intel_dp.c 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "drm_crtc.h"
  32. #include "drm_crtc_helper.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "drm_dp_helper.h"
  37. #define DP_LINK_STATUS_SIZE 6
  38. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  39. #define DP_LINK_CONFIGURATION_SIZE 9
  40. struct intel_dp {
  41. struct intel_encoder base;
  42. uint32_t output_reg;
  43. uint32_t DP;
  44. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  45. bool has_audio;
  46. int force_audio;
  47. uint32_t color_range;
  48. int dpms_mode;
  49. uint8_t link_bw;
  50. uint8_t lane_count;
  51. uint8_t dpcd[4];
  52. struct i2c_adapter adapter;
  53. struct i2c_algo_dp_aux_data algo;
  54. bool is_pch_edp;
  55. uint8_t train_set[4];
  56. uint8_t link_status[DP_LINK_STATUS_SIZE];
  57. };
  58. /**
  59. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  60. * @intel_dp: DP struct
  61. *
  62. * If a CPU or PCH DP output is attached to an eDP panel, this function
  63. * will return true, and false otherwise.
  64. */
  65. static bool is_edp(struct intel_dp *intel_dp)
  66. {
  67. return intel_dp->base.type == INTEL_OUTPUT_EDP;
  68. }
  69. /**
  70. * is_pch_edp - is the port on the PCH and attached to an eDP panel?
  71. * @intel_dp: DP struct
  72. *
  73. * Returns true if the given DP struct corresponds to a PCH DP port attached
  74. * to an eDP panel, false otherwise. Helpful for determining whether we
  75. * may need FDI resources for a given DP output or not.
  76. */
  77. static bool is_pch_edp(struct intel_dp *intel_dp)
  78. {
  79. return intel_dp->is_pch_edp;
  80. }
  81. static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
  82. {
  83. return container_of(encoder, struct intel_dp, base.base);
  84. }
  85. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  86. {
  87. return container_of(intel_attached_encoder(connector),
  88. struct intel_dp, base);
  89. }
  90. /**
  91. * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
  92. * @encoder: DRM encoder
  93. *
  94. * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
  95. * by intel_display.c.
  96. */
  97. bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
  98. {
  99. struct intel_dp *intel_dp;
  100. if (!encoder)
  101. return false;
  102. intel_dp = enc_to_intel_dp(encoder);
  103. return is_pch_edp(intel_dp);
  104. }
  105. static void intel_dp_start_link_train(struct intel_dp *intel_dp);
  106. static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
  107. static void intel_dp_link_down(struct intel_dp *intel_dp);
  108. void
  109. intel_edp_link_config (struct intel_encoder *intel_encoder,
  110. int *lane_num, int *link_bw)
  111. {
  112. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  113. *lane_num = intel_dp->lane_count;
  114. if (intel_dp->link_bw == DP_LINK_BW_1_62)
  115. *link_bw = 162000;
  116. else if (intel_dp->link_bw == DP_LINK_BW_2_7)
  117. *link_bw = 270000;
  118. }
  119. static int
  120. intel_dp_max_lane_count(struct intel_dp *intel_dp)
  121. {
  122. int max_lane_count = 4;
  123. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
  124. max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
  125. switch (max_lane_count) {
  126. case 1: case 2: case 4:
  127. break;
  128. default:
  129. max_lane_count = 4;
  130. }
  131. }
  132. return max_lane_count;
  133. }
  134. static int
  135. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  136. {
  137. int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
  138. switch (max_link_bw) {
  139. case DP_LINK_BW_1_62:
  140. case DP_LINK_BW_2_7:
  141. break;
  142. default:
  143. max_link_bw = DP_LINK_BW_1_62;
  144. break;
  145. }
  146. return max_link_bw;
  147. }
  148. static int
  149. intel_dp_link_clock(uint8_t link_bw)
  150. {
  151. if (link_bw == DP_LINK_BW_2_7)
  152. return 270000;
  153. else
  154. return 162000;
  155. }
  156. /* I think this is a fiction */
  157. static int
  158. intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
  159. {
  160. struct drm_i915_private *dev_priv = dev->dev_private;
  161. if (is_edp(intel_dp))
  162. return (pixel_clock * dev_priv->edp.bpp + 7) / 8;
  163. else
  164. return pixel_clock * 3;
  165. }
  166. static int
  167. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  168. {
  169. return (max_link_clock * max_lanes * 8) / 10;
  170. }
  171. static int
  172. intel_dp_mode_valid(struct drm_connector *connector,
  173. struct drm_display_mode *mode)
  174. {
  175. struct intel_dp *intel_dp = intel_attached_dp(connector);
  176. struct drm_device *dev = connector->dev;
  177. struct drm_i915_private *dev_priv = dev->dev_private;
  178. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
  179. int max_lanes = intel_dp_max_lane_count(intel_dp);
  180. if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
  181. if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
  182. return MODE_PANEL;
  183. if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
  184. return MODE_PANEL;
  185. }
  186. /* only refuse the mode on non eDP since we have seen some weird eDP panels
  187. which are outside spec tolerances but somehow work by magic */
  188. if (!is_edp(intel_dp) &&
  189. (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
  190. > intel_dp_max_data_rate(max_link_clock, max_lanes)))
  191. return MODE_CLOCK_HIGH;
  192. if (mode->clock < 10000)
  193. return MODE_CLOCK_LOW;
  194. return MODE_OK;
  195. }
  196. static uint32_t
  197. pack_aux(uint8_t *src, int src_bytes)
  198. {
  199. int i;
  200. uint32_t v = 0;
  201. if (src_bytes > 4)
  202. src_bytes = 4;
  203. for (i = 0; i < src_bytes; i++)
  204. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  205. return v;
  206. }
  207. static void
  208. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  209. {
  210. int i;
  211. if (dst_bytes > 4)
  212. dst_bytes = 4;
  213. for (i = 0; i < dst_bytes; i++)
  214. dst[i] = src >> ((3-i) * 8);
  215. }
  216. /* hrawclock is 1/4 the FSB frequency */
  217. static int
  218. intel_hrawclk(struct drm_device *dev)
  219. {
  220. struct drm_i915_private *dev_priv = dev->dev_private;
  221. uint32_t clkcfg;
  222. clkcfg = I915_READ(CLKCFG);
  223. switch (clkcfg & CLKCFG_FSB_MASK) {
  224. case CLKCFG_FSB_400:
  225. return 100;
  226. case CLKCFG_FSB_533:
  227. return 133;
  228. case CLKCFG_FSB_667:
  229. return 166;
  230. case CLKCFG_FSB_800:
  231. return 200;
  232. case CLKCFG_FSB_1067:
  233. return 266;
  234. case CLKCFG_FSB_1333:
  235. return 333;
  236. /* these two are just a guess; one of them might be right */
  237. case CLKCFG_FSB_1600:
  238. case CLKCFG_FSB_1600_ALT:
  239. return 400;
  240. default:
  241. return 133;
  242. }
  243. }
  244. static int
  245. intel_dp_aux_ch(struct intel_dp *intel_dp,
  246. uint8_t *send, int send_bytes,
  247. uint8_t *recv, int recv_size)
  248. {
  249. uint32_t output_reg = intel_dp->output_reg;
  250. struct drm_device *dev = intel_dp->base.base.dev;
  251. struct drm_i915_private *dev_priv = dev->dev_private;
  252. uint32_t ch_ctl = output_reg + 0x10;
  253. uint32_t ch_data = ch_ctl + 4;
  254. int i;
  255. int recv_bytes;
  256. uint32_t status;
  257. uint32_t aux_clock_divider;
  258. int try, precharge;
  259. /* The clock divider is based off the hrawclk,
  260. * and would like to run at 2MHz. So, take the
  261. * hrawclk value and divide by 2 and use that
  262. *
  263. * Note that PCH attached eDP panels should use a 125MHz input
  264. * clock divider.
