dm-thin.c 68 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823
  1. /*
  2. * Copyright (C) 2011-2012 Red Hat UK.
  3. *
  4. * This file is released under the GPL.
  5. */
  6. #include "dm-thin-metadata.h"
  7. #include "dm-bio-prison.h"
  8. #include "dm.h"
  9. #include <linux/device-mapper.h>
  10. #include <linux/dm-io.h>
  11. #include <linux/dm-kcopyd.h>
  12. #include <linux/list.h>
  13. #include <linux/init.h>
  14. #include <linux/module.h>
  15. #include <linux/slab.h>
  16. #define DM_MSG_PREFIX "thin"
  17. /*
  18. * Tunable constants
  19. */
  20. #define ENDIO_HOOK_POOL_SIZE 1024
  21. #define MAPPING_POOL_SIZE 1024
  22. #define PRISON_CELLS 1024
  23. #define COMMIT_PERIOD HZ
  24. /*
  25. * The block size of the device holding pool data must be
  26. * between 64KB and 1GB.
  27. */
  28. #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  29. #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  30. /*
  31. * Device id is restricted to 24 bits.
  32. */
  33. #define MAX_DEV_ID ((1 << 24) - 1)
  34. /*
  35. * How do we handle breaking sharing of data blocks?
  36. * =================================================
  37. *
  38. * We use a standard copy-on-write btree to store the mappings for the
  39. * devices (note I'm talking about copy-on-write of the metadata here, not
  40. * the data). When you take an internal snapshot you clone the root node
  41. * of the origin btree. After this there is no concept of an origin or a
  42. * snapshot. They are just two device trees that happen to point to the
  43. * same data blocks.
  44. *
  45. * When we get a write in we decide if it's to a shared data block using
  46. * some timestamp magic. If it is, we have to break sharing.
  47. *
  48. * Let's say we write to a shared block in what was the origin. The
  49. * steps are:
  50. *
  51. * i) plug io further to this physical block. (see bio_prison code).
  52. *
  53. * ii) quiesce any read io to that shared data block. Obviously
  54. * including all devices that share this block. (see dm_deferred_set code)
  55. *
  56. * iii) copy the data block to a newly allocate block. This step can be
  57. * missed out if the io covers the block. (schedule_copy).
  58. *
  59. * iv) insert the new mapping into the origin's btree
  60. * (process_prepared_mapping). This act of inserting breaks some
  61. * sharing of btree nodes between the two devices. Breaking sharing only
  62. * effects the btree of that specific device. Btrees for the other
  63. * devices that share the block never change. The btree for the origin
  64. * device as it was after the last commit is untouched, ie. we're using
  65. * persistent data structures in the functional programming sense.
  66. *
  67. * v) unplug io to this physical block, including the io that triggered
  68. * the breaking of sharing.
  69. *
  70. * Steps (ii) and (iii) occur in parallel.
  71. *
  72. * The metadata _doesn't_ need to be committed before the io continues. We
  73. * get away with this because the io is always written to a _new_ block.
  74. * If there's a crash, then:
  75. *
  76. * - The origin mapping will point to the old origin block (the shared
  77. * one). This will contain the data as it was before the io that triggered
  78. * the breaking of sharing came in.
  79. *
  80. * - The snap mapping still points to the old block. As it would after
  81. * the commit.
  82. *
  83. * The downside of this scheme is the timestamp magic isn't perfect, and
  84. * will continue to think that data block in the snapshot device is shared
  85. * even after the write to the origin has broken sharing. I suspect data
  86. * blocks will typically be shared by many different devices, so we're
  87. * breaking sharing n + 1 times, rather than n, where n is the number of
  88. * devices that reference this data block. At the moment I think the
  89. * benefits far, far outweigh the disadvantages.
  90. */
  91. /*----------------------------------------------------------------*/
  92. /*
  93. * Key building.
  94. */
  95. static void build_data_key(struct dm_thin_device *td,
  96. dm_block_t b, struct dm_cell_key *key)
  97. {
  98. key->virtual = 0;
  99. key->dev = dm_thin_dev_id(td);
  100. key->block = b;
  101. }
  102. static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
  103. struct dm_cell_key *key)
  104. {
  105. key->virtual = 1;
  106. key->dev = dm_thin_dev_id(td);
  107. key->block = b;
  108. }
  109. /*----------------------------------------------------------------*/
  110. /*
  111. * A pool device ties together a metadata device and a data device. It
  112. * also provides the interface for creating and destroying internal
  113. * devices.
  114. */
  115. struct dm_thin_new_mapping;
  116. /*
  117. * The pool runs in 3 modes. Ordered in degraded order for comparisons.
  118. */
  119. enum pool_mode {
  120. PM_WRITE, /* metadata may be changed */
  121. PM_READ_ONLY, /* metadata may not be changed */
  122. PM_FAIL, /* all I/O fails */
  123. };
  124. struct pool_features {
  125. enum pool_mode mode;
  126. bool zero_new_blocks:1;
  127. bool discard_enabled:1;
  128. bool discard_passdown:1;
  129. };
  130. struct thin_c;
  131. typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
  132. typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
  133. struct pool {
  134. struct list_head list;
  135. struct dm_target *ti; /* Only set if a pool target is bound */
  136. struct mapped_device *pool_md;
  137. struct block_device *md_dev;
  138. struct dm_pool_metadata *pmd;
  139. dm_block_t low_water_blocks;
  140. uint32_t sectors_per_block;
  141. int sectors_per_block_shift;
  142. struct pool_features pf;
  143. unsigned low_water_triggered:1; /* A dm event has been sent */
  144. unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
  145. struct dm_bio_prison *prison;
  146. struct dm_kcopyd_client *copier;
  147. struct workqueue_struct *wq;
  148. struct work_struct worker;
  149. struct delayed_work waker;
  150. unsigned long last_commit_jiffies;
  151. unsigned ref_count;
  152. spinlock_t lock;
  153. struct bio_list deferred_bios;
  154. struct bio_list deferred_flush_bios;
  155. struct list_head prepared_mappings;
  156. struct list_head prepared_discards;
  157. struct bio_list retry_on_resume_list;
  158. struct dm_deferred_set *shared_read_ds;
  159. struct dm_deferred_set *all_io_ds;
  160. struct dm_thin_new_mapping *next_mapping;
  161. mempool_t *mapping_pool;
  162. process_bio_fn process_bio;
  163. process_bio_fn process_discard;
  164. process_mapping_fn process_prepared_mapping;
  165. process_mapping_fn process_prepared_discard;
  166. };
  167. static enum pool_mode get_pool_mode(struct pool *pool);
  168. static void set_pool_mode(struct pool *pool, enum pool_mode mode);
  169. /*
  170. * Target context for a pool.
  171. */
  172. struct pool_c {
  173. struct dm_target *ti;
  174. struct pool *pool;
  175. struct dm_dev *data_dev;
  176. struct dm_dev *metadata_dev;
  177. struct dm_target_callbacks callbacks;
  178. dm_block_t low_water_blocks;
  179. struct pool_features requested_pf; /* Features requested during table load */
  180. struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
  181. };
  182. /*
  183. * Target context for a thin.
  184. */
  185. struct thin_c {
  186. struct dm_dev *pool_dev;
  187. struct dm_dev *origin_dev;
  188. dm_thin_id dev_id;
  189. struct pool *pool;
  190. struct dm_thin_device *td;
  191. };
  192. /*----------------------------------------------------------------*/
  193. /*
  194. * A global list of pools that uses a struct mapped_device as a key.
  195. */
  196. static struct dm_thin_pool_table {
  197. struct mutex mutex;
  198. struct list_head pools;
  199. } dm_thin_pool_table;
  200. static void pool_table_init(void)
  201. {
  202. mutex_init(&dm_thin_pool_table.mutex);
  203. INIT_LIST_HEAD(&dm_thin_pool_table.pools);
  204. }
  205. static void __pool_table_insert(struct pool *pool)
  206. {
  207. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  208. list_add(&pool->list, &dm_thin_pool_table.pools);
  209. }
  210. static void __pool_table_remove(struct pool *pool)
  211. {
  212. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  213. list_del(&pool->list);
  214. }
  215. static struct pool *__pool_table_lookup(struct mapped_device *md)
  216. {
  217. struct pool *pool = NULL, *tmp;
  218. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  219. list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
  220. if (tmp->pool_md == md) {
  221. pool = tmp;
  222. break;
  223. }
  224. }
  225. return pool;
  226. }
  227. static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
  228. {
  229. struct pool *pool = NULL, *tmp;
  230. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  231. list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
  232. if (tmp->md_dev == md_dev) {
  233. pool = tmp;
  234. break;
  235. }
  236. }
  237. return pool;
  238. }
  239. /*----------------------------------------------------------------*/
  240. struct dm_thin_endio_hook {
  241. struct thin_c *tc;
  242. struct dm_deferred_entry *shared_read_entry;
  243. struct dm_deferred_entry *all_io_entry;
  244. struct dm_thin_new_mapping *overwrite_mapping;
  245. };
  246. static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
  247. {
  248. struct bio *bio;
  249. struct bio_list bios;
  250. bio_list_init(&bios);
  251. bio_list_merge(&bios, master);
  252. bio_list_init(master);
  253. while ((bio = bio_list_pop(&bios))) {
  254. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  255. if (h->tc == tc)
  256. bio_endio(bio, DM_ENDIO_REQUEUE);
  257. else
  258. bio_list_add(master, bio);
  259. }
  260. }
  261. static void requeue_io(struct thin_c *tc)
  262. {
  263. struct pool *pool = tc->pool;
  264. unsigned long flags;
  265. spin_lock_irqsave(&pool->lock, flags);
  266. __requeue_bio_list(tc, &pool->deferred_bios);
  267. __requeue_bio_list(tc, &pool->retry_on_resume_list);
  268. spin_unlock_irqrestore(&pool->lock, flags);
  269. }
  270. /*
  271. * This section of code contains the logic for processing a thin device's IO.
  272. * Much of the code depends on pool object resources (lists, workqueues, etc)
  273. * but most is exclusively called from the thin target rather than the thin-pool
  274. * target.
