fs-writeback.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346
  1. /*
  2. * fs/fs-writeback.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. *
  6. * Contains all the functions related to writing back and waiting
  7. * upon dirty inodes against superblocks, and writing back dirty
  8. * pages against inodes. ie: data writeback. Writeout of the
  9. * inode itself is not handled here.
  10. *
  11. * 10Apr2002 Andrew Morton
  12. * Split out of fs/inode.c
  13. * Additions for address_space-based writeback
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/module.h>
  17. #include <linux/spinlock.h>
  18. #include <linux/slab.h>
  19. #include <linux/sched.h>
  20. #include <linux/fs.h>
  21. #include <linux/mm.h>
  22. #include <linux/kthread.h>
  23. #include <linux/freezer.h>
  24. #include <linux/writeback.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/backing-dev.h>
  27. #include <linux/buffer_head.h>
  28. #include "internal.h"
  29. #define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info)
  30. /*
  31. * We don't actually have pdflush, but this one is exported though /proc...
  32. */
  33. int nr_pdflush_threads;
  34. /*
  35. * Passed into wb_writeback(), essentially a subset of writeback_control
  36. */
  37. struct wb_writeback_args {
  38. long nr_pages;
  39. struct super_block *sb;
  40. enum writeback_sync_modes sync_mode;
  41. unsigned int for_kupdate:1;
  42. unsigned int range_cyclic:1;
  43. unsigned int for_background:1;
  44. unsigned int sb_pinned:1;
  45. };
  46. /*
  47. * Work items for the bdi_writeback threads
  48. */
  49. struct bdi_work {
  50. struct list_head list; /* pending work list */
  51. struct rcu_head rcu_head; /* for RCU free/clear of work */
  52. unsigned long seen; /* threads that have seen this work */
  53. atomic_t pending; /* number of threads still to do work */
  54. struct wb_writeback_args args; /* writeback arguments */
  55. unsigned long state; /* flag bits, see WS_* */
  56. };
  57. enum {
  58. WS_USED_B = 0,
  59. WS_ONSTACK_B,
  60. };
  61. #define WS_USED (1 << WS_USED_B)
  62. #define WS_ONSTACK (1 << WS_ONSTACK_B)
  63. static inline bool bdi_work_on_stack(struct bdi_work *work)
  64. {
  65. return test_bit(WS_ONSTACK_B, &work->state);
  66. }
  67. static inline void bdi_work_init(struct bdi_work *work,
  68. struct wb_writeback_args *args)
  69. {
  70. INIT_RCU_HEAD(&work->rcu_head);
  71. work->args = *args;
  72. work->state = WS_USED;
  73. }
  74. /**
  75. * writeback_in_progress - determine whether there is writeback in progress
  76. * @bdi: the device's backing_dev_info structure.
  77. *
  78. * Determine whether there is writeback waiting to be handled against a
  79. * backing device.
  80. */
  81. int writeback_in_progress(struct backing_dev_info *bdi)
  82. {
  83. return !list_empty(&bdi->work_list);
  84. }
  85. static void bdi_work_clear(struct bdi_work *work)
  86. {
  87. clear_bit(WS_USED_B, &work->state);
  88. smp_mb__after_clear_bit();
  89. /*
  90. * work can have disappeared at this point. bit waitq functions
  91. * should be able to tolerate this, provided bdi_sched_wait does
  92. * not dereference it's pointer argument.
  93. */
  94. wake_up_bit(&work->state, WS_USED_B);
  95. }
  96. static void bdi_work_free(struct rcu_head *head)
  97. {
  98. struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);
  99. if (!bdi_work_on_stack(work))
  100. kfree(work);
  101. else
  102. bdi_work_clear(work);
  103. }
  104. static void wb_work_complete(struct bdi_work *work)
  105. {
  106. const enum writeback_sync_modes sync_mode = work->args.sync_mode;
  107. int onstack = bdi_work_on_stack(work);
  108. /*
  109. * For allocated work, we can clear the done/seen bit right here.