  265. */
  266. if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
  267. if (IS_GEN6(dev))
  268. aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
  269. else
  270. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  271. } else if (HAS_PCH_SPLIT(dev))
  272. aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
  273. else
  274. aux_clock_divider = intel_hrawclk(dev) / 2;
  275. if (IS_GEN6(dev))
  276. precharge = 3;
  277. else
  278. precharge = 5;
  279. if (I915_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
  280. DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
  281. I915_READ(ch_ctl));
  282. return -EBUSY;
  283. }
  284. /* Must try at least 3 times according to DP spec */
  285. for (try = 0; try < 5; try++) {
  286. /* Load the send data into the aux channel data registers */
  287. for (i = 0; i < send_bytes; i += 4)
  288. I915_WRITE(ch_data + i,
  289. pack_aux(send + i, send_bytes - i));
  290. /* Send the command and wait for it to complete */
  291. I915_WRITE(ch_ctl,
  292. DP_AUX_CH_CTL_SEND_BUSY |
  293. DP_AUX_CH_CTL_TIME_OUT_400us |
  294. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  295. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  296. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  297. DP_AUX_CH_CTL_DONE |
  298. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  299. DP_AUX_CH_CTL_RECEIVE_ERROR);
  300. for (;;) {
  301. status = I915_READ(ch_ctl);
  302. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  303. break;
  304. udelay(100);
  305. }
  306. /* Clear done status and any errors */
  307. I915_WRITE(ch_ctl,
  308. status |
  309. DP_AUX_CH_CTL_DONE |
  310. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  311. DP_AUX_CH_CTL_RECEIVE_ERROR);
  312. if (status & DP_AUX_CH_CTL_DONE)
  313. break;
  314. }
  315. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  316. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  317. return -EBUSY;
  318. }
  319. /* Check for timeout or receive error.
  320. * Timeouts occur when the sink is not connected
  321. */
  322. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  323. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  324. return -EIO;
  325. }
  326. /* Timeouts occur when the device isn't connected, so they're
  327. * "normal" -- don't fill the kernel log with these */
  328. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  329. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  330. return -ETIMEDOUT;
  331. }
  332. /* Unload any bytes sent back from the other side */
  333. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  334. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  335. if (recv_bytes > recv_size)
  336. recv_bytes = recv_size;
  337. for (i = 0; i < recv_bytes; i += 4)
  338. unpack_aux(I915_READ(ch_data + i),
  339. recv + i, recv_bytes - i);
  340. return recv_bytes;
  341. }
  342. /* Write data to the aux channel in native mode */
  343. static int
  344. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  345. uint16_t address, uint8_t *send, int send_bytes)
  346. {
  347. int ret;
  348. uint8_t msg[20];
  349. int msg_bytes;
  350. uint8_t ack;
  351. if (send_bytes > 16)
  352. return -1;
  353. msg[0] = AUX_NATIVE_WRITE << 4;
  354. msg[1] = address >> 8;
  355. msg[2] = address & 0xff;
  356. msg[3] = send_bytes - 1;
  357. memcpy(&msg[4], send, send_bytes);
  358. msg_bytes = send_bytes + 4;
  359. for (;;) {
  360. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  361. if (ret < 0)
  362. return ret;
  363. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  364. break;
  365. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  366. udelay(100);
  367. else
  368. return -EIO;
  369. }
  370. return send_bytes;
  371. }
  372. /* Write a single byte to the aux channel in native mode */
  373. static int
  374. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  375. uint16_t address, uint8_t byte)
  376. {
  377. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  378. }
  379. /* read bytes from a native aux channel */
  380. static int
  381. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  382. uint16_t address, uint8_t *recv, int recv_bytes)
  383. {
  384. uint8_t msg[4];
  385. int msg_bytes;
  386. uint8_t reply[20];
  387. int reply_bytes;
  388. uint8_t ack;
  389. int ret;
  390. msg[0] = AUX_NATIVE_READ << 4;
  391. msg[1] = address >> 8;
  392. msg[2] = address & 0xff;
  393. msg[3] = recv_bytes - 1;
  394. msg_bytes = 4;
  395. reply_bytes = recv_bytes + 1;
  396. for (;;) {
  397. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  398. reply, reply_bytes);
  399. if (ret == 0)
  400. return -EPROTO;
  401. if (ret < 0)
  402. return ret;
  403. ack = reply[0];
  404. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  405. memcpy(recv, reply + 1, ret - 1);
  406. return ret - 1;
  407. }
  408. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  409. udelay(100);
  410. else
  411. return -EIO;
  412. }
  413. }
  414. static int
  415. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  416. uint8_t write_byte, uint8_t *read_byte)
  417. {
  418. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  419. struct intel_dp *intel_dp = container_of(adapter,
  420. struct intel_dp,
  421. adapter);
  422. uint16_t address = algo_data->address;
  423. uint8_t msg[5];
  424. uint8_t reply[2];
  425. unsigned retry;
  426. int msg_bytes;
  427. int reply_bytes;
  428. int ret;
  429. /* Set up the command byte */
  430. if (mode & MODE_I2C_READ)
  431. msg[0] = AUX_I2C_READ << 4;
  432. else
  433. msg[0] = AUX_I2C_WRITE << 4;
  434. if (!(mode & MODE_I2C_STOP))
  435. msg[0] |= AUX_I2C_MOT << 4;
  436. msg[1] = address >> 8;
  437. msg[2] = address;
  438. switch (mode) {
  439. case MODE_I2C_WRITE:
  440. msg[3] = 0;
  441. msg[4] = write_byte;
  442. msg_bytes = 5;
  443. reply_bytes = 1;
  444. break;
  445. case MODE_I2C_READ:
  446. msg[3] = 0;
  447. msg_bytes = 4;
  448. reply_bytes = 2;
  449. break;
  450. default:
  451. msg_bytes = 3;
  452. reply_bytes = 1;
  453. break;
  454. }
  455. for (retry = 0; retry < 5; retry++) {
  456. ret = intel_dp_aux_ch(intel_dp,
  457. msg, msg_bytes,
  458. reply, reply_bytes);
  459. if (ret < 0) {
  460. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  461. return ret;
  462. }
  463. switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
  464. case AUX_NATIVE_REPLY_ACK:
  465. /* I2C-over-AUX Reply field is only valid
  466. * when paired with AUX ACK.