  275. */
  276. static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
  277. {
  278. sector_t block_nr = bio->bi_sector;
  279. if (tc->pool->sectors_per_block_shift < 0)
  280. (void) sector_div(block_nr, tc->pool->sectors_per_block);
  281. else
  282. block_nr >>= tc->pool->sectors_per_block_shift;
  283. return block_nr;
  284. }
  285. static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
  286. {
  287. struct pool *pool = tc->pool;
  288. sector_t bi_sector = bio->bi_sector;
  289. bio->bi_bdev = tc->pool_dev->bdev;
  290. if (tc->pool->sectors_per_block_shift < 0)
  291. bio->bi_sector = (block * pool->sectors_per_block) +
  292. sector_div(bi_sector, pool->sectors_per_block);
  293. else
  294. bio->bi_sector = (block << pool->sectors_per_block_shift) |
  295. (bi_sector & (pool->sectors_per_block - 1));
  296. }
  297. static void remap_to_origin(struct thin_c *tc, struct bio *bio)
  298. {
  299. bio->bi_bdev = tc->origin_dev->bdev;
  300. }
  301. static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
  302. {
  303. return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
  304. dm_thin_changed_this_transaction(tc->td);
  305. }
  306. static void inc_all_io_entry(struct pool *pool, struct bio *bio)
  307. {
  308. struct dm_thin_endio_hook *h;
  309. if (bio->bi_rw & REQ_DISCARD)
  310. return;
  311. h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  312. h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
  313. }
  314. static void issue(struct thin_c *tc, struct bio *bio)
  315. {
  316. struct pool *pool = tc->pool;
  317. unsigned long flags;
  318. if (!bio_triggers_commit(tc, bio)) {
  319. generic_make_request(bio);
  320. return;
  321. }
  322. /*
  323. * Complete bio with an error if earlier I/O caused changes to
  324. * the metadata that can't be committed e.g, due to I/O errors
  325. * on the metadata device.
  326. */
  327. if (dm_thin_aborted_changes(tc->td)) {
  328. bio_io_error(bio);
  329. return;
  330. }
  331. /*
  332. * Batch together any bios that trigger commits and then issue a
  333. * single commit for them in process_deferred_bios().
  334. */
  335. spin_lock_irqsave(&pool->lock, flags);
  336. bio_list_add(&pool->deferred_flush_bios, bio);
  337. spin_unlock_irqrestore(&pool->lock, flags);
  338. }
  339. static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
  340. {
  341. remap_to_origin(tc, bio);
  342. issue(tc, bio);
  343. }
  344. static void remap_and_issue(struct thin_c *tc, struct bio *bio,
  345. dm_block_t block)
  346. {
  347. remap(tc, bio, block);
  348. issue(tc, bio);
  349. }
  350. /*
  351. * wake_worker() is used when new work is queued and when pool_resume is
  352. * ready to continue deferred IO processing.
  353. */
  354. static void wake_worker(struct pool *pool)
  355. {
  356. queue_work(pool->wq, &pool->worker);
  357. }
  358. /*----------------------------------------------------------------*/
  359. /*
  360. * Bio endio functions.
  361. */
  362. struct dm_thin_new_mapping {
  363. struct list_head list;
  364. unsigned quiesced:1;
  365. unsigned prepared:1;
  366. unsigned pass_discard:1;
  367. struct thin_c *tc;
  368. dm_block_t virt_block;
  369. dm_block_t data_block;
  370. struct dm_bio_prison_cell *cell, *cell2;
  371. int err;
  372. /*
  373. * If the bio covers the whole area of a block then we can avoid
  374. * zeroing or copying. Instead this bio is hooked. The bio will
  375. * still be in the cell, so care has to be taken to avoid issuing
  376. * the bio twice.
  377. */
  378. struct bio *bio;
  379. bio_end_io_t *saved_bi_end_io;
  380. };
  381. static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
  382. {
  383. struct pool *pool = m->tc->pool;
  384. if (m->quiesced && m->prepared) {
  385. list_add(&m->list, &pool->prepared_mappings);
  386. wake_worker(pool);
  387. }
  388. }
  389. static void copy_complete(int read_err, unsigned long write_err, void *context)
  390. {
  391. unsigned long flags;
  392. struct dm_thin_new_mapping *m = context;
  393. struct pool *pool = m->tc->pool;
  394. m->err = read_err || write_err ? -EIO : 0;
  395. spin_lock_irqsave(&pool->lock, flags);
  396. m->prepared = 1;
  397. __maybe_add_mapping(m);
  398. spin_unlock_irqrestore(&pool->lock, flags);
  399. }
  400. static void overwrite_endio(struct bio *bio, int err)
  401. {
  402. unsigned long flags;
  403. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  404. struct dm_thin_new_mapping *m = h->overwrite_mapping;
  405. struct pool *pool = m->tc->pool;
  406. m->err = err;
  407. spin_lock_irqsave(&pool->lock, flags);
  408. m->prepared = 1;
  409. __maybe_add_mapping(m);
  410. spin_unlock_irqrestore(&pool->lock, flags);
  411. }
  412. /*----------------------------------------------------------------*/
  413. /*
  414. * Workqueue.
  415. */
  416. /*
  417. * Prepared mapping jobs.
  418. */
  419. /*
  420. * This sends the bios in the cell back to the deferred_bios list.
  421. */
  422. static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
  423. {
  424. struct pool *pool = tc->pool;
  425. unsigned long flags;
  426. spin_lock_irqsave(&pool->lock, flags);
  427. dm_cell_release(cell, &pool->deferred_bios);
  428. spin_unlock_irqrestore(&tc->pool->lock, flags);
  429. wake_worker(pool);
  430. }
  431. /*
  432. * Same as cell_defer except it omits the original holder of the cell.
  433. */
  434. static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
  435. {
  436. struct pool *pool = tc->pool;
  437. unsigned long flags;
  438. spin_lock_irqsave(&pool->lock, flags);
  439. dm_cell_release_no_holder(cell, &pool->deferred_bios);
  440. spin_unlock_irqrestore(&pool->lock, flags);
  441. wake_worker(pool);
  442. }
  443. static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
  444. {
  445. if (m->bio)
  446. m->bio->bi_end_io = m->saved_bi_end_io;
  447. dm_cell_error(m->cell);
  448. list_del(&m->list);
  449. mempool_free(m, m->tc->pool->mapping_pool);
  450. }
  451. static void process_prepared_mapping(struct dm_thin_new_mapping *m)
  452. {
  453. struct thin_c *tc = m->tc;
  454. struct bio *bio;
  455. int r;
  456. bio = m->bio;
  457. if (bio)
  458. bio->bi_end_io = m->saved_bi_end_io;
  459. if (m->err) {
  460. dm_cell_error(m->cell);
  461. goto out;
  462. }
  463. /*
  464. * Commit the prepared block into the mapping btree.
  465. * Any I/O for this block arriving after this point will get
  466. * remapped to it directly.
  467. */
  468. r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
  469. if (r) {
  470. DMERR_LIMIT("dm_thin_insert_block() failed");
  471. dm_cell_error(m->cell);
  472. goto out;
  473. }
  474. /*
  475. * Release any bios held while the block was being provisioned.
  476. * If we are processing a write bio that completely covers the block,
  477. * we already processed it so can ignore it now when processing
  478. * the bios in the cell.
  479. */
  480. if (bio) {
  481. cell_defer_no_holder(tc, m->cell);
  482. bio_endio(bio, 0);
  483. } else
  484. cell_defer(tc, m->cell);
  485. out:
  486. list_del(&m->list);
  487. mempool_free(m, tc->pool->mapping_pool);
  488. }
  489. static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
  490. {
  491. struct thin_c *tc = m->tc;
  492. bio_io_error(m->bio);
  493. cell_defer_no_holder(tc, m->cell);
  494. cell_defer_no_holder(tc, m->cell2);
  495. mempool_free(m, tc->pool->mapping_pool);
  496. }
  497. static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
  498. {
  499. struct thin_c *tc = m->tc;
  500. inc_all_io_entry(tc->pool, m->bio);
  501. cell_defer_no_holder(tc, m->cell);
  502. cell_defer_no_holder(tc, m->cell2);
  503. if (m->pass_discard)
  504. remap_and_issue(tc, m->bio, m->data_block);
  505. else
  506. bio_endio(m->bio, 0);
  507. mempool_free(m, tc->pool->mapping_pool);
  508. }
  509. static void process_prepared_discard(struct dm_thin_new_mapping *m)
  510. {
  511. int r;
  512. struct thin_c *tc = m->tc;
  513. r = dm_thin_remove_block(tc->td, m->virt_block);
  514. if (r)
  515. DMERR_LIMIT("dm_thin_remove_block() failed");
  516. process_prepared_discard_passdown(m);
  517. }
  518. static void process_prepared(struct pool *pool, struct list_head *head,
  519. process_mapping_fn *fn)
  520. {
  521. unsigned long flags;
  522. struct list_head maps;
  523. struct dm_thin_new_mapping *m, *tmp;
  524. INIT_LIST_HEAD(&maps);
  525. spin_lock_irqsave(&pool->lock, flags);
  526. list_splice_init(head, &maps);
  527. spin_unlock_irqrestore(&pool->lock, flags);
  528. list_for_each_entry_safe(m, tmp, &maps, list)
  529. (*fn)(m);
  530. }
  531. /*
  532. * Deferred bio jobs.
  533. */
  534. static int io_overlaps_block(struct pool *pool, struct bio *bio)
  535. {
  536. return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
  537. }
  538. static int io_overwrites_block(struct pool *pool, struct bio *bio)
  539. {
  540. return (bio_data_dir(bio) == WRITE) &&
  541. io_overlaps_block(pool, bio);
  542. }
  543. static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
  544. bio_end_io_t *fn)
  545. {
  546. *save = bio->bi_end_io;
  547. bio->bi_end_io = fn;
  548. }
  549. static int ensure_next_mapping(struct pool *pool)
  550. {
  551. if (pool->next_mapping)
  552. return 0;
  553. pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
  554. return pool->next_mapping ? 0 : -ENOMEM;
  555. }
  556. static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
  557. {
  558. struct dm_thin_new_mapping *r = pool->next_mapping;
  559. BUG_ON(!pool->next_mapping);
  560. pool->next_mapping = NULL;
  561. return r;
  562. }
  563. static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
  564. struct dm_dev *origin, dm_block_t data_origin,
  565. dm_block_t data_dest,
  566. struct dm_bio_prison_cell *cell, struct bio *bio)
  567. {
  568. int r;
  569. struct pool *pool = tc->pool;
  570. struct dm_thin_new_mapping *m = get_next_mapping(pool);
  571. INIT_LIST_HEAD(&m->list);
  572. m->quiesced = 0;
  573. m->prepared = 0;
  574. m->tc = tc;
  575. m->virt_block = virt_block;
  576. m->data_block = data_dest;
  577. m->cell = cell;
  578. m->err = 0;
  579. m->bio = NULL;
  580. if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
  581. m->quiesced = 1;
  582. /*
  583. * IO to pool_dev remaps to the pool target's data_dev.
  584. *
  585. * If the whole block of data is being overwritten, we can issue the
  586. * bio immediately. Otherwise we use kcopyd to clone the data first.
