skbuff.c 75 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071
  1. /*
  2. * Routines having to do with the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
  5. * Florian La Roche <rzsfl@rz.uni-sb.de>
  6. *
  7. * Fixes:
  8. * Alan Cox : Fixed the worst of the load
  9. * balancer bugs.
  10. * Dave Platt : Interrupt stacking fix.
  11. * Richard Kooijman : Timestamp fixes.
  12. * Alan Cox : Changed buffer format.
  13. * Alan Cox : destructor hook for AF_UNIX etc.
  14. * Linus Torvalds : Better skb_clone.
  15. * Alan Cox : Added skb_copy.
  16. * Alan Cox : Added all the changed routines Linus
  17. * only put in the headers
  18. * Ray VanTassle : Fixed --skb->lock in free
  19. * Alan Cox : skb_copy copy arp field
  20. * Andi Kleen : slabified it.
  21. * Robert Olsson : Removed skb_head_pool
  22. *
  23. * NOTE:
  24. * The __skb_ routines should be called with interrupts
  25. * disabled, or you better be *real* sure that the operation is atomic
  26. * with respect to whatever list is being frobbed (e.g. via lock_sock()
  27. * or via disabling bottom half handlers, etc).
  28. *
  29. * This program is free software; you can redistribute it and/or
  30. * modify it under the terms of the GNU General Public License
  31. * as published by the Free Software Foundation; either version
  32. * 2 of the License, or (at your option) any later version.
  33. */
  34. /*
  35. * The functions in this file will not compile correctly with gcc 2.4.x
  36. */
  37. #include <linux/module.h>
  38. #include <linux/types.h>
  39. #include <linux/kernel.h>
  40. #include <linux/kmemcheck.h>
  41. #include <linux/mm.h>
  42. #include <linux/interrupt.h>
  43. #include <linux/in.h>
  44. #include <linux/inet.h>
  45. #include <linux/slab.h>
  46. #include <linux/netdevice.h>
  47. #ifdef CONFIG_NET_CLS_ACT
  48. #include <net/pkt_sched.h>
  49. #endif
  50. #include <linux/string.h>
  51. #include <linux/skbuff.h>
  52. #include <linux/splice.h>
  53. #include <linux/cache.h>
  54. #include <linux/rtnetlink.h>
  55. #include <linux/init.h>
  56. #include <linux/scatterlist.h>
  57. #include <linux/errqueue.h>
  58. #include <net/protocol.h>
  59. #include <net/dst.h>
  60. #include <net/sock.h>
  61. #include <net/checksum.h>
  62. #include <net/xfrm.h>
  63. #include <asm/uaccess.h>
  64. #include <asm/system.h>
  65. #include <trace/events/skb.h>
  66. #include "kmap_skb.h"
  67. static struct kmem_cache *skbuff_head_cache __read_mostly;
  68. static struct kmem_cache *skbuff_fclone_cache __read_mostly;
  69. static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
  70. struct pipe_buffer *buf)
  71. {
  72. put_page(buf->page);
  73. }
  74. static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
  75. struct pipe_buffer *buf)
  76. {
  77. get_page(buf->page);
  78. }
  79. static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
  80. struct pipe_buffer *buf)
  81. {
  82. return 1;
  83. }
  84. /* Pipe buffer operations for a socket. */
  85. static const struct pipe_buf_operations sock_pipe_buf_ops = {
  86. .can_merge = 0,
  87. .map = generic_pipe_buf_map,
  88. .unmap = generic_pipe_buf_unmap,
  89. .confirm = generic_pipe_buf_confirm,
  90. .release = sock_pipe_buf_release,
  91. .steal = sock_pipe_buf_steal,
  92. .get = sock_pipe_buf_get,
  93. };
  94. /*
  95. * Keep out-of-line to prevent kernel bloat.
  96. * __builtin_return_address is not used because it is not always
  97. * reliable.
  98. */
  99. /**
  100. * skb_over_panic - private function
  101. * @skb: buffer
  102. * @sz: size
  103. * @here: address
  104. *
  105. * Out of line support code for skb_put(). Not user callable.
  106. */
  107. static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
  108. {
  109. printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
  110. "data:%p tail:%#lx end:%#lx dev:%s\n",
  111. here, skb->len, sz, skb->head, skb->data,
  112. (unsigned long)skb->tail, (unsigned long)skb->end,
  113. skb->dev ? skb->dev->name : "<NULL>");
  114. BUG();
  115. }
  116. /**
  117. * skb_under_panic - private function
  118. * @skb: buffer
  119. * @sz: size
  120. * @here: address
  121. *
  122. * Out of line support code for skb_push(). Not user callable.
  123. */
  124. static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
  125. {
  126. printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
  127. "data:%p tail:%#lx end:%#lx dev:%s\n",
  128. here, skb->len, sz, skb->head, skb->data,
  129. (unsigned long)skb->tail, (unsigned long)skb->end,
  130. skb->dev ? skb->dev->name : "<NULL>");
  131. BUG();
  132. }
  133. /* Allocate a new skbuff. We do this ourselves so we can fill in a few
  134. * 'private' fields and also do memory statistics to find all the
  135. * [BEEP] leaks.
  136. *
  137. */
  138. /**
  139. * __alloc_skb - allocate a network buffer
  140. * @size: size to allocate
  141. * @gfp_mask: allocation mask
  142. * @fclone: allocate from fclone cache instead of head cache
  143. * and allocate a cloned (child) skb
  144. * @node: numa node to allocate memory on
  145. *
  146. * Allocate a new &sk_buff. The returned buffer has no headroom and a
  147. * tail room of size bytes. The object has a reference count of one.
  148. * The return is the buffer. On a failure the return is %NULL.
  149. *
  150. * Buffers may only be allocated from interrupts using a @gfp_mask of
  151. * %GFP_ATOMIC.
  152. */
  153. struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
  154. int fclone, int node)
  155. {
  156. struct kmem_cache *cache;
  157. struct skb_shared_info *shinfo;
  158. struct sk_buff *skb;
  159. u8 *data;
  160. cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
  161. /* Get the HEAD */
  162. skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
  163. if (!skb)
  164. goto out;
  165. prefetchw(skb);
  166. size = SKB_DATA_ALIGN(size);
  167. data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
  168. gfp_mask, node);
  169. if (!data)
  170. goto nodata;
  171. prefetchw(data + size);
  172. /*
  173. * Only clear those fields we need to clear, not those that we will
  174. * actually initialise below. Hence, don't put any more fields after
  175. * the tail pointer in struct sk_buff!
  176. */
  177. memset(skb, 0, offsetof(struct sk_buff, tail));
  178. skb->truesize = size + sizeof(struct sk_buff);
  179. atomic_set(&skb->users, 1);
  180. skb->head = data;
  181. skb->data = data;
  182. skb_reset_tail_pointer(skb);
  183. skb->end = skb->tail + size;
  184. kmemcheck_annotate_bitfield(skb, flags1);
  185. kmemcheck_annotate_bitfield(skb, flags2);
  186. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  187. skb->mac_header = ~0U;
  188. #endif
  189. /* make sure we initialize shinfo sequentially */
  190. shinfo = skb_shinfo(skb);
  191. memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
  192. atomic_set(&shinfo->dataref, 1);
  193. if (fclone) {
  194. struct sk_buff *child = skb + 1;
  195. atomic_t *fclone_ref = (atomic_t *) (child + 1);
  196. kmemcheck_annotate_bitfield(child, flags1);
  197. kmemcheck_annotate_bitfield(child, flags2);
  198. skb->fclone = SKB_FCLONE_ORIG;
  199. atomic_set(fclone_ref, 1);
  200. child->fclone = SKB_FCLONE_UNAVAILABLE;
  201. }
  202. out:
  203. return skb;
  204. nodata:
  205. kmem_cache_free(cache, skb);
  206. skb = NULL;
  207. goto out;
  208. }
  209. EXPORT_SYMBOL(__alloc_skb);
  210. /**
  211. * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
  212. * @dev: network device to receive on
  213. * @length: length to allocate
  214. * @gfp_mask: get_free_pages mask, passed to alloc_skb
  215. *
  216. * Allocate a new &sk_buff and assign it a usage count of one. The
  217. * buffer has unspecified headroom built in. Users should allocate
  218. * the headroom they think they need without accounting for the
  219. * built in space. The built in space is used for optimisations.
  220. *
  221. * %NULL is returned if there is no free memory.
  222. */
  223. struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
  224. unsigned int length, gfp_t gfp_mask)
  225. {
  226. int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
  227. struct sk_buff *skb;
  228. skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
  229. if (likely(skb)) {
  230. skb_reserve(skb, NET_SKB_PAD);
  231. skb->dev = dev;
  232. }
  233. return skb;
  234. }
  235. EXPORT_SYMBOL(__netdev_alloc_skb);
  236. struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
  237. {
  238. int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
  239. struct page *page;
  240. page = alloc_pages_node(node, gfp_mask, 0);
  241. return page;
  242. }
  243. EXPORT_SYMBOL(__netdev_alloc_page);
  244. void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
  245. int size)
  246. {
  247. skb_fill_page_desc(skb, i, page, off, size);
  248. skb->len += size;
  249. skb->data_len += size;
  250. skb->truesize += size;
  251. }
  252. EXPORT_SYMBOL(skb_add_rx_frag);
  253. /**
  254. * dev_alloc_skb - allocate an skbuff for receiving
  255. * @length: length to allocate
  256. *
  257. * Allocate a new &sk_buff and assign it a usage count of one. The
  258. * buffer has unspecified headroom built in. Users should allocate
  259. * the headroom they think they need without accounting for the
  260. * built in space. The built in space is used for optimisations.
  261. *
  262. * %NULL is returned if there is no free memory. Although this function
  263. * allocates memory it can be called from an interrupt.
  264. */
  265. struct sk_buff *dev_alloc_skb(unsigned int length)
  266. {
  267. /*
  268. * There is more code here than it seems:
  269. * __dev_alloc_skb is an inline
  270. */
  271. return __dev_alloc_skb(length, GFP_ATOMIC);
  272. }
  273. EXPORT_SYMBOL(dev_alloc_skb);
  274. static void skb_drop_list(struct sk_buff **listp)
  275. {
  276. struct sk_buff *list = *listp;
  277. *listp = NULL;
  278. do {
  279. struct sk_buff *this = list;
  280. list = list->next;
  281. kfree_skb(this);
  282. } while (list);
  283. }
  284. static inline void skb_drop_fraglist(struct sk_buff *skb)
  285. {
  286. skb_drop_list(&skb_shinfo(skb)->frag_list);
  287. }
  288. static void skb_clone_fraglist(struct sk_buff *skb)
  289. {
  290. struct sk_buff *list;
  291. skb_walk_frags(skb, list)
  292. skb_get(list);
  293. }
  294. static void skb_release_data(struct sk_buff *skb)
  295. {
  296. if (!skb->cloned ||
  297. !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
  298. &skb_shinfo(skb)->dataref)) {
  299. if (skb_shinfo(skb)->nr_frags) {
  300. int i;
  301. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
  302. put_page(skb_shinfo(skb)->frags[i].page);
  303. }
  304. if (skb_has_frags(skb))
  305. skb_drop_fraglist(skb);
  306. kfree(skb->head);
  307. }
  308. }
  309. /*
  310. * Free an skbuff by memory without cleaning the state.
  311. */
  312. static void kfree_skbmem(struct sk_buff *skb)
  313. {
  314. struct sk_buff *other;
  315. atomic_t *fclone_ref;
  316. switch (skb->fclone) {
  317. case SKB_FCLONE_UNAVAILABLE:
  318. kmem_cache_free(skbuff_head_cache, skb);
  319. break;
  320. case SKB_FCLONE_ORIG:
  321. fclone_ref = (atomic_t *) (skb + 2);
  322. if (atomic_dec_and_test(fclone_ref))
  323. kmem_cache_free(skbuff_fclone_cache, skb);
  324. break;
  325. case SKB_FCLONE_CLONE:
  326. fclone_ref = (atomic_t *) (skb + 1);
  327. other = skb - 1;
  328. /* The clone portion is available for
  329. * fast-cloning again.