  110. * For on-stack work, we need to postpone both the clear and free
  111. * to after the RCU grace period, since the stack could be invalidated
  112. * as soon as bdi_work_clear() has done the wakeup.
  113. */
  114. if (!onstack)
  115. bdi_work_clear(work);
  116. if (sync_mode == WB_SYNC_NONE || onstack)
  117. call_rcu(&work->rcu_head, bdi_work_free);
  118. }
  119. static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
  120. {
  121. /*
  122. * The caller has retrieved the work arguments from this work,
  123. * drop our reference. If this is the last ref, delete and free it
  124. */
  125. if (atomic_dec_and_test(&work->pending)) {
  126. struct backing_dev_info *bdi = wb->bdi;
  127. spin_lock(&bdi->wb_lock);
  128. list_del_rcu(&work->list);
  129. spin_unlock(&bdi->wb_lock);
  130. wb_work_complete(work);
  131. }
  132. }
  133. static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
  134. {
  135. work->seen = bdi->wb_mask;
  136. BUG_ON(!work->seen);
  137. atomic_set(&work->pending, bdi->wb_cnt);
  138. BUG_ON(!bdi->wb_cnt);
  139. /*
  140. * list_add_tail_rcu() contains the necessary barriers to
  141. * make sure the above stores are seen before the item is
  142. * noticed on the list
  143. */
  144. spin_lock(&bdi->wb_lock);
  145. list_add_tail_rcu(&work->list, &bdi->work_list);
  146. spin_unlock(&bdi->wb_lock);
  147. /*
  148. * If the default thread isn't there, make sure we add it. When
  149. * it gets created and wakes up, we'll run this work.
  150. */
  151. if (unlikely(list_empty_careful(&bdi->wb_list)))
  152. wake_up_process(default_backing_dev_info.wb.task);
  153. else {
  154. struct bdi_writeback *wb = &bdi->wb;
  155. if (wb->task)
  156. wake_up_process(wb->task);
  157. }
  158. }
  159. /*
  160. * Used for on-stack allocated work items. The caller needs to wait until
  161. * the wb threads have acked the work before it's safe to continue.
  162. */
  163. static void bdi_wait_on_work_clear(struct bdi_work *work)
  164. {
  165. wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait,
  166. TASK_UNINTERRUPTIBLE);
  167. }
  168. static void bdi_alloc_queue_work(struct backing_dev_info *bdi,
  169. struct wb_writeback_args *args,
  170. int wait)
  171. {
  172. struct bdi_work *work;
  173. /*
  174. * This is WB_SYNC_NONE writeback, so if allocation fails just
  175. * wakeup the thread for old dirty data writeback
  176. */
  177. work = kmalloc(sizeof(*work), GFP_ATOMIC);
  178. if (work) {
  179. bdi_work_init(work, args);
  180. bdi_queue_work(bdi, work);
  181. if (wait)
  182. bdi_wait_on_work_clear(work);
  183. } else {
  184. struct bdi_writeback *wb = &bdi->wb;
  185. if (wb->task)
  186. wake_up_process(wb->task);
  187. }
  188. }
  189. /**
  190. * bdi_sync_writeback - start and wait for writeback
  191. * @bdi: the backing device to write from
  192. * @sb: write inodes from this super_block
  193. *
  194. * Description:
  195. * This does WB_SYNC_ALL data integrity writeback and waits for the
  196. * IO to complete. Callers must hold the sb s_umount semaphore for
  197. * reading, to avoid having the super disappear before we are done.
  198. */
  199. static void bdi_sync_writeback(struct backing_dev_info *bdi,
  200. struct super_block *sb)
  201. {
  202. struct wb_writeback_args args = {
  203. .sb = sb,
  204. .sync_mode = WB_SYNC_ALL,
  205. .nr_pages = LONG_MAX,
  206. .range_cyclic = 0,
  207. /*
  208. * Setting sb_pinned is not necessary for WB_SYNC_ALL, but
  209. * lets make it explicitly clear.
