cm4000_cs.c 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981
  1. /*
  2. * A driver for the PCMCIA Smartcard Reader "Omnikey CardMan Mobile 4000"
  3. *
  4. * cm4000_cs.c support.linux@omnikey.com
  5. *
  6. * Tue Oct 23 11:32:43 GMT 2001 herp - cleaned up header files
  7. * Sun Jan 20 10:11:15 MET 2002 herp - added modversion header files
  8. * Thu Nov 14 16:34:11 GMT 2002 mh - added PPS functionality
  9. * Tue Nov 19 16:36:27 GMT 2002 mh - added SUSPEND/RESUME functionailty
  10. * Wed Jul 28 12:55:01 CEST 2004 mh - kernel 2.6 adjustments
  11. *
  12. * current version: 2.4.0gm4
  13. *
  14. * (C) 2000,2001,2002,2003,2004 Omnikey AG
  15. *
  16. * (C) 2005-2006 Harald Welte <laforge@gnumonks.org>
  17. * - Adhere to Kernel CodingStyle
  18. * - Port to 2.6.13 "new" style PCMCIA
  19. * - Check for copy_{from,to}_user return values
  20. * - Use nonseekable_open()
  21. * - add class interface for udev device creation
  22. *
  23. * All rights reserved. Licensed under dual BSD/GPL license.
  24. */
  25. /* #define PCMCIA_DEBUG 6 */
  26. #include <linux/kernel.h>
  27. #include <linux/module.h>
  28. #include <linux/slab.h>
  29. #include <linux/init.h>
  30. #include <linux/fs.h>
  31. #include <linux/delay.h>
  32. #include <asm/uaccess.h>
  33. #include <asm/io.h>
  34. #include <pcmcia/cs_types.h>
  35. #include <pcmcia/cs.h>
  36. #include <pcmcia/cistpl.h>
  37. #include <pcmcia/cisreg.h>
  38. #include <pcmcia/ciscode.h>
  39. #include <pcmcia/ds.h>
  40. #include <linux/cm4000_cs.h>
  41. /* #define ATR_CSUM */
  42. #ifdef PCMCIA_DEBUG
  43. #define reader_to_dev(x) (&handle_to_dev(x->p_dev->handle))
  44. static int pc_debug = PCMCIA_DEBUG;
  45. module_param(pc_debug, int, 0600);
  46. #define DEBUGP(n, rdr, x, args...) do { \
  47. if (pc_debug >= (n)) \
  48. dev_printk(KERN_DEBUG, reader_to_dev(rdr), "%s:" x, \
  49. __FUNCTION__ , ## args); \
  50. } while (0)
  51. #else
  52. #define DEBUGP(n, rdr, x, args...)
  53. #endif
  54. static char *version = "cm4000_cs.c v2.4.0gm6 - All bugs added by Harald Welte";
  55. #define T_1SEC (HZ)
  56. #define T_10MSEC msecs_to_jiffies(10)
  57. #define T_20MSEC msecs_to_jiffies(20)
  58. #define T_40MSEC msecs_to_jiffies(40)
  59. #define T_50MSEC msecs_to_jiffies(50)
  60. #define T_100MSEC msecs_to_jiffies(100)
  61. #define T_500MSEC msecs_to_jiffies(500)
  62. static void cm4000_release(struct pcmcia_device *link);
  63. static int major; /* major number we get from the kernel */
  64. /* note: the first state has to have number 0 always */
  65. #define M_FETCH_ATR 0
  66. #define M_TIMEOUT_WAIT 1
  67. #define M_READ_ATR_LEN 2
  68. #define M_READ_ATR 3
  69. #define M_ATR_PRESENT 4
  70. #define M_BAD_CARD 5
  71. #define M_CARDOFF 6
  72. #define LOCK_IO 0
  73. #define LOCK_MONITOR 1
  74. #define IS_AUTOPPS_ACT 6
  75. #define IS_PROCBYTE_PRESENT 7
  76. #define IS_INVREV 8
  77. #define IS_ANY_T0 9
  78. #define IS_ANY_T1 10
  79. #define IS_ATR_PRESENT 11
  80. #define IS_ATR_VALID 12
  81. #define IS_CMM_ABSENT 13
  82. #define IS_BAD_LENGTH 14
  83. #define IS_BAD_CSUM 15
  84. #define IS_BAD_CARD 16
  85. #define REG_FLAGS0(x) (x + 0)
  86. #define REG_FLAGS1(x) (x + 1)
  87. #define REG_NUM_BYTES(x) (x + 2)
  88. #define REG_BUF_ADDR(x) (x + 3)
  89. #define REG_BUF_DATA(x) (x + 4)
  90. #define REG_NUM_SEND(x) (x + 5)
  91. #define REG_BAUDRATE(x) (x + 6)
  92. #define REG_STOPBITS(x) (x + 7)
  93. struct cm4000_dev {
  94. struct pcmcia_device *p_dev;
  95. dev_node_t node; /* OS node (major,minor) */
  96. unsigned char atr[MAX_ATR];
  97. unsigned char rbuf[512];
  98. unsigned char sbuf[512];
  99. wait_queue_head_t devq; /* when removing cardman must not be
  100. zeroed! */
  101. wait_queue_head_t ioq; /* if IO is locked, wait on this Q */
  102. wait_queue_head_t atrq; /* wait for ATR valid */
  103. wait_queue_head_t readq; /* used by write to wake blk.read */
  104. /* warning: do not move this fields.
  105. * initialising to zero depends on it - see ZERO_DEV below. */
  106. unsigned char atr_csum;
  107. unsigned char atr_len_retry;
  108. unsigned short atr_len;
  109. unsigned short rlen; /* bytes avail. after write */
  110. unsigned short rpos; /* latest read pos. write zeroes */
  111. unsigned char procbyte; /* T=0 procedure byte */
  112. unsigned char mstate; /* state of card monitor */
  113. unsigned char cwarn; /* slow down warning */
  114. unsigned char flags0; /* cardman IO-flags 0 */
  115. unsigned char flags1; /* cardman IO-flags 1 */
  116. unsigned int mdelay; /* variable monitor speeds, in jiffies */
  117. unsigned int baudv; /* baud value for speed */
  118. unsigned char ta1;
  119. unsigned char proto; /* T=0, T=1, ... */
  120. unsigned long flags; /* lock+flags (MONITOR,IO,ATR) * for concurrent
  121. access */
  122. unsigned char pts[4];
  123. struct timer_list timer; /* used to keep monitor running */
  124. int monitor_running;
  125. };
  126. #define ZERO_DEV(dev) \
  127. memset(&dev->atr_csum,0, \
  128. sizeof(struct cm4000_dev) - \
  129. offsetof(struct cm4000_dev, atr_csum))
  130. static struct pcmcia_device *dev_table[CM4000_MAX_DEV];
  131. static struct class *cmm_class;
  132. /* This table doesn't use spaces after the comma between fields and thus
  133. * violates CodingStyle. However, I don't really think wrapping it around will
  134. * make it any clearer to read -HW */
  135. static unsigned char fi_di_table[10][14] = {
  136. /*FI 00 01 02 03 04 05 06 07 08 09 10 11 12 13 */
  137. /*DI */
  138. /* 0 */ {0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11},
  139. /* 1 */ {0x01,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x91,0x11,0x11,0x11,0x11},
  140. /* 2 */ {0x02,0x12,0x22,0x32,0x11,0x11,0x11,0x11,0x11,0x92,0xA2,0xB2,0x11,0x11},
  141. /* 3 */ {0x03,0x13,0x23,0x33,0x43,0x53,0x63,0x11,0x11,0x93,0xA3,0xB3,0xC3,0xD3},
  142. /* 4 */ {0x04,0x14,0x24,0x34,0x44,0x54,0x64,0x11,0x11,0x94,0xA4,0xB4,0xC4,0xD4},
  143. /* 5 */ {0x00,0x15,0x25,0x35,0x45,0x55,0x65,0x11,0x11,0x95,0xA5,0xB5,0xC5,0xD5},
  144. /* 6 */ {0x06,0x16,0x26,0x36,0x46,0x56,0x66,0x11,0x11,0x96,0xA6,0xB6,0xC6,0xD6},
  145. /* 7 */ {0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11},
  146. /* 8 */ {0x08,0x11,0x28,0x38,0x48,0x58,0x68,0x11,0x11,0x98,0xA8,0xB8,0xC8,0xD8},
  147. /* 9 */ {0x09,0x19,0x29,0x39,0x49,0x59,0x69,0x11,0x11,0x99,0xA9,0xB9,0xC9,0xD9}
  148. };
  149. #ifndef PCMCIA_DEBUG
  150. #define xoutb outb
  151. #define xinb inb
  152. #else
  153. static inline void xoutb(unsigned char val, unsigned short port)
  154. {
  155. if (pc_debug >= 7)
  156. printk(KERN_DEBUG "outb(val=%.2x,port=%.4x)\n", val, port);
  157. outb(val, port);
  158. }
  159. static inline unsigned char xinb(unsigned short port)
  160. {
  161. unsigned char val;
  162. val = inb(port);