  587. */
  588. if (io_overwrites_block(pool, bio)) {
  589. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  590. h->overwrite_mapping = m;
  591. m->bio = bio;
  592. save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
  593. inc_all_io_entry(pool, bio);
  594. remap_and_issue(tc, bio, data_dest);
  595. } else {
  596. struct dm_io_region from, to;
  597. from.bdev = origin->bdev;
  598. from.sector = data_origin * pool->sectors_per_block;
  599. from.count = pool->sectors_per_block;
  600. to.bdev = tc->pool_dev->bdev;
  601. to.sector = data_dest * pool->sectors_per_block;
  602. to.count = pool->sectors_per_block;
  603. r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
  604. 0, copy_complete, m);
  605. if (r < 0) {
  606. mempool_free(m, pool->mapping_pool);
  607. DMERR_LIMIT("dm_kcopyd_copy() failed");
  608. dm_cell_error(cell);
  609. }
  610. }
  611. }
  612. static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
  613. dm_block_t data_origin, dm_block_t data_dest,
  614. struct dm_bio_prison_cell *cell, struct bio *bio)
  615. {
  616. schedule_copy(tc, virt_block, tc->pool_dev,
  617. data_origin, data_dest, cell, bio);
  618. }
  619. static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
  620. dm_block_t data_dest,
  621. struct dm_bio_prison_cell *cell, struct bio *bio)
  622. {
  623. schedule_copy(tc, virt_block, tc->origin_dev,
  624. virt_block, data_dest, cell, bio);
  625. }
  626. static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
  627. dm_block_t data_block, struct dm_bio_prison_cell *cell,
  628. struct bio *bio)
  629. {
  630. struct pool *pool = tc->pool;
  631. struct dm_thin_new_mapping *m = get_next_mapping(pool);
  632. INIT_LIST_HEAD(&m->list);
  633. m->quiesced = 1;
  634. m->prepared = 0;
  635. m->tc = tc;
  636. m->virt_block = virt_block;
  637. m->data_block = data_block;
  638. m->cell = cell;
  639. m->err = 0;
  640. m->bio = NULL;
  641. /*
  642. * If the whole block of data is being overwritten or we are not
  643. * zeroing pre-existing data, we can issue the bio immediately.
  644. * Otherwise we use kcopyd to zero the data first.
  645. */
  646. if (!pool->pf.zero_new_blocks)
  647. process_prepared_mapping(m);
  648. else if (io_overwrites_block(pool, bio)) {
  649. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  650. h->overwrite_mapping = m;
  651. m->bio = bio;
  652. save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
  653. inc_all_io_entry(pool, bio);
  654. remap_and_issue(tc, bio, data_block);
  655. } else {
  656. int r;
  657. struct dm_io_region to;
  658. to.bdev = tc->pool_dev->bdev;
  659. to.sector = data_block * pool->sectors_per_block;
  660. to.count = pool->sectors_per_block;
  661. r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
  662. if (r < 0) {
  663. mempool_free(m, pool->mapping_pool);
  664. DMERR_LIMIT("dm_kcopyd_zero() failed");
  665. dm_cell_error(cell);
  666. }
  667. }
  668. }
  669. static int commit(struct pool *pool)
  670. {
  671. int r;
  672. r = dm_pool_commit_metadata(pool->pmd);
  673. if (r)
  674. DMERR_LIMIT("commit failed: error = %d", r);
  675. return r;
  676. }
  677. /*
  678. * A non-zero return indicates read_only or fail_io mode.
  679. * Many callers don't care about the return value.
  680. */
  681. static int commit_or_fallback(struct pool *pool)
  682. {
  683. int r;
  684. if (get_pool_mode(pool) != PM_WRITE)
  685. return -EINVAL;
  686. r = commit(pool);
  687. if (r)
  688. set_pool_mode(pool, PM_READ_ONLY);
  689. return r;
  690. }
  691. static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
  692. {
  693. int r;
  694. dm_block_t free_blocks;
  695. unsigned long flags;
  696. struct pool *pool = tc->pool;
  697. r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
  698. if (r)
  699. return r;
  700. if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
  701. DMWARN("%s: reached low water mark, sending event.",
  702. dm_device_name(pool->pool_md));
  703. spin_lock_irqsave(&pool->lock, flags);
  704. pool->low_water_triggered = 1;
  705. spin_unlock_irqrestore(&pool->lock, flags);
  706. dm_table_event(pool->ti->table);
  707. }
  708. if (!free_blocks) {
  709. if (pool->no_free_space)
  710. return -ENOSPC;
  711. else {
  712. /*
  713. * Try to commit to see if that will free up some
  714. * more space.
  715. */
  716. (void) commit_or_fallback(pool);
  717. r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
  718. if (r)
  719. return r;
  720. /*
  721. * If we still have no space we set a flag to avoid
  722. * doing all this checking and return -ENOSPC.
  723. */
  724. if (!free_blocks) {
  725. DMWARN("%s: no free space available.",
  726. dm_device_name(pool->pool_md));
  727. spin_lock_irqsave(&pool->lock, flags);
  728. pool->no_free_space = 1;
  729. spin_unlock_irqrestore(&pool->lock, flags);
  730. return -ENOSPC;
  731. }
  732. }
  733. }
  734. r = dm_pool_alloc_data_block(pool->pmd, result);
  735. if (r)
  736. return r;
  737. return 0;
  738. }
  739. /*
  740. * If we have run out of space, queue bios until the device is
  741. * resumed, presumably after having been reloaded with more space.
  742. */
  743. static void retry_on_resume(struct bio *bio)
  744. {
  745. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  746. struct thin_c *tc = h->tc;
  747. struct pool *pool = tc->pool;
  748. unsigned long flags;
  749. spin_lock_irqsave(&pool->lock, flags);
  750. bio_list_add(&pool->retry_on_resume_list, bio);
  751. spin_unlock_irqrestore(&pool->lock, flags);
  752. }
  753. static void no_space(struct dm_bio_prison_cell *cell)
  754. {
  755. struct bio *bio;
  756. struct bio_list bios;
  757. bio_list_init(&bios);
  758. dm_cell_release(cell, &bios);
  759. while ((bio = bio_list_pop(&bios)))
  760. retry_on_resume(bio);
  761. }
  762. static void process_discard(struct thin_c *tc, struct bio *bio)
  763. {
  764. int r;
  765. unsigned long flags;
  766. struct pool *pool = tc->pool;
  767. struct dm_bio_prison_cell *cell, *cell2;
  768. struct dm_cell_key key, key2;
  769. dm_block_t block = get_bio_block(tc, bio);
  770. struct dm_thin_lookup_result lookup_result;
  771. struct dm_thin_new_mapping *m;
  772. build_virtual_key(tc->td, block, &key);
  773. if (dm_bio_detain(tc->pool->prison, &key, bio, &cell))
  774. return;
  775. r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
  776. switch (r) {
  777. case 0:
  778. /*
  779. * Check nobody is fiddling with this pool block. This can
  780. * happen if someone's in the process of breaking sharing
  781. * on this block.
  782. */
  783. build_data_key(tc->td, lookup_result.block, &key2);
  784. if (dm_bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
  785. cell_defer_no_holder(tc, cell);
  786. break;
  787. }
  788. if (io_overlaps_block(pool, bio)) {
  789. /*
  790. * IO may still be going to the destination block. We must
  791. * quiesce before we can do the removal.
  792. */
  793. m = get_next_mapping(pool);
  794. m->tc = tc;
  795. m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
  796. m->virt_block = block;
  797. m->data_block = lookup_result.block;
  798. m->cell = cell;
  799. m->cell2 = cell2;
  800. m->err = 0;
  801. m->bio = bio;
  802. if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
  803. spin_lock_irqsave(&pool->lock, flags);
  804. list_add(&m->list, &pool->prepared_discards);
  805. spin_unlock_irqrestore(&pool->lock, flags);
  806. wake_worker(pool);
  807. }
  808. } else {
  809. inc_all_io_entry(pool, bio);
  810. cell_defer_no_holder(tc, cell);
  811. cell_defer_no_holder(tc, cell2);
  812. /*
  813. * The DM core makes sure that the discard doesn't span
  814. * a block boundary. So we submit the discard of a
  815. * partial block appropriately.
  816. */
  817. if ((!lookup_result.shared) && pool->pf.discard_passdown)
  818. remap_and_issue(tc, bio, lookup_result.block);
  819. else
  820. bio_endio(bio, 0);
  821. }
  822. break;
  823. case -ENODATA:
  824. /*
  825. * It isn't provisioned, just forget it.
  826. */
  827. cell_defer_no_holder(tc, cell);
  828. bio_endio(bio, 0);
  829. break;
  830. default:
  831. DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
  832. __func__, r);
  833. cell_defer_no_holder(tc, cell);
  834. bio_io_error(bio);
  835. break;
  836. }
  837. }
  838. static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
  839. struct dm_cell_key *key,
  840. struct dm_thin_lookup_result *lookup_result,
  841. struct dm_bio_prison_cell *cell)
  842. {
  843. int r;
  844. dm_block_t data_block;
  845. r = alloc_data_block(tc, &data_block);
  846. switch (r) {
  847. case 0:
  848. schedule_internal_copy(tc, block, lookup_result->block,
  849. data_block, cell, bio);
  850. break;
  851. case -ENOSPC:
  852. no_space(cell);
  853. break;
  854. default:
  855. DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
  856. __func__, r);
  857. dm_cell_error(cell);
  858. break;
  859. }
  860. }
  861. static void process_shared_bio(struct thin_c *tc, struct bio *bio,
  862. dm_block_t block,
  863. struct dm_thin_lookup_result *lookup_result)
  864. {
  865. struct dm_bio_prison_cell *cell;
  866. struct pool *pool = tc->pool;
  867. struct dm_cell_key key;
  868. /*
  869. * If cell is already occupied, then sharing is already in the process
  870. * of being broken so we have nothing further to do here.
  871. */
  872. build_data_key(tc->td, lookup_result->block, &key);
  873. if (dm_bio_detain(pool->prison, &key, bio, &cell))
  874. return;
  875. if (bio_data_dir(bio) == WRITE && bio->bi_size)
  876. break_sharing(tc, bio, block, &key, lookup_result, cell);
  877. else {
  878. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  879. h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
  880. inc_all_io_entry(pool, bio);
  881. cell_defer_no_holder(tc, cell);
  882. remap_and_issue(tc, bio, lookup_result->block);
  883. }
  884. }
  885. static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
  886. struct dm_bio_prison_cell *cell)
  887. {
  888. int r;
  889. dm_block_t data_block;
  890. /*
  891. * Remap empty bios (flushes) immediately, without provisioning.
  892. */
  893. if (!bio->bi_size) {
  894. inc_all_io_entry(tc->pool, bio);
  895. cell_defer_no_holder(tc, cell);
  896. remap_and_issue(tc, bio, 0);
  897. return;
  898. }
  899. /*
  900. * Fill read bios with zeroes and complete them immediately.
