCDI_DWORD2(outbuf, ofst));
  849. ofst += sizeof(efx_dword_t);
  850. }
  851. return 0;
  852. }
  853. static void efx_mcdi_exit_assertion(struct efx_nic *efx)
  854. {
  855. MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
  856. /* If the MC is running debug firmware, it might now be
  857. * waiting for a debugger to attach, but we just want it to
  858. * reboot. We set a flag that makes the command a no-op if it
  859. * has already done so. We don't know what return code to
  860. * expect (0 or -EIO), so ignore it.
  861. */
  862. BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
  863. MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
  864. MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
  865. (void) efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
  866. NULL, 0, NULL);
  867. }
  868. int efx_mcdi_handle_assertion(struct efx_nic *efx)
  869. {
  870. int rc;
  871. rc = efx_mcdi_read_assertion(efx);
  872. if (rc)
  873. return rc;
  874. efx_mcdi_exit_assertion(efx);
  875. return 0;
  876. }
  877. void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
  878. {
  879. MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
  880. int rc;
  881. BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
  882. BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
  883. BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
  884. BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
  885. MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
  886. rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
  887. NULL, 0, NULL);
  888. if (rc)
  889. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
  890. __func__, rc);
  891. }
  892. int efx_mcdi_reset_port(struct efx_nic *efx)
  893. {
  894. int rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, NULL, 0, NULL, 0, NULL);
  895. if (rc)
  896. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
  897. __func__, rc);
  898. return rc;
  899. }
  900. int efx_mcdi_reset_mc(struct efx_nic *efx)
  901. {
  902. MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
  903. int rc;
  904. BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
  905. MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
  906. rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
  907. NULL, 0, NULL);
  908. /* White is black, and up is down */
  909. if (rc == -EIO)
  910. return 0;
  911. if (rc == 0)
  912. rc = -EIO;
  913. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  914. return rc;
  915. }
  916. static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
  917. const u8 *mac, int *id_out)
  918. {
  919. MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
  920. MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
  921. size_t outlen;
  922. int rc;
  923. MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
  924. MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
  925. MC_CMD_FILTER_MODE_SIMPLE);
  926. memcpy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac, ETH_ALEN);
  927. rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
  928. outbuf, sizeof(outbuf), &outlen);
  929. if (rc)
  930. goto fail;
  931. if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
  932. rc = -EIO;
  933. goto fail;
  934. }
  935. *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
  936. return 0;
  937. fail:
  938. *id_out = -1;
  939. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  940. return rc;
  941. }
  942. int
  943. efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out)
  944. {
  945. return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
  946. }
  947. int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
  948. {
  949. MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
  950. size_t outlen;
  951. int rc;
  952. rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
  953. outbuf, sizeof(outbuf), &outlen);
  954. if (rc)
  955. goto fail;
  956. if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
  957. rc = -EIO;
  958. goto fail;
  959. }
  960. *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
  961. return 0;
  962. fail:
  963. *id_out = -1;
  964. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  965. return rc;
  966. }
  967. int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
  968. {
  969. MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
  970. int rc;
  971. MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
  972. rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
  973. NULL, 0, NULL);
  974. if (rc)
  975. goto fail;
  976. return 0;
  977. fail:
  978. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  979. return rc;
  980. }
  981. int efx_mcdi_flush_rxqs(struct efx_nic *efx)
  982. {
  983. struct efx_channel *channel;
  984. struct efx_rx_queue *rx_queue;
  985. __le32 *qid;
  986. int rc, count;
  987. BUILD_BUG_ON(EFX_MAX_CHANNELS >
  988. MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
  989. qid = kmalloc(EFX_MAX_CHANNELS * sizeof(*qid), GFP_KERNEL);
  990. if (qid == NULL)
  991. return -ENOMEM;
  992. count = 0;
  993. efx_for_each_channel(channel, efx) {
  994. efx_for_each_channel_rx_queue(rx_queue, channel) {
  995. if (rx_queue->flush_pending) {
  996. rx_queue->flush_pending = false;
  997. atomic_dec(&efx->rxq_flush_pending);
  998. qid[count++] = cpu_to_le32(
  999. efx_rx_queue_index(rx_queue));
  1000. }
  1001. }
  1002. }
  1003. rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, (u8 *)qid,
  1004. count * sizeof(*qid), NULL, 0, NULL);
  1005. WARN_ON(rc < 0);
  1006. kfree(qid);
  1007. return rc;
  1008. }
  1009. int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
  1010. {
  1011. int rc;
  1012. rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
  1013. if (rc)
  1014. goto fail;
  1015. return 0;
  1016. fail:
  1017. netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
  1018. return rc;
  1019. }