  467. */
  468. break;
  469. case AUX_NATIVE_REPLY_NACK:
  470. DRM_DEBUG_KMS("aux_ch native nack\n");
  471. return -EREMOTEIO;
  472. case AUX_NATIVE_REPLY_DEFER:
  473. udelay(100);
  474. continue;
  475. default:
  476. DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
  477. reply[0]);
  478. return -EREMOTEIO;
  479. }
  480. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  481. case AUX_I2C_REPLY_ACK:
  482. if (mode == MODE_I2C_READ) {
  483. *read_byte = reply[1];
  484. }
  485. return reply_bytes - 1;
  486. case AUX_I2C_REPLY_NACK:
  487. DRM_DEBUG_KMS("aux_i2c nack\n");
  488. return -EREMOTEIO;
  489. case AUX_I2C_REPLY_DEFER:
  490. DRM_DEBUG_KMS("aux_i2c defer\n");
  491. udelay(100);
  492. break;
  493. default:
  494. DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
  495. return -EREMOTEIO;
  496. }
  497. }
  498. DRM_ERROR("too many retries, giving up\n");
  499. return -EREMOTEIO;
  500. }
  501. static int
  502. intel_dp_i2c_init(struct intel_dp *intel_dp,
  503. struct intel_connector *intel_connector, const char *name)
  504. {
  505. DRM_DEBUG_KMS("i2c_init %s\n", name);
  506. intel_dp->algo.running = false;
  507. intel_dp->algo.address = 0;
  508. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  509. memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
  510. intel_dp->adapter.owner = THIS_MODULE;
  511. intel_dp->adapter.class = I2C_CLASS_DDC;
  512. strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  513. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  514. intel_dp->adapter.algo_data = &intel_dp->algo;
  515. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  516. return i2c_dp_aux_add_bus(&intel_dp->adapter);
  517. }
  518. static bool
  519. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  520. struct drm_display_mode *adjusted_mode)
  521. {
  522. struct drm_device *dev = encoder->dev;
  523. struct drm_i915_private *dev_priv = dev->dev_private;
  524. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  525. int lane_count, clock;
  526. int max_lane_count = intel_dp_max_lane_count(intel_dp);
  527. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  528. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  529. if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
  530. intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
  531. intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
  532. mode, adjusted_mode);
  533. /*
  534. * the mode->clock is used to calculate the Data&Link M/N
  535. * of the pipe. For the eDP the fixed clock should be used.
  536. */
  537. mode->clock = dev_priv->panel_fixed_mode->clock;
  538. }
  539. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  540. for (clock = 0; clock <= max_clock; clock++) {
  541. int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
  542. if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
  543. <= link_avail) {
  544. intel_dp->link_bw = bws[clock];
  545. intel_dp->lane_count = lane_count;
  546. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  547. DRM_DEBUG_KMS("Display port link bw %02x lane "
  548. "count %d clock %d\n",
  549. intel_dp->link_bw, intel_dp->lane_count,
  550. adjusted_mode->clock);
  551. return true;
  552. }
  553. }
  554. }
  555. if (is_edp(intel_dp)) {
  556. /* okay we failed just pick the highest */
  557. intel_dp->lane_count = max_lane_count;
  558. intel_dp->link_bw = bws[max_clock];
  559. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  560. DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
  561. "count %d clock %d\n",
  562. intel_dp->link_bw, intel_dp->lane_count,
  563. adjusted_mode->clock);
  564. return true;
  565. }
  566. return false;
  567. }
  568. struct intel_dp_m_n {
  569. uint32_t tu;
  570. uint32_t gmch_m;
  571. uint32_t gmch_n;
  572. uint32_t link_m;
  573. uint32_t link_n;
  574. };
  575. static void
  576. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  577. {
  578. while (*num > 0xffffff || *den > 0xffffff) {
  579. *num >>= 1;
  580. *den >>= 1;
  581. }
  582. }
  583. static void
  584. intel_dp_compute_m_n(int bpp,
  585. int nlanes,
  586. int pixel_clock,
  587. int link_clock,
  588. struct intel_dp_m_n *m_n)
  589. {
  590. m_n->tu = 64;
  591. m_n->gmch_m = (pixel_clock * bpp) >> 3;
  592. m_n->gmch_n = link_clock * nlanes;
  593. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  594. m_n->link_m = pixel_clock;
  595. m_n->link_n = link_clock;
  596. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  597. }
  598. void
  599. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  600. struct drm_display_mode *adjusted_mode)
  601. {
  602. struct drm_device *dev = crtc->dev;
  603. struct drm_mode_config *mode_config = &dev->mode_config;
  604. struct drm_encoder *encoder;
  605. struct drm_i915_private *dev_priv = dev->dev_private;
  606. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  607. int lane_count = 4, bpp = 24;
  608. struct intel_dp_m_n m_n;
  609. int pipe = intel_crtc->pipe;
  610. /*
  611. * Find the lane count in the intel_encoder private
  612. */
  613. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  614. struct intel_dp *intel_dp;
  615. if (encoder->crtc != crtc)
  616. continue;
  617. intel_dp = enc_to_intel_dp(encoder);
  618. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
  619. lane_count = intel_dp->lane_count;
  620. break;
  621. } else if (is_edp(intel_dp)) {
  622. lane_count = dev_priv->edp.lanes;
  623. bpp = dev_priv->edp.bpp;
  624. break;
  625. }
  626. }
  627. /*
  628. * Compute the GMCH and Link ratios. The '3' here is
  629. * the number of bytes_per_pixel post-LUT, which we always
  630. * set up for 8-bits of R/G/B, or 3 bytes total.
  631. */
  632. intel_dp_compute_m_n(bpp, lane_count,
  633. mode->clock, adjusted_mode->clock, &m_n);
  634. if (HAS_PCH_SPLIT(dev)) {
  635. I915_WRITE(TRANSDATA_M1(pipe),
  636. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  637. m_n.gmch_m);
  638. I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
  639. I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
  640. I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
  641. } else {
  642. I915_WRITE(PIPE_GMCH_DATA_M(pipe),
  643. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  644. m_n.gmch_m);
  645. I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
  646. I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
  647. I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
  648. }
  649. }
  650. static void
  651. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  652. struct drm_display_mode *adjusted_mode)
  653. {
  654. struct drm_device *dev = encoder->dev;
  655. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  656. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  657. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  658. intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
  659. intel_dp->DP |= intel_dp->color_range;
  660. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  661. intel_dp->DP |= DP_SYNC_HS_HIGH;
  662. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  663. intel_dp->DP |= DP_SYNC_VS_HIGH;
  664. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  665. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  666. else
  667. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  668. switch (intel_dp->lane_count) {
  669. case 1:
  670. intel_dp->DP |= DP_PORT_WIDTH_1;
  671. break;
  672. case 2:
  673. intel_dp->DP |= DP_PORT_WIDTH_2;
  674. break;
  675. case 4:
  676. intel_dp->DP |= DP_PORT_WIDTH_4;
  677. break;
  678. }
  679. if (intel_dp->has_audio)
  680. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  681. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  682. intel_dp->link_configuration[0] = intel_dp->link_bw;
  683. intel_dp->link_configuration[1] = intel_dp->lane_count;
  684. /*
  685. * Check for DPCD version > 1.1 and enhanced framing support
  686. */
  687. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  688. (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
  689. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  690. intel_dp->DP |= DP_ENHANCED_FRAMING;
  691. }
  692. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  693. if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
  694. intel_dp->DP |= DP_PIPEB_SELECT;
  695. if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
  696. /* don't miss out required setting for eDP */
  697. intel_dp->DP |= DP_PLL_ENABLE;
  698. if (adjusted_mode->clock < 200000)
  699. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  700. else
  701. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  702. }
  703. }
  704. static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
  705. {
  706. struct drm_device *dev = intel_dp->base.base.dev;
  707. struct drm_i915_private *dev_priv = dev->dev_private;
  708. u32 pp;
  709. /*
  710. * If the panel wasn't on, make sure there's not a currently
  711. * active PP sequence before enabling AUX VDD.