  330. */
  331. skb->fclone = SKB_FCLONE_UNAVAILABLE;
  332. if (atomic_dec_and_test(fclone_ref))
  333. kmem_cache_free(skbuff_fclone_cache, other);
  334. break;
  335. }
  336. }
  337. static void skb_release_head_state(struct sk_buff *skb)
  338. {
  339. skb_dst_drop(skb);
  340. #ifdef CONFIG_XFRM
  341. secpath_put(skb->sp);
  342. #endif
  343. if (skb->destructor) {
  344. WARN_ON(in_irq());
  345. skb->destructor(skb);
  346. }
  347. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  348. nf_conntrack_put(skb->nfct);
  349. nf_conntrack_put_reasm(skb->nfct_reasm);
  350. #endif
  351. #ifdef CONFIG_BRIDGE_NETFILTER
  352. nf_bridge_put(skb->nf_bridge);
  353. #endif
  354. /* XXX: IS this still necessary? - JHS */
  355. #ifdef CONFIG_NET_SCHED
  356. skb->tc_index = 0;
  357. #ifdef CONFIG_NET_CLS_ACT
  358. skb->tc_verd = 0;
  359. #endif
  360. #endif
  361. }
  362. /* Free everything but the sk_buff shell. */
  363. static void skb_release_all(struct sk_buff *skb)
  364. {
  365. skb_release_head_state(skb);
  366. skb_release_data(skb);
  367. }
  368. /**
  369. * __kfree_skb - private function
  370. * @skb: buffer
  371. *
  372. * Free an sk_buff. Release anything attached to the buffer.
  373. * Clean the state. This is an internal helper function. Users should
  374. * always call kfree_skb
  375. */
  376. void __kfree_skb(struct sk_buff *skb)
  377. {
  378. skb_release_all(skb);
  379. kfree_skbmem(skb);
  380. }
  381. EXPORT_SYMBOL(__kfree_skb);
  382. /**
  383. * kfree_skb - free an sk_buff
  384. * @skb: buffer to free
  385. *
  386. * Drop a reference to the buffer and free it if the usage count has
  387. * hit zero.
  388. */
  389. void kfree_skb(struct sk_buff *skb)
  390. {
  391. if (unlikely(!skb))
  392. return;
  393. if (likely(atomic_read(&skb->users) == 1))
  394. smp_rmb();
  395. else if (likely(!atomic_dec_and_test(&skb->users)))
  396. return;
  397. trace_kfree_skb(skb, __builtin_return_address(0));
  398. __kfree_skb(skb);
  399. }
  400. EXPORT_SYMBOL(kfree_skb);
  401. /**
  402. * consume_skb - free an skbuff
  403. * @skb: buffer to free
  404. *
  405. * Drop a ref to the buffer and free it if the usage count has hit zero
  406. * Functions identically to kfree_skb, but kfree_skb assumes that the frame
  407. * is being dropped after a failure and notes that
  408. */
  409. void consume_skb(struct sk_buff *skb)
  410. {
  411. if (unlikely(!skb))
  412. return;
  413. if (likely(atomic_read(&skb->users) == 1))
  414. smp_rmb();
  415. else if (likely(!atomic_dec_and_test(&skb->users)))
  416. return;
  417. __kfree_skb(skb);
  418. }
  419. EXPORT_SYMBOL(consume_skb);
  420. /**
  421. * skb_recycle_check - check if skb can be reused for receive
  422. * @skb: buffer
  423. * @skb_size: minimum receive buffer size
  424. *
  425. * Checks that the skb passed in is not shared or cloned, and
  426. * that it is linear and its head portion at least as large as
  427. * skb_size so that it can be recycled as a receive buffer.
  428. * If these conditions are met, this function does any necessary
  429. * reference count dropping and cleans up the skbuff as if it
  430. * just came from __alloc_skb().
  431. */
  432. bool skb_recycle_check(struct sk_buff *skb, int skb_size)
  433. {
  434. struct skb_shared_info *shinfo;
  435. if (irqs_disabled())
  436. return false;
  437. if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
  438. return false;
  439. skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
  440. if (skb_end_pointer(skb) - skb->head < skb_size)
  441. return false;
  442. if (skb_shared(skb) || skb_cloned(skb))
  443. return false;
  444. skb_release_head_state(skb);
  445. shinfo = skb_shinfo(skb);
  446. memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
  447. atomic_set(&shinfo->dataref, 1);
  448. memset(skb, 0, offsetof(struct sk_buff, tail));
  449. skb->data = skb->head + NET_SKB_PAD;
  450. skb_reset_tail_pointer(skb);
  451. return true;
  452. }
  453. EXPORT_SYMBOL(skb_recycle_check);
  454. static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
  455. {
  456. new->tstamp = old->tstamp;
  457. new->dev = old->dev;
  458. new->transport_header = old->transport_header;
  459. new->network_header = old->network_header;
  460. new->mac_header = old->mac_header;
  461. skb_dst_copy(new, old);
  462. new->rxhash = old->rxhash;
  463. #ifdef CONFIG_XFRM
  464. new->sp = secpath_get(old->sp);
  465. #endif
  466. memcpy(new->cb, old->cb, sizeof(old->cb));
  467. new->csum = old->csum;
  468. new->local_df = old->local_df;
  469. new->pkt_type = old->pkt_type;
  470. new->ip_summed = old->ip_summed;
  471. skb_copy_queue_mapping(new, old);
  472. new->priority = old->priority;
  473. new->deliver_no_wcard = old->deliver_no_wcard;
  474. #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
  475. new->ipvs_property = old->ipvs_property;
  476. #endif
  477. new->protocol = old->protocol;
  478. new->mark = old->mark;
  479. new->skb_iif = old->skb_iif;
  480. __nf_copy(new, old);
  481. #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
  482. defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
  483. new->nf_trace = old->nf_trace;
  484. #endif
  485. #ifdef CONFIG_NET_SCHED
  486. new->tc_index = old->tc_index;
  487. #ifdef CONFIG_NET_CLS_ACT
  488. new->tc_verd = old->tc_verd;
  489. #endif
  490. #endif
  491. new->vlan_tci = old->vlan_tci;
  492. skb_copy_secmark(new, old);
  493. }
  494. /*
  495. * You should not add any new code to this function. Add it to
  496. * __copy_skb_header above instead.
  497. */
  498. static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
  499. {
  500. #define C(x) n->x = skb->x
  501. n->next = n->prev = NULL;
  502. n->sk = NULL;
  503. __copy_skb_header(n, skb);
  504. C(len);
  505. C(data_len);
  506. C(mac_len);
  507. n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
  508. n->cloned = 1;
  509. n->nohdr = 0;
  510. n->destructor = NULL;
  511. C(tail);
  512. C(end);
  513. C(head);
  514. C(data);
  515. C(truesize);
  516. atomic_set(&n->users, 1);
  517. atomic_inc(&(skb_shinfo(skb)->dataref));
  518. skb->cloned = 1;
  519. return n;
  520. #undef C
  521. }
  522. /**
  523. * skb_morph - morph one skb into another
  524. * @dst: the skb to receive the contents
  525. * @src: the skb to supply the contents
  526. *
  527. * This is identical to skb_clone except that the target skb is
  528. * supplied by the user.
  529. *
  530. * The target skb is returned upon exit.
  531. */
  532. struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
  533. {
  534. skb_release_all(dst);
  535. return __skb_clone(dst, src);
  536. }
  537. EXPORT_SYMBOL_GPL(skb_morph);
  538. /**
  539. * skb_clone - duplicate an sk_buff
  540. * @skb: buffer to clone
  541. * @gfp_mask: allocation priority
  542. *
  543. * Duplicate an &sk_buff. The new one is not owned by a socket. Both
  544. * copies share the same packet data but not structure. The new
  545. * buffer has a reference count of 1. If the allocation fails the
  546. * function returns %NULL otherwise the new buffer is returned.
  547. *
  548. * If this function is called from an interrupt gfp_mask() must be
  549. * %GFP_ATOMIC.
  550. */
  551. struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
  552. {
  553. struct sk_buff *n;
  554. n = skb + 1;
  555. if (skb->fclone == SKB_FCLONE_ORIG &&
  556. n->fclone == SKB_FCLONE_UNAVAILABLE) {
  557. atomic_t *fclone_ref = (atomic_t *) (n + 1);
  558. n->fclone = SKB_FCLONE_CLONE;
  559. atomic_inc(fclone_ref);
  560. } else {
  561. n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
  562. if (!n)
  563. return NULL;
  564. kmemcheck_annotate_bitfield(n, flags1);
  565. kmemcheck_annotate_bitfield(n, flags2);
  566. n->fclone = SKB_FCLONE_UNAVAILABLE;
  567. }
  568. return __skb_clone(n, skb);
  569. }
  570. EXPORT_SYMBOL(skb_clone);
  571. static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
  572. {
  573. #ifndef NET_SKBUFF_DATA_USES_OFFSET
  574. /*
  575. * Shift between the two data areas in bytes
  576. */
  577. unsigned long offset = new->data - old->data;
  578. #endif
  579. __copy_skb_header(new, old);
  580. #ifndef NET_SKBUFF_DATA_USES_OFFSET
  581. /* {transport,network,mac}_header are relative to skb->head */
  582. new->transport_header += offset;
  583. new->network_header += offset;
  584. if (skb_mac_header_was_set(new))
  585. new->mac_header += offset;
  586. #endif
  587. skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
  588. skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
  589. skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
  590. }
  591. /**
  592. * skb_copy - create private copy of an sk_buff
  593. * @skb: buffer to copy
  594. * @gfp_mask: allocation priority
  595. *
  596. * Make a copy of both an &sk_buff and its data. This is used when the
  597. * caller wishes to modify the data and needs a private copy of the
  598. * data to alter. Returns %NULL on failure or the pointer to the buffer
  599. * on success. The returned buffer has a reference count of 1.
  600. *
  601. * As by-product this function converts non-linear &sk_buff to linear
  602. * one, so that &sk_buff becomes completely private and caller is allowed
  603. * to modify all the data of returned buffer. This means that this
  604. * function is not recommended for use in circumstances when only
  605. * header is going to be modified. Use pskb_copy() instead.
  606. */
  607. struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
  608. {
  609. int headerlen = skb->data - skb->head;
  610. /*
  611. * Allocate the copy buffer
  612. */
  613. struct sk_buff *n;
  614. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  615. n = alloc_skb(skb->end + skb->data_len, gfp_mask);
  616. #else
  617. n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
  618. #endif
  619. if (!n)
  620. return NULL;
  621. /* Set the data pointer */
  622. skb_reserve(n, headerlen);
  623. /* Set the tail pointer and length */
  624. skb_put(n, skb->len);
  625. if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
  626. BUG();
  627. copy_skb_header(n, skb);
  628. return n;
  629. }
  630. EXPORT_SYMBOL(skb_copy);
  631. /**
  632. * pskb_copy - create copy of an sk_buff with private head.
  633. * @skb: buffer to copy
  634. * @gfp_mask: allocation priority
  635. *
  636. * Make a copy of both an &sk_buff and part of its data, located
  637. * in header. Fragmented data remain shared. This is used when
  638. * the caller wishes to modify only header of &sk_buff and needs
  639. * private copy of the header to alter. Returns %NULL on failure
  640. * or the pointer to the buffer on success.
  641. * The returned buffer has a reference count of 1.
  642. */
  643. struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
  644. {
  645. /*
  646. * Allocate the copy buffer
  647. */
  648. struct sk_buff *n;
  649. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  650. n = alloc_skb(skb->end, gfp_mask);
  651. #else
  652. n = alloc_skb(skb->end - skb->head, gfp_mask);
  653. #endif
  654. if (!n)
  655. goto out;
  656. /* Set the data pointer */
  657. skb_reserve(n, skb->data - skb->head);
  658. /* Set the tail pointer and length */
  659. skb_put(n, skb_headlen(skb));
  660. /* Copy the bytes */
  661. skb_copy_from_linear_data(skb, n->data, n->len);
  662. n->truesize += skb->data_len;
  663. n->data_len = skb->data_len;
  664. n->len = skb->len;
  665. if (skb_shinfo(skb)->nr_frags) {
  666. int i;
  667. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  668. skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
  669. get_page(skb_shinfo(n)->frags[i].page);
  670. }
  671. skb_shinfo(n)->nr_frags = i;
  672. }
  673. if (skb_has_frags(skb)) {
  674. skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
  675. skb_clone_fraglist(n);
  676. }
  677. copy_skb_header(n, skb);
  678. out:
  679. return n;
  680. }
  681. EXPORT_SYMBOL(pskb_copy);
  682. /**
  683. * pskb_expand_head - reallocate header of &sk_buff
  684. * @skb: buffer to reallocate
  685. * @nhead: room to add at head
  686. * @ntail: room to add at tail
  687. * @gfp_mask: allocation priority
  688. *
  689. * Expands (or creates identical copy, if &nhead and &ntail are zero)
  690. * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
  691. * reference count of 1. Returns zero in the case of success or error,
  692. * if expansion failed. In the last case, &sk_buff is not changed.