  901. */
  902. if (bio_data_dir(bio) == READ) {
  903. zero_fill_bio(bio);
  904. cell_defer_no_holder(tc, cell);
  905. bio_endio(bio, 0);
  906. return;
  907. }
  908. r = alloc_data_block(tc, &data_block);
  909. switch (r) {
  910. case 0:
  911. if (tc->origin_dev)
  912. schedule_external_copy(tc, block, data_block, cell, bio);
  913. else
  914. schedule_zero(tc, block, data_block, cell, bio);
  915. break;
  916. case -ENOSPC:
  917. no_space(cell);
  918. break;
  919. default:
  920. DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
  921. __func__, r);
  922. set_pool_mode(tc->pool, PM_READ_ONLY);
  923. dm_cell_error(cell);
  924. break;
  925. }
  926. }
  927. static void process_bio(struct thin_c *tc, struct bio *bio)
  928. {
  929. int r;
  930. dm_block_t block = get_bio_block(tc, bio);
  931. struct dm_bio_prison_cell *cell;
  932. struct dm_cell_key key;
  933. struct dm_thin_lookup_result lookup_result;
  934. /*
  935. * If cell is already occupied, then the block is already
  936. * being provisioned so we have nothing further to do here.
  937. */
  938. build_virtual_key(tc->td, block, &key);
  939. if (dm_bio_detain(tc->pool->prison, &key, bio, &cell))
  940. return;
  941. r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
  942. switch (r) {
  943. case 0:
  944. if (lookup_result.shared) {
  945. process_shared_bio(tc, bio, block, &lookup_result);
  946. cell_defer_no_holder(tc, cell);
  947. } else {
  948. inc_all_io_entry(tc->pool, bio);
  949. cell_defer_no_holder(tc, cell);
  950. remap_and_issue(tc, bio, lookup_result.block);
  951. }
  952. break;
  953. case -ENODATA:
  954. if (bio_data_dir(bio) == READ && tc->origin_dev) {
  955. inc_all_io_entry(tc->pool, bio);
  956. cell_defer_no_holder(tc, cell);
  957. remap_to_origin_and_issue(tc, bio);
  958. } else
  959. provision_block(tc, bio, block, cell);
  960. break;
  961. default:
  962. DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
  963. __func__, r);
  964. cell_defer_no_holder(tc, cell);
  965. bio_io_error(bio);
  966. break;
  967. }
  968. }
  969. static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
  970. {
  971. int r;
  972. int rw = bio_data_dir(bio);
  973. dm_block_t block = get_bio_block(tc, bio);
  974. struct dm_thin_lookup_result lookup_result;
  975. r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
  976. switch (r) {
  977. case 0:
  978. if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
  979. bio_io_error(bio);
  980. else {
  981. inc_all_io_entry(tc->pool, bio);
  982. remap_and_issue(tc, bio, lookup_result.block);
  983. }
  984. break;
  985. case -ENODATA:
  986. if (rw != READ) {
  987. bio_io_error(bio);
  988. break;
  989. }
  990. if (tc->origin_dev) {
  991. inc_all_io_entry(tc->pool, bio);
  992. remap_to_origin_and_issue(tc, bio);
  993. break;
  994. }
  995. zero_fill_bio(bio);
  996. bio_endio(bio, 0);
  997. break;
  998. default:
  999. DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
  1000. __func__, r);
  1001. bio_io_error(bio);
  1002. break;
  1003. }
  1004. }
  1005. static void process_bio_fail(struct thin_c *tc, struct bio *bio)
  1006. {
  1007. bio_io_error(bio);
  1008. }
  1009. static int need_commit_due_to_time(struct pool *pool)
  1010. {
  1011. return jiffies < pool->last_commit_jiffies ||
  1012. jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
  1013. }
  1014. static void process_deferred_bios(struct pool *pool)
  1015. {
  1016. unsigned long flags;
  1017. struct bio *bio;
  1018. struct bio_list bios;
  1019. bio_list_init(&bios);
  1020. spin_lock_irqsave(&pool->lock, flags);
  1021. bio_list_merge(&bios, &pool->deferred_bios);
  1022. bio_list_init(&pool->deferred_bios);
  1023. spin_unlock_irqrestore(&pool->lock, flags);
  1024. while ((bio = bio_list_pop(&bios))) {
  1025. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  1026. struct thin_c *tc = h->tc;
  1027. /*
  1028. * If we've got no free new_mapping structs, and processing
  1029. * this bio might require one, we pause until there are some
  1030. * prepared mappings to process.
  1031. */
  1032. if (ensure_next_mapping(pool)) {
  1033. spin_lock_irqsave(&pool->lock, flags);
  1034. bio_list_merge(&pool->deferred_bios, &bios);
  1035. spin_unlock_irqrestore(&pool->lock, flags);
  1036. break;
  1037. }
  1038. if (bio->bi_rw & REQ_DISCARD)
  1039. pool->process_discard(tc, bio);
  1040. else
  1041. pool->process_bio(tc, bio);
  1042. }
  1043. /*
  1044. * If there are any deferred flush bios, we must commit
  1045. * the metadata before issuing them.
  1046. */
  1047. bio_list_init(&bios);
  1048. spin_lock_irqsave(&pool->lock, flags);
  1049. bio_list_merge(&bios, &pool->deferred_flush_bios);
  1050. bio_list_init(&pool->deferred_flush_bios);
  1051. spin_unlock_irqrestore(&pool->lock, flags);
  1052. if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
  1053. return;
  1054. if (commit_or_fallback(pool)) {
  1055. while ((bio = bio_list_pop(&bios)))
  1056. bio_io_error(bio);
  1057. return;
  1058. }
  1059. pool->last_commit_jiffies = jiffies;
  1060. while ((bio = bio_list_pop(&bios)))
  1061. generic_make_request(bio);
  1062. }
  1063. static void do_worker(struct work_struct *ws)
  1064. {
  1065. struct pool *pool = container_of(ws, struct pool, worker);
  1066. process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
  1067. process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
  1068. process_deferred_bios(pool);
  1069. }
  1070. /*
  1071. * We want to commit periodically so that not too much
  1072. * unwritten data builds up.
  1073. */
  1074. static void do_waker(struct work_struct *ws)
  1075. {
  1076. struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
  1077. wake_worker(pool);
  1078. queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
  1079. }
  1080. /*----------------------------------------------------------------*/
  1081. static enum pool_mode get_pool_mode(struct pool *pool)
  1082. {
  1083. return pool->pf.mode;
  1084. }
  1085. static void set_pool_mode(struct pool *pool, enum pool_mode mode)
  1086. {
  1087. int r;
  1088. pool->pf.mode = mode;
  1089. switch (mode) {
  1090. case PM_FAIL:
  1091. DMERR("switching pool to failure mode");
  1092. pool->process_bio = process_bio_fail;
  1093. pool->process_discard = process_bio_fail;
  1094. pool->process_prepared_mapping = process_prepared_mapping_fail;
  1095. pool->process_prepared_discard = process_prepared_discard_fail;
  1096. break;
  1097. case PM_READ_ONLY:
  1098. DMERR("switching pool to read-only mode");
  1099. r = dm_pool_abort_metadata(pool->pmd);
  1100. if (r) {
  1101. DMERR("aborting transaction failed");
  1102. set_pool_mode(pool, PM_FAIL);
  1103. } else {
  1104. dm_pool_metadata_read_only(pool->pmd);
  1105. pool->process_bio = process_bio_read_only;
  1106. pool->process_discard = process_discard;
  1107. pool->process_prepared_mapping = process_prepared_mapping_fail;
  1108. pool->process_prepared_discard = process_prepared_discard_passdown;
  1109. }
  1110. break;
  1111. case PM_WRITE:
  1112. pool->process_bio = process_bio;
  1113. pool->process_discard = process_discard;
  1114. pool->process_prepared_mapping = process_prepared_mapping;
  1115. pool->process_prepared_discard = process_prepared_discard;
  1116. break;
  1117. }
  1118. }
  1119. /*----------------------------------------------------------------*/
  1120. /*
  1121. * Mapping functions.
  1122. */
  1123. /*
  1124. * Called only while mapping a thin bio to hand it over to the workqueue.
  1125. */
  1126. static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
  1127. {
  1128. unsigned long flags;
  1129. struct pool *pool = tc->pool;
  1130. spin_lock_irqsave(&pool->lock, flags);
  1131. bio_list_add(&pool->deferred_bios, bio);
  1132. spin_unlock_irqrestore(&pool->lock, flags);
  1133. wake_worker(pool);
  1134. }
  1135. static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
  1136. {
  1137. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  1138. h->tc = tc;
  1139. h->shared_read_entry = NULL;
  1140. h->all_io_entry = NULL;
  1141. h->overwrite_mapping = NULL;
  1142. }
  1143. /*
  1144. * Non-blocking function called from the thin target's map function.
  1145. */
  1146. static int thin_bio_map(struct dm_target *ti, struct bio *bio,
  1147. union map_info *map_context)
  1148. {
  1149. int r;
  1150. struct thin_c *tc = ti->private;
  1151. dm_block_t block = get_bio_block(tc, bio);
  1152. struct dm_thin_device *td = tc->td;
  1153. struct dm_thin_lookup_result result;
  1154. struct dm_bio_prison_cell *cell1, *cell2;
  1155. struct dm_cell_key key;
  1156. thin_hook_bio(tc, bio);
  1157. if (get_pool_mode(tc->pool) == PM_FAIL) {
  1158. bio_io_error(bio);
  1159. return DM_MAPIO_SUBMITTED;
  1160. }
  1161. if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
  1162. thin_defer_bio(tc, bio);
  1163. return DM_MAPIO_SUBMITTED;
  1164. }
  1165. r = dm_thin_find_block(td, block, 0, &result);
  1166. /*
  1167. * Note that we defer readahead too.
  1168. */
  1169. switch (r) {
  1170. case 0:
  1171. if (unlikely(result.shared)) {
  1172. /*
  1173. * We have a race condition here between the
  1174. * result.shared value returned by the lookup and
  1175. * snapshot creation, which may cause new
  1176. * sharing.
  1177. *
  1178. * To avoid this always quiesce the origin before
  1179. * taking the snap. You want to do this anyway to
  1180. * ensure a consistent application view
  1181. * (i.e. lockfs).
  1182. *
  1183. * More distant ancestors are irrelevant. The
  1184. * shared flag will be set in their case.
  1185. */
  1186. thin_defer_bio(tc, bio);
  1187. return DM_MAPIO_SUBMITTED;
  1188. }
  1189. build_virtual_key(tc->td, block, &key);
  1190. if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1))
  1191. return DM_MAPIO_SUBMITTED;
  1192. build_data_key(tc->td, result.block, &key);
  1193. if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2)) {
  1194. cell_defer_no_holder(tc, cell1);
  1195. return DM_MAPIO_SUBMITTED;
  1196. }
  1197. inc_all_io_entry(tc->pool, bio);
  1198. cell_defer_no_holder(tc, cell2);
  1199. cell_defer_no_holder(tc, cell1);
  1200. remap(tc, bio, result.block);
  1201. return DM_MAPIO_REMAPPED;
  1202. case -ENODATA:
  1203. if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
  1204. /*
  1205. * This block isn't provisioned, and we have no way
  1206. * of doing so. Just error it.
