session.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904
  1. #define _FILE_OFFSET_BITS 64
  2. #include <linux/kernel.h>
  3. #include <byteswap.h>
  4. #include <unistd.h>
  5. #include <sys/types.h>
  6. #include <sys/mman.h>
  7. #include "session.h"
  8. #include "sort.h"
  9. #include "util.h"
  10. static int perf_session__open(struct perf_session *self, bool force)
  11. {
  12. struct stat input_stat;
  13. if (!strcmp(self->filename, "-")) {
  14. self->fd_pipe = true;
  15. self->fd = STDIN_FILENO;
  16. if (perf_header__read(self, self->fd) < 0)
  17. pr_err("incompatible file format");
  18. return 0;
  19. }
  20. self->fd = open(self->filename, O_RDONLY);
  21. if (self->fd < 0) {
  22. pr_err("failed to open file: %s", self->filename);
  23. if (!strcmp(self->filename, "perf.data"))
  24. pr_err(" (try 'perf record' first)");
  25. pr_err("\n");
  26. return -errno;
  27. }
  28. if (fstat(self->fd, &input_stat) < 0)
  29. goto out_close;
  30. if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
  31. pr_err("file %s not owned by current user or root\n",
  32. self->filename);
  33. goto out_close;
  34. }
  35. if (!input_stat.st_size) {
  36. pr_info("zero-sized file (%s), nothing to do!\n",
  37. self->filename);
  38. goto out_close;
  39. }
  40. if (perf_header__read(self, self->fd) < 0) {
  41. pr_err("incompatible file format");
  42. goto out_close;
  43. }
  44. self->size = input_stat.st_size;
  45. return 0;
  46. out_close:
  47. close(self->fd);
  48. self->fd = -1;
  49. return -1;
  50. }
  51. void perf_session__update_sample_type(struct perf_session *self)
  52. {
  53. self->sample_type = perf_header__sample_type(&self->header);
  54. }
  55. int perf_session__create_kernel_maps(struct perf_session *self)
  56. {
  57. int ret = machine__create_kernel_maps(&self->host_machine);
  58. if (ret >= 0)
  59. ret = machines__create_guest_kernel_maps(&self->machines);
  60. return ret;
  61. }
  62. struct perf_session *perf_session__new(const char *filename, int mode, bool force, bool repipe)
  63. {
  64. size_t len = filename ? strlen(filename) + 1 : 0;
  65. struct perf_session *self = zalloc(sizeof(*self) + len);
  66. if (self == NULL)
  67. goto out;
  68. if (perf_header__init(&self->header) < 0)
  69. goto out_free;
  70. memcpy(self->filename, filename, len);
  71. self->threads = RB_ROOT;
  72. self->hists_tree = RB_ROOT;
  73. self->last_match = NULL;
  74. self->mmap_window = 32;
  75. self->cwd = NULL;
  76. self->cwdlen = 0;
  77. self->machines = RB_ROOT;
  78. self->repipe = repipe;
  79. INIT_LIST_HEAD(&self->ordered_samples.samples_head);
  80. machine__init(&self->host_machine, "", HOST_KERNEL_ID);
  81. if (mode == O_RDONLY) {
  82. if (perf_session__open(self, force) < 0)
  83. goto out_delete;
  84. } else if (mode == O_WRONLY) {
  85. /*
  86. * In O_RDONLY mode this will be performed when reading the
  87. * kernel MMAP event, in event__process_mmap().