  693. *
  694. * All the pointers pointing into skb header may change and must be
  695. * reloaded after call to this function.
  696. */
  697. int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
  698. gfp_t gfp_mask)
  699. {
  700. int i;
  701. u8 *data;
  702. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  703. int size = nhead + skb->end + ntail;
  704. #else
  705. int size = nhead + (skb->end - skb->head) + ntail;
  706. #endif
  707. long off;
  708. BUG_ON(nhead < 0);
  709. if (skb_shared(skb))
  710. BUG();
  711. size = SKB_DATA_ALIGN(size);
  712. data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
  713. if (!data)
  714. goto nodata;
  715. /* Copy only real data... and, alas, header. This should be
  716. * optimized for the cases when header is void. */
  717. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  718. memcpy(data + nhead, skb->head, skb->tail);
  719. #else
  720. memcpy(data + nhead, skb->head, skb->tail - skb->head);
  721. #endif
  722. memcpy(data + size, skb_end_pointer(skb),
  723. sizeof(struct skb_shared_info));
  724. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
  725. get_page(skb_shinfo(skb)->frags[i].page);
  726. if (skb_has_frags(skb))
  727. skb_clone_fraglist(skb);
  728. skb_release_data(skb);
  729. off = (data + nhead) - skb->head;
  730. skb->head = data;
  731. skb->data += off;
  732. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  733. skb->end = size;
  734. off = nhead;
  735. #else
  736. skb->end = skb->head + size;
  737. #endif
  738. /* {transport,network,mac}_header and tail are relative to skb->head */
  739. skb->tail += off;
  740. skb->transport_header += off;
  741. skb->network_header += off;
  742. if (skb_mac_header_was_set(skb))
  743. skb->mac_header += off;
  744. skb->csum_start += nhead;
  745. skb->cloned = 0;
  746. skb->hdr_len = 0;
  747. skb->nohdr = 0;
  748. atomic_set(&skb_shinfo(skb)->dataref, 1);
  749. return 0;
  750. nodata:
  751. return -ENOMEM;
  752. }
  753. EXPORT_SYMBOL(pskb_expand_head);
  754. /* Make private copy of skb with writable head and some headroom */
  755. struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
  756. {
  757. struct sk_buff *skb2;
  758. int delta = headroom - skb_headroom(skb);
  759. if (delta <= 0)
  760. skb2 = pskb_copy(skb, GFP_ATOMIC);
  761. else {
  762. skb2 = skb_clone(skb, GFP_ATOMIC);
  763. if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
  764. GFP_ATOMIC)) {
  765. kfree_skb(skb2);
  766. skb2 = NULL;
  767. }
  768. }
  769. return skb2;
  770. }
  771. EXPORT_SYMBOL(skb_realloc_headroom);
  772. /**
  773. * skb_copy_expand - copy and expand sk_buff
  774. * @skb: buffer to copy
  775. * @newheadroom: new free bytes at head
  776. * @newtailroom: new free bytes at tail
  777. * @gfp_mask: allocation priority
  778. *
  779. * Make a copy of both an &sk_buff and its data and while doing so
  780. * allocate additional space.
  781. *
  782. * This is used when the caller wishes to modify the data and needs a
  783. * private copy of the data to alter as well as more space for new fields.
  784. * Returns %NULL on failure or the pointer to the buffer
  785. * on success. The returned buffer has a reference count of 1.
  786. *
  787. * You must pass %GFP_ATOMIC as the allocation priority if this function
  788. * is called from an interrupt.
  789. */
  790. struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
  791. int newheadroom, int newtailroom,
  792. gfp_t gfp_mask)
  793. {
  794. /*
  795. * Allocate the copy buffer
  796. */
  797. struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
  798. gfp_mask);
  799. int oldheadroom = skb_headroom(skb);
  800. int head_copy_len, head_copy_off;
  801. int off;
  802. if (!n)
  803. return NULL;
  804. skb_reserve(n, newheadroom);
  805. /* Set the tail pointer and length */
  806. skb_put(n, skb->len);
  807. head_copy_len = oldheadroom;
  808. head_copy_off = 0;
  809. if (newheadroom <= head_copy_len)
  810. head_copy_len = newheadroom;
  811. else
  812. head_copy_off = newheadroom - head_copy_len;
  813. /* Copy the linear header and data. */
  814. if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
  815. skb->len + head_copy_len))
  816. BUG();
  817. copy_skb_header(n, skb);
  818. off = newheadroom - oldheadroom;
  819. n->csum_start += off;
  820. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  821. n->transport_header += off;
  822. n->network_header += off;
  823. if (skb_mac_header_was_set(skb))
  824. n->mac_header += off;
  825. #endif
  826. return n;
  827. }
  828. EXPORT_SYMBOL(skb_copy_expand);
  829. /**
  830. * skb_pad - zero pad the tail of an skb
  831. * @skb: buffer to pad
  832. * @pad: space to pad
  833. *
  834. * Ensure that a buffer is followed by a padding area that is zero
  835. * filled. Used by network drivers which may DMA or transfer data
  836. * beyond the buffer end onto the wire.
  837. *
  838. * May return error in out of memory cases. The skb is freed on error.
  839. */
  840. int skb_pad(struct sk_buff *skb, int pad)
  841. {
  842. int err;
  843. int ntail;
  844. /* If the skbuff is non linear tailroom is always zero.. */
  845. if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
  846. memset(skb->data+skb->len, 0, pad);
  847. return 0;
  848. }
  849. ntail = skb->data_len + pad - (skb->end - skb->tail);
  850. if (likely(skb_cloned(skb) || ntail > 0)) {
  851. err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
  852. if (unlikely(err))
  853. goto free_skb;
  854. }
  855. /* FIXME: The use of this function with non-linear skb's really needs
  856. * to be audited.
  857. */
  858. err = skb_linearize(skb);
  859. if (unlikely(err))
  860. goto free_skb;
  861. memset(skb->data + skb->len, 0, pad);
  862. return 0;
  863. free_skb:
  864. kfree_skb(skb);
  865. return err;
  866. }
  867. EXPORT_SYMBOL(skb_pad);
  868. /**
  869. * skb_put - add data to a buffer
  870. * @skb: buffer to use
  871. * @len: amount of data to add
  872. *
  873. * This function extends the used data area of the buffer. If this would
  874. * exceed the total buffer size the kernel will panic. A pointer to the
  875. * first byte of the extra data is returned.
  876. */
  877. unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
  878. {
  879. unsigned char *tmp = skb_tail_pointer(skb);
  880. SKB_LINEAR_ASSERT(skb);
  881. skb->tail += len;
  882. skb->len += len;
  883. if (unlikely(skb->tail > skb->end))
  884. skb_over_panic(skb, len, __builtin_return_address(0));
  885. return tmp;
  886. }
  887. EXPORT_SYMBOL(skb_put);
  888. /**
  889. * skb_push - add data to the start of a buffer
  890. * @skb: buffer to use
  891. * @len: amount of data to add
  892. *
  893. * This function extends the used data area of the buffer at the buffer
  894. * start. If this would exceed the total buffer headroom the kernel will
  895. * panic. A pointer to the first byte of the extra data is returned.
  896. */
  897. unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
  898. {
  899. skb->data -= len;
  900. skb->len += len;
  901. if (unlikely(skb->data<skb->head))
  902. skb_under_panic(skb, len, __builtin_return_address(0));
  903. return skb->data;
  904. }
  905. EXPORT_SYMBOL(skb_push);
  906. /**
  907. * skb_pull - remove data from the start of a buffer
  908. * @skb: buffer to use
  909. * @len: amount of data to remove
  910. *
  911. * This function removes data from the start of a buffer, returning
  912. * the memory to the headroom. A pointer to the next data in the buffer
  913. * is returned. Once the data has been pulled future pushes will overwrite
  914. * the old data.
  915. */
  916. unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
  917. {
  918. return skb_pull_inline(skb, len);
  919. }
  920. EXPORT_SYMBOL(skb_pull);
  921. /**
  922. * skb_trim - remove end from a buffer
  923. * @skb: buffer to alter
  924. * @len: new length
  925. *
  926. * Cut the length of a buffer down by removing data from the tail. If
  927. * the buffer is already under the length specified it is not modified.
  928. * The skb must be linear.
  929. */
  930. void skb_trim(struct sk_buff *skb, unsigned int len)
  931. {
  932. if (skb->len > len)
  933. __skb_trim(skb, len);
  934. }
  935. EXPORT_SYMBOL(skb_trim);
  936. /* Trims skb to length len. It can change skb pointers.
  937. */
  938. int ___pskb_trim(struct sk_buff *skb, unsigned int len)
  939. {
  940. struct sk_buff **fragp;
  941. struct sk_buff *frag;
  942. int offset = skb_headlen(skb);
  943. int nfrags = skb_shinfo(skb)->nr_frags;
  944. int i;
  945. int err;
  946. if (skb_cloned(skb) &&
  947. unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
  948. return err;
  949. i = 0;
  950. if (offset >= len)
  951. goto drop_pages;
  952. for (; i < nfrags; i++) {
  953. int end = offset + skb_shinfo(skb)->frags[i].size;
  954. if (end < len) {
  955. offset = end;
  956. continue;
  957. }
  958. skb_shinfo(skb)->frags[i++].size = len - offset;
  959. drop_pages:
  960. skb_shinfo(skb)->nr_frags = i;
  961. for (; i < nfrags; i++)
  962. put_page(skb_shinfo(skb)->frags[i].page);
  963. if (skb_has_frags(skb))
  964. skb_drop_fraglist(skb);
  965. goto done;
  966. }
  967. for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
  968. fragp = &frag->next) {
  969. int end = offset + frag->len;
  970. if (skb_shared(frag)) {
  971. struct sk_buff *nfrag;
  972. nfrag = skb_clone(frag, GFP_ATOMIC);
  973. if (unlikely(!nfrag))
  974. return -ENOMEM;
  975. nfrag->next = frag->next;
  976. kfree_skb(frag);
  977. frag = nfrag;
  978. *fragp = frag;
  979. }
  980. if (end < len) {
  981. offset = end;
  982. continue;
  983. }
  984. if (end > len &&
  985. unlikely((err = pskb_trim(frag, len - offset))))
  986. return err;
  987. if (frag->next)
  988. skb_drop_list(&frag->next);
  989. break;
  990. }
  991. done:
  992. if (len > skb_headlen(skb)) {
  993. skb->data_len -= skb->len - len;
  994. skb->len = len;
  995. } else {
  996. skb->len = len;
  997. skb->data_len = 0;
  998. skb_set_tail_pointer(skb, len);
  999. }
  1000. return 0;
  1001. }
  1002. EXPORT_SYMBOL(___pskb_trim);
  1003. /**
  1004. * __pskb_pull_tail - advance tail of skb header
  1005. * @skb: buffer to reallocate
  1006. * @delta: number of bytes to advance tail
  1007. *
  1008. * The function makes a sense only on a fragmented &sk_buff,
  1009. * it expands header moving its tail forward and copying necessary
  1010. * data from fragmented part.
  1011. *
  1012. * &sk_buff MUST have reference count of 1.
  1013. *
  1014. * Returns %NULL (and &sk_buff does not change) if pull failed
  1015. * or value of new tail of skb in the case of success.
  1016. *
  1017. * All the pointers pointing into skb header may change and must be
  1018. * reloaded after call to this function.
  1019. */
  1020. /* Moves tail of skb head forward, copying data from fragmented part,
  1021. * when it is necessary.
  1022. * 1. It may fail due to malloc failure.
  1023. * 2. It may change skb pointers.
  1024. *
  1025. * It is pretty complicated. Luckily, it is called only in exceptional cases.
  1026. */
  1027. unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
  1028. {
  1029. /* If skb has not enough free space at tail, get new one
  1030. * plus 128 bytes for future expansions. If we have enough
  1031. * room at tail, reallocate without expansion only if skb is cloned.