  1207. */
  1208. bio_io_error(bio);
  1209. return DM_MAPIO_SUBMITTED;
  1210. }
  1211. /* fall through */
  1212. case -EWOULDBLOCK:
  1213. /*
  1214. * In future, the failed dm_thin_find_block above could
  1215. * provide the hint to load the metadata into cache.
  1216. */
  1217. thin_defer_bio(tc, bio);
  1218. return DM_MAPIO_SUBMITTED;
  1219. default:
  1220. /*
  1221. * Must always call bio_io_error on failure.
  1222. * dm_thin_find_block can fail with -EINVAL if the
  1223. * pool is switched to fail-io mode.
  1224. */
  1225. bio_io_error(bio);
  1226. return DM_MAPIO_SUBMITTED;
  1227. }
  1228. }
  1229. static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
  1230. {
  1231. int r;
  1232. unsigned long flags;
  1233. struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
  1234. spin_lock_irqsave(&pt->pool->lock, flags);
  1235. r = !bio_list_empty(&pt->pool->retry_on_resume_list);
  1236. spin_unlock_irqrestore(&pt->pool->lock, flags);
  1237. if (!r) {
  1238. struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
  1239. r = bdi_congested(&q->backing_dev_info, bdi_bits);
  1240. }
  1241. return r;
  1242. }
  1243. static void __requeue_bios(struct pool *pool)
  1244. {
  1245. bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
  1246. bio_list_init(&pool->retry_on_resume_list);
  1247. }
  1248. /*----------------------------------------------------------------
  1249. * Binding of control targets to a pool object
  1250. *--------------------------------------------------------------*/
  1251. static bool data_dev_supports_discard(struct pool_c *pt)
  1252. {
  1253. struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
  1254. return q && blk_queue_discard(q);
  1255. }
  1256. /*
  1257. * If discard_passdown was enabled verify that the data device
  1258. * supports discards. Disable discard_passdown if not.
  1259. */
  1260. static void disable_passdown_if_not_supported(struct pool_c *pt)
  1261. {
  1262. struct pool *pool = pt->pool;
  1263. struct block_device *data_bdev = pt->data_dev->bdev;
  1264. struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
  1265. sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
  1266. const char *reason = NULL;
  1267. char buf[BDEVNAME_SIZE];
  1268. if (!pt->adjusted_pf.discard_passdown)
  1269. return;
  1270. if (!data_dev_supports_discard(pt))
  1271. reason = "discard unsupported";
  1272. else if (data_limits->max_discard_sectors < pool->sectors_per_block)
  1273. reason = "max discard sectors smaller than a block";
  1274. else if (data_limits->discard_granularity > block_size)
  1275. reason = "discard granularity larger than a block";
  1276. else if (block_size & (data_limits->discard_granularity - 1))
  1277. reason = "discard granularity not a factor of block size";
  1278. if (reason) {
  1279. DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
  1280. pt->adjusted_pf.discard_passdown = false;
  1281. }
  1282. }
  1283. static int bind_control_target(struct pool *pool, struct dm_target *ti)
  1284. {
  1285. struct pool_c *pt = ti->private;
  1286. /*
  1287. * We want to make sure that degraded pools are never upgraded.
  1288. */
  1289. enum pool_mode old_mode = pool->pf.mode;
  1290. enum pool_mode new_mode = pt->adjusted_pf.mode;
  1291. if (old_mode > new_mode)
  1292. new_mode = old_mode;
  1293. pool->ti = ti;
  1294. pool->low_water_blocks = pt->low_water_blocks;
  1295. pool->pf = pt->adjusted_pf;
  1296. set_pool_mode(pool, new_mode);
  1297. return 0;
  1298. }
  1299. static void unbind_control_target(struct pool *pool, struct dm_target *ti)
  1300. {
  1301. if (pool->ti == ti)
  1302. pool->ti = NULL;
  1303. }
  1304. /*----------------------------------------------------------------
  1305. * Pool creation
  1306. *--------------------------------------------------------------*/
  1307. /* Initialize pool features. */
  1308. static void pool_features_init(struct pool_features *pf)
  1309. {
  1310. pf->mode = PM_WRITE;
  1311. pf->zero_new_blocks = true;
  1312. pf->discard_enabled = true;
  1313. pf->discard_passdown = true;
  1314. }
  1315. static void __pool_destroy(struct pool *pool)
  1316. {
  1317. __pool_table_remove(pool);
  1318. if (dm_pool_metadata_close(pool->pmd) < 0)
  1319. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  1320. dm_bio_prison_destroy(pool->prison);
  1321. dm_kcopyd_client_destroy(pool->copier);
  1322. if (pool->wq)
  1323. destroy_workqueue(pool->wq);
  1324. if (pool->next_mapping)
  1325. mempool_free(pool->next_mapping, pool->mapping_pool);
  1326. mempool_destroy(pool->mapping_pool);
  1327. dm_deferred_set_destroy(pool->shared_read_ds);
  1328. dm_deferred_set_destroy(pool->all_io_ds);
  1329. kfree(pool);
  1330. }
  1331. static struct kmem_cache *_new_mapping_cache;
  1332. static struct pool *pool_create(struct mapped_device *pool_md,
  1333. struct block_device *metadata_dev,
  1334. unsigned long block_size,
  1335. int read_only, char **error)
  1336. {
  1337. int r;
  1338. void *err_p;
  1339. struct pool *pool;
  1340. struct dm_pool_metadata *pmd;
  1341. bool format_device = read_only ? false : true;
  1342. pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
  1343. if (IS_ERR(pmd)) {
  1344. *error = "Error creating metadata object";
  1345. return (struct pool *)pmd;
  1346. }
  1347. pool = kmalloc(sizeof(*pool), GFP_KERNEL);
  1348. if (!pool) {
  1349. *error = "Error allocating memory for pool";
  1350. err_p = ERR_PTR(-ENOMEM);
  1351. goto bad_pool;
  1352. }
  1353. pool->pmd = pmd;
  1354. pool->sectors_per_block = block_size;
  1355. if (block_size & (block_size - 1))
  1356. pool->sectors_per_block_shift = -1;
  1357. else
  1358. pool->sectors_per_block_shift = __ffs(block_size);
  1359. pool->low_water_blocks = 0;
  1360. pool_features_init(&pool->pf);
  1361. pool->prison = dm_bio_prison_create(PRISON_CELLS);
  1362. if (!pool->prison) {
  1363. *error = "Error creating pool's bio prison";
  1364. err_p = ERR_PTR(-ENOMEM);
  1365. goto bad_prison;
  1366. }
  1367. pool->copier = dm_kcopyd_client_create();
  1368. if (IS_ERR(pool->copier)) {
  1369. r = PTR_ERR(pool->copier);
  1370. *error = "Error creating pool's kcopyd client";
  1371. err_p = ERR_PTR(r);
  1372. goto bad_kcopyd_client;
  1373. }
  1374. /*
  1375. * Create singlethreaded workqueue that will service all devices
  1376. * that use this metadata.
  1377. */
  1378. pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
  1379. if (!pool->wq) {
  1380. *error = "Error creating pool's workqueue";
  1381. err_p = ERR_PTR(-ENOMEM);
  1382. goto bad_wq;
  1383. }
  1384. INIT_WORK(&pool->worker, do_worker);
  1385. INIT_DELAYED_WORK(&pool->waker, do_waker);
  1386. spin_lock_init(&pool->lock);
  1387. bio_list_init(&pool->deferred_bios);
  1388. bio_list_init(&pool->deferred_flush_bios);
  1389. INIT_LIST_HEAD(&pool->prepared_mappings);
  1390. INIT_LIST_HEAD(&pool->prepared_discards);
  1391. pool->low_water_triggered = 0;
  1392. pool->no_free_space = 0;
  1393. bio_list_init(&pool->retry_on_resume_list);
  1394. pool->shared_read_ds = dm_deferred_set_create();
  1395. if (!pool->shared_read_ds) {
  1396. *error = "Error creating pool's shared read deferred set";
  1397. err_p = ERR_PTR(-ENOMEM);
  1398. goto bad_shared_read_ds;
  1399. }
  1400. pool->all_io_ds = dm_deferred_set_create();
  1401. if (!pool->all_io_ds) {
  1402. *error = "Error creating pool's all io deferred set";
  1403. err_p = ERR_PTR(-ENOMEM);
  1404. goto bad_all_io_ds;
  1405. }
  1406. pool->next_mapping = NULL;
  1407. pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
  1408. _new_mapping_cache);
  1409. if (!pool->mapping_pool) {
  1410. *error = "Error creating pool's mapping mempool";
  1411. err_p = ERR_PTR(-ENOMEM);
  1412. goto bad_mapping_pool;
  1413. }
  1414. pool->ref_count = 1;
  1415. pool->last_commit_jiffies = jiffies;
  1416. pool->pool_md = pool_md;
  1417. pool->md_dev = metadata_dev;
  1418. __pool_table_insert(pool);
  1419. return pool;
  1420. bad_mapping_pool:
  1421. dm_deferred_set_destroy(pool->all_io_ds);
  1422. bad_all_io_ds:
  1423. dm_deferred_set_destroy(pool->shared_read_ds);
  1424. bad_shared_read_ds:
  1425. destroy_workqueue(pool->wq);
  1426. bad_wq:
  1427. dm_kcopyd_client_destroy(pool->copier);
  1428. bad_kcopyd_client:
  1429. dm_bio_prison_destroy(pool->prison);
  1430. bad_prison:
  1431. kfree(pool);
  1432. bad_pool:
  1433. if (dm_pool_metadata_close(pmd))
  1434. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  1435. return err_p;
  1436. }
  1437. static void __pool_inc(struct pool *pool)
  1438. {
  1439. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  1440. pool->ref_count++;
  1441. }
  1442. static void __pool_dec(struct pool *pool)
  1443. {
  1444. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  1445. BUG_ON(!pool->ref_count);
  1446. if (!--pool->ref_count)
  1447. __pool_destroy(pool);
  1448. }
  1449. static struct pool *__pool_find(struct mapped_device *pool_md,
  1450. struct block_device *metadata_dev,
  1451. unsigned long block_size, int read_only,
  1452. char **error, int *created)
  1453. {
  1454. struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
  1455. if (pool) {
  1456. if (pool->pool_md != pool_md) {
  1457. *error = "metadata device already in use by a pool";
  1458. return ERR_PTR(-EBUSY);
  1459. }
  1460. __pool_inc(pool);
  1461. } else {
  1462. pool = __pool_table_lookup(pool_md);
  1463. if (pool) {
  1464. if (pool->md_dev != metadata_dev) {
  1465. *error = "different pool cannot replace a pool";
  1466. return ERR_PTR(-EINVAL);
  1467. }
  1468. __pool_inc(pool);
  1469. } else {
  1470. pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
  1471. *created = 1;
  1472. }
  1473. }
  1474. return pool;
  1475. }
  1476. /*----------------------------------------------------------------
  1477. * Pool target methods
  1478. *--------------------------------------------------------------*/
  1479. static void pool_dtr(struct dm_target *ti)
  1480. {
  1481. struct pool_c *pt = ti->private;
  1482. mutex_lock(&dm_thin_pool_table.mutex);
  1483. unbind_control_target(pt->pool, ti);
  1484. __pool_dec(pt->pool);
  1485. dm_put_device(ti, pt->metadata_dev);
  1486. dm_put_device(ti, pt->data_dev);
  1487. kfree(pt);
  1488. mutex_unlock(&dm_thin_pool_table.mutex);
  1489. }
  1490. static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
  1491. struct dm_target *ti)
  1492. {
  1493. int r;
  1494. unsigned argc;
  1495. const char *arg_name;
  1496. static struct dm_arg _args[] = {
  1497. {0, 3, "Invalid number of pool feature arguments"},
  1498. };
  1499. /*
  1500. * No feature arguments supplied.