  712. */
  713. if (!(I915_READ(PCH_PP_STATUS) & PP_ON))
  714. msleep(dev_priv->panel_t3);
  715. pp = I915_READ(PCH_PP_CONTROL);
  716. pp |= EDP_FORCE_VDD;
  717. I915_WRITE(PCH_PP_CONTROL, pp);
  718. POSTING_READ(PCH_PP_CONTROL);
  719. }
  720. static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp)
  721. {
  722. struct drm_device *dev = intel_dp->base.base.dev;
  723. struct drm_i915_private *dev_priv = dev->dev_private;
  724. u32 pp;
  725. pp = I915_READ(PCH_PP_CONTROL);
  726. pp &= ~EDP_FORCE_VDD;
  727. I915_WRITE(PCH_PP_CONTROL, pp);
  728. POSTING_READ(PCH_PP_CONTROL);
  729. /* Make sure sequencer is idle before allowing subsequent activity */
  730. msleep(dev_priv->panel_t12);
  731. }
  732. /* Returns true if the panel was already on when called */
  733. static bool ironlake_edp_panel_on (struct intel_dp *intel_dp)
  734. {
  735. struct drm_device *dev = intel_dp->base.base.dev;
  736. struct drm_i915_private *dev_priv = dev->dev_private;
  737. u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
  738. if (I915_READ(PCH_PP_STATUS) & PP_ON)
  739. return true;
  740. pp = I915_READ(PCH_PP_CONTROL);
  741. /* ILK workaround: disable reset around power sequence */
  742. pp &= ~PANEL_POWER_RESET;
  743. I915_WRITE(PCH_PP_CONTROL, pp);
  744. POSTING_READ(PCH_PP_CONTROL);
  745. pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
  746. I915_WRITE(PCH_PP_CONTROL, pp);
  747. POSTING_READ(PCH_PP_CONTROL);
  748. if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
  749. 5000))
  750. DRM_ERROR("panel on wait timed out: 0x%08x\n",
  751. I915_READ(PCH_PP_STATUS));
  752. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  753. I915_WRITE(PCH_PP_CONTROL, pp);
  754. POSTING_READ(PCH_PP_CONTROL);
  755. return false;
  756. }
  757. static void ironlake_edp_panel_off (struct drm_device *dev)
  758. {
  759. struct drm_i915_private *dev_priv = dev->dev_private;
  760. u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
  761. PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
  762. pp = I915_READ(PCH_PP_CONTROL);
  763. /* ILK workaround: disable reset around power sequence */
  764. pp &= ~PANEL_POWER_RESET;
  765. I915_WRITE(PCH_PP_CONTROL, pp);
  766. POSTING_READ(PCH_PP_CONTROL);
  767. pp &= ~POWER_TARGET_ON;
  768. I915_WRITE(PCH_PP_CONTROL, pp);
  769. POSTING_READ(PCH_PP_CONTROL);
  770. if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
  771. DRM_ERROR("panel off wait timed out: 0x%08x\n",
  772. I915_READ(PCH_PP_STATUS));
  773. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  774. I915_WRITE(PCH_PP_CONTROL, pp);
  775. POSTING_READ(PCH_PP_CONTROL);
  776. }
  777. static void ironlake_edp_backlight_on (struct drm_device *dev)
  778. {
  779. struct drm_i915_private *dev_priv = dev->dev_private;
  780. u32 pp;
  781. DRM_DEBUG_KMS("\n");
  782. /*
  783. * If we enable the backlight right away following a panel power
  784. * on, we may see slight flicker as the panel syncs with the eDP
  785. * link. So delay a bit to make sure the image is solid before
  786. * allowing it to appear.
  787. */
  788. msleep(300);
  789. pp = I915_READ(PCH_PP_CONTROL);
  790. pp |= EDP_BLC_ENABLE;
  791. I915_WRITE(PCH_PP_CONTROL, pp);
  792. }
  793. static void ironlake_edp_backlight_off (struct drm_device *dev)
  794. {
  795. struct drm_i915_private *dev_priv = dev->dev_private;
  796. u32 pp;
  797. DRM_DEBUG_KMS("\n");
  798. pp = I915_READ(PCH_PP_CONTROL);
  799. pp &= ~EDP_BLC_ENABLE;
  800. I915_WRITE(PCH_PP_CONTROL, pp);
  801. }
  802. static void ironlake_edp_pll_on(struct drm_encoder *encoder)
  803. {
  804. struct drm_device *dev = encoder->dev;
  805. struct drm_i915_private *dev_priv = dev->dev_private;
  806. u32 dpa_ctl;
  807. DRM_DEBUG_KMS("\n");
  808. dpa_ctl = I915_READ(DP_A);
  809. dpa_ctl |= DP_PLL_ENABLE;
  810. I915_WRITE(DP_A, dpa_ctl);
  811. POSTING_READ(DP_A);
  812. udelay(200);
  813. }
  814. static void ironlake_edp_pll_off(struct drm_encoder *encoder)
  815. {
  816. struct drm_device *dev = encoder->dev;
  817. struct drm_i915_private *dev_priv = dev->dev_private;
  818. u32 dpa_ctl;
  819. dpa_ctl = I915_READ(DP_A);
  820. dpa_ctl &= ~DP_PLL_ENABLE;
  821. I915_WRITE(DP_A, dpa_ctl);
  822. POSTING_READ(DP_A);
  823. udelay(200);
  824. }
  825. static void intel_dp_prepare(struct drm_encoder *encoder)
  826. {
  827. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  828. struct drm_device *dev = encoder->dev;
  829. if (is_edp(intel_dp)) {
  830. ironlake_edp_backlight_off(dev);
  831. ironlake_edp_panel_off(dev);
  832. if (!is_pch_edp(intel_dp))
  833. ironlake_edp_pll_on(encoder);
  834. else
  835. ironlake_edp_pll_off(encoder);
  836. }
  837. intel_dp_link_down(intel_dp);
  838. }
  839. static void intel_dp_commit(struct drm_encoder *encoder)
  840. {
  841. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  842. struct drm_device *dev = encoder->dev;
  843. if (is_edp(intel_dp))
  844. ironlake_edp_panel_vdd_on(intel_dp);
  845. intel_dp_start_link_train(intel_dp);
  846. if (is_edp(intel_dp)) {
  847. ironlake_edp_panel_on(intel_dp);
  848. ironlake_edp_panel_vdd_off(intel_dp);
  849. }
  850. intel_dp_complete_link_train(intel_dp);
  851. if (is_edp(intel_dp))
  852. ironlake_edp_backlight_on(dev);
  853. }
  854. static void
  855. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  856. {
  857. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  858. struct drm_device *dev = encoder->dev;
  859. struct drm_i915_private *dev_priv = dev->dev_private;
  860. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  861. if (mode != DRM_MODE_DPMS_ON) {
  862. if (is_edp(intel_dp))
  863. ironlake_edp_backlight_off(dev);
  864. intel_dp_link_down(intel_dp);
  865. if (is_edp(intel_dp))
  866. ironlake_edp_panel_off(dev);
  867. if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
  868. ironlake_edp_pll_off(encoder);
  869. } else {
  870. if (is_edp(intel_dp))
  871. ironlake_edp_panel_vdd_on(intel_dp);
  872. if (!(dp_reg & DP_PORT_EN)) {
  873. intel_dp_start_link_train(intel_dp);
  874. if (is_edp(intel_dp)) {
  875. ironlake_edp_panel_on(intel_dp);
  876. ironlake_edp_panel_vdd_off(intel_dp);
  877. }
  878. intel_dp_complete_link_train(intel_dp);
  879. }
  880. if (is_edp(intel_dp))
  881. ironlake_edp_backlight_on(dev);
  882. }
  883. intel_dp->dpms_mode = mode;
  884. }
  885. /*
  886. * Fetch AUX CH registers 0x202 - 0x207 which contain
  887. * link status information
  888. */
  889. static bool
  890. intel_dp_get_link_status(struct intel_dp *intel_dp)
  891. {
  892. int ret, i;
  893. /* Must try AUX reads for this at least 3 times */
  894. for (i = 0; i < 3; i++) {
  895. ret = intel_dp_aux_native_read(intel_dp,
  896. DP_LANE0_1_STATUS,
  897. intel_dp->link_status,
  898. DP_LINK_STATUS_SIZE);
  899. if (ret == DP_LINK_STATUS_SIZE)
  900. return true;
  901. msleep(1);
  902. }
  903. return false;
  904. }
  905. static uint8_t
  906. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  907. int r)
  908. {
  909. return link_status[r - DP_LANE0_1_STATUS];
  910. }
  911. static uint8_t
  912. intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  913. int lane)
  914. {
  915. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  916. int s = ((lane & 1) ?