  1032. */
  1033. int i, k, eat = (skb->tail + delta) - skb->end;
  1034. if (eat > 0 || skb_cloned(skb)) {
  1035. if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
  1036. GFP_ATOMIC))
  1037. return NULL;
  1038. }
  1039. if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
  1040. BUG();
  1041. /* Optimization: no fragments, no reasons to preestimate
  1042. * size of pulled pages. Superb.
  1043. */
  1044. if (!skb_has_frags(skb))
  1045. goto pull_pages;
  1046. /* Estimate size of pulled pages. */
  1047. eat = delta;
  1048. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1049. if (skb_shinfo(skb)->frags[i].size >= eat)
  1050. goto pull_pages;
  1051. eat -= skb_shinfo(skb)->frags[i].size;
  1052. }
  1053. /* If we need update frag list, we are in troubles.
  1054. * Certainly, it possible to add an offset to skb data,
  1055. * but taking into account that pulling is expected to
  1056. * be very rare operation, it is worth to fight against
  1057. * further bloating skb head and crucify ourselves here instead.
  1058. * Pure masohism, indeed. 8)8)
  1059. */
  1060. if (eat) {
  1061. struct sk_buff *list = skb_shinfo(skb)->frag_list;
  1062. struct sk_buff *clone = NULL;
  1063. struct sk_buff *insp = NULL;
  1064. do {
  1065. BUG_ON(!list);
  1066. if (list->len <= eat) {
  1067. /* Eaten as whole. */
  1068. eat -= list->len;
  1069. list = list->next;
  1070. insp = list;
  1071. } else {
  1072. /* Eaten partially. */
  1073. if (skb_shared(list)) {
  1074. /* Sucks! We need to fork list. :-( */
  1075. clone = skb_clone(list, GFP_ATOMIC);
  1076. if (!clone)
  1077. return NULL;
  1078. insp = list->next;
  1079. list = clone;
  1080. } else {
  1081. /* This may be pulled without
  1082. * problems. */
  1083. insp = list;
  1084. }
  1085. if (!pskb_pull(list, eat)) {
  1086. kfree_skb(clone);
  1087. return NULL;
  1088. }
  1089. break;
  1090. }
  1091. } while (eat);
  1092. /* Free pulled out fragments. */
  1093. while ((list = skb_shinfo(skb)->frag_list) != insp) {
  1094. skb_shinfo(skb)->frag_list = list->next;
  1095. kfree_skb(list);
  1096. }
  1097. /* And insert new clone at head. */
  1098. if (clone) {
  1099. clone->next = list;
  1100. skb_shinfo(skb)->frag_list = clone;
  1101. }
  1102. }
  1103. /* Success! Now we may commit changes to skb data. */
  1104. pull_pages:
  1105. eat = delta;
  1106. k = 0;
  1107. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1108. if (skb_shinfo(skb)->frags[i].size <= eat) {
  1109. put_page(skb_shinfo(skb)->frags[i].page);
  1110. eat -= skb_shinfo(skb)->frags[i].size;
  1111. } else {
  1112. skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
  1113. if (eat) {
  1114. skb_shinfo(skb)->frags[k].page_offset += eat;
  1115. skb_shinfo(skb)->frags[k].size -= eat;
  1116. eat = 0;
  1117. }
  1118. k++;
  1119. }
  1120. }
  1121. skb_shinfo(skb)->nr_frags = k;
  1122. skb->tail += delta;
  1123. skb->data_len -= delta;
  1124. return skb_tail_pointer(skb);
  1125. }
  1126. EXPORT_SYMBOL(__pskb_pull_tail);
  1127. /* Copy some data bits from skb to kernel buffer. */
  1128. int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
  1129. {
  1130. int start = skb_headlen(skb);
  1131. struct sk_buff *frag_iter;
  1132. int i, copy;
  1133. if (offset > (int)skb->len - len)
  1134. goto fault;
  1135. /* Copy header. */
  1136. if ((copy = start - offset) > 0) {
  1137. if (copy > len)
  1138. copy = len;
  1139. skb_copy_from_linear_data_offset(skb, offset, to, copy);
  1140. if ((len -= copy) == 0)
  1141. return 0;
  1142. offset += copy;
  1143. to += copy;
  1144. }
  1145. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1146. int end;
  1147. WARN_ON(start > offset + len);
  1148. end = start + skb_shinfo(skb)->frags[i].size;
  1149. if ((copy = end - offset) > 0) {
  1150. u8 *vaddr;
  1151. if (copy > len)
  1152. copy = len;
  1153. vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
  1154. memcpy(to,
  1155. vaddr + skb_shinfo(skb)->frags[i].page_offset+
  1156. offset - start, copy);
  1157. kunmap_skb_frag(vaddr);
  1158. if ((len -= copy) == 0)
  1159. return 0;
  1160. offset += copy;
  1161. to += copy;
  1162. }
  1163. start = end;
  1164. }
  1165. skb_walk_frags(skb, frag_iter) {
  1166. int end;
  1167. WARN_ON(start > offset + len);
  1168. end = start + frag_iter->len;
  1169. if ((copy = end - offset) > 0) {
  1170. if (copy > len)
  1171. copy = len;
  1172. if (skb_copy_bits(frag_iter, offset - start, to, copy))
  1173. goto fault;
  1174. if ((len -= copy) == 0)
  1175. return 0;
  1176. offset += copy;
  1177. to += copy;
  1178. }
  1179. start = end;
  1180. }
  1181. if (!len)
  1182. return 0;
  1183. fault:
  1184. return -EFAULT;
  1185. }
  1186. EXPORT_SYMBOL(skb_copy_bits);
  1187. /*
  1188. * Callback from splice_to_pipe(), if we need to release some pages
  1189. * at the end of the spd in case we error'ed out in filling the pipe.
  1190. */
  1191. static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
  1192. {
  1193. put_page(spd->pages[i]);
  1194. }
  1195. static inline struct page *linear_to_page(struct page *page, unsigned int *len,
  1196. unsigned int *offset,
  1197. struct sk_buff *skb, struct sock *sk)
  1198. {
  1199. struct page *p = sk->sk_sndmsg_page;
  1200. unsigned int off;
  1201. if (!p) {
  1202. new_page:
  1203. p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
  1204. if (!p)
  1205. return NULL;
  1206. off = sk->sk_sndmsg_off = 0;
  1207. /* hold one ref to this page until it's full */
  1208. } else {
  1209. unsigned int mlen;
  1210. off = sk->sk_sndmsg_off;
  1211. mlen = PAGE_SIZE - off;
  1212. if (mlen < 64 && mlen < *len) {
  1213. put_page(p);
  1214. goto new_page;
  1215. }
  1216. *len = min_t(unsigned int, *len, mlen);
  1217. }
  1218. memcpy(page_address(p) + off, page_address(page) + *offset, *len);
  1219. sk->sk_sndmsg_off += *len;
  1220. *offset = off;
  1221. get_page(p);
  1222. return p;
  1223. }
  1224. /*
  1225. * Fill page/offset/length into spd, if it can hold more pages.
  1226. */
  1227. static inline int spd_fill_page(struct splice_pipe_desc *spd,
  1228. struct pipe_inode_info *pipe, struct page *page,
  1229. unsigned int *len, unsigned int offset,
  1230. struct sk_buff *skb, int linear,
  1231. struct sock *sk)
  1232. {
  1233. if (unlikely(spd->nr_pages == pipe->buffers))
  1234. return 1;
  1235. if (linear) {
  1236. page = linear_to_page(page, len, &offset, skb, sk);
  1237. if (!page)
  1238. return 1;
  1239. } else
  1240. get_page(page);
  1241. spd->pages[spd->nr_pages] = page;
  1242. spd->partial[spd->nr_pages].len = *len;
  1243. spd->partial[spd->nr_pages].offset = offset;
  1244. spd->nr_pages++;
  1245. return 0;
  1246. }
  1247. static inline void __segment_seek(struct page **page, unsigned int *poff,
  1248. unsigned int *plen, unsigned int off)
  1249. {
  1250. unsigned long n;
  1251. *poff += off;
  1252. n = *poff / PAGE_SIZE;
  1253. if (n)
  1254. *page = nth_page(*page, n);
  1255. *poff = *poff % PAGE_SIZE;
  1256. *plen -= off;
  1257. }
  1258. static inline int __splice_segment(struct page *page, unsigned int poff,
  1259. unsigned int plen, unsigned int *off,
  1260. unsigned int *len, struct sk_buff *skb,
  1261. struct splice_pipe_desc *spd, int linear,
  1262. struct sock *sk,
  1263. struct pipe_inode_info *pipe)
  1264. {
  1265. if (!*len)
  1266. return 1;
  1267. /* skip this segment if already processed */
  1268. if (*off >= plen) {
  1269. *off -= plen;
  1270. return 0;
  1271. }
  1272. /* ignore any bits we already processed */
  1273. if (*off) {
  1274. __segment_seek(&page, &poff, &plen, *off);
  1275. *off = 0;
  1276. }
  1277. do {
  1278. unsigned int flen = min(*len, plen);
  1279. /* the linear region may spread across several pages */
  1280. flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
  1281. if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
  1282. return 1;
  1283. __segment_seek(&page, &poff, &plen, flen);
  1284. *len -= flen;
  1285. } while (*len && plen);
  1286. return 0;
  1287. }
  1288. /*
  1289. * Map linear and fragment data from the skb to spd. It reports failure if the
  1290. * pipe is full or if we already spliced the requested length.
  1291. */
  1292. static int __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
  1293. unsigned int *offset, unsigned int *len,
  1294. struct splice_pipe_desc *spd, struct sock *sk)
  1295. {
  1296. int seg;
  1297. /*
  1298. * map the linear part
  1299. */
  1300. if (__splice_segment(virt_to_page(skb->data),
  1301. (unsigned long) skb->data & (PAGE_SIZE - 1),
  1302. skb_headlen(skb),
  1303. offset, len, skb, spd, 1, sk, pipe))
  1304. return 1;
  1305. /*
  1306. * then map the fragments
  1307. */
  1308. for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
  1309. const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
  1310. if (__splice_segment(f->page, f->page_offset, f->size,
  1311. offset, len, skb, spd, 0, sk, pipe))
  1312. return 1;
  1313. }
  1314. return 0;
  1315. }
  1316. /*
  1317. * Map data from the skb to a pipe. Should handle both the linear part,
  1318. * the fragments, and the frag list. It does NOT handle frag lists within
  1319. * the frag list, if such a thing exists. We'd probably need to recurse to
  1320. * handle that cleanly.
  1321. */
  1322. int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
  1323. struct pipe_inode_info *pipe, unsigned int tlen,
  1324. unsigned int flags)
  1325. {
  1326. struct partial_page partial[PIPE_DEF_BUFFERS];
  1327. struct page *pages[PIPE_DEF_BUFFERS];
  1328. struct splice_pipe_desc spd = {
  1329. .pages = pages,
  1330. .partial = partial,
  1331. .flags = flags,
  1332. .ops = &sock_pipe_buf_ops,
  1333. .spd_release = sock_spd_release,
  1334. };
  1335. struct sk_buff *frag_iter;
  1336. struct sock *sk = skb->sk;
  1337. int ret = 0;
  1338. if (splice_grow_spd(pipe, &spd))
  1339. return -ENOMEM;
  1340. /*
  1341. * __skb_splice_bits() only fails if the output has no room left,
  1342. * so no point in going over the frag_list for the error case.
  1343. */
  1344. if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
  1345. goto done;
  1346. else if (!tlen)
  1347. goto done;
  1348. /*
  1349. * now see if we have a frag_list to map
  1350. */
  1351. skb_walk_frags(skb, frag_iter) {
  1352. if (!tlen)
  1353. break;
  1354. if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
  1355. break;
  1356. }
  1357. done:
  1358. if (spd.nr_pages) {
  1359. /*
  1360. * Drop the socket lock, otherwise we have reverse
  1361. * locking dependencies between sk_lock and i_mutex
  1362. * here as compared to sendfile(). We enter here
  1363. * with the socket lock held, and splice_to_pipe() will
  1364. * grab the pipe inode lock. For sendfile() emulation,
  1365. * we call into ->sendpage() with the i_mutex lock held
  1366. * and networking will grab the socket lock.