  88. */
  89. if (perf_session__create_kernel_maps(self) < 0)
  90. goto out_delete;
  91. }
  92. perf_session__update_sample_type(self);
  93. out:
  94. return self;
  95. out_free:
  96. free(self);
  97. return NULL;
  98. out_delete:
  99. perf_session__delete(self);
  100. return NULL;
  101. }
  102. void perf_session__delete(struct perf_session *self)
  103. {
  104. perf_header__exit(&self->header);
  105. close(self->fd);
  106. free(self->cwd);
  107. free(self);
  108. }
  109. static bool symbol__match_parent_regex(struct symbol *sym)
  110. {
  111. if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
  112. return 1;
  113. return 0;
  114. }
  115. struct map_symbol *perf_session__resolve_callchain(struct perf_session *self,
  116. struct thread *thread,
  117. struct ip_callchain *chain,
  118. struct symbol **parent)
  119. {
  120. u8 cpumode = PERF_RECORD_MISC_USER;
  121. unsigned int i;
  122. struct map_symbol *syms = calloc(chain->nr, sizeof(*syms));
  123. if (!syms)
  124. return NULL;
  125. for (i = 0; i < chain->nr; i++) {
  126. u64 ip = chain->ips[i];
  127. struct addr_location al;
  128. if (ip >= PERF_CONTEXT_MAX) {
  129. switch (ip) {
  130. case PERF_CONTEXT_HV:
  131. cpumode = PERF_RECORD_MISC_HYPERVISOR; break;
  132. case PERF_CONTEXT_KERNEL:
  133. cpumode = PERF_RECORD_MISC_KERNEL; break;
  134. case PERF_CONTEXT_USER:
  135. cpumode = PERF_RECORD_MISC_USER; break;
  136. default:
  137. break;
  138. }
  139. continue;
  140. }
  141. al.filtered = false;
  142. thread__find_addr_location(thread, self, cpumode,
  143. MAP__FUNCTION, thread->pid, ip, &al, NULL);
  144. if (al.sym != NULL) {
  145. if (sort__has_parent && !*parent &&
  146. symbol__match_parent_regex(al.sym))
  147. *parent = al.sym;
  148. if (!symbol_conf.use_callchain)
  149. break;
  150. syms[i].map = al.map;
  151. syms[i].sym = al.sym;
  152. }
  153. }
  154. return syms;
  155. }
  156. static int process_event_stub(event_t *event __used,
  157. struct perf_session *session __used)
  158. {
  159. dump_printf(": unhandled!\n");
  160. return 0;
  161. }
  162. static int process_finished_round_stub(event_t *event __used,
  163. struct perf_session *session __used,
  164. struct perf_event_ops *ops __used)
  165. {
  166. dump_printf(": unhandled!\n");
  167. return 0;
  168. }
  169. static int process_finished_round(event_t *event,
  170. struct perf_session *session,
  171. struct perf_event_ops *ops);
  172. static void perf_event_ops__fill_defaults(struct perf_event_ops *handler)
  173. {
  174. if (handler->sample == NULL)
  175. handler->sample = process_event_stub;
  176. if (handler->mmap == NULL)
  177. handler->mmap = process_event_stub;
  178. if (handler->comm == NULL)
  179. handler->comm = process_event_stub;
  180. if (handler->fork == NULL)
  181. handler->fork = process_event_stub;
  182. if (handler->exit == NULL)
  183. handler->exit = process_event_stub;
  184. if (handler->lost == NULL)
  185. handler->lost = process_event_stub;
  186. if (handler->read == NULL)
  187. handler->read = process_event_stub;
  188. if (handler->throttle == NULL)
  189. handler->throttle = process_event_stub;
  190. if (handler->unthrottle == NULL)
  191. handler->unthrottle = process_event_stub;
  192. if (handler->attr == NULL)
  193. handler->attr = process_event_stub;
  194. if (handler->event_type == NULL)
  195. handler->event_type = process_event_stub;
  196. if (handler->tracing_data == NULL)
  197. handler->tracing_data = process_event_stub;
  198. if (handler->build_id == NULL)
  199. handler->build_id = process_event_stub;
  200. if (handler->finished_round == NULL) {
  201. if (handler->ordered_samples)
  202. handler->finished_round = process_finished_round;
  203. else
  204. handler->finished_round = process_finished_round_stub;
  205. }
  206. }
  207. void mem_bswap_64(void *src, int byte_size)
  208. {
  209. u64 *m = src;
  210. while (byte_size > 0) {
  211. *m = bswap_64(*m);
  212. byte_size -= sizeof(u64);
  213. ++m;
  214. }
  215. }
  216. static void event__all64_swap(event_t *self)
  217. {
  218. struct perf_event_header *hdr = &self->header;