  210. */
  211. .sb_pinned = 1,
  212. };
  213. struct bdi_work work;
  214. bdi_work_init(&work, &args);
  215. work.state |= WS_ONSTACK;
  216. bdi_queue_work(bdi, &work);
  217. bdi_wait_on_work_clear(&work);
  218. }
  219. /**
  220. * bdi_start_writeback - start writeback
  221. * @bdi: the backing device to write from
  222. * @sb: write inodes from this super_block
  223. * @nr_pages: the number of pages to write
  224. * @sb_locked: caller already holds sb umount sem.
  225. *
  226. * Description:
  227. * This does WB_SYNC_NONE opportunistic writeback. The IO is only
  228. * started when this function returns, we make no guarentees on
  229. * completion. Caller specifies whether sb umount sem is held already or not.
  230. *
  231. */
  232. void bdi_start_writeback(struct backing_dev_info *bdi, struct super_block *sb,
  233. long nr_pages, int sb_locked)
  234. {
  235. struct wb_writeback_args args = {
  236. .sb = sb,
  237. .sync_mode = WB_SYNC_NONE,
  238. .nr_pages = nr_pages,
  239. .range_cyclic = 1,
  240. .sb_pinned = sb_locked,
  241. };
  242. /*
  243. * We treat @nr_pages=0 as the special case to do background writeback,
  244. * ie. to sync pages until the background dirty threshold is reached.
  245. */
  246. if (!nr_pages) {
  247. args.nr_pages = LONG_MAX;
  248. args.for_background = 1;
  249. }
  250. bdi_alloc_queue_work(bdi, &args, sb_locked);
  251. }
  252. /*
  253. * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
  254. * furthest end of its superblock's dirty-inode list.
  255. *
  256. * Before stamping the inode's ->dirtied_when, we check to see whether it is
  257. * already the most-recently-dirtied inode on the b_dirty list. If that is
  258. * the case then the inode must have been redirtied while it was being written
  259. * out and we don't reset its dirtied_when.
  260. */
  261. static void redirty_tail(struct inode *inode)
  262. {
  263. struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
  264. if (!list_empty(&wb->b_dirty)) {
  265. struct inode *tail;
  266. tail = list_entry(wb->b_dirty.next, struct inode, i_list);
  267. if (time_before(inode->dirtied_when, tail->dirtied_when))
  268. inode->dirtied_when = jiffies;
  269. }
  270. list_move(&inode->i_list, &wb->b_dirty);
  271. }
  272. /*
  273. * requeue inode for re-scanning after bdi->b_io list is exhausted.
  274. */
  275. static void requeue_io(struct inode *inode)
  276. {
  277. struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
  278. list_move(&inode->i_list, &wb->b_more_io);
  279. }
  280. static void inode_sync_complete(struct inode *inode)
  281. {
  282. /*
  283. * Prevent speculative execution through spin_unlock(&inode_lock);
  284. */
  285. smp_mb();
  286. wake_up_bit(&inode->i_state, __I_SYNC);
  287. }
  288. static bool inode_dirtied_after(struct inode *inode, unsigned long t)
  289. {
  290. bool ret = time_after(inode->dirtied_when, t);
  291. #ifndef CONFIG_64BIT
  292. /*
  293. * For inodes being constantly redirtied, dirtied_when can get stuck.
  294. * It _appears_ to be in the future, but is actually in distant past.
  295. * This test is necessary to prevent such wrapped-around relative times
  296. * from permanently stopping the whole bdi writeback.