  1501. */
  1502. if (!as->argc)
  1503. return 0;
  1504. r = dm_read_arg_group(_args, as, &argc, &ti->error);
  1505. if (r)
  1506. return -EINVAL;
  1507. while (argc && !r) {
  1508. arg_name = dm_shift_arg(as);
  1509. argc--;
  1510. if (!strcasecmp(arg_name, "skip_block_zeroing"))
  1511. pf->zero_new_blocks = false;
  1512. else if (!strcasecmp(arg_name, "ignore_discard"))
  1513. pf->discard_enabled = false;
  1514. else if (!strcasecmp(arg_name, "no_discard_passdown"))
  1515. pf->discard_passdown = false;
  1516. else if (!strcasecmp(arg_name, "read_only"))
  1517. pf->mode = PM_READ_ONLY;
  1518. else {
  1519. ti->error = "Unrecognised pool feature requested";
  1520. r = -EINVAL;
  1521. break;
  1522. }
  1523. }
  1524. return r;
  1525. }
  1526. /*
  1527. * thin-pool <metadata dev> <data dev>
  1528. * <data block size (sectors)>
  1529. * <low water mark (blocks)>
  1530. * [<#feature args> [<arg>]*]
  1531. *
  1532. * Optional feature arguments are:
  1533. * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
  1534. * ignore_discard: disable discard
  1535. * no_discard_passdown: don't pass discards down to the data device
  1536. */
  1537. static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
  1538. {
  1539. int r, pool_created = 0;
  1540. struct pool_c *pt;
  1541. struct pool *pool;
  1542. struct pool_features pf;
  1543. struct dm_arg_set as;
  1544. struct dm_dev *data_dev;
  1545. unsigned long block_size;
  1546. dm_block_t low_water_blocks;
  1547. struct dm_dev *metadata_dev;
  1548. sector_t metadata_dev_size;
  1549. char b[BDEVNAME_SIZE];
  1550. /*
  1551. * FIXME Remove validation from scope of lock.
  1552. */
  1553. mutex_lock(&dm_thin_pool_table.mutex);
  1554. if (argc < 4) {
  1555. ti->error = "Invalid argument count";
  1556. r = -EINVAL;
  1557. goto out_unlock;
  1558. }
  1559. as.argc = argc;
  1560. as.argv = argv;
  1561. r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
  1562. if (r) {
  1563. ti->error = "Error opening metadata block device";
  1564. goto out_unlock;
  1565. }
  1566. metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
  1567. if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
  1568. DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
  1569. bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
  1570. r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
  1571. if (r) {
  1572. ti->error = "Error getting data device";
  1573. goto out_metadata;
  1574. }
  1575. if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
  1576. block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
  1577. block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
  1578. block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
  1579. ti->error = "Invalid block size";
  1580. r = -EINVAL;
  1581. goto out;
  1582. }
  1583. if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
  1584. ti->error = "Invalid low water mark";
  1585. r = -EINVAL;
  1586. goto out;
  1587. }
  1588. /*
  1589. * Set default pool features.
  1590. */
  1591. pool_features_init(&pf);
  1592. dm_consume_args(&as, 4);
  1593. r = parse_pool_features(&as, &pf, ti);
  1594. if (r)
  1595. goto out;
  1596. pt = kzalloc(sizeof(*pt), GFP_KERNEL);
  1597. if (!pt) {
  1598. r = -ENOMEM;
  1599. goto out;
  1600. }
  1601. pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
  1602. block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
  1603. if (IS_ERR(pool)) {
  1604. r = PTR_ERR(pool);
  1605. goto out_free_pt;
  1606. }
  1607. /*
  1608. * 'pool_created' reflects whether this is the first table load.
  1609. * Top level discard support is not allowed to be changed after
  1610. * initial load. This would require a pool reload to trigger thin
  1611. * device changes.
  1612. */
  1613. if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
  1614. ti->error = "Discard support cannot be disabled once enabled";
  1615. r = -EINVAL;
  1616. goto out_flags_changed;
  1617. }
  1618. pt->pool = pool;
  1619. pt->ti = ti;
  1620. pt->metadata_dev = metadata_dev;
  1621. pt->data_dev = data_dev;
  1622. pt->low_water_blocks = low_water_blocks;
  1623. pt->adjusted_pf = pt->requested_pf = pf;
  1624. ti->num_flush_requests = 1;
  1625. /*
  1626. * Only need to enable discards if the pool should pass
  1627. * them down to the data device. The thin device's discard
  1628. * processing will cause mappings to be removed from the btree.
  1629. */
  1630. if (pf.discard_enabled && pf.discard_passdown) {
  1631. ti->num_discard_requests = 1;
  1632. /*
  1633. * Setting 'discards_supported' circumvents the normal
  1634. * stacking of discard limits (this keeps the pool and
  1635. * thin devices' discard limits consistent).
  1636. */
  1637. ti->discards_supported = true;
  1638. ti->discard_zeroes_data_unsupported = true;
  1639. }
  1640. ti->private = pt;
  1641. pt->callbacks.congested_fn = pool_is_congested;
  1642. dm_table_add_target_callbacks(ti->table, &pt->callbacks);
  1643. mutex_unlock(&dm_thin_pool_table.mutex);
  1644. return 0;
  1645. out_flags_changed:
  1646. __pool_dec(pool);
  1647. out_free_pt:
  1648. kfree(pt);
  1649. out:
  1650. dm_put_device(ti, data_dev);
  1651. out_metadata:
  1652. dm_put_device(ti, metadata_dev);
  1653. out_unlock:
  1654. mutex_unlock(&dm_thin_pool_table.mutex);
  1655. return r;
  1656. }
  1657. static int pool_map(struct dm_target *ti, struct bio *bio,
  1658. union map_info *map_context)
  1659. {
  1660. int r;
  1661. struct pool_c *pt = ti->private;
  1662. struct pool *pool = pt->pool;
  1663. unsigned long flags;
  1664. /*
  1665. * As this is a singleton target, ti->begin is always zero.
  1666. */
  1667. spin_lock_irqsave(&pool->lock, flags);
  1668. bio->bi_bdev = pt->data_dev->bdev;
  1669. r = DM_MAPIO_REMAPPED;
  1670. spin_unlock_irqrestore(&pool->lock, flags);
  1671. return r;
  1672. }
  1673. /*
  1674. * Retrieves the number of blocks of the data device from
  1675. * the superblock and compares it to the actual device size,
  1676. * thus resizing the data device in case it has grown.
  1677. *
  1678. * This both copes with opening preallocated data devices in the ctr
  1679. * being followed by a resume
  1680. * -and-
  1681. * calling the resume method individually after userspace has
  1682. * grown the data device in reaction to a table event.
  1683. */
  1684. static int pool_preresume(struct dm_target *ti)
  1685. {
  1686. int r;
  1687. struct pool_c *pt = ti->private;
  1688. struct pool *pool = pt->pool;
  1689. sector_t data_size = ti->len;
  1690. dm_block_t sb_data_size;
  1691. /*
  1692. * Take control of the pool object.