  219. mem_bswap_64(hdr + 1, self->header.size - sizeof(*hdr));
  220. }
  221. static void event__comm_swap(event_t *self)
  222. {
  223. self->comm.pid = bswap_32(self->comm.pid);
  224. self->comm.tid = bswap_32(self->comm.tid);
  225. }
  226. static void event__mmap_swap(event_t *self)
  227. {
  228. self->mmap.pid = bswap_32(self->mmap.pid);
  229. self->mmap.tid = bswap_32(self->mmap.tid);
  230. self->mmap.start = bswap_64(self->mmap.start);
  231. self->mmap.len = bswap_64(self->mmap.len);
  232. self->mmap.pgoff = bswap_64(self->mmap.pgoff);
  233. }
  234. static void event__task_swap(event_t *self)
  235. {
  236. self->fork.pid = bswap_32(self->fork.pid);
  237. self->fork.tid = bswap_32(self->fork.tid);
  238. self->fork.ppid = bswap_32(self->fork.ppid);
  239. self->fork.ptid = bswap_32(self->fork.ptid);
  240. self->fork.time = bswap_64(self->fork.time);
  241. }
  242. static void event__read_swap(event_t *self)
  243. {
  244. self->read.pid = bswap_32(self->read.pid);
  245. self->read.tid = bswap_32(self->read.tid);
  246. self->read.value = bswap_64(self->read.value);
  247. self->read.time_enabled = bswap_64(self->read.time_enabled);
  248. self->read.time_running = bswap_64(self->read.time_running);
  249. self->read.id = bswap_64(self->read.id);
  250. }
  251. static void event__attr_swap(event_t *self)
  252. {
  253. size_t size;
  254. self->attr.attr.type = bswap_32(self->attr.attr.type);
  255. self->attr.attr.size = bswap_32(self->attr.attr.size);
  256. self->attr.attr.config = bswap_64(self->attr.attr.config);
  257. self->attr.attr.sample_period = bswap_64(self->attr.attr.sample_period);
  258. self->attr.attr.sample_type = bswap_64(self->attr.attr.sample_type);
  259. self->attr.attr.read_format = bswap_64(self->attr.attr.read_format);
  260. self->attr.attr.wakeup_events = bswap_32(self->attr.attr.wakeup_events);
  261. self->attr.attr.bp_type = bswap_32(self->attr.attr.bp_type);
  262. self->attr.attr.bp_addr = bswap_64(self->attr.attr.bp_addr);
  263. self->attr.attr.bp_len = bswap_64(self->attr.attr.bp_len);
  264. size = self->header.size;
  265. size -= (void *)&self->attr.id - (void *)self;
  266. mem_bswap_64(self->attr.id, size);
  267. }
  268. static void event__event_type_swap(event_t *self)
  269. {
  270. self->event_type.event_type.event_id =
  271. bswap_64(self->event_type.event_type.event_id);
  272. }
  273. static void event__tracing_data_swap(event_t *self)
  274. {
  275. self->tracing_data.size = bswap_32(self->tracing_data.size);
  276. }
  277. typedef void (*event__swap_op)(event_t *self);
  278. static event__swap_op event__swap_ops[] = {
  279. [PERF_RECORD_MMAP] = event__mmap_swap,
  280. [PERF_RECORD_COMM] = event__comm_swap,
  281. [PERF_RECORD_FORK] = event__task_swap,
  282. [PERF_RECORD_EXIT] = event__task_swap,
  283. [PERF_RECORD_LOST] = event__all64_swap,
  284. [PERF_RECORD_READ] = event__read_swap,
  285. [PERF_RECORD_SAMPLE] = event__all64_swap,
  286. [PERF_RECORD_HEADER_ATTR] = event__attr_swap,
  287. [PERF_RECORD_HEADER_EVENT_TYPE] = event__event_type_swap,
  288. [PERF_RECORD_HEADER_TRACING_DATA] = event__tracing_data_swap,
  289. [PERF_RECORD_HEADER_BUILD_ID] = NULL,
  290. [PERF_RECORD_HEADER_MAX] = NULL,
  291. };
  292. struct sample_queue {
  293. u64 timestamp;
  294. struct sample_event *event;
  295. struct list_head list;
  296. };
  297. static void flush_sample_queue(struct perf_session *s,
  298. struct perf_event_ops *ops)
  299. {
  300. struct list_head *head = &s->ordered_samples.samples_head;
  301. u64 limit = s->ordered_samples.next_flush;
  302. struct sample_queue *tmp, *iter;
  303. if (!ops->ordered_samples || !limit)
  304. return;
  305. list_for_each_entry_safe(iter, tmp, head, list) {
  306. if (iter->timestamp > limit)
  307. return;
  308. if (iter == s->ordered_samples.last_inserted)
  309. s->ordered_samples.last_inserted = NULL;
  310. ops->sample((event_t *)iter->event, s);
  311. s->ordered_samples.last_flush = iter->timestamp;
  312. list_del(&iter->list);
  313. free(iter->event);
  314. free(iter);
  315. }
  316. }
  317. /*
  318. * When perf record finishes a pass on every buffers, it records this pseudo
  319. * event.