  1367. */
  1368. release_sock(sk);
  1369. ret = splice_to_pipe(pipe, &spd);
  1370. lock_sock(sk);
  1371. }
  1372. splice_shrink_spd(pipe, &spd);
  1373. return ret;
  1374. }
  1375. /**
  1376. * skb_store_bits - store bits from kernel buffer to skb
  1377. * @skb: destination buffer
  1378. * @offset: offset in destination
  1379. * @from: source buffer
  1380. * @len: number of bytes to copy
  1381. *
  1382. * Copy the specified number of bytes from the source buffer to the
  1383. * destination skb. This function handles all the messy bits of
  1384. * traversing fragment lists and such.
  1385. */
  1386. int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
  1387. {
  1388. int start = skb_headlen(skb);
  1389. struct sk_buff *frag_iter;
  1390. int i, copy;
  1391. if (offset > (int)skb->len - len)
  1392. goto fault;
  1393. if ((copy = start - offset) > 0) {
  1394. if (copy > len)
  1395. copy = len;
  1396. skb_copy_to_linear_data_offset(skb, offset, from, copy);
  1397. if ((len -= copy) == 0)
  1398. return 0;
  1399. offset += copy;
  1400. from += copy;
  1401. }
  1402. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1403. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1404. int end;
  1405. WARN_ON(start > offset + len);
  1406. end = start + frag->size;
  1407. if ((copy = end - offset) > 0) {
  1408. u8 *vaddr;
  1409. if (copy > len)
  1410. copy = len;
  1411. vaddr = kmap_skb_frag(frag);
  1412. memcpy(vaddr + frag->page_offset + offset - start,
  1413. from, copy);
  1414. kunmap_skb_frag(vaddr);
  1415. if ((len -= copy) == 0)
  1416. return 0;
  1417. offset += copy;
  1418. from += copy;
  1419. }
  1420. start = end;
  1421. }
  1422. skb_walk_frags(skb, frag_iter) {
  1423. int end;
  1424. WARN_ON(start > offset + len);
  1425. end = start + frag_iter->len;
  1426. if ((copy = end - offset) > 0) {
  1427. if (copy > len)
  1428. copy = len;
  1429. if (skb_store_bits(frag_iter, offset - start,
  1430. from, copy))
  1431. goto fault;
  1432. if ((len -= copy) == 0)
  1433. return 0;
  1434. offset += copy;
  1435. from += copy;
  1436. }
  1437. start = end;
  1438. }
  1439. if (!len)
  1440. return 0;
  1441. fault:
  1442. return -EFAULT;
  1443. }
  1444. EXPORT_SYMBOL(skb_store_bits);
  1445. /* Checksum skb data. */
  1446. __wsum skb_checksum(const struct sk_buff *skb, int offset,
  1447. int len, __wsum csum)
  1448. {
  1449. int start = skb_headlen(skb);
  1450. int i, copy = start - offset;
  1451. struct sk_buff *frag_iter;
  1452. int pos = 0;
  1453. /* Checksum header. */
  1454. if (copy > 0) {
  1455. if (copy > len)
  1456. copy = len;
  1457. csum = csum_partial(skb->data + offset, copy, csum);
  1458. if ((len -= copy) == 0)
  1459. return csum;
  1460. offset += copy;
  1461. pos = copy;
  1462. }
  1463. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1464. int end;
  1465. WARN_ON(start > offset + len);
  1466. end = start + skb_shinfo(skb)->frags[i].size;
  1467. if ((copy = end - offset) > 0) {
  1468. __wsum csum2;
  1469. u8 *vaddr;
  1470. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1471. if (copy > len)
  1472. copy = len;
  1473. vaddr = kmap_skb_frag(frag);
  1474. csum2 = csum_partial(vaddr + frag->page_offset +
  1475. offset - start, copy, 0);
  1476. kunmap_skb_frag(vaddr);
  1477. csum = csum_block_add(csum, csum2, pos);
  1478. if (!(len -= copy))
  1479. return csum;
  1480. offset += copy;
  1481. pos += copy;
  1482. }
  1483. start = end;
  1484. }
  1485. skb_walk_frags(skb, frag_iter) {
  1486. int end;
  1487. WARN_ON(start > offset + len);
  1488. end = start + frag_iter->len;
  1489. if ((copy = end - offset) > 0) {
  1490. __wsum csum2;
  1491. if (copy > len)
  1492. copy = len;
  1493. csum2 = skb_checksum(frag_iter, offset - start,
  1494. copy, 0);
  1495. csum = csum_block_add(csum, csum2, pos);
  1496. if ((len -= copy) == 0)
  1497. return csum;
  1498. offset += copy;
  1499. pos += copy;
  1500. }
  1501. start = end;
  1502. }
  1503. BUG_ON(len);
  1504. return csum;
  1505. }
  1506. EXPORT_SYMBOL(skb_checksum);
  1507. /* Both of above in one bottle. */
  1508. __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
  1509. u8 *to, int len, __wsum csum)
  1510. {
  1511. int start = skb_headlen(skb);
  1512. int i, copy = start - offset;
  1513. struct sk_buff *frag_iter;
  1514. int pos = 0;
  1515. /* Copy header. */
  1516. if (copy > 0) {
  1517. if (copy > len)
  1518. copy = len;
  1519. csum = csum_partial_copy_nocheck(skb->data + offset, to,
  1520. copy, csum);
  1521. if ((len -= copy) == 0)
  1522. return csum;
  1523. offset += copy;
  1524. to += copy;
  1525. pos = copy;
  1526. }
  1527. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1528. int end;
  1529. WARN_ON(start > offset + len);
  1530. end = start + skb_shinfo(skb)->frags[i].size;
  1531. if ((copy = end - offset) > 0) {
  1532. __wsum csum2;
  1533. u8 *vaddr;
  1534. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1535. if (copy > len)
  1536. copy = len;
  1537. vaddr = kmap_skb_frag(frag);
  1538. csum2 = csum_partial_copy_nocheck(vaddr +
  1539. frag->page_offset +
  1540. offset - start, to,
  1541. copy, 0);
  1542. kunmap_skb_frag(vaddr);
  1543. csum = csum_block_add(csum, csum2, pos);
  1544. if (!(len -= copy))
  1545. return csum;
  1546. offset += copy;
  1547. to += copy;
  1548. pos += copy;
  1549. }
  1550. start = end;
  1551. }
  1552. skb_walk_frags(skb, frag_iter) {
  1553. __wsum csum2;
  1554. int end;
  1555. WARN_ON(start > offset + len);
  1556. end = start + frag_iter->len;
  1557. if ((copy = end - offset) > 0) {
  1558. if (copy > len)
  1559. copy = len;
  1560. csum2 = skb_copy_and_csum_bits(frag_iter,
  1561. offset - start,
  1562. to, copy, 0);
  1563. csum = csum_block_add(csum, csum2, pos);
  1564. if ((len -= copy) == 0)
  1565. return csum;
  1566. offset += copy;
  1567. to += copy;
  1568. pos += copy;
  1569. }
  1570. start = end;
  1571. }
  1572. BUG_ON(len);
  1573. return csum;
  1574. }
  1575. EXPORT_SYMBOL(skb_copy_and_csum_bits);
  1576. void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
  1577. {
  1578. __wsum csum;
  1579. long csstart;
  1580. if (skb->ip_summed == CHECKSUM_PARTIAL)
  1581. csstart = skb->csum_start - skb_headroom(skb);
  1582. else
  1583. csstart = skb_headlen(skb);
  1584. BUG_ON(csstart > skb_headlen(skb));
  1585. skb_copy_from_linear_data(skb, to, csstart);
  1586. csum = 0;
  1587. if (csstart != skb->len)
  1588. csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
  1589. skb->len - csstart, 0);
  1590. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  1591. long csstuff = csstart + skb->csum_offset;
  1592. *((__sum16 *)(to + csstuff)) = csum_fold(csum);
  1593. }
  1594. }
  1595. EXPORT_SYMBOL(skb_copy_and_csum_dev);
  1596. /**
  1597. * skb_dequeue - remove from the head of the queue
  1598. * @list: list to dequeue from
  1599. *
  1600. * Remove the head of the list. The list lock is taken so the function
  1601. * may be used safely with other locking list functions. The head item is
  1602. * returned or %NULL if the list is empty.
  1603. */
  1604. struct sk_buff *skb_dequeue(struct sk_buff_head *list)
  1605. {
  1606. unsigned long flags;
  1607. struct sk_buff *result;
  1608. spin_lock_irqsave(&list->lock, flags);
  1609. result = __skb_dequeue(list);
  1610. spin_unlock_irqrestore(&list->lock, flags);
  1611. return result;
  1612. }
  1613. EXPORT_SYMBOL(skb_dequeue);
  1614. /**
  1615. * skb_dequeue_tail - remove from the tail of the queue
  1616. * @list: list to dequeue from
  1617. *
  1618. * Remove the tail of the list. The list lock is taken so the function
  1619. * may be used safely with other locking list functions. The tail item is
  1620. * returned or %NULL if the list is empty.
  1621. */
  1622. struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
  1623. {
  1624. unsigned long flags;
  1625. struct sk_buff *result;
  1626. spin_lock_irqsave(&list->lock, flags);
  1627. result = __skb_dequeue_tail(list);
  1628. spin_unlock_irqrestore(&list->lock, flags);
  1629. return result;
  1630. }
  1631. EXPORT_SYMBOL(skb_dequeue_tail);
  1632. /**
  1633. * skb_queue_purge - empty a list
  1634. * @list: list to empty
  1635. *
  1636. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1637. * the list and one reference dropped. This function takes the list
  1638. * lock and is atomic with respect to other list locking functions.
  1639. */
  1640. void skb_queue_purge(struct sk_buff_head *list)
  1641. {
  1642. struct sk_buff *skb;
  1643. while ((skb = skb_dequeue(list)) != NULL)
  1644. kfree_skb(skb);
  1645. }
  1646. EXPORT_SYMBOL(skb_queue_purge);
  1647. /**
  1648. * skb_queue_head - queue a buffer at the list head
  1649. * @list: list to use
  1650. * @newsk: buffer to queue
  1651. *
  1652. * Queue a buffer at the start of the list. This function takes the
  1653. * list lock and can be used safely with other locking &sk_buff functions
  1654. * safely.
  1655. *
  1656. * A buffer cannot be placed on two lists at the same time.
  1657. */
  1658. void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
  1659. {
  1660. unsigned long flags;
  1661. spin_lock_irqsave(&list->lock, flags);
  1662. __skb_queue_head(list, newsk);
  1663. spin_unlock_irqrestore(&list->lock, flags);
  1664. }
  1665. EXPORT_SYMBOL(skb_queue_head);
  1666. /**
  1667. * skb_queue_tail - queue a buffer at the list tail
  1668. * @list: list to use
  1669. * @newsk: buffer to queue
  1670. *
  1671. * Queue a buffer at the tail of the list. This function takes the
  1672. * list lock and can be used safely with other locking &sk_buff functions
  1673. * safely.
  1674. *
  1675. * A buffer cannot be placed on two lists at the same time.
  1676. */
  1677. void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
  1678. {
  1679. unsigned long flags;
  1680. spin_lock_irqsave(&list->lock, flags);
  1681. __skb_queue_tail(list, newsk);
  1682. spin_unlock_irqrestore(&list->lock, flags);
  1683. }
  1684. EXPORT_SYMBOL(skb_queue_tail);
  1685. /**
  1686. * skb_unlink - remove a buffer from a list
  1687. * @skb: buffer to remove
  1688. * @list: list to use
  1689. *
  1690. * Remove a packet from a list. The list locks are taken and this
  1691. * function is atomic with respect to other list locked calls
  1692. *
  1693. * You must know what list the SKB is on.
  1694. */
  1695. void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  1696. {
  1697. unsigned long flags;
  1698. spin_lock_irqsave(&list->lock, flags);
  1699. __skb_unlink(skb, list);
  1700. spin_unlock_irqrestore(&list->lock, flags);
  1701. }
  1702. EXPORT_SYMBOL(skb_unlink);
  1703. /**
  1704. * skb_append - append a buffer
  1705. * @old: buffer to insert after
  1706. * @newsk: buffer to insert
  1707. * @list: list to use
  1708. *
  1709. * Place a packet after a given packet in a list. The list locks are taken
  1710. * and this function is atomic with respect to other list locked calls.
  1711. * A buffer cannot be placed on two lists at the same time.