  1693. */
  1694. r = bind_control_target(pool, ti);
  1695. if (r)
  1696. return r;
  1697. (void) sector_div(data_size, pool->sectors_per_block);
  1698. r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
  1699. if (r) {
  1700. DMERR("failed to retrieve data device size");
  1701. return r;
  1702. }
  1703. if (data_size < sb_data_size) {
  1704. DMERR("pool target too small, is %llu blocks (expected %llu)",
  1705. (unsigned long long)data_size, sb_data_size);
  1706. return -EINVAL;
  1707. } else if (data_size > sb_data_size) {
  1708. r = dm_pool_resize_data_dev(pool->pmd, data_size);
  1709. if (r) {
  1710. DMERR("failed to resize data device");
  1711. /* FIXME Stricter than necessary: Rollback transaction instead here */
  1712. set_pool_mode(pool, PM_READ_ONLY);
  1713. return r;
  1714. }
  1715. (void) commit_or_fallback(pool);
  1716. }
  1717. return 0;
  1718. }
  1719. static void pool_resume(struct dm_target *ti)
  1720. {
  1721. struct pool_c *pt = ti->private;
  1722. struct pool *pool = pt->pool;
  1723. unsigned long flags;
  1724. spin_lock_irqsave(&pool->lock, flags);
  1725. pool->low_water_triggered = 0;
  1726. pool->no_free_space = 0;
  1727. __requeue_bios(pool);
  1728. spin_unlock_irqrestore(&pool->lock, flags);
  1729. do_waker(&pool->waker.work);
  1730. }
  1731. static void pool_postsuspend(struct dm_target *ti)
  1732. {
  1733. struct pool_c *pt = ti->private;
  1734. struct pool *pool = pt->pool;
  1735. cancel_delayed_work(&pool->waker);
  1736. flush_workqueue(pool->wq);
  1737. (void) commit_or_fallback(pool);
  1738. }
  1739. static int check_arg_count(unsigned argc, unsigned args_required)
  1740. {
  1741. if (argc != args_required) {
  1742. DMWARN("Message received with %u arguments instead of %u.",
  1743. argc, args_required);
  1744. return -EINVAL;
  1745. }
  1746. return 0;
  1747. }
  1748. static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
  1749. {
  1750. if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
  1751. *dev_id <= MAX_DEV_ID)
  1752. return 0;
  1753. if (warning)
  1754. DMWARN("Message received with invalid device id: %s", arg);
  1755. return -EINVAL;
  1756. }
  1757. static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
  1758. {
  1759. dm_thin_id dev_id;
  1760. int r;
  1761. r = check_arg_count(argc, 2);
  1762. if (r)
  1763. return r;
  1764. r = read_dev_id(argv[1], &dev_id, 1);
  1765. if (r)
  1766. return r;
  1767. r = dm_pool_create_thin(pool->pmd, dev_id);
  1768. if (r) {
  1769. DMWARN("Creation of new thinly-provisioned device with id %s failed.",
  1770. argv[1]);
  1771. return r;
  1772. }
  1773. return 0;
  1774. }
  1775. static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
  1776. {
  1777. dm_thin_id dev_id;
  1778. dm_thin_id origin_dev_id;
  1779. int r;
  1780. r = check_arg_count(argc, 3);
  1781. if (r)
  1782. return r;
  1783. r = read_dev_id(argv[1], &dev_id, 1);
  1784. if (r)
  1785. return r;
  1786. r = read_dev_id(argv[2], &origin_dev_id, 1);
  1787. if (r)
  1788. return r;
  1789. r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
  1790. if (r) {
  1791. DMWARN("Creation of new snapshot %s of device %s failed.",
  1792. argv[1], argv[2]);
  1793. return r;
  1794. }
  1795. return 0;
  1796. }
  1797. static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
  1798. {
  1799. dm_thin_id dev_id;
  1800. int r;
  1801. r = check_arg_count(argc, 2);
  1802. if (r)
  1803. return r;
  1804. r = read_dev_id(argv[1], &dev_id, 1);
  1805. if (r)
  1806. return r;
  1807. r = dm_pool_delete_thin_device(pool->pmd, dev_id);
  1808. if (r)
  1809. DMWARN("Deletion of thin device %s failed.", argv[1]);
  1810. return r;
  1811. }
  1812. static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
  1813. {
  1814. dm_thin_id old_id, new_id;
  1815. int r;
  1816. r = check_arg_count(argc, 3);
  1817. if (r)
  1818. return r;
  1819. if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
  1820. DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
  1821. return -EINVAL;
  1822. }
  1823. if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
  1824. DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
  1825. return -EINVAL;
  1826. }
  1827. r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
  1828. if (r) {
  1829. DMWARN("Failed to change transaction id from %s to %s.",
  1830. argv[1], argv[2]);
  1831. return r;
  1832. }
  1833. return 0;
  1834. }
  1835. static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
  1836. {
  1837. int r;
  1838. r = check_arg_count(argc, 1);
  1839. if (r)
  1840. return r;
  1841. (void) commit_or_fallback(pool);
  1842. r = dm_pool_reserve_metadata_snap(pool->pmd);
  1843. if (r)
  1844. DMWARN("reserve_metadata_snap message failed.");
  1845. return r;
  1846. }
  1847. static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
  1848. {
  1849. int r;
  1850. r = check_arg_count(argc, 1);
  1851. if (r)
  1852. return r;
  1853. r = dm_pool_release_metadata_snap(pool->pmd);
  1854. if (r)
  1855. DMWARN("release_metadata_snap message failed.");
  1856. return r;
  1857. }
  1858. /*
  1859. * Messages supported:
  1860. * create_thin <dev_id>
  1861. * create_snap <dev_id> <origin_id>
  1862. * delete <dev_id>
  1863. * trim <dev_id> <new_size_in_sectors>
  1864. * set_transaction_id <current_trans_id> <new_trans_id>
  1865. * reserve_metadata_snap
  1866. * release_metadata_snap
  1867. */
  1868. static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
  1869. {
  1870. int r = -EINVAL;
  1871. struct pool_c *pt = ti->private;
  1872. struct pool *pool = pt->pool;
  1873. if (!strcasecmp(argv[0], "create_thin"))
  1874. r = process_create_thin_mesg(argc, argv, pool);
  1875. else if (!strcasecmp(argv[0], "create_snap"))
  1876. r = process_create_snap_mesg(argc, argv, pool);
  1877. else if (!strcasecmp(argv[0], "delete"))
  1878. r = process_delete_mesg(argc, argv, pool);
  1879. else if (!strcasecmp(argv[0], "set_transaction_id"))
  1880. r = process_set_transaction_id_mesg(argc, argv, pool);
  1881. else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
  1882. r = process_reserve_metadata_snap_mesg(argc, argv, pool);
  1883. else if (!strcasecmp(argv[0], "release_metadata_snap"))
  1884. r = process_release_metadata_snap_mesg(argc, argv, pool);
  1885. else
  1886. DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
  1887. if (!r)
  1888. (void) commit_or_fallback(pool);
  1889. return r;
  1890. }
  1891. static void emit_flags(struct pool_features *pf, char *result,
  1892. unsigned sz, unsigned maxlen)
  1893. {
  1894. unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
  1895. !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
  1896. DMEMIT("%u ", count);
  1897. if (!pf->zero_new_blocks)
  1898. DMEMIT("skip_block_zeroing ");
  1899. if (!pf->discard_enabled)
  1900. DMEMIT("ignore_discard ");
  1901. if (!pf->discard_passdown)
  1902. DMEMIT("no_discard_passdown ");
  1903. if (pf->mode == PM_READ_ONLY)
  1904. DMEMIT("read_only ");
  1905. }
  1906. /*
  1907. * Status line is:
  1908. * <transaction id> <used metadata sectors>/<total metadata sectors>
  1909. * <used data sectors>/<total data sectors> <held metadata root>
  1910. */
  1911. static int pool_status(struct dm_target *ti, status_type_t type,
  1912. unsigned status_flags, char *result, unsigned maxlen)
  1913. {
  1914. int r;
  1915. unsigned sz = 0;
  1916. uint64_t transaction_id;
  1917. dm_block_t nr_free_blocks_data;
  1918. dm_block_t nr_free_blocks_metadata;
  1919. dm_block_t nr_blocks_data;
  1920. dm_block_t nr_blocks_metadata;
  1921. dm_block_t held_root;
  1922. char buf[BDEVNAME_SIZE];
  1923. char buf2[BDEVNAME_SIZE];
  1924. struct pool_c *pt = ti->private;
  1925. struct pool *pool = pt->pool;
  1926. switch (type) {
  1927. case STATUSTYPE_INFO:
  1928. if (get_pool_mode(pool) == PM_FAIL) {
  1929. DMEMIT("Fail");
  1930. break;
  1931. }
  1932. /* Commit to ensure statistics aren't out-of-date */
  1933. if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
  1934. (void) commit_or_fallback(pool);
  1935. r = dm_pool_get_metadata_transaction_id(pool->pmd,
  1936. &transaction_id);
  1937. if (r)
  1938. return r;
  1939. r = dm_pool_get_free_metadata_block_count(pool->pmd,
  1940. &nr_free_blocks_metadata);
  1941. if (r)
  1942. return r;
  1943. r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
  1944. if (r)
  1945. return r;
  1946. r = dm_pool_get_free_block_count(pool->pmd,
  1947. &nr_free_blocks_data);
  1948. if (r)
  1949. return r;
  1950. r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
  1951. if (r)
  1952. return r;
  1953. r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
  1954. if (r)
  1955. return r;
  1956. DMEMIT("%llu %llu/%llu %llu/%llu ",
  1957. (unsigned long long)transaction_id,
  1958. (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
  1959. (unsigned long long)nr_blocks_metadata,
  1960. (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
  1961. (unsigned long long)nr_blocks_data);
  1962. if (held_root)
  1963. DMEMIT("%llu ", held_root);
  1964. else
  1965. DMEMIT("- ");
  1966. if (pool->pf.mode == PM_READ_ONLY)
  1967. DMEMIT("ro ");
  1968. else
  1969. DMEMIT("rw ");
  1970. if (!pool->pf.discard_enabled)
  1971. DMEMIT("ignore_discard");
  1972. else if (pool->pf.discard_passdown)
  1973. DMEMIT("discard_passdown");
  1974. else
  1975. DMEMIT("no_discard_passdown");
  1976. break;
  1977. case STATUSTYPE_TABLE:
  1978. DMEMIT("%s %s %lu %llu ",
  1979. format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
  1980. format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
  1981. (unsigned long)pool->sectors_per_block,
  1982. (unsigned long long)pt->low_water_blocks);
  1983. emit_flags(&pt->requested_pf, result, sz, maxlen);
  1984. break;
  1985. }
  1986. return 0;
  1987. }
  1988. static int pool_iterate_devices(struct dm_target *ti,
  1989. iterate_devices_callout_fn fn, void *data)
  1990. {
  1991. struct pool_c *pt = ti->private;
  1992. return fn(ti, pt->data_dev, 0, ti->len, data);
  1993. }
  1994. static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
  1995. struct bio_vec *biovec, int max_size)
  1996. {
  1997. struct pool_c *pt = ti->private;
  1998. struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
  1999. if (!q->merge_bvec_fn)
  2000. return max_size;
  2001. bvm->bi_bdev = pt->data_dev->bdev;
  2002. return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
  2003. }
  2004. static bool block_size_is_power_of_two(struct pool *pool)
  2005. {
  2006. return pool->sectors_per_block_shift >= 0;
  2007. }
  2008. static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
  2009. {
  2010. struct pool *pool = pt->pool;
  2011. struct queue_limits *data_limits;
  2012. limits->max_discard_sectors = pool->sectors_per_block;
  2013. /*
  2014. * discard_granularity is just a hint, and not enforced.
  2015. */
  2016. if (pt->adjusted_pf.discard_passdown) {
  2017. data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
  2018. limits->discard_granularity = data_limits->discard_granularity;
  2019. } else if (block_size_is_power_of_two(pool))
  2020. limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
  2021. else
  2022. /*
  2023. * Use largest power of 2 that is a factor of sectors_per_block
  2024. * but at least DATA_DEV_BLOCK_SIZE_MIN_SECTORS.
  2025. */
  2026. limits->discard_granularity = max(1 << (ffs(pool->sectors_per_block) - 1),
  2027. DATA_DEV_BLOCK_SIZE_MIN_SECTORS) << SECTOR_SHIFT;
  2028. }
  2029. static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
  2030. {
  2031. struct pool_c *pt = ti->private;
  2032. struct pool *pool = pt->pool;
  2033. blk_limits_io_min(limits, 0);
  2034. blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
  2035. /*
  2036. * pt->adjusted_pf is a staging area for the actual features to use.
  2037. * They get transferred to the live pool in bind_control_target()
  2038. * called from pool_preresume().