  320. * We record the max timestamp t found in the pass n.
  321. * Assuming these timestamps are monotonic across cpus, we know that if
  322. * a buffer still has events with timestamps below t, they will be all
  323. * available and then read in the pass n + 1.
  324. * Hence when we start to read the pass n + 2, we can safely flush every
  325. * events with timestamps below t.
  326. *
  327. * ============ PASS n =================
  328. * CPU 0 | CPU 1
  329. * |
  330. * cnt1 timestamps | cnt2 timestamps
  331. * 1 | 2
  332. * 2 | 3
  333. * - | 4 <--- max recorded
  334. *
  335. * ============ PASS n + 1 ==============
  336. * CPU 0 | CPU 1
  337. * |
  338. * cnt1 timestamps | cnt2 timestamps
  339. * 3 | 5
  340. * 4 | 6
  341. * 5 | 7 <---- max recorded
  342. *
  343. * Flush every events below timestamp 4
  344. *
  345. * ============ PASS n + 2 ==============
  346. * CPU 0 | CPU 1
  347. * |
  348. * cnt1 timestamps | cnt2 timestamps
  349. * 6 | 8
  350. * 7 | 9
  351. * - | 10
  352. *
  353. * Flush every events below timestamp 7
  354. * etc...
  355. */
  356. static int process_finished_round(event_t *event __used,
  357. struct perf_session *session,
  358. struct perf_event_ops *ops)
  359. {
  360. flush_sample_queue(session, ops);
  361. session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;
  362. return 0;
  363. }
  364. static void __queue_sample_end(struct sample_queue *new, struct list_head *head)
  365. {
  366. struct sample_queue *iter;
  367. list_for_each_entry_reverse(iter, head, list) {
  368. if (iter->timestamp < new->timestamp) {
  369. list_add(&new->list, &iter->list);
  370. return;
  371. }
  372. }
  373. list_add(&new->list, head);
  374. }
  375. static void __queue_sample_before(struct sample_queue *new,
  376. struct sample_queue *iter,
  377. struct list_head *head)
  378. {
  379. list_for_each_entry_continue_reverse(iter, head, list) {
  380. if (iter->timestamp < new->timestamp) {
  381. list_add(&new->list, &iter->list);
  382. return;
  383. }
  384. }
  385. list_add(&new->list, head);
  386. }
  387. static void __queue_sample_after(struct sample_queue *new,
  388. struct sample_queue *iter,
  389. struct list_head *head)
  390. {
  391. list_for_each_entry_continue(iter, head, list) {
  392. if (iter->timestamp > new->timestamp) {
  393. list_add_tail(&new->list, &iter->list);
  394. return;
  395. }
  396. }
  397. list_add_tail(&new->list, head);
  398. }
  399. /* The queue is ordered by time */
  400. static void __queue_sample_event(struct sample_queue *new,
  401. struct perf_session *s)
  402. {
  403. struct sample_queue *last_inserted = s->ordered_samples.last_inserted;
  404. struct list_head *head = &s->ordered_samples.samples_head;
  405. if (!last_inserted) {
  406. __queue_sample_end(new, head);
  407. return;
  408. }
  409. /*
  410. * Most of the time the current event has a timestamp
  411. * very close to the last event inserted, unless we just switched
  412. * to another event buffer. Having a sorting based on a list and
  413. * on the last inserted event that is close to the current one is
  414. * probably more efficient than an rbtree based sorting.