  297. */
  298. ret = ret && time_before_eq(inode->dirtied_when, jiffies);
  299. #endif
  300. return ret;
  301. }
  302. /*
  303. * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
  304. */
  305. static void move_expired_inodes(struct list_head *delaying_queue,
  306. struct list_head *dispatch_queue,
  307. unsigned long *older_than_this)
  308. {
  309. LIST_HEAD(tmp);
  310. struct list_head *pos, *node;
  311. struct super_block *sb = NULL;
  312. struct inode *inode;
  313. int do_sb_sort = 0;
  314. while (!list_empty(delaying_queue)) {
  315. inode = list_entry(delaying_queue->prev, struct inode, i_list);
  316. if (older_than_this &&
  317. inode_dirtied_after(inode, *older_than_this))
  318. break;
  319. if (sb && sb != inode->i_sb)
  320. do_sb_sort = 1;
  321. sb = inode->i_sb;
  322. list_move(&inode->i_list, &tmp);
  323. }
  324. /* just one sb in list, splice to dispatch_queue and we're done */
  325. if (!do_sb_sort) {
  326. list_splice(&tmp, dispatch_queue);
  327. return;
  328. }
  329. /* Move inodes from one superblock together */
  330. while (!list_empty(&tmp)) {
  331. inode = list_entry(tmp.prev, struct inode, i_list);
  332. sb = inode->i_sb;
  333. list_for_each_prev_safe(pos, node, &tmp) {
  334. inode = list_entry(pos, struct inode, i_list);
  335. if (inode->i_sb == sb)
  336. list_move(&inode->i_list, dispatch_queue);
  337. }
  338. }
  339. }
  340. /*
  341. * Queue all expired dirty inodes for io, eldest first.
  342. */
  343. static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
  344. {
  345. list_splice_init(&wb->b_more_io, wb->b_io.prev);
  346. move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
  347. }
  348. static int write_inode(struct inode *inode, struct writeback_control *wbc)
  349. {
  350. if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
  351. return inode->i_sb->s_op->write_inode(inode, wbc);
  352. return 0;
  353. }
  354. /*
  355. * Wait for writeback on an inode to complete.
  356. */
  357. static void inode_wait_for_writeback(struct inode *inode)
  358. {
  359. DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
  360. wait_queue_head_t *wqh;
  361. wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
  362. while (inode->i_state & I_SYNC) {
  363. spin_unlock(&inode_lock);
  364. __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
  365. spin_lock(&inode_lock);
  366. }
  367. }
  368. /*
  369. * Write out an inode's dirty pages. Called under inode_lock. Either the
  370. * caller has ref on the inode (either via __iget or via syscall against an fd)
  371. * or the inode has I_WILL_FREE set (via generic_forget_inode)
  372. *
  373. * If `wait' is set, wait on the writeout.
  374. *
  375. * The whole writeout design is quite complex and fragile. We want to avoid
  376. * starvation of particular inodes when others are being redirtied, prevent
  377. * livelocks, etc.
  378. *
  379. * Called under inode_lock.
  380. */
  381. static int
  382. writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
  383. {
  384. struct address_space *mapping = inode->i_mapping;
  385. unsigned dirty;
  386. int ret;
  387. if (!atomic_read(&inode->i_count))
  388. WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
  389. else
  390. WARN_ON(inode->i_state & I_WILL_FREE);
  391. if (inode->i_state & I_SYNC) {
  392. /*
  393. * If this inode is locked for writeback and we are not doing
  394. * writeback-for-data-integrity, move it to b_more_io so that
  395. * writeback can proceed with the other inodes on s_io.
  396. *
  397. * We'll have another go at writing back this inode when we
  398. * completed a full scan of b_io.
  399. */
  400. if (wbc->sync_mode != WB_SYNC_ALL) {
  401. requeue_io(inode);
  402. return 0;
  403. }
  404. /*
  405. * It's a data-integrity sync. We must wait.
  406. */
  407. inode_wait_for_writeback(inode);
  408. }
  409. BUG_ON(inode->i_state & I_SYNC);
  410. /* Set I_SYNC, reset I_DIRTY_PAGES */
  411. inode->i_state |= I_SYNC;
  412. inode->i_state &= ~I_DIRTY_PAGES;
  413. spin_unlock(&inode_lock);
  414. ret = do_writepages(mapping, wbc);
  415. /*
  416. * Make sure to wait on the data before writing out the metadata.