  917. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  918. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  919. uint8_t l = intel_dp_link_status(link_status, i);
  920. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  921. }
  922. static uint8_t
  923. intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  924. int lane)
  925. {
  926. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  927. int s = ((lane & 1) ?
  928. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  929. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  930. uint8_t l = intel_dp_link_status(link_status, i);
  931. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  932. }
  933. #if 0
  934. static char *voltage_names[] = {
  935. "0.4V", "0.6V", "0.8V", "1.2V"
  936. };
  937. static char *pre_emph_names[] = {
  938. "0dB", "3.5dB", "6dB", "9.5dB"
  939. };
  940. static char *link_train_names[] = {
  941. "pattern 1", "pattern 2", "idle", "off"
  942. };
  943. #endif
  944. /*
  945. * These are source-specific values; current Intel hardware supports
  946. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  947. */
  948. #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
  949. static uint8_t
  950. intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  951. {
  952. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  953. case DP_TRAIN_VOLTAGE_SWING_400:
  954. return DP_TRAIN_PRE_EMPHASIS_6;
  955. case DP_TRAIN_VOLTAGE_SWING_600:
  956. return DP_TRAIN_PRE_EMPHASIS_6;
  957. case DP_TRAIN_VOLTAGE_SWING_800:
  958. return DP_TRAIN_PRE_EMPHASIS_3_5;
  959. case DP_TRAIN_VOLTAGE_SWING_1200:
  960. default:
  961. return DP_TRAIN_PRE_EMPHASIS_0;
  962. }
  963. }
  964. static void
  965. intel_get_adjust_train(struct intel_dp *intel_dp)
  966. {
  967. uint8_t v = 0;
  968. uint8_t p = 0;
  969. int lane;
  970. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  971. uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
  972. uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
  973. if (this_v > v)
  974. v = this_v;
  975. if (this_p > p)
  976. p = this_p;
  977. }
  978. if (v >= I830_DP_VOLTAGE_MAX)
  979. v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  980. if (p >= intel_dp_pre_emphasis_max(v))
  981. p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  982. for (lane = 0; lane < 4; lane++)
  983. intel_dp->train_set[lane] = v | p;
  984. }
  985. static uint32_t
  986. intel_dp_signal_levels(uint8_t train_set, int lane_count)
  987. {
  988. uint32_t signal_levels = 0;
  989. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  990. case DP_TRAIN_VOLTAGE_SWING_400:
  991. default:
  992. signal_levels |= DP_VOLTAGE_0_4;
  993. break;
  994. case DP_TRAIN_VOLTAGE_SWING_600:
  995. signal_levels |= DP_VOLTAGE_0_6;
  996. break;
  997. case DP_TRAIN_VOLTAGE_SWING_800:
  998. signal_levels |= DP_VOLTAGE_0_8;
  999. break;
  1000. case DP_TRAIN_VOLTAGE_SWING_1200:
  1001. signal_levels |= DP_VOLTAGE_1_2;
  1002. break;
  1003. }
  1004. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1005. case DP_TRAIN_PRE_EMPHASIS_0:
  1006. default:
  1007. signal_levels |= DP_PRE_EMPHASIS_0;
  1008. break;
  1009. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1010. signal_levels |= DP_PRE_EMPHASIS_3_5;
  1011. break;
  1012. case DP_TRAIN_PRE_EMPHASIS_6:
  1013. signal_levels |= DP_PRE_EMPHASIS_6;
  1014. break;
  1015. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1016. signal_levels |= DP_PRE_EMPHASIS_9_5;
  1017. break;
  1018. }
  1019. return signal_levels;
  1020. }
  1021. /* Gen6's DP voltage swing and pre-emphasis control */
  1022. static uint32_t
  1023. intel_gen6_edp_signal_levels(uint8_t train_set)
  1024. {
  1025. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1026. DP_TRAIN_PRE_EMPHASIS_MASK);
  1027. switch (signal_levels) {
  1028. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1029. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1030. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1031. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1032. return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
  1033. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1034. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1035. return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
  1036. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1037. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1038. return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
  1039. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1040. case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
  1041. return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
  1042. default:
  1043. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1044. "0x%x\n", signal_levels);
  1045. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1046. }
  1047. }
  1048. static uint8_t
  1049. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  1050. int lane)
  1051. {
  1052. int i = DP_LANE0_1_STATUS + (lane >> 1);
  1053. int s = (lane & 1) * 4;
  1054. uint8_t l = intel_dp_link_status(link_status, i);
  1055. return (l >> s) & 0xf;
  1056. }
  1057. /* Check for clock recovery is done on all channels */
  1058. static bool
  1059. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  1060. {
  1061. int lane;
  1062. uint8_t lane_status;
  1063. for (lane = 0; lane < lane_count; lane++) {
  1064. lane_status = intel_get_lane_status(link_status, lane);
  1065. if ((lane_status & DP_LANE_CR_DONE) == 0)
  1066. return false;
  1067. }
  1068. return true;
  1069. }
  1070. /* Check to see if channel eq is done on all channels */
  1071. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  1072. DP_LANE_CHANNEL_EQ_DONE|\
  1073. DP_LANE_SYMBOL_LOCKED)
  1074. static bool
  1075. intel_channel_eq_ok(struct intel_dp *intel_dp)
  1076. {
  1077. uint8_t lane_align;
  1078. uint8_t lane_status;
  1079. int lane;
  1080. lane_align = intel_dp_link_status(intel_dp->link_status,
  1081. DP_LANE_ALIGN_STATUS_UPDATED);
  1082. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  1083. return false;
  1084. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1085. lane_status = intel_get_lane_status(intel_dp->link_status, lane);
  1086. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  1087. return false;
  1088. }
  1089. return true;
  1090. }
  1091. static bool
  1092. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1093. uint32_t dp_reg_value,
  1094. uint8_t dp_train_pat)
  1095. {
  1096. struct drm_device *dev = intel_dp->base.base.dev;
  1097. struct drm_i915_private *dev_priv = dev->dev_private;
  1098. int ret;
  1099. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1100. POSTING_READ(intel_dp->output_reg);
  1101. intel_dp_aux_native_write_1(intel_dp,
  1102. DP_TRAINING_PATTERN_SET,
  1103. dp_train_pat);
  1104. ret = intel_dp_aux_native_write(intel_dp,
  1105. DP_TRAINING_LANE0_SET,
  1106. intel_dp->train_set, 4);
  1107. if (ret != 4)
  1108. return false;
  1109. return true;
  1110. }
  1111. /* Enable corresponding port and start training pattern 1 */