  2039. */
  2040. if (!pt->adjusted_pf.discard_enabled)
  2041. return;
  2042. disable_passdown_if_not_supported(pt);
  2043. set_discard_limits(pt, limits);
  2044. }
  2045. static struct target_type pool_target = {
  2046. .name = "thin-pool",
  2047. .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
  2048. DM_TARGET_IMMUTABLE,
  2049. .version = {1, 6, 0},
  2050. .module = THIS_MODULE,
  2051. .ctr = pool_ctr,
  2052. .dtr = pool_dtr,
  2053. .map = pool_map,
  2054. .postsuspend = pool_postsuspend,
  2055. .preresume = pool_preresume,
  2056. .resume = pool_resume,
  2057. .message = pool_message,
  2058. .status = pool_status,
  2059. .merge = pool_merge,
  2060. .iterate_devices = pool_iterate_devices,
  2061. .io_hints = pool_io_hints,
  2062. };
  2063. /*----------------------------------------------------------------
  2064. * Thin target methods
  2065. *--------------------------------------------------------------*/
  2066. static void thin_dtr(struct dm_target *ti)
  2067. {
  2068. struct thin_c *tc = ti->private;
  2069. mutex_lock(&dm_thin_pool_table.mutex);
  2070. __pool_dec(tc->pool);
  2071. dm_pool_close_thin_device(tc->td);
  2072. dm_put_device(ti, tc->pool_dev);
  2073. if (tc->origin_dev)
  2074. dm_put_device(ti, tc->origin_dev);
  2075. kfree(tc);
  2076. mutex_unlock(&dm_thin_pool_table.mutex);
  2077. }
  2078. /*
  2079. * Thin target parameters:
  2080. *
  2081. * <pool_dev> <dev_id> [origin_dev]
  2082. *
  2083. * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
  2084. * dev_id: the internal device identifier
  2085. * origin_dev: a device external to the pool that should act as the origin
  2086. *
  2087. * If the pool device has discards disabled, they get disabled for the thin
  2088. * device as well.
  2089. */
  2090. static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
  2091. {
  2092. int r;
  2093. struct thin_c *tc;
  2094. struct dm_dev *pool_dev, *origin_dev;
  2095. struct mapped_device *pool_md;
  2096. mutex_lock(&dm_thin_pool_table.mutex);
  2097. if (argc != 2 && argc != 3) {
  2098. ti->error = "Invalid argument count";
  2099. r = -EINVAL;
  2100. goto out_unlock;
  2101. }
  2102. tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
  2103. if (!tc) {
  2104. ti->error = "Out of memory";
  2105. r = -ENOMEM;
  2106. goto out_unlock;
  2107. }
  2108. if (argc == 3) {
  2109. r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
  2110. if (r) {
  2111. ti->error = "Error opening origin device";
  2112. goto bad_origin_dev;
  2113. }
  2114. tc->origin_dev = origin_dev;
  2115. }
  2116. r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
  2117. if (r) {
  2118. ti->error = "Error opening pool device";
  2119. goto bad_pool_dev;
  2120. }
  2121. tc->pool_dev = pool_dev;
  2122. if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
  2123. ti->error = "Invalid device id";
  2124. r = -EINVAL;
  2125. goto bad_common;
  2126. }
  2127. pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
  2128. if (!pool_md) {
  2129. ti->error = "Couldn't get pool mapped device";
  2130. r = -EINVAL;
  2131. goto bad_common;
  2132. }
  2133. tc->pool = __pool_table_lookup(pool_md);
  2134. if (!tc->pool) {
  2135. ti->error = "Couldn't find pool object";
  2136. r = -EINVAL;
  2137. goto bad_pool_lookup;
  2138. }
  2139. __pool_inc(tc->pool);
  2140. if (get_pool_mode(tc->pool) == PM_FAIL) {
  2141. ti->error = "Couldn't open thin device, Pool is in fail mode";
  2142. goto bad_thin_open;
  2143. }
  2144. r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
  2145. if (r) {
  2146. ti->error = "Couldn't open thin internal device";
  2147. goto bad_thin_open;
  2148. }
  2149. r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
  2150. if (r)
  2151. goto bad_thin_open;
  2152. ti->num_flush_requests = 1;
  2153. ti->flush_supported = true;
  2154. ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
  2155. /* In case the pool supports discards, pass them on. */
  2156. if (tc->pool->pf.discard_enabled) {
  2157. ti->discards_supported = true;
  2158. ti->num_discard_requests = 1;
  2159. ti->discard_zeroes_data_unsupported = true;
  2160. /* Discard requests must be split on a block boundary */
  2161. ti->split_discard_requests = true;
  2162. }
  2163. dm_put(pool_md);
  2164. mutex_unlock(&dm_thin_pool_table.mutex);
  2165. return 0;
  2166. bad_thin_open:
  2167. __pool_dec(tc->pool);
  2168. bad_pool_lookup:
  2169. dm_put(pool_md);
  2170. bad_common:
  2171. dm_put_device(ti, tc->pool_dev);
  2172. bad_pool_dev:
  2173. if (tc->origin_dev)
  2174. dm_put_device(ti, tc->origin_dev);
  2175. bad_origin_dev:
  2176. kfree(tc);
  2177. out_unlock:
  2178. mutex_unlock(&dm_thin_pool_table.mutex);
  2179. return r;
  2180. }
  2181. static int thin_map(struct dm_target *ti, struct bio *bio,
  2182. union map_info *map_context)
  2183. {
  2184. bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
  2185. return thin_bio_map(ti, bio, map_context);
  2186. }
  2187. static int thin_endio(struct dm_target *ti,
  2188. struct bio *bio, int err,
  2189. union map_info *map_context)
  2190. {
  2191. unsigned long flags;
  2192. struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
  2193. struct list_head work;
  2194. struct dm_thin_new_mapping *m, *tmp;
  2195. struct pool *pool = h->tc->pool;
  2196. if (h->shared_read_entry) {
  2197. INIT_LIST_HEAD(&work);
  2198. dm_deferred_entry_dec(h->shared_read_entry, &work);
  2199. spin_lock_irqsave(&pool->lock, flags);
  2200. list_for_each_entry_safe(m, tmp, &work, list) {
  2201. list_del(&m->list);
  2202. m->quiesced = 1;
  2203. __maybe_add_mapping(m);
  2204. }
  2205. spin_unlock_irqrestore(&pool->lock, flags);
  2206. }
  2207. if (h->all_io_entry) {
  2208. INIT_LIST_HEAD(&work);
  2209. dm_deferred_entry_dec(h->all_io_entry, &work);
  2210. if (!list_empty(&work)) {
  2211. spin_lock_irqsave(&pool->lock, flags);
  2212. list_for_each_entry_safe(m, tmp, &work, list)
  2213. list_add(&m->list, &pool->prepared_discards);
  2214. spin_unlock_irqrestore(&pool->lock, flags);
  2215. wake_worker(pool);
  2216. }
  2217. }
  2218. return 0;
  2219. }
  2220. static void thin_postsuspend(struct dm_target *ti)
  2221. {
  2222. if (dm_noflush_suspending(ti))
  2223. requeue_io((struct thin_c *)ti->private);
  2224. }
  2225. /*
  2226. * <nr mapped sectors> <highest mapped sector>
  2227. */
  2228. static int thin_status(struct dm_target *ti, status_type_t type,
  2229. unsigned status_flags, char *result, unsigned maxlen)
  2230. {
  2231. int r;
  2232. ssize_t sz = 0;
  2233. dm_block_t mapped, highest;
  2234. char buf[BDEVNAME_SIZE];
  2235. struct thin_c *tc = ti->private;
  2236. if (get_pool_mode(tc->pool) == PM_FAIL) {
  2237. DMEMIT("Fail");
  2238. return 0;
  2239. }
  2240. if (!tc->td)
  2241. DMEMIT("-");
  2242. else {
  2243. switch (type) {
  2244. case STATUSTYPE_INFO:
  2245. r = dm_thin_get_mapped_count(tc->td, &mapped);
  2246. if (r)
  2247. return r;
  2248. r = dm_thin_get_highest_mapped_block(tc->td, &highest);
  2249. if (r < 0)
  2250. return r;
  2251. DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
  2252. if (r)
  2253. DMEMIT("%llu", ((highest + 1) *
  2254. tc->pool->sectors_per_block) - 1);
  2255. else
  2256. DMEMIT("-");
  2257. break;
  2258. case STATUSTYPE_TABLE:
  2259. DMEMIT("%s %lu",
  2260. format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
  2261. (unsigned long) tc->dev_id);
  2262. if (tc->origin_dev)
  2263. DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
  2264. break;
  2265. }
  2266. }
  2267. return 0;
  2268. }
  2269. static int thin_iterate_devices(struct dm_target *ti,
  2270. iterate_devices_callout_fn fn, void *data)
  2271. {
  2272. sector_t blocks;
  2273. struct thin_c *tc = ti->private;
  2274. struct pool *pool = tc->pool;
  2275. /*
  2276. * We can't call dm_pool_get_data_dev_size() since that blocks. So
  2277. * we follow a more convoluted path through to the pool's target.
  2278. */
  2279. if (!pool->ti)
  2280. return 0; /* nothing is bound */
  2281. blocks = pool->ti->len;
  2282. (void) sector_div(blocks, pool->sectors_per_block);
  2283. if (blocks)
  2284. return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
  2285. return 0;
  2286. }
  2287. /*
  2288. * A thin device always inherits its queue limits from its pool.
  2289. */
  2290. static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
  2291. {
  2292. struct thin_c *tc = ti->private;
  2293. *limits = bdev_get_queue(tc->pool_dev->bdev)->limits;
  2294. }
  2295. static struct target_type thin_target = {
  2296. .name = "thin",
  2297. .version = {1, 6, 0},
  2298. .module = THIS_MODULE,
  2299. .ctr = thin_ctr,
  2300. .dtr = thin_dtr,
  2301. .map = thin_map,
  2302. .end_io = thin_endio,
  2303. .postsuspend = thin_postsuspend,
  2304. .status = thin_status,
  2305. .iterate_devices = thin_iterate_devices,
  2306. .io_hints = thin_io_hints,
  2307. };
  2308. /*----------------------------------------------------------------*/
  2309. static int __init dm_thin_init(void)
  2310. {
  2311. int r;
  2312. pool_table_init();
  2313. r = dm_register_target(&thin_target);
  2314. if (r)
  2315. return r;
  2316. r = dm_register_target(&pool_target);
  2317. if (r)
  2318. goto bad_pool_target;
  2319. r = -ENOMEM;
  2320. _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
  2321. if (!_new_mapping_cache)
  2322. goto bad_new_mapping_cache;
  2323. return 0;
  2324. bad_new_mapping_cache:
  2325. dm_unregister_target(&pool_target);
  2326. bad_pool_target:
  2327. dm_unregister_target(&thin_target);
  2328. return r;
  2329. }
  2330. static void dm_thin_exit(void)
  2331. {
  2332. dm_unregister_target(&thin_target);
  2333. dm_unregister_target(&pool_target);
  2334. kmem_cache_destroy(_new_mapping_cache);
  2335. }
  2336. module_init(dm_thin_init);
  2337. module_exit(dm_thin_exit);
  2338. MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
  2339. MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
  2340. MODULE_LICENSE("GPL");