  415. */
  416. if (last_inserted->timestamp >= new->timestamp)
  417. __queue_sample_before(new, last_inserted, head);
  418. else
  419. __queue_sample_after(new, last_inserted, head);
  420. }
  421. static int queue_sample_event(event_t *event, struct sample_data *data,
  422. struct perf_session *s)
  423. {
  424. u64 timestamp = data->time;
  425. struct sample_queue *new;
  426. if (timestamp < s->ordered_samples.last_flush) {
  427. printf("Warning: Timestamp below last timeslice flush\n");
  428. return -EINVAL;
  429. }
  430. new = malloc(sizeof(*new));
  431. if (!new)
  432. return -ENOMEM;
  433. new->timestamp = timestamp;
  434. new->event = malloc(event->header.size);
  435. if (!new->event) {
  436. free(new);
  437. return -ENOMEM;
  438. }
  439. memcpy(new->event, event, event->header.size);
  440. __queue_sample_event(new, s);
  441. s->ordered_samples.last_inserted = new;
  442. if (new->timestamp > s->ordered_samples.max_timestamp)
  443. s->ordered_samples.max_timestamp = new->timestamp;
  444. return 0;
  445. }
  446. static int perf_session__process_sample(event_t *event, struct perf_session *s,
  447. struct perf_event_ops *ops)
  448. {
  449. struct sample_data data;
  450. if (!ops->ordered_samples)
  451. return ops->sample(event, s);
  452. bzero(&data, sizeof(struct sample_data));
  453. event__parse_sample(event, s->sample_type, &data);
  454. queue_sample_event(event, &data, s);
  455. return 0;
  456. }
  457. static int perf_session__process_event(struct perf_session *self,
  458. event_t *event,
  459. struct perf_event_ops *ops,
  460. u64 offset, u64 head)
  461. {
  462. trace_event(event);
  463. if (event->header.type < PERF_RECORD_HEADER_MAX) {
  464. dump_printf("%#Lx [%#x]: PERF_RECORD_%s",
  465. offset + head, event->header.size,
  466. event__name[event->header.type]);
  467. hists__inc_nr_events(&self->hists, event->header.type);
  468. }
  469. if (self->header.needs_swap && event__swap_ops[event->header.type])
  470. event__swap_ops[event->header.type](event);
  471. switch (event->header.type) {
  472. case PERF_RECORD_SAMPLE:
  473. return perf_session__process_sample(event, self, ops);
  474. case PERF_RECORD_MMAP:
  475. return ops->mmap(event, self);
  476. case PERF_RECORD_COMM:
  477. return ops->comm(event, self);
  478. case PERF_RECORD_FORK:
  479. return ops->fork(event, self);
  480. case PERF_RECORD_EXIT:
  481. return ops->exit(event, self);
  482. case PERF_RECORD_LOST:
  483. return ops->lost(event, self);
  484. case PERF_RECORD_READ:
  485. return ops->read(event, self);
  486. case PERF_RECORD_THROTTLE:
  487. return ops->throttle(event, self);
  488. case PERF_RECORD_UNTHROTTLE:
  489. return ops->unthrottle(event, self);
  490. case PERF_RECORD_HEADER_ATTR:
  491. return ops->attr(event, self);
  492. case PERF_RECORD_HEADER_EVENT_TYPE:
  493. return ops->event_type(event, self);
  494. case PERF_RECORD_HEADER_TRACING_DATA:
  495. /* setup for reading amidst mmap */
  496. lseek(self->fd, offset + head, SEEK_SET);
  497. return ops->tracing_data(event, self);
  498. case PERF_RECORD_HEADER_BUILD_ID:
  499. return ops->build_id(event, self);
  500. case PERF_RECORD_FINISHED_ROUND:
  501. return ops->finished_round(event, self, ops);
  502. default:
  503. ++self->hists.stats.nr_unknown_events;
  504. return -1;
  505. }
  506. }
  507. void perf_event_header__bswap(struct perf_event_header *self)
  508. {
  509. self->type = bswap_32(self->type);
  510. self->misc = bswap_16(self->misc);
  511. self->size = bswap_16(self->size);
  512. }
  513. static struct thread *perf_session__register_idle_thread(struct perf_session *self)
  514. {
  515. struct thread *thread = perf_session__findnew(self, 0);
  516. if (thread == NULL || thread__set_comm(thread, "swapper")) {
  517. pr_err("problem inserting idle task.\n");
  518. thread = NULL;
  519. }
  520. return thread;
  521. }
  522. int do_read(int fd, void *buf, size_t size)
  523. {
  524. void *buf_start = buf;
  525. while (size) {
  526. int ret = read(fd, buf, size);
  527. if (ret <= 0)
  528. return ret;
  529. size -= ret;
  530. buf += ret;
  531. }