  1112. static void
  1113. intel_dp_start_link_train(struct intel_dp *intel_dp)
  1114. {
  1115. struct drm_device *dev = intel_dp->base.base.dev;
  1116. struct drm_i915_private *dev_priv = dev->dev_private;
  1117. struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
  1118. int i;
  1119. uint8_t voltage;
  1120. bool clock_recovery = false;
  1121. int tries;
  1122. u32 reg;
  1123. uint32_t DP = intel_dp->DP;
  1124. /* Enable output, wait for it to become active */
  1125. I915_WRITE(intel_dp->output_reg, intel_dp->DP);
  1126. POSTING_READ(intel_dp->output_reg);
  1127. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1128. /* Write the link configuration data */
  1129. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  1130. intel_dp->link_configuration,
  1131. DP_LINK_CONFIGURATION_SIZE);
  1132. DP |= DP_PORT_EN;
  1133. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1134. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1135. else
  1136. DP &= ~DP_LINK_TRAIN_MASK;
  1137. memset(intel_dp->train_set, 0, 4);
  1138. voltage = 0xff;
  1139. tries = 0;
  1140. clock_recovery = false;
  1141. for (;;) {
  1142. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1143. uint32_t signal_levels;
  1144. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1145. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1146. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1147. } else {
  1148. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1149. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1150. }
  1151. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1152. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  1153. else
  1154. reg = DP | DP_LINK_TRAIN_PAT_1;
  1155. if (!intel_dp_set_link_train(intel_dp, reg,
  1156. DP_TRAINING_PATTERN_1))
  1157. break;
  1158. /* Set training pattern 1 */
  1159. udelay(100);
  1160. if (!intel_dp_get_link_status(intel_dp))
  1161. break;
  1162. if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1163. clock_recovery = true;
  1164. break;
  1165. }
  1166. /* Check to see if we've tried the max voltage */
  1167. for (i = 0; i < intel_dp->lane_count; i++)
  1168. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1169. break;
  1170. if (i == intel_dp->lane_count)
  1171. break;
  1172. /* Check to see if we've tried the same voltage 5 times */
  1173. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1174. ++tries;
  1175. if (tries == 5)
  1176. break;
  1177. } else
  1178. tries = 0;
  1179. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1180. /* Compute new intel_dp->train_set as requested by target */
  1181. intel_get_adjust_train(intel_dp);
  1182. }
  1183. intel_dp->DP = DP;
  1184. }
  1185. static void
  1186. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  1187. {
  1188. struct drm_device *dev = intel_dp->base.base.dev;
  1189. struct drm_i915_private *dev_priv = dev->dev_private;
  1190. bool channel_eq = false;
  1191. int tries, cr_tries;
  1192. u32 reg;
  1193. uint32_t DP = intel_dp->DP;
  1194. /* channel equalization */
  1195. tries = 0;
  1196. cr_tries = 0;
  1197. channel_eq = false;
  1198. for (;;) {
  1199. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1200. uint32_t signal_levels;
  1201. if (cr_tries > 5) {
  1202. DRM_ERROR("failed to train DP, aborting\n");
  1203. intel_dp_link_down(intel_dp);
  1204. break;
  1205. }
  1206. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1207. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1208. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1209. } else {
  1210. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1211. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1212. }
  1213. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1214. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  1215. else
  1216. reg = DP | DP_LINK_TRAIN_PAT_2;
  1217. /* channel eq pattern */
  1218. if (!intel_dp_set_link_train(intel_dp, reg,
  1219. DP_TRAINING_PATTERN_2))
  1220. break;
  1221. udelay(400);
  1222. if (!intel_dp_get_link_status(intel_dp))
  1223. break;
  1224. /* Make sure clock is still ok */
  1225. if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1226. intel_dp_start_link_train(intel_dp);
  1227. cr_tries++;
  1228. continue;
  1229. }
  1230. if (intel_channel_eq_ok(intel_dp)) {
  1231. channel_eq = true;
  1232. break;
  1233. }
  1234. /* Try 5 times, then try clock recovery if that fails */
  1235. if (tries > 5) {
  1236. intel_dp_link_down(intel_dp);
  1237. intel_dp_start_link_train(intel_dp);
  1238. tries = 0;
  1239. cr_tries++;
  1240. continue;
  1241. }
  1242. /* Compute new intel_dp->train_set as requested by target */
  1243. intel_get_adjust_train(intel_dp);
  1244. ++tries;
  1245. }
  1246. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1247. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  1248. else
  1249. reg = DP | DP_LINK_TRAIN_OFF;
  1250. I915_WRITE(intel_dp->output_reg, reg);
  1251. POSTING_READ(intel_dp->output_reg);
  1252. intel_dp_aux_native_write_1(intel_dp,
  1253. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1254. }
  1255. static void
  1256. intel_dp_link_down(struct intel_dp *intel_dp)
  1257. {
  1258. struct drm_device *dev = intel_dp->base.base.dev;
  1259. struct drm_i915_private *dev_priv = dev->dev_private;
  1260. uint32_t DP = intel_dp->DP;
  1261. if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
  1262. return;
  1263. DRM_DEBUG_KMS("\n");
  1264. if (is_edp(intel_dp)) {
  1265. DP &= ~DP_PLL_ENABLE;
  1266. I915_WRITE(intel_dp->output_reg, DP);
  1267. POSTING_READ(intel_dp->output_reg);
  1268. udelay(100);
  1269. }
  1270. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
  1271. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1272. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1273. } else {
  1274. DP &= ~DP_LINK_TRAIN_MASK;
  1275. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1276. }
  1277. POSTING_READ(intel_dp->output_reg);
  1278. msleep(17);
  1279. if (is_edp(intel_dp))
  1280. DP |= DP_LINK_TRAIN_OFF;
  1281. if (!HAS_PCH_CPT(dev) &&
  1282. I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
  1283. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  1284. /* Hardware workaround: leaving our transcoder select
  1285. * set to transcoder B while it's off will prevent the
  1286. * corresponding HDMI output on transcoder A.
  1287. *
  1288. * Combine this with another hardware workaround:
  1289. * transcoder select bit can only be cleared while the
  1290. * port is enabled.
  1291. */
  1292. DP &= ~DP_PIPEB_SELECT;
  1293. I915_WRITE(intel_dp->output_reg, DP);
  1294. /* Changes to enable or select take place the vblank
  1295. * after being written.
  1296. */
  1297. if (crtc == NULL) {
  1298. /* We can arrive here never having been attached
  1299. * to a CRTC, for instance, due to inheriting
  1300. * random state from the BIOS.
  1301. *
  1302. * If the pipe is not running, play safe and
  1303. * wait for the clocks to stabilise before
  1304. * continuing.