  417. * This is important for filesystems that modify metadata on data
  418. * I/O completion.
  419. */
  420. if (wbc->sync_mode == WB_SYNC_ALL) {
  421. int err = filemap_fdatawait(mapping);
  422. if (ret == 0)
  423. ret = err;
  424. }
  425. /*
  426. * Some filesystems may redirty the inode during the writeback
  427. * due to delalloc, clear dirty metadata flags right before
  428. * write_inode()
  429. */
  430. spin_lock(&inode_lock);
  431. dirty = inode->i_state & I_DIRTY;
  432. inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
  433. spin_unlock(&inode_lock);
  434. /* Don't write the inode if only I_DIRTY_PAGES was set */
  435. if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
  436. int err = write_inode(inode, wbc);
  437. if (ret == 0)
  438. ret = err;
  439. }
  440. spin_lock(&inode_lock);
  441. inode->i_state &= ~I_SYNC;
  442. if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
  443. if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
  444. /*
  445. * More pages get dirtied by a fast dirtier.
  446. */
  447. goto select_queue;
  448. } else if (inode->i_state & I_DIRTY) {
  449. /*
  450. * At least XFS will redirty the inode during the
  451. * writeback (delalloc) and on io completion (isize).
  452. */
  453. redirty_tail(inode);
  454. } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
  455. /*
  456. * We didn't write back all the pages. nfs_writepages()
  457. * sometimes bales out without doing anything. Redirty
  458. * the inode; Move it from b_io onto b_more_io/b_dirty.
  459. */
  460. /*
  461. * akpm: if the caller was the kupdate function we put
  462. * this inode at the head of b_dirty so it gets first
  463. * consideration. Otherwise, move it to the tail, for
  464. * the reasons described there. I'm not really sure
  465. * how much sense this makes. Presumably I had a good
  466. * reasons for doing it this way, and I'd rather not
  467. * muck with it at present.
  468. */
  469. if (wbc->for_kupdate) {
  470. /*
  471. * For the kupdate function we move the inode
  472. * to b_more_io so it will get more writeout as
  473. * soon as the queue becomes uncongested.
  474. */
  475. inode->i_state |= I_DIRTY_PAGES;
  476. select_queue:
  477. if (wbc->nr_to_write <= 0) {
  478. /*
  479. * slice used up: queue for next turn
  480. */
  481. requeue_io(inode);
  482. } else {
  483. /*
  484. * somehow blocked: retry later
  485. */
  486. redirty_tail(inode);
  487. }
  488. } else {
  489. /*
  490. * Otherwise fully redirty the inode so that
  491. * other inodes on this superblock will get some
  492. * writeout. Otherwise heavy writing to one
  493. * file would indefinitely suspend writeout of
  494. * all the other files.
  495. */
  496. inode->i_state |= I_DIRTY_PAGES;
  497. redirty_tail(inode);
  498. }
  499. } else if (atomic_read(&inode->i_count)) {
  500. /*
  501. * The inode is clean, inuse
  502. */
  503. list_move(&inode->i_list, &inode_in_use);
  504. } else {
  505. /*
  506. * The inode is clean, unused
  507. */
  508. list_move(&inode->i_list, &inode_unused);
  509. }
  510. }
  511. inode_sync_complete(inode);
  512. return ret;
  513. }
  514. static void unpin_sb_for_writeback(struct super_block *sb)
  515. {
  516. up_read(&sb->s_umount);
  517. put_super(sb);
  518. }
  519. enum sb_pin_state {
  520. SB_PINNED,
  521. SB_NOT_PINNED,
  522. SB_PIN_FAILED
  523. };
  524. /*
  525. * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
  526. * before calling writeback. So make sure that we do pin it, so it doesn't
  527. * go away while we are writing inodes from it.