  1712. */
  1713. void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
  1714. {
  1715. unsigned long flags;
  1716. spin_lock_irqsave(&list->lock, flags);
  1717. __skb_queue_after(list, old, newsk);
  1718. spin_unlock_irqrestore(&list->lock, flags);
  1719. }
  1720. EXPORT_SYMBOL(skb_append);
  1721. /**
  1722. * skb_insert - insert a buffer
  1723. * @old: buffer to insert before
  1724. * @newsk: buffer to insert
  1725. * @list: list to use
  1726. *
  1727. * Place a packet before a given packet in a list. The list locks are
  1728. * taken and this function is atomic with respect to other list locked
  1729. * calls.
  1730. *
  1731. * A buffer cannot be placed on two lists at the same time.
  1732. */
  1733. void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
  1734. {
  1735. unsigned long flags;
  1736. spin_lock_irqsave(&list->lock, flags);
  1737. __skb_insert(newsk, old->prev, old, list);
  1738. spin_unlock_irqrestore(&list->lock, flags);
  1739. }
  1740. EXPORT_SYMBOL(skb_insert);
  1741. static inline void skb_split_inside_header(struct sk_buff *skb,
  1742. struct sk_buff* skb1,
  1743. const u32 len, const int pos)
  1744. {
  1745. int i;
  1746. skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
  1747. pos - len);
  1748. /* And move data appendix as is. */
  1749. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
  1750. skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
  1751. skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
  1752. skb_shinfo(skb)->nr_frags = 0;
  1753. skb1->data_len = skb->data_len;
  1754. skb1->len += skb1->data_len;
  1755. skb->data_len = 0;
  1756. skb->len = len;
  1757. skb_set_tail_pointer(skb, len);
  1758. }
  1759. static inline void skb_split_no_header(struct sk_buff *skb,
  1760. struct sk_buff* skb1,
  1761. const u32 len, int pos)
  1762. {
  1763. int i, k = 0;
  1764. const int nfrags = skb_shinfo(skb)->nr_frags;
  1765. skb_shinfo(skb)->nr_frags = 0;
  1766. skb1->len = skb1->data_len = skb->len - len;
  1767. skb->len = len;
  1768. skb->data_len = len - pos;
  1769. for (i = 0; i < nfrags; i++) {
  1770. int size = skb_shinfo(skb)->frags[i].size;
  1771. if (pos + size > len) {
  1772. skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
  1773. if (pos < len) {
  1774. /* Split frag.
  1775. * We have two variants in this case:
  1776. * 1. Move all the frag to the second
  1777. * part, if it is possible. F.e.
  1778. * this approach is mandatory for TUX,
  1779. * where splitting is expensive.
  1780. * 2. Split is accurately. We make this.
  1781. */
  1782. get_page(skb_shinfo(skb)->frags[i].page);
  1783. skb_shinfo(skb1)->frags[0].page_offset += len - pos;
  1784. skb_shinfo(skb1)->frags[0].size -= len - pos;
  1785. skb_shinfo(skb)->frags[i].size = len - pos;
  1786. skb_shinfo(skb)->nr_frags++;
  1787. }
  1788. k++;
  1789. } else
  1790. skb_shinfo(skb)->nr_frags++;
  1791. pos += size;
  1792. }
  1793. skb_shinfo(skb1)->nr_frags = k;
  1794. }
  1795. /**
  1796. * skb_split - Split fragmented skb to two parts at length len.
  1797. * @skb: the buffer to split
  1798. * @skb1: the buffer to receive the second part
  1799. * @len: new length for skb
  1800. */
  1801. void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
  1802. {
  1803. int pos = skb_headlen(skb);
  1804. if (len < pos) /* Split line is inside header. */
  1805. skb_split_inside_header(skb, skb1, len, pos);
  1806. else /* Second chunk has no header, nothing to copy. */
  1807. skb_split_no_header(skb, skb1, len, pos);
  1808. }
  1809. EXPORT_SYMBOL(skb_split);
  1810. /* Shifting from/to a cloned skb is a no-go.
  1811. *
  1812. * Caller cannot keep skb_shinfo related pointers past calling here!
  1813. */
  1814. static int skb_prepare_for_shift(struct sk_buff *skb)
  1815. {
  1816. return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1817. }
  1818. /**
  1819. * skb_shift - Shifts paged data partially from skb to another
  1820. * @tgt: buffer into which tail data gets added
  1821. * @skb: buffer from which the paged data comes from
  1822. * @shiftlen: shift up to this many bytes
  1823. *
  1824. * Attempts to shift up to shiftlen worth of bytes, which may be less than
  1825. * the length of the skb, from tgt to skb. Returns number bytes shifted.
  1826. * It's up to caller to free skb if everything was shifted.
  1827. *
  1828. * If @tgt runs out of frags, the whole operation is aborted.
  1829. *
  1830. * Skb cannot include anything else but paged data while tgt is allowed
  1831. * to have non-paged data as well.
  1832. *
  1833. * TODO: full sized shift could be optimized but that would need
  1834. * specialized skb free'er to handle frags without up-to-date nr_frags.
  1835. */
  1836. int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
  1837. {
  1838. int from, to, merge, todo;
  1839. struct skb_frag_struct *fragfrom, *fragto;
  1840. BUG_ON(shiftlen > skb->len);
  1841. BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
  1842. todo = shiftlen;
  1843. from = 0;
  1844. to = skb_shinfo(tgt)->nr_frags;
  1845. fragfrom = &skb_shinfo(skb)->frags[from];
  1846. /* Actual merge is delayed until the point when we know we can
  1847. * commit all, so that we don't have to undo partial changes
  1848. */
  1849. if (!to ||
  1850. !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
  1851. merge = -1;
  1852. } else {
  1853. merge = to - 1;
  1854. todo -= fragfrom->size;
  1855. if (todo < 0) {
  1856. if (skb_prepare_for_shift(skb) ||
  1857. skb_prepare_for_shift(tgt))
  1858. return 0;
  1859. /* All previous frag pointers might be stale! */
  1860. fragfrom = &skb_shinfo(skb)->frags[from];
  1861. fragto = &skb_shinfo(tgt)->frags[merge];
  1862. fragto->size += shiftlen;
  1863. fragfrom->size -= shiftlen;
  1864. fragfrom->page_offset += shiftlen;
  1865. goto onlymerged;
  1866. }
  1867. from++;
  1868. }
  1869. /* Skip full, not-fitting skb to avoid expensive operations */
  1870. if ((shiftlen == skb->len) &&
  1871. (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
  1872. return 0;
  1873. if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
  1874. return 0;
  1875. while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
  1876. if (to == MAX_SKB_FRAGS)
  1877. return 0;
  1878. fragfrom = &skb_shinfo(skb)->frags[from];
  1879. fragto = &skb_shinfo(tgt)->frags[to];
  1880. if (todo >= fragfrom->size) {
  1881. *fragto = *fragfrom;
  1882. todo -= fragfrom->size;
  1883. from++;
  1884. to++;
  1885. } else {
  1886. get_page(fragfrom->page);
  1887. fragto->page = fragfrom->page;
  1888. fragto->page_offset = fragfrom->page_offset;
  1889. fragto->size = todo;
  1890. fragfrom->page_offset += todo;
  1891. fragfrom->size -= todo;
  1892. todo = 0;
  1893. to++;
  1894. break;
  1895. }
  1896. }
  1897. /* Ready to "commit" this state change to tgt */
  1898. skb_shinfo(tgt)->nr_frags = to;
  1899. if (merge >= 0) {
  1900. fragfrom = &skb_shinfo(skb)->frags[0];
  1901. fragto = &skb_shinfo(tgt)->frags[merge];
  1902. fragto->size += fragfrom->size;
  1903. put_page(fragfrom->page);
  1904. }
  1905. /* Reposition in the original skb */
  1906. to = 0;
  1907. while (from < skb_shinfo(skb)->nr_frags)
  1908. skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
  1909. skb_shinfo(skb)->nr_frags = to;
  1910. BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
  1911. onlymerged:
  1912. /* Most likely the tgt won't ever need its checksum anymore, skb on
  1913. * the other hand might need it if it needs to be resent
  1914. */
  1915. tgt->ip_summed = CHECKSUM_PARTIAL;
  1916. skb->ip_summed = CHECKSUM_PARTIAL;
  1917. /* Yak, is it really working this way? Some helper please? */
  1918. skb->len -= shiftlen;
  1919. skb->data_len -= shiftlen;
  1920. skb->truesize -= shiftlen;
  1921. tgt->len += shiftlen;
  1922. tgt->data_len += shiftlen;
  1923. tgt->truesize += shiftlen;
  1924. return shiftlen;
  1925. }
  1926. /**
  1927. * skb_prepare_seq_read - Prepare a sequential read of skb data
  1928. * @skb: the buffer to read
  1929. * @from: lower offset of data to be read
  1930. * @to: upper offset of data to be read
  1931. * @st: state variable
  1932. *
  1933. * Initializes the specified state variable. Must be called before
  1934. * invoking skb_seq_read() for the first time.
  1935. */
  1936. void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
  1937. unsigned int to, struct skb_seq_state *st)
  1938. {
  1939. st->lower_offset = from;
  1940. st->upper_offset = to;
  1941. st->root_skb = st->cur_skb = skb;
  1942. st->frag_idx = st->stepped_offset = 0;
  1943. st->frag_data = NULL;
  1944. }
  1945. EXPORT_SYMBOL(skb_prepare_seq_read);
  1946. /**
  1947. * skb_seq_read - Sequentially read skb data
  1948. * @consumed: number of bytes consumed by the caller so far
  1949. * @data: destination pointer for data to be returned
  1950. * @st: state variable
  1951. *
  1952. * Reads a block of skb data at &consumed relative to the
  1953. * lower offset specified to skb_prepare_seq_read(). Assigns
  1954. * the head of the data block to &data and returns the length
  1955. * of the block or 0 if the end of the skb data or the upper
  1956. * offset has been reached.
  1957. *
  1958. * The caller is not required to consume all of the data
  1959. * returned, i.e. &consumed is typically set to the number
  1960. * of bytes already consumed and the next call to
  1961. * skb_seq_read() will return the remaining part of the block.
  1962. *
  1963. * Note 1: The size of each block of data returned can be arbitary,
  1964. * this limitation is the cost for zerocopy seqeuental
  1965. * reads of potentially non linear data.
  1966. *
  1967. * Note 2: Fragment lists within fragments are not implemented
  1968. * at the moment, state->root_skb could be replaced with
  1969. * a stack for this purpose.
  1970. */
  1971. unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  1972. struct skb_seq_state *st)
  1973. {
  1974. unsigned int block_limit, abs_offset = consumed + st->lower_offset;
  1975. skb_frag_t *frag;
  1976. if (unlikely(abs_offset >= st->upper_offset))
  1977. return 0;
  1978. next_skb:
  1979. block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
  1980. if (abs_offset < block_limit && !st->frag_data) {
  1981. *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
  1982. return block_limit - abs_offset;
  1983. }
  1984. if (st->frag_idx == 0 && !st->frag_data)
  1985. st->stepped_offset += skb_headlen(st->cur_skb);
  1986. while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
  1987. frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
  1988. block_limit = frag->size + st->stepped_offset;
  1989. if (abs_offset < block_limit) {
  1990. if (!st->frag_data)
  1991. st->frag_data = kmap_skb_frag(frag);
  1992. *data = (u8 *) st->frag_data + frag->page_offset +
  1993. (abs_offset - st->stepped_offset);
  1994. return block_limit - abs_offset;
  1995. }
  1996. if (st->frag_data) {
  1997. kunmap_skb_frag(st->frag_data);
  1998. st->frag_data = NULL;
  1999. }
  2000. st->frag_idx++;
  2001. st->stepped_offset += frag->size;
  2002. }
  2003. if (st->frag_data) {
  2004. kunmap_skb_frag(st->frag_data);
  2005. st->frag_data = NULL;
  2006. }
  2007. if (st->root_skb == st->cur_skb && skb_has_frags(st->root_skb)) {
  2008. st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
  2009. st->frag_idx = 0;
  2010. goto next_skb;
  2011. } else if (st->cur_skb->next) {
  2012. st->cur_skb = st->cur_skb->next;
  2013. st->frag_idx = 0;
  2014. goto next_skb;
  2015. }
  2016. return 0;
  2017. }
  2018. EXPORT_SYMBOL(skb_seq_read);
  2019. /**
  2020. * skb_abort_seq_read - Abort a sequential read of skb data
  2021. * @st: state variable
  2022. *
  2023. * Must be called if skb_seq_read() was not called until it
  2024. * returned 0.