  1305. */
  1306. POSTING_READ(intel_dp->output_reg);
  1307. msleep(50);
  1308. } else
  1309. intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
  1310. }
  1311. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1312. POSTING_READ(intel_dp->output_reg);
  1313. }
  1314. /*
  1315. * According to DP spec
  1316. * 5.1.2:
  1317. * 1. Read DPCD
  1318. * 2. Configure link according to Receiver Capabilities
  1319. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1320. * 4. Check link status on receipt of hot-plug interrupt
  1321. */
  1322. static void
  1323. intel_dp_check_link_status(struct intel_dp *intel_dp)
  1324. {
  1325. int ret;
  1326. if (!intel_dp->base.base.crtc)
  1327. return;
  1328. if (!intel_dp_get_link_status(intel_dp)) {
  1329. intel_dp_link_down(intel_dp);
  1330. return;
  1331. }
  1332. /* Try to read receiver status if the link appears to be up */
  1333. ret = intel_dp_aux_native_read(intel_dp,
  1334. 0x000, intel_dp->dpcd,
  1335. sizeof (intel_dp->dpcd));
  1336. if (ret != sizeof(intel_dp->dpcd)) {
  1337. intel_dp_link_down(intel_dp);
  1338. return;
  1339. }
  1340. if (!intel_channel_eq_ok(intel_dp)) {
  1341. intel_dp_start_link_train(intel_dp);
  1342. intel_dp_complete_link_train(intel_dp);
  1343. }
  1344. }
  1345. static enum drm_connector_status
  1346. ironlake_dp_detect(struct intel_dp *intel_dp)
  1347. {
  1348. enum drm_connector_status status;
  1349. /* Can't disconnect eDP, but you can close the lid... */
  1350. if (is_edp(intel_dp)) {
  1351. status = intel_panel_detect(intel_dp->base.base.dev);
  1352. if (status == connector_status_unknown)
  1353. status = connector_status_connected;
  1354. return status;
  1355. }
  1356. status = connector_status_disconnected;
  1357. if (intel_dp_aux_native_read(intel_dp,
  1358. 0x000, intel_dp->dpcd,
  1359. sizeof (intel_dp->dpcd))
  1360. == sizeof(intel_dp->dpcd)) {
  1361. if (intel_dp->dpcd[DP_DPCD_REV] != 0)
  1362. status = connector_status_connected;
  1363. }
  1364. DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
  1365. intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
  1366. return status;
  1367. }
  1368. static enum drm_connector_status
  1369. g4x_dp_detect(struct intel_dp *intel_dp)
  1370. {
  1371. struct drm_device *dev = intel_dp->base.base.dev;
  1372. struct drm_i915_private *dev_priv = dev->dev_private;
  1373. enum drm_connector_status status;
  1374. uint32_t temp, bit;
  1375. switch (intel_dp->output_reg) {
  1376. case DP_B:
  1377. bit = DPB_HOTPLUG_INT_STATUS;
  1378. break;
  1379. case DP_C:
  1380. bit = DPC_HOTPLUG_INT_STATUS;
  1381. break;
  1382. case DP_D:
  1383. bit = DPD_HOTPLUG_INT_STATUS;
  1384. break;
  1385. default:
  1386. return connector_status_unknown;
  1387. }
  1388. temp = I915_READ(PORT_HOTPLUG_STAT);
  1389. if ((temp & bit) == 0)
  1390. return connector_status_disconnected;
  1391. status = connector_status_disconnected;
  1392. if (intel_dp_aux_native_read(intel_dp, 0x000, intel_dp->dpcd,
  1393. sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
  1394. {
  1395. if (intel_dp->dpcd[DP_DPCD_REV] != 0)
  1396. status = connector_status_connected;
  1397. }
  1398. return status;
  1399. }
  1400. /**
  1401. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1402. *
  1403. * \return true if DP port is connected.
  1404. * \return false if DP port is disconnected.
  1405. */
  1406. static enum drm_connector_status
  1407. intel_dp_detect(struct drm_connector *connector, bool force)
  1408. {
  1409. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1410. struct drm_device *dev = intel_dp->base.base.dev;
  1411. enum drm_connector_status status;
  1412. struct edid *edid = NULL;
  1413. intel_dp->has_audio = false;
  1414. if (HAS_PCH_SPLIT(dev))
  1415. status = ironlake_dp_detect(intel_dp);
  1416. else
  1417. status = g4x_dp_detect(intel_dp);
  1418. if (status != connector_status_connected)
  1419. return status;
  1420. if (intel_dp->force_audio) {
  1421. intel_dp->has_audio = intel_dp->force_audio > 0;
  1422. } else {
  1423. edid = drm_get_edid(connector, &intel_dp->adapter);
  1424. if (edid) {
  1425. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  1426. connector->display_info.raw_edid = NULL;
  1427. kfree(edid);
  1428. }
  1429. }
  1430. return connector_status_connected;
  1431. }
  1432. static int intel_dp_get_modes(struct drm_connector *connector)
  1433. {
  1434. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1435. struct drm_device *dev = intel_dp->base.base.dev;
  1436. struct drm_i915_private *dev_priv = dev->dev_private;
  1437. int ret;
  1438. /* We should parse the EDID data and find out if it has an audio sink
  1439. */
  1440. ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
  1441. if (ret) {
  1442. if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) {
  1443. struct drm_display_mode *newmode;
  1444. list_for_each_entry(newmode, &connector->probed_modes,
  1445. head) {
  1446. if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
  1447. dev_priv->panel_fixed_mode =
  1448. drm_mode_duplicate(dev, newmode);
  1449. break;
  1450. }
  1451. }
  1452. }
  1453. return ret;
  1454. }
  1455. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1456. if (is_edp(intel_dp)) {
  1457. if (dev_priv->panel_fixed_mode != NULL) {
  1458. struct drm_display_mode *mode;
  1459. mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
  1460. drm_mode_probed_add(connector, mode);
  1461. return 1;
  1462. }
  1463. }
  1464. return 0;
  1465. }
  1466. static bool
  1467. intel_dp_detect_audio(struct drm_connector *connector)
  1468. {
  1469. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1470. struct edid *edid;
  1471. bool has_audio = false;
  1472. edid = drm_get_edid(connector, &intel_dp->adapter);
  1473. if (edid) {
  1474. has_audio = drm_detect_monitor_audio(edid);
  1475. connector->display_info.raw_edid = NULL;
  1476. kfree(edid);
  1477. }
  1478. return has_audio;
  1479. }
  1480. static int
  1481. intel_dp_set_property(struct drm_connector *connector,
  1482. struct drm_property *property,
  1483. uint64_t val)
  1484. {
  1485. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  1486. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1487. int ret;
  1488. ret = drm_connector_property_set_value(connector, property, val);
  1489. if (ret)
  1490. return ret;
  1491. if (property == dev_priv->force_audio_property) {
  1492. int i = val;
  1493. bool has_audio;
  1494. if (i == intel_dp->force_audio)
  1495. return 0;
  1496. intel_dp->force_audio = i;
  1497. if (i == 0)
  1498. has_audio = intel_dp_detect_audio(connector);
  1499. else
  1500. has_audio = i > 0;
  1501. if (has_audio == intel_dp->has_audio)
  1502. return 0;
  1503. intel_dp->has_audio = has_audio;
  1504. goto done;
  1505. }
  1506. if (property == dev_priv->broadcast_rgb_property) {
  1507. if (val == !!intel_dp->color_range)
  1508. return 0;
  1509. intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
  1510. goto done;
  1511. }
  1512. return -EINVAL;
  1513. done:
  1514. if (intel_dp->base.base.crtc) {
  1515. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  1516. drm_crtc_helper_set_mode(crtc, &crtc->mode,
  1517. crtc->x, crtc->y,
  1518. crtc->fb);
  1519. }
  1520. return 0;
  1521. }
  1522. static void
  1523. intel_dp_destroy (struct drm_connector *connector)
  1524. {
  1525. drm_sysfs_connector_remove(connector);
  1526. drm_connector_cleanup(connector);
  1527. kfree(connector);
  1528. }
  1529. static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  1530. {
  1531. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1532. i2c_del_adapter(&intel_dp->adapter);