  532. return buf - buf_start;
  533. }
  534. #define session_done() (*(volatile int *)(&session_done))
  535. volatile int session_done;
  536. static int __perf_session__process_pipe_events(struct perf_session *self,
  537. struct perf_event_ops *ops)
  538. {
  539. event_t event;
  540. uint32_t size;
  541. int skip = 0;
  542. u64 head;
  543. int err;
  544. void *p;
  545. perf_event_ops__fill_defaults(ops);
  546. head = 0;
  547. more:
  548. err = do_read(self->fd, &event, sizeof(struct perf_event_header));
  549. if (err <= 0) {
  550. if (err == 0)
  551. goto done;
  552. pr_err("failed to read event header\n");
  553. goto out_err;
  554. }
  555. if (self->header.needs_swap)
  556. perf_event_header__bswap(&event.header);
  557. size = event.header.size;
  558. if (size == 0)
  559. size = 8;
  560. p = &event;
  561. p += sizeof(struct perf_event_header);
  562. if (size - sizeof(struct perf_event_header)) {
  563. err = do_read(self->fd, p,
  564. size - sizeof(struct perf_event_header));
  565. if (err <= 0) {
  566. if (err == 0) {
  567. pr_err("unexpected end of event stream\n");
  568. goto done;
  569. }
  570. pr_err("failed to read event data\n");
  571. goto out_err;
  572. }
  573. }
  574. if (size == 0 ||
  575. (skip = perf_session__process_event(self, &event, ops,
  576. 0, head)) < 0) {
  577. dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
  578. head, event.header.size, event.header.type);
  579. /*
  580. * assume we lost track of the stream, check alignment, and
  581. * increment a single u64 in the hope to catch on again 'soon'.
  582. */
  583. if (unlikely(head & 7))
  584. head &= ~7ULL;
  585. size = 8;
  586. }
  587. head += size;
  588. dump_printf("\n%#Lx [%#x]: event: %d\n",
  589. head, event.header.size, event.header.type);
  590. if (skip > 0)
  591. head += skip;
  592. if (!session_done())
  593. goto more;
  594. done:
  595. err = 0;
  596. out_err:
  597. return err;
  598. }
  599. int __perf_session__process_events(struct perf_session *self,
  600. u64 data_offset, u64 data_size,
  601. u64 file_size, struct perf_event_ops *ops)
  602. {
  603. int err, mmap_prot, mmap_flags;
  604. u64 head, shift;
  605. u64 offset = 0;
  606. size_t page_size;
  607. event_t *event;
  608. uint32_t size;
  609. char *buf;
  610. struct ui_progress *progress = ui_progress__new("Processing events...",
  611. self->size);
  612. if (progress == NULL)
  613. return -1;
  614. perf_event_ops__fill_defaults(ops);
  615. page_size = sysconf(_SC_PAGESIZE);
  616. head = data_offset;
  617. shift = page_size * (head / page_size);
  618. offset += shift;
  619. head -= shift;
  620. mmap_prot = PROT_READ;
  621. mmap_flags = MAP_SHARED;
  622. if (self->header.needs_swap) {
  623. mmap_prot |= PROT_WRITE;
  624. mmap_flags = MAP_PRIVATE;
  625. }
  626. remap:
  627. buf = mmap(NULL, page_size * self->mmap_window, mmap_prot,
  628. mmap_flags, self->fd, offset);
  629. if (buf == MAP_FAILED) {
  630. pr_err("failed to mmap file\n");
  631. err = -errno;
  632. goto out_err;
  633. }
  634. more:
  635. event = (event_t *)(buf + head);
  636. ui_progress__update(progress, offset);
  637. if (self->header.needs_swap)
  638. perf_event_header__bswap(&event->header);
  639. size = event->header.size;
  640. if (size == 0)
  641. size = 8;
  642. if (head + event->header.size >= page_size * self->mmap_window) {
  643. int munmap_ret;
  644. shift = page_size * (head / page_size);
  645. munmap_ret = munmap(buf, page_size * self->mmap_window);
  646. assert(munmap_ret == 0);
  647. offset += shift;
  648. head -= shift;
  649. goto remap;
  650. }
  651. size = event->header.size;
  652. dump_printf("\n%#Lx [%#x]: event: %d\n",
  653. offset + head, event->header.size, event->header.type);
  654. if (size == 0 ||
  655. perf_session__process_event(self, event, ops, offset, head) < 0) {
  656. dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
  657. offset + head, event->header.size,
  658. event->header.type);
  659. /*
  660. * assume we lost track of the stream, check alignment, and
  661. * increment a single u64 in the hope to catch on again 'soon'.