  528. */
  529. static enum sb_pin_state pin_sb_for_writeback(struct writeback_control *wbc,
  530. struct super_block *sb)
  531. {
  532. /*
  533. * Caller must already hold the ref for this
  534. */
  535. if (wbc->sync_mode == WB_SYNC_ALL || wbc->sb_pinned) {
  536. WARN_ON(!rwsem_is_locked(&sb->s_umount));
  537. return SB_NOT_PINNED;
  538. }
  539. spin_lock(&sb_lock);
  540. sb->s_count++;
  541. if (down_read_trylock(&sb->s_umount)) {
  542. if (sb->s_root) {
  543. spin_unlock(&sb_lock);
  544. return SB_PINNED;
  545. }
  546. /*
  547. * umounted, drop rwsem again and fall through to failure
  548. */
  549. up_read(&sb->s_umount);
  550. }
  551. sb->s_count--;
  552. spin_unlock(&sb_lock);
  553. return SB_PIN_FAILED;
  554. }
  555. /*
  556. * Write a portion of b_io inodes which belong to @sb.
  557. * If @wbc->sb != NULL, then find and write all such
  558. * inodes. Otherwise write only ones which go sequentially
  559. * in reverse order.
  560. * Return 1, if the caller writeback routine should be
  561. * interrupted. Otherwise return 0.
  562. */
  563. static int writeback_sb_inodes(struct super_block *sb,
  564. struct bdi_writeback *wb,
  565. struct writeback_control *wbc)
  566. {
  567. while (!list_empty(&wb->b_io)) {
  568. long pages_skipped;
  569. struct inode *inode = list_entry(wb->b_io.prev,
  570. struct inode, i_list);
  571. if (wbc->sb && sb != inode->i_sb) {
  572. /* super block given and doesn't
  573. match, skip this inode */
  574. redirty_tail(inode);
  575. continue;
  576. }
  577. if (sb != inode->i_sb)
  578. /* finish with this superblock */
  579. return 0;
  580. if (inode->i_state & (I_NEW | I_WILL_FREE)) {
  581. requeue_io(inode);
  582. continue;
  583. }
  584. /*
  585. * Was this inode dirtied after sync_sb_inodes was called?
  586. * This keeps sync from extra jobs and livelock.
  587. */
  588. if (inode_dirtied_after(inode, wbc->wb_start))
  589. return 1;
  590. BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
  591. __iget(inode);
  592. pages_skipped = wbc->pages_skipped;
  593. writeback_single_inode(inode, wbc);
  594. if (wbc->pages_skipped != pages_skipped) {
  595. /*
  596. * writeback is not making progress due to locked
  597. * buffers. Skip this inode for now.