  163. if (pc_debug >= 7)
  164. printk(KERN_DEBUG "%.2x=inb(%.4x)\n", val, port);
  165. return val;
  166. }
  167. #endif
  168. #define b_0000 15
  169. #define b_0001 14
  170. #define b_0010 13
  171. #define b_0011 12
  172. #define b_0100 11
  173. #define b_0101 10
  174. #define b_0110 9
  175. #define b_0111 8
  176. #define b_1000 7
  177. #define b_1001 6
  178. #define b_1010 5
  179. #define b_1011 4
  180. #define b_1100 3
  181. #define b_1101 2
  182. #define b_1110 1
  183. #define b_1111 0
  184. static unsigned char irtab[16] = {
  185. b_0000, b_1000, b_0100, b_1100,
  186. b_0010, b_1010, b_0110, b_1110,
  187. b_0001, b_1001, b_0101, b_1101,
  188. b_0011, b_1011, b_0111, b_1111
  189. };
  190. static void str_invert_revert(unsigned char *b, int len)
  191. {
  192. int i;
  193. for (i = 0; i < len; i++)
  194. b[i] = (irtab[b[i] & 0x0f] << 4) | irtab[b[i] >> 4];
  195. }
  196. static unsigned char invert_revert(unsigned char ch)
  197. {
  198. return (irtab[ch & 0x0f] << 4) | irtab[ch >> 4];
  199. }
  200. #define ATRLENCK(dev,pos) \
  201. if (pos>=dev->atr_len || pos>=MAX_ATR) \
  202. goto return_0;
  203. static unsigned int calc_baudv(unsigned char fidi)
  204. {
  205. unsigned int wcrcf, wbrcf, fi_rfu, di_rfu;
  206. fi_rfu = 372;
  207. di_rfu = 1;
  208. /* FI */
  209. switch ((fidi >> 4) & 0x0F) {
  210. case 0x00:
  211. wcrcf = 372;
  212. break;
  213. case 0x01:
  214. wcrcf = 372;
  215. break;
  216. case 0x02:
  217. wcrcf = 558;
  218. break;
  219. case 0x03:
  220. wcrcf = 744;
  221. break;
  222. case 0x04:
  223. wcrcf = 1116;
  224. break;
  225. case 0x05:
  226. wcrcf = 1488;
  227. break;
  228. case 0x06:
  229. wcrcf = 1860;
  230. break;
  231. case 0x07:
  232. wcrcf = fi_rfu;
  233. break;
  234. case 0x08:
  235. wcrcf = fi_rfu;
  236. break;
  237. case 0x09:
  238. wcrcf = 512;
  239. break;
  240. case 0x0A:
  241. wcrcf = 768;
  242. break;
  243. case 0x0B:
  244. wcrcf = 1024;
  245. break;
  246. case 0x0C:
  247. wcrcf = 1536;
  248. break;
  249. case 0x0D:
  250. wcrcf = 2048;
  251. break;
  252. default:
  253. wcrcf = fi_rfu;
  254. break;
  255. }
  256. /* DI */
  257. switch (fidi & 0x0F) {
  258. case 0x00:
  259. wbrcf = di_rfu;
  260. break;
  261. case 0x01:
  262. wbrcf = 1;
  263. break;
  264. case 0x02:
  265. wbrcf = 2;
  266. break;
  267. case 0x03:
  268. wbrcf = 4;
  269. break;
  270. case 0x04:
  271. wbrcf = 8;
  272. break;
  273. case 0x05:
  274. wbrcf = 16;
  275. break;
  276. case 0x06:
  277. wbrcf = 32;
  278. break;
  279. case 0x07:
  280. wbrcf = di_rfu;
  281. break;
  282. case 0x08:
  283. wbrcf = 12;
  284. break;
  285. case 0x09:
  286. wbrcf = 20;
  287. break;
  288. default:
  289. wbrcf = di_rfu;
  290. break;
  291. }
  292. return (wcrcf / wbrcf);
  293. }
  294. static unsigned short io_read_num_rec_bytes(ioaddr_t iobase, unsigned short *s)
  295. {
  296. unsigned short tmp;
  297. tmp = *s = 0;
  298. do {
  299. *s = tmp;
  300. tmp = inb(REG_NUM_BYTES(iobase)) |
  301. (inb(REG_FLAGS0(iobase)) & 4 ? 0x100 : 0);
  302. } while (tmp != *s);
  303. return *s;
  304. }
  305. static int parse_atr(struct cm4000_dev *dev)
  306. {
  307. unsigned char any_t1, any_t0;
  308. unsigned char ch, ifno;
  309. int ix, done;
  310. DEBUGP(3, dev, "-> parse_atr: dev->atr_len = %i\n", dev->atr_len);
  311. if (dev->atr_len < 3) {
  312. DEBUGP(5, dev, "parse_atr: atr_len < 3\n");
  313. return 0;
  314. }
  315. if (dev->atr[0] == 0x3f)
  316. set_bit(IS_INVREV, &dev->flags);
  317. else
  318. clear_bit(IS_INVREV, &dev->flags);
  319. ix = 1;
  320. ifno = 1;
  321. ch = dev->atr[1];
  322. dev->proto = 0; /* XXX PROTO */
  323. any_t1 = any_t0 = done = 0;
  324. dev->ta1 = 0x11; /* defaults to 9600 baud */
  325. do {
  326. if (ifno == 1 && (ch & 0x10)) {
  327. /* read first interface byte and TA1 is present */
  328. dev->ta1 = dev->atr[2];
  329. DEBUGP(5, dev, "Card says FiDi is 0x%.2x\n", dev->ta1);
  330. ifno++;
  331. } else if ((ifno == 2) && (ch & 0x10)) { /* TA(2) */
  332. dev->ta1 = 0x11;
  333. ifno++;
  334. }
  335. DEBUGP(5, dev, "Yi=%.2x\n", ch & 0xf0);
  336. ix += ((ch & 0x10) >> 4) /* no of int.face chars */
  337. +((ch & 0x20) >> 5)
  338. + ((ch & 0x40) >> 6)
  339. + ((ch & 0x80) >> 7);
  340. /* ATRLENCK(dev,ix); */
  341. if (ch & 0x80) { /* TDi */
  342. ch = dev->atr[ix];
  343. if ((ch & 0x0f)) {
  344. any_t1 = 1;
  345. DEBUGP(5, dev, "card is capable of T=1\n");
  346. } else {
  347. any_t0 = 1;
  348. DEBUGP(5, dev, "card is capable of T=0\n");
  349. }
  350. } else
  351. done = 1;
  352. } while (!done);
  353. DEBUGP(5, dev, "ix=%d noHist=%d any_t1=%d\n",
  354. ix, dev->atr[1] & 15, any_t1);
  355. if (ix + 1 + (dev->atr[1] & 0x0f) + any_t1 != dev->atr_len) {
  356. DEBUGP(5, dev, "length error\n");
  357. return 0;
  358. }
  359. if (any_t0)
  360. set_bit(IS_ANY_T0, &dev->flags);
  361. if (any_t1) { /* compute csum */
  362. dev->atr_csum = 0;
  363. #ifdef ATR_CSUM
  364. for (i = 1; i < dev->atr_len; i++)
  365. dev->atr_csum ^= dev->atr[i];
  366. if (dev->atr_csum) {
  367. set_bit(IS_BAD_CSUM, &dev->flags);
  368. DEBUGP(5, dev, "bad checksum\n");
  369. goto return_0;
  370. }
  371. #endif
  372. if (any_t0 == 0)
  373. dev->proto = 1; /* XXX PROTO */
  374. set_bit(IS_ANY_T1, &dev->flags);
  375. }
  376. return 1;
  377. }
  378. struct card_fixup {
  379. char atr[12];
  380. u_int8_t atr_len;
  381. u_int8_t stopbits;
  382. };
  383. static struct card_fixup card_fixups[] = {
  384. { /* ACOS */
  385. .atr = { 0x3b, 0xb3, 0x11, 0x00, 0x00, 0x41, 0x01 },
  386. .atr_len = 7,
  387. .stopbits = 0x03,
  388. },
  389. { /* Motorola */
  390. .atr = {0x3b, 0x76, 0x13, 0x00, 0x00, 0x80, 0x62, 0x07,
  391. 0x41, 0x81, 0x81 },
  392. .atr_len = 11,
  393. .stopbits = 0x04,
  394. },
  395. };
  396. static void set_cardparameter(struct cm4000_dev *dev)
  397. {
  398. int i;
  399. ioaddr_t iobase = dev->p_dev->io.BasePort1;
  400. u_int8_t stopbits = 0x02; /* ISO default */
  401. DEBUGP(3, dev, "-> set_cardparameter\n");
  402. dev->flags1 = dev->flags1 | (((dev->baudv - 1) & 0x0100) >> 8);
  403. xoutb(dev->flags1, REG_FLAGS1(iobase));
  404. DEBUGP(5, dev, "flags1 = 0x%02x\n", dev->flags1);
  405. /* set baudrate */
  406. xoutb((unsigned char)((dev->baudv - 1) & 0xFF), REG_BAUDRATE(iobase));
  407. DEBUGP(5, dev, "baudv = %i -> write 0x%02x\n", dev->baudv,
  408. ((dev->baudv - 1) & 0xFF));
  409. /* set stopbits */
  410. for (i = 0; i < ARRAY_SIZE(card_fixups); i++) {
  411. if (!memcmp(dev->atr, card_fixups[i].atr,
  412. card_fixups[i].atr_len))
  413. stopbits = card_fixups[i].stopbits;
  414. }
  415. xoutb(stopbits, REG_STOPBITS(iobase));
  416. DEBUGP(3, dev, "<- set_cardparameter\n");
  417. }
  418. static int set_protocol(struct cm4000_dev *dev, struct ptsreq *ptsreq)