  2025. */
  2026. void skb_abort_seq_read(struct skb_seq_state *st)
  2027. {
  2028. if (st->frag_data)
  2029. kunmap_skb_frag(st->frag_data);
  2030. }
  2031. EXPORT_SYMBOL(skb_abort_seq_read);
  2032. #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
  2033. static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
  2034. struct ts_config *conf,
  2035. struct ts_state *state)
  2036. {
  2037. return skb_seq_read(offset, text, TS_SKB_CB(state));
  2038. }
  2039. static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
  2040. {
  2041. skb_abort_seq_read(TS_SKB_CB(state));
  2042. }
  2043. /**
  2044. * skb_find_text - Find a text pattern in skb data
  2045. * @skb: the buffer to look in
  2046. * @from: search offset
  2047. * @to: search limit
  2048. * @config: textsearch configuration
  2049. * @state: uninitialized textsearch state variable
  2050. *
  2051. * Finds a pattern in the skb data according to the specified
  2052. * textsearch configuration. Use textsearch_next() to retrieve
  2053. * subsequent occurrences of the pattern. Returns the offset
  2054. * to the first occurrence or UINT_MAX if no match was found.
  2055. */
  2056. unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  2057. unsigned int to, struct ts_config *config,
  2058. struct ts_state *state)
  2059. {
  2060. unsigned int ret;
  2061. config->get_next_block = skb_ts_get_next_block;
  2062. config->finish = skb_ts_finish;
  2063. skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
  2064. ret = textsearch_find(config, state);
  2065. return (ret <= to - from ? ret : UINT_MAX);
  2066. }
  2067. EXPORT_SYMBOL(skb_find_text);
  2068. /**
  2069. * skb_append_datato_frags: - append the user data to a skb
  2070. * @sk: sock structure
  2071. * @skb: skb structure to be appened with user data.
  2072. * @getfrag: call back function to be used for getting the user data
  2073. * @from: pointer to user message iov
  2074. * @length: length of the iov message
  2075. *
  2076. * Description: This procedure append the user data in the fragment part
  2077. * of the skb if any page alloc fails user this procedure returns -ENOMEM
  2078. */
  2079. int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  2080. int (*getfrag)(void *from, char *to, int offset,
  2081. int len, int odd, struct sk_buff *skb),
  2082. void *from, int length)
  2083. {
  2084. int frg_cnt = 0;
  2085. skb_frag_t *frag = NULL;
  2086. struct page *page = NULL;
  2087. int copy, left;
  2088. int offset = 0;
  2089. int ret;
  2090. do {
  2091. /* Return error if we don't have space for new frag */
  2092. frg_cnt = skb_shinfo(skb)->nr_frags;
  2093. if (frg_cnt >= MAX_SKB_FRAGS)
  2094. return -EFAULT;
  2095. /* allocate a new page for next frag */
  2096. page = alloc_pages(sk->sk_allocation, 0);
  2097. /* If alloc_page fails just return failure and caller will
  2098. * free previous allocated pages by doing kfree_skb()
  2099. */
  2100. if (page == NULL)
  2101. return -ENOMEM;
  2102. /* initialize the next frag */
  2103. sk->sk_sndmsg_page = page;
  2104. sk->sk_sndmsg_off = 0;
  2105. skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
  2106. skb->truesize += PAGE_SIZE;
  2107. atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
  2108. /* get the new initialized frag */
  2109. frg_cnt = skb_shinfo(skb)->nr_frags;
  2110. frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
  2111. /* copy the user data to page */
  2112. left = PAGE_SIZE - frag->page_offset;
  2113. copy = (length > left)? left : length;
  2114. ret = getfrag(from, (page_address(frag->page) +
  2115. frag->page_offset + frag->size),
  2116. offset, copy, 0, skb);
  2117. if (ret < 0)
  2118. return -EFAULT;
  2119. /* copy was successful so update the size parameters */
  2120. sk->sk_sndmsg_off += copy;
  2121. frag->size += copy;
  2122. skb->len += copy;
  2123. skb->data_len += copy;
  2124. offset += copy;
  2125. length -= copy;
  2126. } while (length > 0);
  2127. return 0;
  2128. }
  2129. EXPORT_SYMBOL(skb_append_datato_frags);
  2130. /**
  2131. * skb_pull_rcsum - pull skb and update receive checksum
  2132. * @skb: buffer to update
  2133. * @len: length of data pulled
  2134. *
  2135. * This function performs an skb_pull on the packet and updates
  2136. * the CHECKSUM_COMPLETE checksum. It should be used on
  2137. * receive path processing instead of skb_pull unless you know
  2138. * that the checksum difference is zero (e.g., a valid IP header)
  2139. * or you are setting ip_summed to CHECKSUM_NONE.
  2140. */
  2141. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
  2142. {
  2143. BUG_ON(len > skb->len);
  2144. skb->len -= len;
  2145. BUG_ON(skb->len < skb->data_len);
  2146. skb_postpull_rcsum(skb, skb->data, len);
  2147. return skb->data += len;
  2148. }
  2149. EXPORT_SYMBOL_GPL(skb_pull_rcsum);
  2150. /**
  2151. * skb_segment - Perform protocol segmentation on skb.
  2152. * @skb: buffer to segment
  2153. * @features: features for the output path (see dev->features)
  2154. *
  2155. * This function performs segmentation on the given skb. It returns
  2156. * a pointer to the first in a list of new skbs for the segments.
  2157. * In case of error it returns ERR_PTR(err).
  2158. */
  2159. struct sk_buff *skb_segment(struct sk_buff *skb, int features)
  2160. {
  2161. struct sk_buff *segs = NULL;
  2162. struct sk_buff *tail = NULL;
  2163. struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
  2164. unsigned int mss = skb_shinfo(skb)->gso_size;
  2165. unsigned int doffset = skb->data - skb_mac_header(skb);
  2166. unsigned int offset = doffset;
  2167. unsigned int headroom;
  2168. unsigned int len;
  2169. int sg = features & NETIF_F_SG;
  2170. int nfrags = skb_shinfo(skb)->nr_frags;
  2171. int err = -ENOMEM;
  2172. int i = 0;
  2173. int pos;
  2174. __skb_push(skb, doffset);
  2175. headroom = skb_headroom(skb);
  2176. pos = skb_headlen(skb);
  2177. do {
  2178. struct sk_buff *nskb;
  2179. skb_frag_t *frag;
  2180. int hsize;
  2181. int size;
  2182. len = skb->len - offset;
  2183. if (len > mss)
  2184. len = mss;
  2185. hsize = skb_headlen(skb) - offset;
  2186. if (hsize < 0)
  2187. hsize = 0;
  2188. if (hsize > len || !sg)
  2189. hsize = len;
  2190. if (!hsize && i >= nfrags) {
  2191. BUG_ON(fskb->len != len);
  2192. pos += len;
  2193. nskb = skb_clone(fskb, GFP_ATOMIC);
  2194. fskb = fskb->next;
  2195. if (unlikely(!nskb))
  2196. goto err;
  2197. hsize = skb_end_pointer(nskb) - nskb->head;
  2198. if (skb_cow_head(nskb, doffset + headroom)) {
  2199. kfree_skb(nskb);
  2200. goto err;
  2201. }
  2202. nskb->truesize += skb_end_pointer(nskb) - nskb->head -
  2203. hsize;
  2204. skb_release_head_state(nskb);
  2205. __skb_push(nskb, doffset);
  2206. } else {
  2207. nskb = alloc_skb(hsize + doffset + headroom,
  2208. GFP_ATOMIC);
  2209. if (unlikely(!nskb))
  2210. goto err;
  2211. skb_reserve(nskb, headroom);
  2212. __skb_put(nskb, doffset);
  2213. }
  2214. if (segs)
  2215. tail->next = nskb;
  2216. else
  2217. segs = nskb;
  2218. tail = nskb;
  2219. __copy_skb_header(nskb, skb);
  2220. nskb->mac_len = skb->mac_len;
  2221. skb_reset_mac_header(nskb);
  2222. skb_set_network_header(nskb, skb->mac_len);
  2223. nskb->transport_header = (nskb->network_header +
  2224. skb_network_header_len(skb));
  2225. skb_copy_from_linear_data(skb, nskb->data, doffset);
  2226. if (fskb != skb_shinfo(skb)->frag_list)
  2227. continue;
  2228. if (!sg) {
  2229. nskb->ip_summed = CHECKSUM_NONE;
  2230. nskb->csum = skb_copy_and_csum_bits(skb, offset,
  2231. skb_put(nskb, len),
  2232. len, 0);
  2233. continue;
  2234. }
  2235. frag = skb_shinfo(nskb)->frags;
  2236. skb_copy_from_linear_data_offset(skb, offset,
  2237. skb_put(nskb, hsize), hsize);
  2238. while (pos < offset + len && i < nfrags) {
  2239. *frag = skb_shinfo(skb)->frags[i];
  2240. get_page(frag->page);
  2241. size = frag->size;
  2242. if (pos < offset) {
  2243. frag->page_offset += offset - pos;
  2244. frag->size -= offset - pos;
  2245. }
  2246. skb_shinfo(nskb)->nr_frags++;
  2247. if (pos + size <= offset + len) {
  2248. i++;
  2249. pos += size;
  2250. } else {
  2251. frag->size -= pos + size - (offset + len);
  2252. goto skip_fraglist;
  2253. }
  2254. frag++;
  2255. }
  2256. if (pos < offset + len) {
  2257. struct sk_buff *fskb2 = fskb;
  2258. BUG_ON(pos + fskb->len != offset + len);
  2259. pos += fskb->len;
  2260. fskb = fskb->next;
  2261. if (fskb2->next) {
  2262. fskb2 = skb_clone(fskb2, GFP_ATOMIC);
  2263. if (!fskb2)
  2264. goto err;
  2265. } else
  2266. skb_get(fskb2);
  2267. SKB_FRAG_ASSERT(nskb);
  2268. skb_shinfo(nskb)->frag_list = fskb2;
  2269. }
  2270. skip_fraglist:
  2271. nskb->data_len = len - hsize;
  2272. nskb->len += nskb->data_len;
  2273. nskb->truesize += nskb->data_len;
  2274. } while ((offset += len) < skb->len);
  2275. return segs;
  2276. err:
  2277. while ((skb = segs)) {
  2278. segs = skb->next;
  2279. kfree_skb(skb);
  2280. }
  2281. return ERR_PTR(err);
  2282. }
  2283. EXPORT_SYMBOL_GPL(skb_segment);
  2284. int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
  2285. {
  2286. struct sk_buff *p = *head;
  2287. struct sk_buff *nskb;
  2288. struct skb_shared_info *skbinfo = skb_shinfo(skb);
  2289. struct skb_shared_info *pinfo = skb_shinfo(p);
  2290. unsigned int headroom;
  2291. unsigned int len = skb_gro_len(skb);
  2292. unsigned int offset = skb_gro_offset(skb);
  2293. unsigned int headlen = skb_headlen(skb);
  2294. if (p->len + len >= 65536)
  2295. return -E2BIG;
  2296. if (pinfo->frag_list)
  2297. goto merge;
  2298. else if (headlen <= offset) {
  2299. skb_frag_t *frag;
  2300. skb_frag_t *frag2;
  2301. int i = skbinfo->nr_frags;
  2302. int nr_frags = pinfo->nr_frags + i;
  2303. offset -= headlen;
  2304. if (nr_frags > MAX_SKB_FRAGS)
  2305. return -E2BIG;
  2306. pinfo->nr_frags = nr_frags;
  2307. skbinfo->nr_frags = 0;
  2308. frag = pinfo->frags + nr_frags;
  2309. frag2 = skbinfo->frags + i;
  2310. do {
  2311. *--frag = *--frag2;
  2312. } while (--i);
  2313. frag->page_offset += offset;
  2314. frag->size -= offset;
  2315. skb->truesize -= skb->data_len;
  2316. skb->len -= skb->data_len;
  2317. skb->data_len = 0;
  2318. NAPI_GRO_CB(skb)->free = 1;
  2319. goto done;
  2320. } else if (skb_gro_len(p) != pinfo->gso_size)
  2321. return -E2BIG;
  2322. headroom = skb_headroom(p);
  2323. nskb = netdev_alloc_skb(p->dev, headroom + skb_gro_offset(p));
  2324. if (unlikely(!nskb))
  2325. return -ENOMEM;
  2326. __copy_skb_header(nskb, p);
  2327. nskb->mac_len = p->mac_len;
  2328. skb_reserve(nskb, headroom);
  2329. __skb_put(nskb, skb_gro_offset(p));
  2330. skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
  2331. skb_set_network_header(nskb, skb_network_offset(p));
  2332. skb_set_transport_header(nskb, skb_transport_offset(p));
  2333. __skb_pull(p, skb_gro_offset(p));
  2334. memcpy(skb_mac_header(nskb), skb_mac_header(p),
  2335. p->data - skb_mac_header(p));
  2336. *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
  2337. skb_shinfo(nskb)->frag_list = p;
  2338. skb_shinfo(nskb)->gso_size = pinfo->gso_size;
  2339. pinfo->gso_size = 0;
  2340. skb_header_release(p);
  2341. nskb->prev = p;
  2342. nskb->data_len += p->len;
  2343. nskb->truesize += p->len;
  2344. nskb->len += p->len;
  2345. *head = nskb;
  2346. nskb->next = p->next;
  2347. p->next = NULL;
  2348. p = nskb;
  2349. merge:
  2350. if (offset > headlen) {
  2351. skbinfo->frags[0].page_offset += offset - headlen;
  2352. skbinfo->frags[0].size -= offset - headlen;
  2353. offset = headlen;
  2354. }
  2355. __skb_pull(skb, offset);
  2356. p->prev->next = skb;
  2357. p->prev = skb;
  2358. skb_header_release(skb);
  2359. done:
  2360. NAPI_GRO_CB(p)->count++;
  2361. p->data_len += len;
  2362. p->truesize += len;
  2363. p->len += len;
  2364. NAPI_GRO_CB(skb)->same_flow = 1;
  2365. return 0;
  2366. }
  2367. EXPORT_SYMBOL_GPL(skb_gro_receive);
  2368. void __init skb_init(void)
  2369. {
  2370. skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
  2371. sizeof(struct sk_buff),
  2372. 0,
  2373. SLAB_HWCACHE_ALIGN|SLAB_PANIC,
  2374. NULL);
  2375. skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
  2376. (2*sizeof(struct sk_buff)) +
  2377. sizeof(atomic_t),
  2378. 0,
  2379. SLAB_HWCACHE_ALIGN|SLAB_PANIC,
  2380. NULL);
  2381. }
  2382. /**
  2383. * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
  2384. * @skb: Socket buffer containing the buffers to be mapped
  2385. * @sg: The scatter-gather list to map into
  2386. * @offset: The offset into the buffer's contents to start mapping
  2387. * @len: Length of buffer space to be mapped
  2388. *
  2389. * Fill the specified scatter-gather list with mappings/pointers into a
  2390. * region of the buffer space attached to a socket buffer.