  598. */
  599. redirty_tail(inode);
  600. }
  601. spin_unlock(&inode_lock);
  602. iput(inode);
  603. cond_resched();
  604. spin_lock(&inode_lock);
  605. if (wbc->nr_to_write <= 0) {
  606. wbc->more_io = 1;
  607. return 1;
  608. }
  609. if (!list_empty(&wb->b_more_io))
  610. wbc->more_io = 1;
  611. }
  612. /* b_io is empty */
  613. return 1;
  614. }
  615. static void writeback_inodes_wb(struct bdi_writeback *wb,
  616. struct writeback_control *wbc)
  617. {
  618. int ret = 0;
  619. wbc->wb_start = jiffies; /* livelock avoidance */
  620. spin_lock(&inode_lock);
  621. if (!wbc->for_kupdate || list_empty(&wb->b_io))
  622. queue_io(wb, wbc->older_than_this);
  623. while (!list_empty(&wb->b_io)) {
  624. struct inode *inode = list_entry(wb->b_io.prev,
  625. struct inode, i_list);
  626. struct super_block *sb = inode->i_sb;
  627. enum sb_pin_state state;
  628. if (wbc->sb && sb != wbc->sb) {
  629. /* super block given and doesn't
  630. match, skip this inode */
  631. redirty_tail(inode);
  632. continue;
  633. }
  634. state = pin_sb_for_writeback(wbc, sb);
  635. if (state == SB_PIN_FAILED) {
  636. requeue_io(inode);
  637. continue;
  638. }
  639. ret = writeback_sb_inodes(sb, wb, wbc);
  640. if (state == SB_PINNED)
  641. unpin_sb_for_writeback(sb);
  642. if (ret)
  643. break;
  644. }
  645. spin_unlock(&inode_lock);
  646. /* Leave any unwritten inodes on b_io */
  647. }
  648. void writeback_inodes_wbc(struct writeback_control *wbc)
  649. {
  650. struct backing_dev_info *bdi = wbc->bdi;
  651. writeback_inodes_wb(&bdi->wb, wbc);
  652. }
  653. /*
  654. * The maximum number of pages to writeout in a single bdi flush/kupdate
  655. * operation. We do this so we don't hold I_SYNC against an inode for
  656. * enormous amounts of time, which would block a userspace task which has
  657. * been forced to throttle against that inode. Also, the code reevaluates
  658. * the dirty each time it has written this many pages.
  659. */
  660. #define MAX_WRITEBACK_PAGES 1024
  661. static inline bool over_bground_thresh(void)
  662. {
  663. unsigned long background_thresh, dirty_thresh;
  664. get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
  665. return (global_page_state(NR_FILE_DIRTY) +
  666. global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
  667. }
  668. /*
  669. * Explicit flushing or periodic writeback of "old" data.
  670. *
  671. * Define "old": the first time one of an inode's pages is dirtied, we mark the
  672. * dirtying-time in the inode's address_space. So this periodic writeback code
  673. * just walks the superblock inode list, writing back any inodes which are
  674. * older than a specific point in time.
  675. *
  676. * Try to run once per dirty_writeback_interval. But if a writeback event
  677. * takes longer than a dirty_writeback_interval interval, then leave a
  678. * one-second gap.
  679. *
  680. * older_than_this takes precedence over nr_to_write. So we'll only write back
  681. * all dirty pages if they are all attached to "old" mappings.
  682. */
  683. static long wb_writeback(struct bdi_writeback *wb,
  684. struct wb_writeback_args *args)
  685. {
  686. struct writeback_control wbc = {
  687. .bdi = wb->bdi,
  688. .sb = args->sb,
  689. .sync_mode = args->sync_mode,
  690. .older_than_this = NULL,
  691. .for_kupdate = args->for_kupdate,
  692. .for_background = args->for_background,
  693. .range_cyclic = args->range_cyclic,
  694. .sb_pinned = args->sb_pinned,
  695. };
  696. unsigned long oldest_jif;
  697. long wrote = 0;
  698. struct inode *inode;
  699. if (wbc.for_kupdate) {
  700. wbc.older_than_this = &oldest_jif;
  701. oldest_jif = jiffies -
  702. msecs_to_jiffies(dirty_expire_interval * 10);
  703. }
  704. if (!wbc.range_cyclic) {
  705. wbc.range_start = 0;
  706. wbc.range_end = LLONG_MAX;
  707. }
  708. for (;;) {
  709. /*
  710. * Stop writeback when nr_pages has been consumed
  711. */
  712. if (args->nr_pages <= 0)
  713. break;
  714. /*
  715. * For background writeout, stop when we are below the
  716. * background dirty threshold
  717. */
  718. if (args->for_background && !over_bground_thresh())
  719. break;
  720. wbc.more_io = 0;
  721. wbc.nr_to_write = MAX_WRITEBACK_PAGES;
  722. wbc.pages_skipped = 0;
  723. writeback_inodes_wb(wb, &wbc);
  724. args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
  725. wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
  726. /*
  727. * If we consumed everything, see if we have more
  728. */
  729. if (wbc.nr_to_write <= 0)
  730. continue;
  731. /*
  732. * Didn't write everything and we don't have more IO, bail
  733. */
  734. if (!wbc.more_io)
  735. break;
  736. /*
  737. * Did we write something? Try for more
  738. */
  739. if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
  740. continue;
  741. /*
  742. * Nothing written. Wait for some inode to
  743. * become available for writeback. Otherwise
  744. * we'll just busyloop.