  419. {
  420. unsigned long tmp, i;
  421. unsigned short num_bytes_read;
  422. unsigned char pts_reply[4];
  423. ssize_t rc;
  424. ioaddr_t iobase = dev->p_dev->io.BasePort1;
  425. rc = 0;
  426. DEBUGP(3, dev, "-> set_protocol\n");
  427. DEBUGP(5, dev, "ptsreq->Protocol = 0x%.8x, ptsreq->Flags=0x%.8x, "
  428. "ptsreq->pts1=0x%.2x, ptsreq->pts2=0x%.2x, "
  429. "ptsreq->pts3=0x%.2x\n", (unsigned int)ptsreq->protocol,
  430. (unsigned int)ptsreq->flags, ptsreq->pts1, ptsreq->pts2,
  431. ptsreq->pts3);
  432. /* Fill PTS structure */
  433. dev->pts[0] = 0xff;
  434. dev->pts[1] = 0x00;
  435. tmp = ptsreq->protocol;
  436. while ((tmp = (tmp >> 1)) > 0)
  437. dev->pts[1]++;
  438. dev->proto = dev->pts[1]; /* Set new protocol */
  439. dev->pts[1] = (0x01 << 4) | (dev->pts[1]);
  440. /* Correct Fi/Di according to CM4000 Fi/Di table */
  441. DEBUGP(5, dev, "Ta(1) from ATR is 0x%.2x\n", dev->ta1);
  442. /* set Fi/Di according to ATR TA(1) */
  443. dev->pts[2] = fi_di_table[dev->ta1 & 0x0F][(dev->ta1 >> 4) & 0x0F];
  444. /* Calculate PCK character */
  445. dev->pts[3] = dev->pts[0] ^ dev->pts[1] ^ dev->pts[2];
  446. DEBUGP(5, dev, "pts0=%.2x, pts1=%.2x, pts2=%.2x, pts3=%.2x\n",
  447. dev->pts[0], dev->pts[1], dev->pts[2], dev->pts[3]);
  448. /* check card convention */
  449. if (test_bit(IS_INVREV, &dev->flags))
  450. str_invert_revert(dev->pts, 4);
  451. /* reset SM */
  452. xoutb(0x80, REG_FLAGS0(iobase));
  453. /* Enable access to the message buffer */
  454. DEBUGP(5, dev, "Enable access to the messages buffer\n");
  455. dev->flags1 = 0x20 /* T_Active */
  456. | (test_bit(IS_INVREV, &dev->flags) ? 0x02 : 0x00) /* inv parity */
  457. | ((dev->baudv >> 8) & 0x01); /* MSB-baud */
  458. xoutb(dev->flags1, REG_FLAGS1(iobase));
  459. DEBUGP(5, dev, "Enable message buffer -> flags1 = 0x%.2x\n",
  460. dev->flags1);
  461. /* write challenge to the buffer */
  462. DEBUGP(5, dev, "Write challenge to buffer: ");
  463. for (i = 0; i < 4; i++) {
  464. xoutb(i, REG_BUF_ADDR(iobase));
  465. xoutb(dev->pts[i], REG_BUF_DATA(iobase)); /* buf data */
  466. #ifdef PCMCIA_DEBUG
  467. if (pc_debug >= 5)
  468. printk("0x%.2x ", dev->pts[i]);
  469. }
  470. if (pc_debug >= 5)
  471. printk("\n");
  472. #else
  473. }
  474. #endif
  475. /* set number of bytes to write */
  476. DEBUGP(5, dev, "Set number of bytes to write\n");
  477. xoutb(0x04, REG_NUM_SEND(iobase));
  478. /* Trigger CARDMAN CONTROLLER */
  479. xoutb(0x50, REG_FLAGS0(iobase));
  480. /* Monitor progress */
  481. /* wait for xmit done */
  482. DEBUGP(5, dev, "Waiting for NumRecBytes getting valid\n");
  483. for (i = 0; i < 100; i++) {
  484. if (inb(REG_FLAGS0(iobase)) & 0x08) {
  485. DEBUGP(5, dev, "NumRecBytes is valid\n");
  486. break;
  487. }
  488. mdelay(10);
  489. }
  490. if (i == 100) {
  491. DEBUGP(5, dev, "Timeout waiting for NumRecBytes getting "
  492. "valid\n");
  493. rc = -EIO;
  494. goto exit_setprotocol;
  495. }
  496. DEBUGP(5, dev, "Reading NumRecBytes\n");
  497. for (i = 0; i < 100; i++) {
  498. io_read_num_rec_bytes(iobase, &num_bytes_read);
  499. if (num_bytes_read >= 4) {
  500. DEBUGP(2, dev, "NumRecBytes = %i\n", num_bytes_read);
  501. break;
  502. }
  503. mdelay(10);
  504. }
  505. /* check whether it is a short PTS reply? */
  506. if (num_bytes_read == 3)
  507. i = 0;
  508. if (i == 100) {
  509. DEBUGP(5, dev, "Timeout reading num_bytes_read\n");
  510. rc = -EIO;
  511. goto exit_setprotocol;
  512. }
  513. DEBUGP(5, dev, "Reset the CARDMAN CONTROLLER\n");
  514. xoutb(0x80, REG_FLAGS0(iobase));
  515. /* Read PPS reply */
  516. DEBUGP(5, dev, "Read PPS reply\n");
  517. for (i = 0; i < num_bytes_read; i++) {
  518. xoutb(i, REG_BUF_ADDR(iobase));
  519. pts_reply[i] = inb(REG_BUF_DATA(iobase));
  520. }
  521. #ifdef PCMCIA_DEBUG
  522. DEBUGP(2, dev, "PTSreply: ");
  523. for (i = 0; i < num_bytes_read; i++) {
  524. if (pc_debug >= 5)
  525. printk("0x%.2x ", pts_reply[i]);
  526. }
  527. printk("\n");
  528. #endif /* PCMCIA_DEBUG */
  529. DEBUGP(5, dev, "Clear Tactive in Flags1\n");
  530. xoutb(0x20, REG_FLAGS1(iobase));
  531. /* Compare ptsreq and ptsreply */
  532. if ((dev->pts[0] == pts_reply[0]) &&
  533. (dev->pts[1] == pts_reply[1]) &&
  534. (dev->pts[2] == pts_reply[2]) && (dev->pts[3] == pts_reply[3])) {
  535. /* setcardparameter according to PPS */
  536. dev->baudv = calc_baudv(dev->pts[2]);
  537. set_cardparameter(dev);
  538. } else if ((dev->pts[0] == pts_reply[0]) &&
  539. ((dev->pts[1] & 0xef) == pts_reply[1]) &&
  540. ((pts_reply[0] ^ pts_reply[1]) == pts_reply[2])) {
  541. /* short PTS reply, set card parameter to default values */
  542. dev->baudv = calc_baudv(0x11);
  543. set_cardparameter(dev);
  544. } else
  545. rc = -EIO;
  546. exit_setprotocol:
  547. DEBUGP(3, dev, "<- set_protocol\n");
  548. return rc;
  549. }
  550. static int io_detect_cm4000(ioaddr_t iobase, struct cm4000_dev *dev)
  551. {
  552. /* note: statemachine is assumed to be reset */
  553. if (inb(REG_FLAGS0(iobase)) & 8) {
  554. clear_bit(IS_ATR_VALID, &dev->flags);
  555. set_bit(IS_CMM_ABSENT, &dev->flags);
  556. return 0; /* detect CMM = 1 -> failure */
  557. }
  558. /* xoutb(0x40, REG_FLAGS1(iobase)); detectCMM */
  559. xoutb(dev->flags1 | 0x40, REG_FLAGS1(iobase));
  560. if ((inb(REG_FLAGS0(iobase)) & 8) == 0) {
  561. clear_bit(IS_ATR_VALID, &dev->flags);
  562. set_bit(IS_CMM_ABSENT, &dev->flags);
  563. return 0; /* detect CMM=0 -> failure */
  564. }
  565. /* clear detectCMM again by restoring original flags1 */
  566. xoutb(dev->flags1, REG_FLAGS1(iobase));
  567. return 1;
  568. }
  569. static void terminate_monitor(struct cm4000_dev *dev)
  570. {
  571. /* tell the monitor to stop and wait until
  572. * it terminates.
  573. */
  574. DEBUGP(3, dev, "-> terminate_monitor\n");
  575. wait_event_interruptible(dev->devq,
  576. test_and_set_bit(LOCK_MONITOR,
  577. (void *)&dev->flags));
  578. /* now, LOCK_MONITOR has been set.
  579. * allow a last cycle in the monitor.
  580. * the monitor will indicate that it has
  581. * finished by clearing this bit.
  582. */
  583. DEBUGP(5, dev, "Now allow last cycle of monitor!\n");
  584. while (test_bit(LOCK_MONITOR, (void *)&dev->flags))
  585. msleep(25);
  586. DEBUGP(5, dev, "Delete timer\n");
  587. del_timer_sync(&dev->timer);
  588. #ifdef PCMCIA_DEBUG
  589. dev->monitor_running = 0;
  590. #endif
  591. DEBUGP(3, dev, "<- terminate_monitor\n");
  592. }
  593. /*
  594. * monitor the card every 50msec. as a side-effect, retrieve the
  595. * atr once a card is inserted. another side-effect of retrieving the
  596. * atr is that the card will be powered on, so there is no need to
  597. * power on the card explictely from the application: the driver
  598. * is already doing that for you.