  1533. drm_encoder_cleanup(encoder);
  1534. kfree(intel_dp);
  1535. }
  1536. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  1537. .dpms = intel_dp_dpms,
  1538. .mode_fixup = intel_dp_mode_fixup,
  1539. .prepare = intel_dp_prepare,
  1540. .mode_set = intel_dp_mode_set,
  1541. .commit = intel_dp_commit,
  1542. };
  1543. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  1544. .dpms = drm_helper_connector_dpms,
  1545. .detect = intel_dp_detect,
  1546. .fill_modes = drm_helper_probe_single_connector_modes,
  1547. .set_property = intel_dp_set_property,
  1548. .destroy = intel_dp_destroy,
  1549. };
  1550. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  1551. .get_modes = intel_dp_get_modes,
  1552. .mode_valid = intel_dp_mode_valid,
  1553. .best_encoder = intel_best_encoder,
  1554. };
  1555. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  1556. .destroy = intel_dp_encoder_destroy,
  1557. };
  1558. static void
  1559. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  1560. {
  1561. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  1562. if (intel_dp->dpms_mode == DRM_MODE_DPMS_ON)
  1563. intel_dp_check_link_status(intel_dp);
  1564. }
  1565. /* Return which DP Port should be selected for Transcoder DP control */
  1566. int
  1567. intel_trans_dp_port_sel (struct drm_crtc *crtc)
  1568. {
  1569. struct drm_device *dev = crtc->dev;
  1570. struct drm_mode_config *mode_config = &dev->mode_config;
  1571. struct drm_encoder *encoder;
  1572. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  1573. struct intel_dp *intel_dp;
  1574. if (encoder->crtc != crtc)
  1575. continue;
  1576. intel_dp = enc_to_intel_dp(encoder);
  1577. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  1578. return intel_dp->output_reg;
  1579. }
  1580. return -1;
  1581. }
  1582. /* check the VBT to see whether the eDP is on DP-D port */
  1583. bool intel_dpd_is_edp(struct drm_device *dev)
  1584. {
  1585. struct drm_i915_private *dev_priv = dev->dev_private;
  1586. struct child_device_config *p_child;
  1587. int i;
  1588. if (!dev_priv->child_dev_num)
  1589. return false;
  1590. for (i = 0; i < dev_priv->child_dev_num; i++) {
  1591. p_child = dev_priv->child_dev + i;
  1592. if (p_child->dvo_port == PORT_IDPD &&
  1593. p_child->device_type == DEVICE_TYPE_eDP)
  1594. return true;
  1595. }
  1596. return false;
  1597. }
  1598. static void
  1599. intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
  1600. {
  1601. intel_attach_force_audio_property(connector);
  1602. intel_attach_broadcast_rgb_property(connector);
  1603. }
  1604. void
  1605. intel_dp_init(struct drm_device *dev, int output_reg)
  1606. {
  1607. struct drm_i915_private *dev_priv = dev->dev_private;
  1608. struct drm_connector *connector;
  1609. struct intel_dp *intel_dp;
  1610. struct intel_encoder *intel_encoder;
  1611. struct intel_connector *intel_connector;
  1612. const char *name = NULL;
  1613. int type;
  1614. intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
  1615. if (!intel_dp)
  1616. return;
  1617. intel_dp->output_reg = output_reg;
  1618. intel_dp->dpms_mode = -1;
  1619. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1620. if (!intel_connector) {
  1621. kfree(intel_dp);
  1622. return;
  1623. }
  1624. intel_encoder = &intel_dp->base;
  1625. if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
  1626. if (intel_dpd_is_edp(dev))
  1627. intel_dp->is_pch_edp = true;
  1628. if (output_reg == DP_A || is_pch_edp(intel_dp)) {
  1629. type = DRM_MODE_CONNECTOR_eDP;
  1630. intel_encoder->type = INTEL_OUTPUT_EDP;
  1631. } else {
  1632. type = DRM_MODE_CONNECTOR_DisplayPort;
  1633. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1634. }
  1635. connector = &intel_connector->base;
  1636. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  1637. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  1638. connector->polled = DRM_CONNECTOR_POLL_HPD;
  1639. if (output_reg == DP_B || output_reg == PCH_DP_B)
  1640. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  1641. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  1642. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  1643. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  1644. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  1645. if (is_edp(intel_dp))
  1646. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  1647. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1648. connector->interlace_allowed = true;
  1649. connector->doublescan_allowed = 0;
  1650. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  1651. DRM_MODE_ENCODER_TMDS);
  1652. drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
  1653. intel_connector_attach_encoder(intel_connector, intel_encoder);
  1654. drm_sysfs_connector_add(connector);
  1655. /* Set up the DDC bus. */
  1656. switch (output_reg) {
  1657. case DP_A:
  1658. name = "DPDDC-A";
  1659. break;
  1660. case DP_B:
  1661. case PCH_DP_B:
  1662. dev_priv->hotplug_supported_mask |=
  1663. HDMIB_HOTPLUG_INT_STATUS;
  1664. name = "DPDDC-B";
  1665. break;
  1666. case DP_C:
  1667. case PCH_DP_C:
  1668. dev_priv->hotplug_supported_mask |=
  1669. HDMIC_HOTPLUG_INT_STATUS;
  1670. name = "DPDDC-C";
  1671. break;
  1672. case DP_D:
  1673. case PCH_DP_D:
  1674. dev_priv->hotplug_supported_mask |=
  1675. HDMID_HOTPLUG_INT_STATUS;
  1676. name = "DPDDC-D";
  1677. break;
  1678. }
  1679. intel_dp_i2c_init(intel_dp, intel_connector, name);
  1680. /* Cache some DPCD data in the eDP case */
  1681. if (is_edp(intel_dp)) {
  1682. int ret;
  1683. u32 pp_on, pp_div;
  1684. pp_on = I915_READ(PCH_PP_ON_DELAYS);
  1685. pp_div = I915_READ(PCH_PP_DIVISOR);
  1686. /* Get T3 & T12 values (note: VESA not bspec terminology) */
  1687. dev_priv->panel_t3 = (pp_on & 0x1fff0000) >> 16;
  1688. dev_priv->panel_t3 /= 10; /* t3 in 100us units */
  1689. dev_priv->panel_t12 = pp_div & 0xf;
  1690. dev_priv->panel_t12 *= 100; /* t12 in 100ms units */
  1691. ironlake_edp_panel_vdd_on(intel_dp);
  1692. ret = intel_dp_aux_native_read(intel_dp, DP_DPCD_REV,
  1693. intel_dp->dpcd,
  1694. sizeof(intel_dp->dpcd));
  1695. ironlake_edp_panel_vdd_off(intel_dp);
  1696. if (ret == sizeof(intel_dp->dpcd)) {
  1697. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
  1698. dev_priv->no_aux_handshake =
  1699. intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
  1700. DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
  1701. } else {
  1702. /* if this fails, presume the device is a ghost */
  1703. DRM_INFO("failed to retrieve link info, disabling eDP\n");
  1704. intel_dp_encoder_destroy(&intel_dp->base.base);
  1705. intel_dp_destroy(&intel_connector->base);
  1706. return;
  1707. }
  1708. }
  1709. intel_encoder->hot_plug = intel_dp_hot_plug;
  1710. if (is_edp(intel_dp)) {
  1711. /* initialize panel mode from VBT if available for eDP */
  1712. if (dev_priv->lfp_lvds_vbt_mode) {
  1713. dev_priv->panel_fixed_mode =
  1714. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1715. if (dev_priv->panel_fixed_mode) {
  1716. dev_priv->panel_fixed_mode->type |=
  1717. DRM_MODE_TYPE_PREFERRED;
  1718. }
  1719. }
  1720. }
  1721. intel_dp_add_properties(intel_dp, connector);
  1722. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1723. * 0xd. Failure to do so will result in spurious interrupts being
  1724. * generated on the port when a cable is not attached.
  1725. */
  1726. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1727. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1728. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1729. }
  1730. }