  2391. */
  2392. static int
  2393. __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
  2394. {
  2395. int start = skb_headlen(skb);
  2396. int i, copy = start - offset;
  2397. struct sk_buff *frag_iter;
  2398. int elt = 0;
  2399. if (copy > 0) {
  2400. if (copy > len)
  2401. copy = len;
  2402. sg_set_buf(sg, skb->data + offset, copy);
  2403. elt++;
  2404. if ((len -= copy) == 0)
  2405. return elt;
  2406. offset += copy;
  2407. }
  2408. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2409. int end;
  2410. WARN_ON(start > offset + len);
  2411. end = start + skb_shinfo(skb)->frags[i].size;
  2412. if ((copy = end - offset) > 0) {
  2413. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2414. if (copy > len)
  2415. copy = len;
  2416. sg_set_page(&sg[elt], frag->page, copy,
  2417. frag->page_offset+offset-start);
  2418. elt++;
  2419. if (!(len -= copy))
  2420. return elt;
  2421. offset += copy;
  2422. }
  2423. start = end;
  2424. }
  2425. skb_walk_frags(skb, frag_iter) {
  2426. int end;
  2427. WARN_ON(start > offset + len);
  2428. end = start + frag_iter->len;
  2429. if ((copy = end - offset) > 0) {
  2430. if (copy > len)
  2431. copy = len;
  2432. elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
  2433. copy);
  2434. if ((len -= copy) == 0)
  2435. return elt;
  2436. offset += copy;
  2437. }
  2438. start = end;
  2439. }
  2440. BUG_ON(len);
  2441. return elt;
  2442. }
  2443. int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
  2444. {
  2445. int nsg = __skb_to_sgvec(skb, sg, offset, len);
  2446. sg_mark_end(&sg[nsg - 1]);
  2447. return nsg;
  2448. }
  2449. EXPORT_SYMBOL_GPL(skb_to_sgvec);
  2450. /**
  2451. * skb_cow_data - Check that a socket buffer's data buffers are writable
  2452. * @skb: The socket buffer to check.
  2453. * @tailbits: Amount of trailing space to be added
  2454. * @trailer: Returned pointer to the skb where the @tailbits space begins
  2455. *
  2456. * Make sure that the data buffers attached to a socket buffer are
  2457. * writable. If they are not, private copies are made of the data buffers
  2458. * and the socket buffer is set to use these instead.
  2459. *
  2460. * If @tailbits is given, make sure that there is space to write @tailbits
  2461. * bytes of data beyond current end of socket buffer. @trailer will be
  2462. * set to point to the skb in which this space begins.
  2463. *
  2464. * The number of scatterlist elements required to completely map the
  2465. * COW'd and extended socket buffer will be returned.
  2466. */
  2467. int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
  2468. {
  2469. int copyflag;
  2470. int elt;
  2471. struct sk_buff *skb1, **skb_p;
  2472. /* If skb is cloned or its head is paged, reallocate
  2473. * head pulling out all the pages (pages are considered not writable
  2474. * at the moment even if they are anonymous).
  2475. */
  2476. if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
  2477. __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
  2478. return -ENOMEM;
  2479. /* Easy case. Most of packets will go this way. */
  2480. if (!skb_has_frags(skb)) {
  2481. /* A little of trouble, not enough of space for trailer.
  2482. * This should not happen, when stack is tuned to generate
  2483. * good frames. OK, on miss we reallocate and reserve even more
  2484. * space, 128 bytes is fair. */
  2485. if (skb_tailroom(skb) < tailbits &&
  2486. pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
  2487. return -ENOMEM;
  2488. /* Voila! */
  2489. *trailer = skb;
  2490. return 1;
  2491. }
  2492. /* Misery. We are in troubles, going to mincer fragments... */
  2493. elt = 1;
  2494. skb_p = &skb_shinfo(skb)->frag_list;
  2495. copyflag = 0;
  2496. while ((skb1 = *skb_p) != NULL) {
  2497. int ntail = 0;
  2498. /* The fragment is partially pulled by someone,
  2499. * this can happen on input. Copy it and everything
  2500. * after it. */
  2501. if (skb_shared(skb1))
  2502. copyflag = 1;
  2503. /* If the skb is the last, worry about trailer. */
  2504. if (skb1->next == NULL && tailbits) {
  2505. if (skb_shinfo(skb1)->nr_frags ||
  2506. skb_has_frags(skb1) ||
  2507. skb_tailroom(skb1) < tailbits)
  2508. ntail = tailbits + 128;
  2509. }
  2510. if (copyflag ||
  2511. skb_cloned(skb1) ||
  2512. ntail ||
  2513. skb_shinfo(skb1)->nr_frags ||
  2514. skb_has_frags(skb1)) {
  2515. struct sk_buff *skb2;
  2516. /* Fuck, we are miserable poor guys... */
  2517. if (ntail == 0)
  2518. skb2 = skb_copy(skb1, GFP_ATOMIC);
  2519. else
  2520. skb2 = skb_copy_expand(skb1,
  2521. skb_headroom(skb1),
  2522. ntail,
  2523. GFP_ATOMIC);
  2524. if (unlikely(skb2 == NULL))
  2525. return -ENOMEM;
  2526. if (skb1->sk)
  2527. skb_set_owner_w(skb2, skb1->sk);
  2528. /* Looking around. Are we still alive?
  2529. * OK, link new skb, drop old one */
  2530. skb2->next = skb1->next;
  2531. *skb_p = skb2;
  2532. kfree_skb(skb1);
  2533. skb1 = skb2;
  2534. }
  2535. elt++;
  2536. *trailer = skb1;
  2537. skb_p = &skb1->next;
  2538. }
  2539. return elt;
  2540. }
  2541. EXPORT_SYMBOL_GPL(skb_cow_data);
  2542. static void sock_rmem_free(struct sk_buff *skb)
  2543. {
  2544. struct sock *sk = skb->sk;
  2545. atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
  2546. }
  2547. /*
  2548. * Note: We dont mem charge error packets (no sk_forward_alloc changes)
  2549. */
  2550. int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
  2551. {
  2552. if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
  2553. (unsigned)sk->sk_rcvbuf)
  2554. return -ENOMEM;
  2555. skb_orphan(skb);
  2556. skb->sk = sk;
  2557. skb->destructor = sock_rmem_free;
  2558. atomic_add(skb->truesize, &sk->sk_rmem_alloc);
  2559. skb_queue_tail(&sk->sk_error_queue, skb);
  2560. if (!sock_flag(sk, SOCK_DEAD))
  2561. sk->sk_data_ready(sk, skb->len);
  2562. return 0;
  2563. }
  2564. EXPORT_SYMBOL(sock_queue_err_skb);
  2565. void skb_tstamp_tx(struct sk_buff *orig_skb,
  2566. struct skb_shared_hwtstamps *hwtstamps)
  2567. {
  2568. struct sock *sk = orig_skb->sk;
  2569. struct sock_exterr_skb *serr;
  2570. struct sk_buff *skb;
  2571. int err;
  2572. if (!sk)
  2573. return;
  2574. skb = skb_clone(orig_skb, GFP_ATOMIC);
  2575. if (!skb)
  2576. return;
  2577. if (hwtstamps) {
  2578. *skb_hwtstamps(skb) =
  2579. *hwtstamps;
  2580. } else {
  2581. /*
  2582. * no hardware time stamps available,
  2583. * so keep the skb_shared_tx and only
  2584. * store software time stamp
  2585. */
  2586. skb->tstamp = ktime_get_real();
  2587. }
  2588. serr = SKB_EXT_ERR(skb);
  2589. memset(serr, 0, sizeof(*serr));
  2590. serr->ee.ee_errno = ENOMSG;
  2591. serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
  2592. err = sock_queue_err_skb(sk, skb);
  2593. if (err)
  2594. kfree_skb(skb);
  2595. }
  2596. EXPORT_SYMBOL_GPL(skb_tstamp_tx);
  2597. /**
  2598. * skb_partial_csum_set - set up and verify partial csum values for packet
  2599. * @skb: the skb to set
  2600. * @start: the number of bytes after skb->data to start checksumming.
  2601. * @off: the offset from start to place the checksum.
  2602. *
  2603. * For untrusted partially-checksummed packets, we need to make sure the values
  2604. * for skb->csum_start and skb->csum_offset are valid so we don't oops.
  2605. *
  2606. * This function checks and sets those values and skb->ip_summed: if this
  2607. * returns false you should drop the packet.
  2608. */
  2609. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
  2610. {
  2611. if (unlikely(start > skb_headlen(skb)) ||
  2612. unlikely((int)start + off > skb_headlen(skb) - 2)) {
  2613. if (net_ratelimit())
  2614. printk(KERN_WARNING
  2615. "bad partial csum: csum=%u/%u len=%u\n",
  2616. start, off, skb_headlen(skb));
  2617. return false;
  2618. }
  2619. skb->ip_summed = CHECKSUM_PARTIAL;
  2620. skb->csum_start = skb_headroom(skb) + start;
  2621. skb->csum_offset = off;
  2622. return true;
  2623. }
  2624. EXPORT_SYMBOL_GPL(skb_partial_csum_set);
  2625. void __skb_warn_lro_forwarding(const struct sk_buff *skb)
  2626. {
  2627. if (net_ratelimit())
  2628. pr_warning("%s: received packets cannot be forwarded"
  2629. " while LRO is enabled\n", skb->dev->name);
  2630. }
  2631. EXPORT_SYMBOL(__skb_warn_lro_forwarding);