  599. */
  600. static void monitor_card(unsigned long p)
  601. {
  602. struct cm4000_dev *dev = (struct cm4000_dev *) p;
  603. ioaddr_t iobase = dev->p_dev->io.BasePort1;
  604. unsigned short s;
  605. struct ptsreq ptsreq;
  606. int i, atrc;
  607. DEBUGP(7, dev, "-> monitor_card\n");
  608. /* if someone has set the lock for us: we're done! */
  609. if (test_and_set_bit(LOCK_MONITOR, &dev->flags)) {
  610. DEBUGP(4, dev, "About to stop monitor\n");
  611. /* no */
  612. dev->rlen =
  613. dev->rpos =
  614. dev->atr_csum = dev->atr_len_retry = dev->cwarn = 0;
  615. dev->mstate = M_FETCH_ATR;
  616. clear_bit(LOCK_MONITOR, &dev->flags);
  617. /* close et al. are sleeping on devq, so wake it */
  618. wake_up_interruptible(&dev->devq);
  619. DEBUGP(2, dev, "<- monitor_card (we are done now)\n");
  620. return;
  621. }
  622. /* try to lock io: if it is already locked, just add another timer */
  623. if (test_and_set_bit(LOCK_IO, (void *)&dev->flags)) {
  624. DEBUGP(4, dev, "Couldn't get IO lock\n");
  625. goto return_with_timer;
  626. }
  627. /* is a card/a reader inserted at all ? */
  628. dev->flags0 = xinb(REG_FLAGS0(iobase));
  629. DEBUGP(7, dev, "dev->flags0 = 0x%2x\n", dev->flags0);
  630. DEBUGP(7, dev, "smartcard present: %s\n",
  631. dev->flags0 & 1 ? "yes" : "no");
  632. DEBUGP(7, dev, "cardman present: %s\n",
  633. dev->flags0 == 0xff ? "no" : "yes");
  634. if ((dev->flags0 & 1) == 0 /* no smartcard inserted */
  635. || dev->flags0 == 0xff) { /* no cardman inserted */
  636. /* no */
  637. dev->rlen =
  638. dev->rpos =
  639. dev->atr_csum = dev->atr_len_retry = dev->cwarn = 0;
  640. dev->mstate = M_FETCH_ATR;
  641. dev->flags &= 0x000000ff; /* only keep IO and MONITOR locks */
  642. if (dev->flags0 == 0xff) {
  643. DEBUGP(4, dev, "set IS_CMM_ABSENT bit\n");
  644. set_bit(IS_CMM_ABSENT, &dev->flags);
  645. } else if (test_bit(IS_CMM_ABSENT, &dev->flags)) {
  646. DEBUGP(4, dev, "clear IS_CMM_ABSENT bit "
  647. "(card is removed)\n");
  648. clear_bit(IS_CMM_ABSENT, &dev->flags);
  649. }
  650. goto release_io;
  651. } else if ((dev->flags0 & 1) && test_bit(IS_CMM_ABSENT, &dev->flags)) {
  652. /* cardman and card present but cardman was absent before
  653. * (after suspend with inserted card) */
  654. DEBUGP(4, dev, "clear IS_CMM_ABSENT bit (card is inserted)\n");
  655. clear_bit(IS_CMM_ABSENT, &dev->flags);
  656. }
  657. if (test_bit(IS_ATR_VALID, &dev->flags) == 1) {
  658. DEBUGP(7, dev, "believe ATR is already valid (do nothing)\n");
  659. goto release_io;
  660. }
  661. switch (dev->mstate) {
  662. unsigned char flags0;
  663. case M_CARDOFF:
  664. DEBUGP(4, dev, "M_CARDOFF\n");
  665. flags0 = inb(REG_FLAGS0(iobase));
  666. if (flags0 & 0x02) {
  667. /* wait until Flags0 indicate power is off */
  668. dev->mdelay = T_10MSEC;
  669. } else {
  670. /* Flags0 indicate power off and no card inserted now;
  671. * Reset CARDMAN CONTROLLER */
  672. xoutb(0x80, REG_FLAGS0(iobase));
  673. /* prepare for fetching ATR again: after card off ATR
  674. * is read again automatically */
  675. dev->rlen =
  676. dev->rpos =
  677. dev->atr_csum =
  678. dev->atr_len_retry = dev->cwarn = 0;
  679. dev->mstate = M_FETCH_ATR;
  680. /* minimal gap between CARDOFF and read ATR is 50msec */
  681. dev->mdelay = T_50MSEC;
  682. }
  683. break;
  684. case M_FETCH_ATR:
  685. DEBUGP(4, dev, "M_FETCH_ATR\n");
  686. xoutb(0x80, REG_FLAGS0(iobase));
  687. DEBUGP(4, dev, "Reset BAUDV to 9600\n");
  688. dev->baudv = 0x173; /* 9600 */
  689. xoutb(0x02, REG_STOPBITS(iobase)); /* stopbits=2 */
  690. xoutb(0x73, REG_BAUDRATE(iobase)); /* baud value */
  691. xoutb(0x21, REG_FLAGS1(iobase)); /* T_Active=1, baud
  692. value */
  693. /* warm start vs. power on: */
  694. xoutb(dev->flags0 & 2 ? 0x46 : 0x44, REG_FLAGS0(iobase));
  695. dev->mdelay = T_40MSEC;
  696. dev->mstate = M_TIMEOUT_WAIT;
  697. break;
  698. case M_TIMEOUT_WAIT:
  699. DEBUGP(4, dev, "M_TIMEOUT_WAIT\n");
  700. /* numRecBytes */
  701. io_read_num_rec_bytes(iobase, &dev->atr_len);
  702. dev->mdelay = T_10MSEC;
  703. dev->mstate = M_READ_ATR_LEN;
  704. break;
  705. case M_READ_ATR_LEN:
  706. DEBUGP(4, dev, "M_READ_ATR_LEN\n");
  707. /* infinite loop possible, since there is no timeout */
  708. #define MAX_ATR_LEN_RETRY 100
  709. if (dev->atr_len == io_read_num_rec_bytes(iobase, &s)) {
  710. if (dev->atr_len_retry++ >= MAX_ATR_LEN_RETRY) { /* + XX msec */
  711. dev->mdelay = T_10MSEC;
  712. dev->mstate = M_READ_ATR;
  713. }
  714. } else {
  715. dev->atr_len = s;
  716. dev->atr_len_retry = 0; /* set new timeout */
  717. }
  718. DEBUGP(4, dev, "Current ATR_LEN = %i\n", dev->atr_len);
  719. break;
  720. case M_READ_ATR:
  721. DEBUGP(4, dev, "M_READ_ATR\n");
  722. xoutb(0x80, REG_FLAGS0(iobase)); /* reset SM */
  723. for (i = 0; i < dev->atr_len; i++) {
  724. xoutb(i, REG_BUF_ADDR(iobase));
  725. dev->atr[i] = inb(REG_BUF_DATA(iobase));
  726. }
  727. /* Deactivate T_Active flags */
  728. DEBUGP(4, dev, "Deactivate T_Active flags\n");
  729. dev->flags1 = 0x01;
  730. xoutb(dev->flags1, REG_FLAGS1(iobase));
  731. /* atr is present (which doesnt mean it's valid) */
  732. set_bit(IS_ATR_PRESENT, &dev->flags);
  733. if (dev->atr[0] == 0x03)
  734. str_invert_revert(dev->atr, dev->atr_len);
  735. atrc = parse_atr(dev);
  736. if (atrc == 0) { /* atr invalid */
  737. dev->mdelay = 0;
  738. dev->mstate = M_BAD_CARD;
  739. } else {
  740. dev->mdelay = T_50MSEC;
  741. dev->mstate = M_ATR_PRESENT;
  742. set_bit(IS_ATR_VALID, &dev->flags);
  743. }
  744. if (test_bit(IS_ATR_VALID, &dev->flags) == 1) {
  745. DEBUGP(4, dev, "monitor_card: ATR valid\n");
  746. /* if ta1 == 0x11, no PPS necessary (default values) */
  747. /* do not do PPS with multi protocol cards */
  748. if ((test_bit(IS_AUTOPPS_ACT, &dev->flags) == 0) &&
  749. (dev->ta1 != 0x11) &&
  750. !(test_bit(IS_ANY_T0, &dev->flags) &&
  751. test_bit(IS_ANY_T1, &dev->flags))) {
  752. DEBUGP(4, dev, "Perform AUTOPPS\n");
  753. set_bit(IS_AUTOPPS_ACT, &dev->flags);
  754. ptsreq.protocol = ptsreq.protocol =
  755. (0x01 << dev->proto);
  756. ptsreq.flags = 0x01;
  757. ptsreq.pts1 = 0x00;
  758. ptsreq.pts2 = 0x00;
  759. ptsreq.pts3 = 0x00;
  760. if (set_protocol(dev, &ptsreq) == 0) {
  761. DEBUGP(4, dev, "AUTOPPS ret SUCC\n");
  762. clear_bit(IS_AUTOPPS_ACT, &dev->flags);
  763. wake_up_interruptible(&dev->atrq);
  764. } else {
  765. DEBUGP(4, dev, "AUTOPPS failed: "
  766. "repower using defaults\n");
  767. /* prepare for repowering */
  768. clear_bit(IS_ATR_PRESENT, &dev->flags);
  769. clear_bit(IS_ATR_VALID, &dev->flags);
  770. dev->rlen =
  771. dev->rpos =
  772. dev->atr_csum =
  773. dev->atr_len_retry = dev->cwarn = 0;
  774. dev->mstate = M_FETCH_ATR;
  775. dev->mdelay = T_50MSEC;
  776. }
  777. } else {
  778. /* for cards which use slightly different
  779. * params (extra guard time) */
  780. set_cardparameter(dev);
  781. if (test_bit(IS_AUTOPPS_ACT, &dev->flags) == 1)
  782. DEBUGP(4, dev, "AUTOPPS already active "
  783. "2nd try:use default values\n");
  784. if (dev->ta1 == 0x11)
  785. DEBUGP(4, dev, "No AUTOPPS necessary "
  786. "TA(1)==0x11\n");
  787. if (test_bit(IS_ANY_T0, &dev->flags)
  788. && test_bit(IS_ANY_T1, &dev->flags))
  789. DEBUGP(4, dev, "Do NOT perform AUTOPPS "
  790. "with multiprotocol cards\n");
  791. clear_bit(IS_AUTOPPS_ACT, &dev->flags);
  792. wake_up_interruptible(&dev->atrq);
  793. }
  794. } else {
  795. DEBUGP(4, dev, "ATR invalid\n");
  796. wake_up_interruptible(&dev->atrq);
  797. }
  798. break;
  799. case M_BAD_CARD:
  800. DEBUGP(4, dev, "M_BAD_CARD\n");
  801. /* slow down warning, but prompt immediately after insertion */
  802. if (dev->cwarn == 0 || dev->cwarn == 10) {
  803. set_bit(IS_BAD_CARD, &dev->flags);
  804. printk(KERN_WARNING MODULE_NAME ": device %s: ",
  805. dev->node.dev_name);
  806. if (test_bit(IS_BAD_CSUM, &dev->flags)) {
  807. DEBUGP(4, dev, "ATR checksum (0x%.2x, should "
  808. "be zero) failed\n", dev->atr_csum);
  809. }
  810. #ifdef PCMCIA_DEBUG
  811. else if (test_bit(IS_BAD_LENGTH, &dev->flags)) {
  812. DEBUGP(4, dev, "ATR length error\n");
  813. } else {
  814. DEBUGP(4, dev, "card damaged or wrong way "