  662. */
  663. if (unlikely(head & 7))
  664. head &= ~7ULL;
  665. size = 8;
  666. }
  667. head += size;
  668. if (offset + head >= data_offset + data_size)
  669. goto done;
  670. if (offset + head < file_size)
  671. goto more;
  672. done:
  673. err = 0;
  674. /* do the final flush for ordered samples */
  675. self->ordered_samples.next_flush = ULLONG_MAX;
  676. flush_sample_queue(self, ops);
  677. out_err:
  678. ui_progress__delete(progress);
  679. return err;
  680. }
  681. int perf_session__process_events(struct perf_session *self,
  682. struct perf_event_ops *ops)
  683. {
  684. int err;
  685. if (perf_session__register_idle_thread(self) == NULL)
  686. return -ENOMEM;
  687. if (!symbol_conf.full_paths) {
  688. char bf[PATH_MAX];
  689. if (getcwd(bf, sizeof(bf)) == NULL) {
  690. err = -errno;
  691. out_getcwd_err:
  692. pr_err("failed to get the current directory\n");
  693. goto out_err;
  694. }
  695. self->cwd = strdup(bf);
  696. if (self->cwd == NULL) {
  697. err = -ENOMEM;
  698. goto out_getcwd_err;
  699. }
  700. self->cwdlen = strlen(self->cwd);
  701. }
  702. if (!self->fd_pipe)
  703. err = __perf_session__process_events(self,
  704. self->header.data_offset,
  705. self->header.data_size,
  706. self->size, ops);
  707. else
  708. err = __perf_session__process_pipe_events(self, ops);
  709. out_err:
  710. return err;
  711. }
  712. bool perf_session__has_traces(struct perf_session *self, const char *msg)
  713. {
  714. if (!(self->sample_type & PERF_SAMPLE_RAW)) {
  715. pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
  716. return false;
  717. }
  718. return true;
  719. }
  720. int perf_session__set_kallsyms_ref_reloc_sym(struct map **maps,
  721. const char *symbol_name,
  722. u64 addr)
  723. {
  724. char *bracket;
  725. enum map_type i;
  726. struct ref_reloc_sym *ref;
  727. ref = zalloc(sizeof(struct ref_reloc_sym));
  728. if (ref == NULL)
  729. return -ENOMEM;
  730. ref->name = strdup(symbol_name);
  731. if (ref->name == NULL) {
  732. free(ref);
  733. return -ENOMEM;
  734. }
  735. bracket = strchr(ref->name, ']');
  736. if (bracket)
  737. *bracket = '\0';
  738. ref->addr = addr;
  739. for (i = 0; i < MAP__NR_TYPES; ++i) {
  740. struct kmap *kmap = map__kmap(maps[i]);
  741. kmap->ref_reloc_sym = ref;
  742. }
  743. return 0;
  744. }
  745. size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp)
  746. {
  747. return __dsos__fprintf(&self->host_machine.kernel_dsos, fp) +
  748. __dsos__fprintf(&self->host_machine.user_dsos, fp) +
  749. machines__fprintf_dsos(&self->machines, fp);
  750. }
  751. size_t perf_session__fprintf_dsos_buildid(struct perf_session *self, FILE *fp,
  752. bool with_hits)
  753. {
  754. size_t ret = machine__fprintf_dsos_buildid(&self->host_machine, fp, with_hits);
  755. return ret + machines__fprintf_dsos_buildid(&self->machines, fp, with_hits);
  756. }