  815. "inserted\n");
  816. }
  817. #endif
  818. dev->cwarn = 0;
  819. wake_up_interruptible(&dev->atrq); /* wake open */
  820. }
  821. dev->cwarn++;
  822. dev->mdelay = T_100MSEC;
  823. dev->mstate = M_FETCH_ATR;
  824. break;
  825. default:
  826. DEBUGP(7, dev, "Unknown action\n");
  827. break; /* nothing */
  828. }
  829. release_io:
  830. DEBUGP(7, dev, "release_io\n");
  831. clear_bit(LOCK_IO, &dev->flags);
  832. wake_up_interruptible(&dev->ioq); /* whoever needs IO */
  833. return_with_timer:
  834. DEBUGP(7, dev, "<- monitor_card (returns with timer)\n");
  835. mod_timer(&dev->timer, jiffies + dev->mdelay);
  836. clear_bit(LOCK_MONITOR, &dev->flags);
  837. }
  838. /* Interface to userland (file_operations) */
  839. static ssize_t cmm_read(struct file *filp, __user char *buf, size_t count,
  840. loff_t *ppos)
  841. {
  842. struct cm4000_dev *dev = filp->private_data;
  843. ioaddr_t iobase = dev->p_dev->io.BasePort1;
  844. ssize_t rc;
  845. int i, j, k;
  846. DEBUGP(2, dev, "-> cmm_read(%s,%d)\n", current->comm, current->pid);
  847. if (count == 0) /* according to manpage */
  848. return 0;
  849. if (!pcmcia_dev_present(dev->p_dev) || /* device removed */
  850. test_bit(IS_CMM_ABSENT, &dev->flags))
  851. return -ENODEV;
  852. if (test_bit(IS_BAD_CSUM, &dev->flags))
  853. return -EIO;
  854. /* also see the note about this in cmm_write */
  855. if (wait_event_interruptible
  856. (dev->atrq,
  857. ((filp->f_flags & O_NONBLOCK)
  858. || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags) != 0)))) {
  859. if (filp->f_flags & O_NONBLOCK)
  860. return -EAGAIN;
  861. return -ERESTARTSYS;
  862. }
  863. if (test_bit(IS_ATR_VALID, &dev->flags) == 0)
  864. return -EIO;
  865. /* this one implements blocking IO */
  866. if (wait_event_interruptible
  867. (dev->readq,
  868. ((filp->f_flags & O_NONBLOCK) || (dev->rpos < dev->rlen)))) {
  869. if (filp->f_flags & O_NONBLOCK)
  870. return -EAGAIN;
  871. return -ERESTARTSYS;
  872. }
  873. /* lock io */
  874. if (wait_event_interruptible
  875. (dev->ioq,
  876. ((filp->f_flags & O_NONBLOCK)
  877. || (test_and_set_bit(LOCK_IO, (void *)&dev->flags) == 0)))) {
  878. if (filp->f_flags & O_NONBLOCK)
  879. return -EAGAIN;
  880. return -ERESTARTSYS;
  881. }
  882. rc = 0;
  883. dev->flags0 = inb(REG_FLAGS0(iobase));
  884. if ((dev->flags0 & 1) == 0 /* no smartcard inserted */
  885. || dev->flags0 == 0xff) { /* no cardman inserted */
  886. clear_bit(IS_ATR_VALID, &dev->flags);
  887. if (dev->flags0 & 1) {
  888. set_bit(IS_CMM_ABSENT, &dev->flags);
  889. rc = -ENODEV;
  890. }
  891. rc = -EIO;
  892. goto release_io;
  893. }
  894. DEBUGP(4, dev, "begin read answer\n");
  895. j = min(count, (size_t)(dev->rlen - dev->rpos));
  896. k = dev->rpos;
  897. if (k + j > 255)
  898. j = 256 - k;
  899. DEBUGP(4, dev, "read1 j=%d\n", j);
  900. for (i = 0; i < j; i++) {
  901. xoutb(k++, REG_BUF_ADDR(iobase));
  902. dev->rbuf[i] = xinb(REG_BUF_DATA(iobase));
  903. }
  904. j = min(count, (size_t)(dev->rlen - dev->rpos));
  905. if (k + j > 255) {
  906. DEBUGP(4, dev, "read2 j=%d\n", j);
  907. dev->flags1 |= 0x10; /* MSB buf addr set */
  908. xoutb(dev->flags1, REG_FLAGS1(iobase));
  909. for (; i < j; i++) {
  910. xoutb(k++, REG_BUF_ADDR(iobase));
  911. dev->rbuf[i] = xinb(REG_BUF_DATA(iobase));
  912. }
  913. }
  914. if (dev->proto == 0 && count > dev->rlen - dev->rpos) {
  915. DEBUGP(4, dev, "T=0 and count > buffer\n");
  916. dev->rbuf[i] = dev->rbuf[i - 1];
  917. dev->rbuf[i - 1] = dev->procbyte;
  918. j++;
  919. }
  920. count = j;
  921. dev->rpos = dev->rlen + 1;
  922. /* Clear T1Active */
  923. DEBUGP(4, dev, "Clear T1Active\n");
  924. dev->flags1 &= 0xdf;
  925. xoutb(dev->flags1, REG_FLAGS1(iobase));
  926. xoutb(0, REG_FLAGS1(iobase)); /* clear detectCMM */
  927. /* last check before exit */
  928. if (!io_detect_cm4000(iobase, dev))
  929. count = -ENODEV;
  930. if (test_bit(IS_INVREV, &dev->flags) && count > 0)
  931. str_invert_revert(dev->rbuf, count);
  932. if (copy_to_user(buf, dev->rbuf, count))
  933. return -EFAULT;
  934. release_io:
  935. clear_bit(LOCK_IO, &dev->flags);
  936. wake_up_interruptible(&dev->ioq);
  937. DEBUGP(2, dev, "<- cmm_read returns: rc = %Zi\n",
  938. (rc < 0 ? rc : count));
  939. return rc < 0 ? rc : count;
  940. }
  941. static ssize_t cmm_write(struct file *filp, const char __user *buf,
  942. size_t count, loff_t *ppos)
  943. {
  944. struct cm4000_dev *dev = (struct cm4000_dev *) filp->private_data;
  945. ioaddr_t iobase = dev->p_dev->io.BasePort1;
  946. unsigned short s;
  947. unsigned char tmp;
  948. unsigned char infolen;
  949. unsigned char sendT0;
  950. unsigned short nsend;
  951. unsigned short nr;
  952. ssize_t rc;
  953. int i;
  954. DEBUGP(2, dev, "-> cmm_write(%s,%d)\n", current->comm, current->pid);
  955. if (count == 0) /* according to manpage */
  956. return 0;
  957. if (dev->proto == 0 && count < 4) {
  958. /* T0 must have at least 4 bytes */
  959. DEBUGP(4, dev, "T0 short write\n");
  960. return -EIO;
  961. }
  962. nr = count & 0x1ff; /* max bytes to write */
  963. sendT0 = dev->proto ? 0 : nr > 5 ? 0x08 : 0;
  964. if (!pcmcia_dev_present(dev->p_dev) || /* device removed */
  965. test_bit(IS_CMM_ABSENT, &dev->flags))
  966. return -ENODEV;
  967. if (test_bit(IS_BAD_CSUM, &dev->flags)) {
  968. DEBUGP(4, dev, "bad csum\n");
  969. return -EIO;
  970. }
  971. /*
  972. * wait for atr to become valid.
  973. * note: it is important to lock this code. if we dont, the monitor
  974. * could be run between test_bit and the call to sleep on the
  975. * atr-queue. if *then* the monitor detects atr valid, it will wake up
  976. * any process on the atr-queue, *but* since we have been interrupted,
  977. * we do not yet sleep on this queue. this would result in a missed
  978. * wake_up and the calling process would sleep forever (until
  979. * interrupted). also, do *not* restore_flags before sleep_on, because
  980. * this could result in the same situation!
  981. */
  982. if (wait_event_interruptible
  983. (dev->atrq,
  984. ((filp->f_flags & O_NONBLOCK)
  985. || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags) != 0)))) {
  986. if (filp->f_flags & O_NONBLOCK)
  987. return -EAGAIN;
  988. return -ERESTARTSYS;
  989. }
  990. if (test_bit(IS_ATR_VALID, &dev->flags) == 0) { /* invalid atr */
  991. DEBUGP(4, dev, "invalid ATR\n");
  992. return -EIO;
  993. }
  994. /* lock io */
  995. if (wait_event_interruptible
  996. (dev->ioq,
  997. ((filp->f_flags & O_NONBLOCK)
  998. || (test_and_set_bit(LOCK_IO, (void *)&dev->flags) == 0)))) {
  999. if (filp->f_flags & O_NONBLOCK)
  1000. return -EAGAIN;
  1001. return -ERESTARTSYS;
  1002. }
  1003. if (copy_from_user(dev->sbuf, buf, ((count > 512) ? 512 : count)))
  1004. return -EFAULT;
  1005. rc = 0;
  1006. dev->flags0 = inb(REG_FLAGS0(iobase));
  1007. if ((dev->flags0 & 1) == 0 /* no smartcard inserted */
  1008. || dev->flags0 == 0xff) { /* no cardman inserted */
  1009. clear_bit(IS_ATR_VALID, &dev->flags);
  1010. if (dev->flags0 & 1) {
  1011. set_bit(IS_CMM_ABSENT, &dev->flags);
  1012. rc = -ENODEV;
  1013. } else {
  1014. DEBUGP(4, dev, "IO error\n");
  1015. rc = -EIO;
  1016. }
  1017. goto release_io;
  1018. }
  1019. xoutb(0x80, REG_FLAGS0(iobase)); /* reset SM */
  1020. if (!io_detect_cm4000(iobase, dev)) {
  1021. rc = -ENODEV;
  1022. goto release_io;
  1023. }
  1024. /* reflect T=0 send/read mode in flags1 */
  1025. dev->flags1 |= (sendT0);
  1026. set_cardparameter(dev);
  1027. /* dummy read, reset flag procedure received */
  1028. tmp = inb(REG_FLAGS1(iobase));
  1029. dev->flags1 = 0x20 /* T_Active */
  1030. | (sendT0)
  1031. | (test_bit(IS_INVREV, &dev->flags) ? 2 : 0)/* inverse parity */
  1032. | (((dev->baudv - 1) & 0x0100) >> 8); /* MSB-Baud */
  1033. DEBUGP(1, dev, "set dev->flags1 = 0x%.2x\n", dev->flags1);
  1034. xoutb(dev->flags1, REG_FLAGS1(iobase));
  1035. /* xmit data */
  1036. DEBUGP(4, dev, "Xmit data\n");
  1037. for (i = 0; i < nr; i++) {
  1038. if (i >= 256) {
  1039. dev->flags1 = 0x20 /* T_Active */
  1040. | (sendT0) /* SendT0 */
  1041. /* inverse parity: */
  1042. | (test_bit(IS_INVREV, &dev->flags) ? 2 : 0)
  1043. | (((dev->baudv - 1) & 0x0100) >> 8) /* MSB-Baud */
  1044. | 0x10; /* set address high */
  1045. DEBUGP(4, dev, "dev->flags = 0x%.2x - set address "
  1046. "high\n", dev->flags1);
  1047. xoutb(dev->flags1, REG_FLAGS1(iobase));
  1048. }
  1049. if (test_bit(IS_INVREV, &dev->flags)) {
  1050. DEBUGP(4, dev, "Apply inverse convention for 0x%.2x "
  1051. "-> 0x%.2x\n", (unsigned char)dev->sbuf[i],
  1052. invert_revert(dev->sbuf[i]));
  1053. xoutb(i, REG_BUF_ADDR(iobase));
  1054. xoutb(invert_revert(dev->sbuf[i]),
  1055. REG_BUF_DATA(iobase));
  1056. } else {
  1057. xoutb(i, REG_BUF_ADDR(iobase));
  1058. xoutb(dev->sbuf[i], REG_BUF_DATA(iobase));
  1059. }
  1060. }
  1061. DEBUGP(4, dev, "Xmit done\n");
  1062. if (dev->proto == 0) {
  1063. /* T=0 proto: 0 byte reply */
  1064. if (nr == 4) {
  1065. DEBUGP(4, dev, "T=0 assumes 0 byte reply\n");
  1066. xoutb(i, REG_BUF_ADDR(iobase));
  1067. if (test_bit(IS_INVREV, &dev->flags))
  1068. xoutb(0xff, REG_BUF_DATA(iobase));
  1069. else
  1070. xoutb(0x00, REG_BUF_DATA(iobase));
  1071. }
  1072. /* numSendBytes */
  1073. if (sendT0)
  1074. nsend = nr;
  1075. else {
  1076. if (nr == 4)
  1077. nsend = 5;
  1078. else {
  1079. nsend = 5 + (unsigned char)dev->sbuf[4];
  1080. if (dev->sbuf[4] == 0)
  1081. nsend += 0x100;
  1082. }
  1083. }
  1084. } else
  1085. nsend = nr;
  1086. /* T0: output procedure byte */
  1087. if (test_bit(IS_INVREV, &dev->flags)) {
  1088. DEBUGP(4, dev, "T=0 set Procedure byte (inverse-reverse) "
  1089. "0x%.2x\n", invert_revert(dev->sbuf[1]));
  1090. xoutb(invert_revert(dev->sbuf[1]), REG_NUM_BYTES(iobase));
  1091. } else {
  1092. DEBUGP(4, dev, "T=0 set Procedure byte 0x%.2x\n", dev->sbuf[1]);
  1093. xoutb(dev->sbuf[1], REG_NUM_BYTES(iobase));
  1094. }
  1095. DEBUGP(1, dev, "set NumSendBytes = 0x%.2x\n",
  1096. (unsigned char)(nsend & 0xff));
  1097. xoutb((unsigned char)(nsend & 0xff), REG_NUM_SEND(iobase));
  1098. DEBUGP(1, dev, "Trigger CARDMAN CONTROLLER (0x%.2x)\n",
  1099. 0x40 /* SM_Active */
  1100. | (dev->flags0 & 2 ? 0 : 4) /* power on if needed */
  1101. |(dev->proto ? 0x10 : 0x08) /* T=1/T=0 */
  1102. |(nsend & 0x100) >> 8 /* MSB numSendBytes */ );
  1103. xoutb(0x40 /* SM_Active */
  1104. | (dev->flags0 & 2 ? 0 : 4) /* power on if needed */
  1105. |(dev->proto ? 0x10 : 0x08) /* T=1/T=0 */
  1106. |(nsend & 0x100) >> 8, /* MSB numSendBytes */
  1107. REG_FLAGS0(iobase));
  1108. /* wait for xmit done */
  1109. if (dev->proto == 1) {
  1110. DEBUGP(4, dev, "Wait for xmit done\n");
  1111. for (i = 0; i < 1000; i++) {
  1112. if (inb(REG_FLAGS0(iobase)) & 0x08)
  1113. break;
  1114. msleep_interruptible(10);
  1115. }
  1116. if (i == 1000) {
  1117. DEBUGP(4, dev, "timeout waiting for xmit done\n");
  1118. rc = -EIO;
  1119. goto release_io;
  1120. }
  1121. }
  1122. /* T=1: wait for infoLen */
  1123. infolen = 0;
  1124. if (dev->proto) {
  1125. /* wait until infoLen is valid */
  1126. for (i = 0; i < 6000; i++) { /* max waiting time of 1 min */
  1127. io_read_num_rec_bytes(iobase, &s);
  1128. if (s >= 3) {
  1129. infolen = inb(REG_FLAGS1(iobase));
  1130. DEBUGP(4, dev, "infolen=%d\n", infolen);
  1131. break;
  1132. }
  1133. msleep_interruptible(10);
  1134. }
  1135. if (i == 6000) {
  1136. DEBUGP(4, dev, "timeout waiting for infoLen\n");
  1137. rc = -EIO;
  1138. goto release_io;
  1139. }
  1140. } else
  1141. clear_bit(IS_PROCBYTE_PRESENT, &dev->flags);
  1142. /* numRecBytes | bit9 of numRecytes */
  1143. io_read_num_rec_bytes(iobase, &dev->rlen);
  1144. for (i = 0; i < 600; i++) { /* max waiting time of 2 sec */
  1145. if (dev->proto) {
  1146. if (dev->rlen >= infolen + 4)
  1147. break;
  1148. }
  1149. msleep_interruptible(10);
  1150. /* numRecBytes | bit9 of numRecytes */
  1151. io_read_num_rec_bytes(iobase, &s);
  1152. if (s > dev->rlen) {
  1153. DEBUGP(1, dev, "NumRecBytes inc (reset timeout)\n");
  1154. i = 0; /* reset timeout */
  1155. dev->rlen = s;
  1156. }
  1157. /* T=0: we are done when numRecBytes doesn't
  1158. * increment any more and NoProcedureByte
  1159. * is set and numRecBytes == bytes sent + 6
  1160. * (header bytes + data + 1 for sw2)
  1161. * except when the card replies an error
  1162. * which means, no data will be sent back.
  1163. */
  1164. else if (dev->proto == 0) {
  1165. if ((inb(REG_BUF_ADDR(iobase)) & 0x80)) {
  1166. /* no procedure byte received since last read */
  1167. DEBUGP(1, dev, "NoProcedure byte set\n");
  1168. /* i=0; */
  1169. } else {
  1170. /* procedure byte received since last read */
  1171. DEBUGP(1, dev, "NoProcedure byte unset "
  1172. "(reset timeout)\n");
  1173. dev->procbyte = inb(REG_FLAGS1(iobase));
  1174. DEBUGP(1, dev, "Read procedure byte 0x%.2x\n",
  1175. dev->procbyte);
  1176. i = 0; /* resettimeout */
  1177. }
  1178. if (inb(REG_FLAGS0(iobase)) & 0x08) {
  1179. DEBUGP(1, dev, "T0Done flag (read reply)\n");
  1180. break;
  1181. }
  1182. }
  1183. if (dev->proto)
  1184. infolen = inb(REG_FLAGS1(iobase));
  1185. }
  1186. if (i == 600) {
  1187. DEBUGP(1, dev, "timeout waiting for numRecBytes\n");
  1188. rc = -EIO;
  1189. goto release_io;
  1190. } else {
  1191. if (dev->proto == 0) {
  1192. DEBUGP(1, dev, "Wait for T0Done bit to be set\n");
  1193. for (i = 0; i < 1000; i++) {
  1194. if (inb(REG_FLAGS0(iobase)) & 0x08)
  1195. break;
  1196. msleep_interruptible(10);
  1197. }
  1198. if (i == 1000) {
  1199. DEBUGP(1, dev, "timeout waiting for T0Done\n");
  1200. rc = -EIO;
  1201. goto release_io;
  1202. }
  1203. dev->procbyte = inb(REG_FLAGS1(iobase));
  1204. DEBUGP(4, dev, "Read procedure byte 0x%.2x\n",
  1205. dev->procbyte);
  1206. io_read_num_rec_bytes(iobase, &dev->rlen);
  1207. DEBUGP(4, dev, "Read NumRecBytes = %i\n", dev->rlen);
  1208. }
  1209. }
  1210. /* T=1: read offset=zero, T=0: read offset=after challenge */
  1211. dev->rpos = dev->proto ? 0 : nr == 4 ? 5 : nr > dev->rlen ? 5 : nr;
  1212. DEBUGP(4, dev, "dev->rlen = %i, dev->rpos = %i, nr = %i\n",
  1213. dev->rlen, dev->rpos, nr);
  1214. release_io:
  1215. DEBUGP(4, dev, "Reset SM\n");
  1216. xoutb(0x80, REG_FLAGS0(iobase)); /* reset SM */
  1217. if (rc < 0) {
  1218. DEBUGP(4, dev, "Write failed but clear T_Active\n");
  1219. dev->flags1 &= 0xdf;
  1220. xoutb(dev->flags1, REG_FLAGS1(iobase));
  1221. }
  1222. clear_bit(LOCK_IO, &dev->flags);
  1223. wake_up_interruptible(&dev->ioq);
  1224. wake_up_interruptible(&dev->readq); /* tell read we have data */
  1225. /* ITSEC E2: clear write buffer */
  1226. memset((char *)dev->sbuf, 0, 512);
  1227. /* return error or actually written bytes */
  1228. DEBUGP(2, dev, "<- cmm_write\n");
  1229. return rc < 0 ? rc : nr;
  1230. }
  1231. static void start_monitor(struct cm4000_dev *dev)
  1232. {
  1233. DEBUGP(3, dev, "-> start_monitor\n");
  1234. if (!dev->monitor_running) {
  1235. DEBUGP(5, dev, "create, init and add timer\n");
  1236. setup_timer(&dev->timer, monitor_card, (unsigned long)dev);
  1237. dev->monitor_running = 1;
  1238. mod_timer(&dev->timer, jiffies);
  1239. } else
  1240. DEBUGP(5, dev, "monitor already running\n");
  1241. DEBUGP(3, dev, "<- start_monitor\n");
  1242. }
  1243. static void stop_monitor(struct cm4000_dev *dev)
  1244. {
  1245. DEBUGP(3, dev, "-> stop_monitor\n");
  1246. if (dev->monitor_running) {
  1247. DEBUGP(5, dev, "stopping monitor\n");
  1248. terminate_monitor(dev);
  1249. /* reset monitor SM */
  1250. clear_bit(IS_ATR_VALID, &dev->flags);
  1251. clear_bit(IS_ATR_PRESENT, &dev->flags);
  1252. } else
  1253. DEBUGP(5, dev, "monitor already stopped\n");
  1254. DEBUGP(3, dev, "<- stop_monitor\n");
  1255. }
  1256. static int cmm_ioctl(struct inode *inode, struct file *filp, unsigned int cmd,
  1257. unsigned long arg)
  1258. {
  1259. struct cm4000_dev *dev = filp->private_data;
  1260. ioaddr_t iobase = dev->p_dev->io.BasePort1;
  1261. struct pcmcia_device *link;
  1262. int size;
  1263. int rc;
  1264. void __user *argp = (void __user *)arg;
  1265. #ifdef PCMCIA_DEBUG
  1266. char *ioctl_names[CM_IOC_MAXNR + 1] = {
  1267. [_IOC_NR(CM_IOCGSTATUS)] "CM_IOCGSTATUS",
  1268. [_IOC_NR(CM_IOCGATR)] "CM_IOCGATR",
  1269. [_IOC_NR(CM_IOCARDOFF)] "CM_IOCARDOFF",
  1270. [_IOC_NR(CM_IOCSPTS)] "CM_IOCSPTS",
  1271. [_IOC_NR(CM_IOSDBGLVL)] "CM4000_DBGLVL",
  1272. };
  1273. #endif
  1274. DEBUGP(3, dev, "cmm_ioctl(device=%d.%d) %s\n", imajor(inode),
  1275. iminor(inode), ioctl_names[_IOC_NR(cmd)]);
  1276. link = dev_table[iminor(inode)];
  1277. if (!pcmcia_dev_present(link)) {
  1278. DEBUGP(4, dev, "DEV_OK false\n");
  1279. return -ENODEV;
  1280. }
  1281. if (test_bit(IS_CMM_ABSENT, &dev->flags)) {
  1282. DEBUGP(4, dev, "CMM_ABSENT flag set\n");
  1283. return -ENODEV;
  1284. }
  1285. if (_IOC_TYPE(cmd) != CM_IOC_MAGIC) {
  1286. DEBUGP(4, dev, "ioctype mismatch\n");
  1287. return -EINVAL;
  1288. }
  1289. if (_IOC_NR(cmd) > CM_IOC_MAXNR) {
  1290. DEBUGP(4, dev, "iocnr mismatch\n");
  1291. return -EINVAL;
  1292. }
  1293. size = _IOC_SIZE(cmd);
  1294. rc = 0;
  1295. DEBUGP(4, dev, "iocdir=%.4x iocr=%.4x iocw=%.4x iocsize=%d cmd=%.4x\n",
  1296. _IOC_DIR(cmd), _IOC_READ, _IOC_WRITE, size, cmd);
  1297. if (_IOC_DIR(cmd) & _IOC_READ) {
  1298. if (!access_ok(VERIFY_WRITE, argp, size))
  1299. return -EFAULT;
  1300. }
  1301. if (_IOC_DIR(cmd) & _IOC_WRITE) {
  1302. if (!access_ok(VERIFY_READ, argp, size))
  1303. return -EFAULT;
  1304. }
  1305. switch (cmd) {
  1306. case CM_IOCGSTATUS:
  1307. DEBUGP(4, dev, " ... in CM_IOCGSTATUS\n");
  1308. {
  1309. int status;
  1310. /* clear other bits, but leave inserted & powered as
  1311. * they are */
  1312. status = dev->flags0 & 3;
  1313. if (test_bit(IS_ATR_PRESENT, &dev->flags))
  1314. status |= CM_ATR_PRESENT;
  1315. if (test_bit(IS_ATR_VALID, &dev->flags))
  1316. status |= CM_ATR_VALID;
  1317. if (test_bit(IS_CMM_ABSENT, &dev->flags))
  1318. status |= CM_NO_READER;
  1319. if (test_bit(IS_BAD_CARD, &dev->flags))
  1320. status |= CM_BAD_CARD;
  1321. if (copy_to_user(argp, &status, sizeof(int)))
  1322. return -EFAULT;
  1323. }
  1324. return 0;
  1325. case CM_IOCGATR:
  1326. DEBUGP(4, dev, "... in CM_IOCGATR\n");
  1327. {
  1328. struct atreq __user *atreq = argp;
  1329. int tmp;
  1330. /* allow nonblocking io and being interrupted */
  1331. if (wait_event_interruptible
  1332. (dev->atrq,
  1333. ((filp->f_flags & O_NONBLOCK)
  1334. || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags)
  1335. != 0)))) {
  1336. if (filp->f_flags & O_NONBLOCK)
  1337. return -EAGAIN;
  1338. return -ERESTARTSYS;
  1339. }
  1340. if (test_bit(IS_ATR_VALID, &dev->flags) == 0) {
  1341. tmp = -1;
  1342. if (copy_to_user(&(atreq->atr_len), &tmp,
  1343. sizeof(int)))
  1344. return -EFAULT;
  1345. } else {
  1346. if (copy_to_user(atreq->atr, dev->atr,
  1347. dev->atr_len))
  1348. return -EFAULT;
  1349. tmp = dev->atr_len;
  1350. if (copy_to_user(&(atreq->atr_len), &tmp, sizeof(int)))
  1351. return -EFAULT;
  1352. }
  1353. return 0;
  1354. }
  1355. case CM_IOCARDOFF:
  1356. #ifdef PCMCIA_DEBUG
  1357. DEBUGP(4, dev, "... in CM_IOCARDOFF\n");
  1358. if (dev->flags0 & 0x01) {
  1359. DEBUGP(4, dev, " Card inserted\n");
  1360. } else {
  1361. DEBUGP(2, dev, " No card inserted\n");
  1362. }
  1363. if (dev->flags0 & 0x02) {
  1364. DEBUGP(4, dev, " Card powered\n");
  1365. } else {
  1366. DEBUGP(2, dev, " Card not powered\n");
  1367. }
  1368. #endif
  1369. /* is a card inserted and powered? */
  1370. if ((dev->flags0 & 0x01) && (dev->flags0 & 0x02)) {
  1371. /* get IO lock */
  1372. if (wait_event_interruptible
  1373. (dev->ioq,
  1374. ((filp->f_flags & O_NONBLOCK)
  1375. || (test_and_set_bit(LOCK_IO, (void *)&dev->flags)
  1376. == 0)))) {
  1377. if (filp->f_flags & O_NONBLOCK)
  1378. return -EAGAIN;
  1379. return -ERESTARTSYS;
  1380. }
  1381. /* Set Flags0 = 0x42 */
  1382. DEBUGP(4, dev, "Set Flags0=0x42 \n");
  1383. xoutb(0x42, REG_FLAGS0(iobase));
  1384. clear_bit(IS_ATR_PRESENT, &dev->flags);
  1385. clear_bit(IS_ATR_VALID, &dev->flags);
  1386. dev->mstate = M_CARDOFF;
  1387. clear_bit(LOCK_IO, &dev->flags);
  1388. if (wait_event_interruptible
  1389. (dev->atrq,
  1390. ((filp->f_flags & O_NONBLOCK)
  1391. || (test_bit(IS_ATR_VALID, (void *)&dev->flags) !=
  1392. 0)))) {
  1393. if (filp->f_flags & O_NONBLOCK)
  1394. return -EAGAIN;
  1395. return -ERESTARTSYS;
  1396. }
  1397. }
  1398. /* release lock */
  1399. clear_bit(LOCK_IO, &dev->flags);
  1400. wake_up_interruptible(&dev->ioq);
  1401. return 0;
  1402. case CM_IOCSPTS:
  1403. {
  1404. struct ptsreq krnptsreq;
  1405. if (copy_from_user(&krnptsreq, argp,
  1406. sizeof(struct ptsreq)))
  1407. return -EFAULT;
  1408. rc = 0;
  1409. DEBUGP(4, dev, "... in CM_IOCSPTS\n");
  1410. /* wait for ATR to get valid */
  1411. if (wait_event_interruptible
  1412. (dev->atrq,
  1413. ((filp->f_flags & O_NONBLOCK)
  1414. || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags)
  1415. != 0)))) {
  1416. if (filp->f_flags & O_NONBLOCK)
  1417. return -EAGAIN;
  1418. return -ERESTARTSYS;
  1419. }
  1420. /* get IO lock */
  1421. if (wait_event_interruptible
  1422. (dev->ioq,
  1423. ((filp->f_flags & O_NONBLOCK)
  1424. || (test_and_set_bit(LOCK_IO, (void *)&dev->flags)
  1425. == 0)))) {
  1426. if (filp->f_flags & O_NONBLOCK)
  1427. return -EAGAIN;
  1428. return -ERESTARTSYS;
  1429. }
  1430. if ((rc = set_protocol(dev, &krnptsreq)) != 0) {
  1431. /* auto power_on again */
  1432. dev->mstate = M_FETCH_ATR;
  1433. clear_bit(IS_ATR_VALID, &dev->flags);
  1434. }
  1435. /* release lock */
  1436. clear_bit(LOCK_IO, &dev->flags);
  1437. wake_up_interruptible(&dev->ioq);
  1438. }
  1439. return rc;
  1440. #ifdef PCMCIA_DEBUG
  1441. case CM_IOSDBGLVL: /* set debug log level */
  1442. {
  1443. int old_pc_debug = 0;
  1444. old_pc_debug = pc_debug;
  1445. if (copy_from_user(&pc_debug, argp, sizeof(int)))
  1446. return -EFAULT;
  1447. if (old_pc_debug != pc_debug)
  1448. DEBUGP(0, dev, "Changed debug log level "
  1449. "to %i\n", pc_debug);
  1450. }
  1451. return rc;
  1452. #endif
  1453. default:
  1454. DEBUGP(4, dev, "... in default (unknown IOCTL code)\n");
  1455. return -EINVAL;
  1456. }
  1457. }
  1458. static int cmm_open(struct inode *inode, struct file *filp)
  1459. {
  1460. struct cm4000_dev *dev;
  1461. struct pcmcia_device *link;
  1462. int rc, minor = iminor(inode);
  1463. if (minor >= CM4000_MAX_DEV)
  1464. return -ENODEV;
  1465. link = dev_table[minor];
  1466. if (link == NULL || !pcmcia_dev_present(link))
  1467. return -ENODEV;
  1468. if (link->open)
  1469. return -EBUSY;
  1470. dev = link->priv;
  1471. filp->private_data = dev;
  1472. DEBUGP(2, dev, "-> cmm_open(device=%d.%d process=%s,%d)\n",
  1473. imajor(inode), minor, current->comm, current->pid);
  1474. /* init device variables, they may be "polluted" after close
  1475. * or, the device may never have been closed (i.e. open failed)
  1476. */
  1477. ZERO_DEV(dev);
  1478. /* opening will always block since the
  1479. * monitor will be started by open, which
  1480. * means we have to wait for ATR becoming
  1481. * vaild = block until valid (or card
  1482. * inserted)
  1483. */
  1484. if (filp->f_flags & O_NONBLOCK)
  1485. return -EAGAIN;
  1486. dev->mdelay = T_50MSEC;
  1487. /* start monitoring the cardstatus */
  1488. start_monitor(dev);
  1489. link->open = 1; /* only one open per device */
  1490. rc = 0;
  1491. DEBUGP(2, dev, "<- cmm_open\n");
  1492. return nonseekable_open(inode, filp);
  1493. }
  1494. static int cmm_close(struct inode *inode, struct file *filp)
  1495. {
  1496. struct cm4000_dev *dev;
  1497. struct pcmcia_device *link;
  1498. int minor = iminor(inode);
  1499. if (minor >= CM4000_MAX_DEV)
  1500. return -ENODEV;
  1501. link = dev_table[minor];
  1502. if (link == NULL)
  1503. return -ENODEV;
  1504. dev = link->priv;
  1505. DEBUGP(2, dev, "-> cmm_close(maj/min=%d.%d)\n",
  1506. imajor(inode), minor);
  1507. stop_monitor(dev);
  1508. ZERO_DEV(dev);
  1509. link->open = 0; /* only one open per device */
  1510. wake_up(&dev->devq); /* socket removed? */
  1511. DEBUGP(2, dev, "cmm_close\n");
  1512. return 0;
  1513. }
  1514. static void cmm_cm4000_release(struct pcmcia_device * link)
  1515. {
  1516. struct cm4000_dev *dev = link->priv;
  1517. /* dont terminate the monitor, rather rely on
  1518. * close doing that for us.
  1519. */
  1520. DEBUGP(3, dev, "-> cmm_cm4000_release\n");
  1521. while (link->open) {
  1522. printk(KERN_INFO MODULE_NAME ": delaying release until "
  1523. "process has terminated\n");
  1524. /* note: don't interrupt us:
  1525. * close the applications which own
  1526. * the devices _first_ !
  1527. */
  1528. wait_event(dev->devq, (link->open == 0));
  1529. }
  1530. /* dev->devq=NULL; this cannot be zeroed earlier */
  1531. DEBUGP(3, dev, "<- cmm_cm4000_release\n");
  1532. return;
  1533. }
  1534. /*==== Interface to PCMCIA Layer =======================================*/
  1535. static int cm4000_config(struct pcmcia_device * link, int devno)
  1536. {
  1537. struct cm4000_dev *dev;
  1538. tuple_t tuple;
  1539. cisparse_t parse;
  1540. u_char buf[64];
  1541. int fail_fn, fail_rc;
  1542. int rc;
  1543. /* read the config-tuples */
  1544. tuple.Attributes = 0;
  1545. tuple.TupleData = buf;
  1546. tuple.TupleDataMax = sizeof(buf);
  1547. tuple.TupleOffset = 0;
  1548. link->io.BasePort2 = 0;
  1549. link->io.NumPorts2 = 0;
  1550. link->io.Attributes2 = 0;
  1551. tuple.DesiredTuple = CISTPL_CFTABLE_ENTRY;
  1552. for (rc = pcmcia_get_first_tuple(link, &tuple);
  1553. rc == CS_SUCCESS; rc = pcmcia_get_next_tuple(link, &tuple)) {
  1554. rc = pcmcia_get_tuple_data(link, &tuple);
  1555. if (rc != CS_SUCCESS)
  1556. continue;
  1557. rc = pcmcia_parse_tuple(link, &tuple, &parse);
  1558. if (rc != CS_SUCCESS)
  1559. continue;
  1560. link->conf.ConfigIndex = parse.cftable_entry.index;
  1561. if (!parse.cftable_entry.io.nwin)
  1562. continue;
  1563. /* Get the IOaddr */
  1564. link->io.BasePort1 = parse.cftable_entry.io.win[0].base;
  1565. link->io.NumPorts1 = parse.cftable_entry.io.win[0].len;
  1566. link->io.Attributes1 = IO_DATA_PATH_WIDTH_AUTO;
  1567. if (!(parse.cftable_entry.io.flags & CISTPL_IO_8BIT))
  1568. link->io.Attributes1 = IO_DATA_PATH_WIDTH_16;
  1569. if (!(parse.cftable_entry.io.flags & CISTPL_IO_16BIT))
  1570. link->io.Attributes1 = IO_DATA_PATH_WIDTH_8;
  1571. link->io.IOAddrLines = parse.cftable_entry.io.flags
  1572. & CISTPL_IO_LINES_MASK;
  1573. rc = pcmcia_request_io(link, &link->io);
  1574. if (rc == CS_SUCCESS)
  1575. break; /* we are done */
  1576. }
  1577. if (rc != CS_SUCCESS)
  1578. goto cs_release;
  1579. link->conf.IntType = 00000002;
  1580. if ((fail_rc =
  1581. pcmcia_request_configuration(link, &link->conf)) != CS_SUCCESS) {
  1582. fail_fn = RequestConfiguration;
  1583. goto cs_release;
  1584. }
  1585. dev = link->priv;
  1586. sprintf(dev->node.dev_name, DEVICE_NAME "%d", devno);
  1587. dev->node.major = major;
  1588. dev->node.minor = devno;
  1589. dev->node.next = NULL;
  1590. link->dev_node = &dev->node;
  1591. return 0;
  1592. cs_release:
  1593. cm4000_release(link);
  1594. return -ENODEV;
  1595. }
  1596. static int cm4000_suspend(struct pcmcia_device *link)
  1597. {
  1598. struct cm4000_dev *dev;
  1599. dev = link->priv;
  1600. stop_monitor(dev);
  1601. return 0;
  1602. }
  1603. static int cm4000_resume(struct pcmcia_device *link)
  1604. {
  1605. struct cm4000_dev *dev;
  1606. dev = link->priv;
  1607. if (link->open)
  1608. start_monitor(dev);
  1609. return 0;
  1610. }
  1611. static void cm4000_release(struct pcmcia_device *link)
  1612. {
  1613. cmm_cm4000_release(link->priv); /* delay release until device closed */
  1614. pcmcia_disable_device(link);
  1615. }
  1616. static int cm4000_probe(struct pcmcia_device *link)
  1617. {
  1618. struct cm4000_dev *dev;
  1619. int i, ret;
  1620. for (i = 0; i < CM4000_MAX_DEV; i++)
  1621. if (dev_table[i] == NULL)
  1622. break;
  1623. if (i == CM4000_MAX_DEV) {
  1624. printk(KERN_NOTICE MODULE_NAME ": all devices in use\n");
  1625. return -ENODEV;
  1626. }
  1627. /* create a new cm4000_cs device */
  1628. dev = kzalloc(sizeof(struct cm4000_dev), GFP_KERNEL);
  1629. if (dev == NULL)
  1630. return -ENOMEM;
  1631. dev->p_dev = link;
  1632. link->priv = dev;
  1633. link->conf.IntType = INT_MEMORY_AND_IO;
  1634. dev_table[i] = link;
  1635. init_waitqueue_head(&dev->devq);
  1636. init_waitqueue_head(&dev->ioq);
  1637. init_waitqueue_head(&dev->atrq);
  1638. init_waitqueue_head(&dev->readq);
  1639. ret = cm4000_config(link, i);
  1640. if (ret)
  1641. return ret;
  1642. class_device_create(cmm_class, NULL, MKDEV(major, i), NULL,
  1643. "cmm%d", i);
  1644. return 0;
  1645. }
  1646. static void cm4000_detach(struct pcmcia_device *link)
  1647. {
  1648. struct cm4000_dev *dev = link->priv;
  1649. int devno;
  1650. /* find device */
  1651. for (devno = 0; devno < CM4000_MAX_DEV; devno++)
  1652. if (dev_table[devno] == link)
  1653. break;
  1654. if (devno == CM4000_MAX_DEV)
  1655. return;
  1656. stop_monitor(dev);
  1657. cm4000_release(link);
  1658. dev_table[devno] = NULL;
  1659. kfree(dev);
  1660. class_device_destroy(cmm_class, MKDEV(major, devno));
  1661. return;
  1662. }
  1663. static const struct file_operations cm4000_fops = {
  1664. .owner = THIS_MODULE,
  1665. .read = cmm_read,
  1666. .write = cmm_write,
  1667. .ioctl = cmm_ioctl,
  1668. .open = cmm_open,
  1669. .release= cmm_close,
  1670. };
  1671. static struct pcmcia_device_id cm4000_ids[] = {
  1672. PCMCIA_DEVICE_MANF_CARD(0x0223, 0x0002),
  1673. PCMCIA_DEVICE_PROD_ID12("CardMan", "4000", 0x2FB368CA, 0xA2BD8C39),
  1674. PCMCIA_DEVICE_NULL,
  1675. };
  1676. MODULE_DEVICE_TABLE(pcmcia, cm4000_ids);
  1677. static struct pcmcia_driver cm4000_driver = {
  1678. .owner = THIS_MODULE,
  1679. .drv = {
  1680. .name = "cm4000_cs",
  1681. },
  1682. .probe = cm4000_probe,
  1683. .remove = cm4000_detach,
  1684. .suspend = cm4000_suspend,
  1685. .resume = cm4000_resume,
  1686. .id_table = cm4000_ids,
  1687. };
  1688. static int __init cmm_init(void)
  1689. {
  1690. int rc;
  1691. printk(KERN_INFO "%s\n", version);
  1692. cmm_class = class_create(THIS_MODULE, "cardman_4000");
  1693. if (IS_ERR(cmm_class))
  1694. return PTR_ERR(cmm_class);
  1695. major = register_chrdev(0, DEVICE_NAME, &cm4000_fops);
  1696. if (major < 0) {
  1697. printk(KERN_WARNING MODULE_NAME
  1698. ": could not get major number\n");
  1699. return major;
  1700. }
  1701. rc = pcmcia_register_driver(&cm4000_driver);
  1702. if (rc < 0) {
  1703. unregister_chrdev(major, DEVICE_NAME);
  1704. return rc;
  1705. }
  1706. return 0;
  1707. }
  1708. static void __exit cmm_exit(void)
  1709. {
  1710. printk(KERN_INFO MODULE_NAME ": unloading\n");
  1711. pcmcia_unregister_driver(&cm4000_driver);
  1712. unregister_chrdev(major, DEVICE_NAME);
  1713. class_destroy(cmm_class);
  1714. };
  1715. module_init(cmm_init);
  1716. module_exit(cmm_exit);
  1717. MODULE_LICENSE("Dual BSD/GPL");