  745. */
  746. spin_lock(&inode_lock);
  747. if (!list_empty(&wb->b_more_io)) {
  748. inode = list_entry(wb->b_more_io.prev,
  749. struct inode, i_list);
  750. inode_wait_for_writeback(inode);
  751. }
  752. spin_unlock(&inode_lock);
  753. }
  754. return wrote;
  755. }
  756. /*
  757. * Return the next bdi_work struct that hasn't been processed by this
  758. * wb thread yet. ->seen is initially set for each thread that exists
  759. * for this device, when a thread first notices a piece of work it
  760. * clears its bit. Depending on writeback type, the thread will notify
  761. * completion on either receiving the work (WB_SYNC_NONE) or after
  762. * it is done (WB_SYNC_ALL).
  763. */
  764. static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
  765. struct bdi_writeback *wb)
  766. {
  767. struct bdi_work *work, *ret = NULL;
  768. rcu_read_lock();
  769. list_for_each_entry_rcu(work, &bdi->work_list, list) {
  770. if (!test_bit(wb->nr, &work->seen))
  771. continue;
  772. clear_bit(wb->nr, &work->seen);
  773. ret = work;
  774. break;
  775. }
  776. rcu_read_unlock();
  777. return ret;
  778. }
  779. static long wb_check_old_data_flush(struct bdi_writeback *wb)
  780. {
  781. unsigned long expired;
  782. long nr_pages;
  783. /*
  784. * When set to zero, disable periodic writeback
  785. */
  786. if (!dirty_writeback_interval)
  787. return 0;
  788. expired = wb->last_old_flush +
  789. msecs_to_jiffies(dirty_writeback_interval * 10);
  790. if (time_before(jiffies, expired))
  791. return 0;
  792. wb->last_old_flush = jiffies;
  793. nr_pages = global_page_state(NR_FILE_DIRTY) +
  794. global_page_state(NR_UNSTABLE_NFS) +
  795. (inodes_stat.nr_inodes - inodes_stat.nr_unused);
  796. if (nr_pages) {
  797. struct wb_writeback_args args = {
  798. .nr_pages = nr_pages,
  799. .sync_mode = WB_SYNC_NONE,
  800. .for_kupdate = 1,
  801. .range_cyclic = 1,
  802. };
  803. return wb_writeback(wb, &args);
  804. }
  805. return 0;
  806. }
  807. /*
  808. * Retrieve work items and do the writeback they describe
  809. */
  810. long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
  811. {
  812. struct backing_dev_info *bdi = wb->bdi;
  813. struct bdi_work *work;
  814. long wrote = 0;
  815. while ((work = get_next_work_item(bdi, wb)) != NULL) {
  816. struct wb_writeback_args args = work->args;
  817. int post_clear;
  818. /*
  819. * Override sync mode, in case we must wait for completion
  820. */
  821. if (force_wait)
  822. work->args.sync_mode = args.sync_mode = WB_SYNC_ALL;
  823. post_clear = WB_SYNC_ALL || args.sb_pinned;
  824. /*
  825. * If this isn't a data integrity operation, just notify
  826. * that we have seen this work and we are now starting it.
  827. */
  828. if (!post_clear)
  829. wb_clear_pending(wb, work);
  830. wrote += wb_writeback(wb, &args);
  831. /*
  832. * This is a data integrity writeback, so only do the
  833. * notification when we have completed the work.
  834. */
  835. if (post_clear)
  836. wb_clear_pending(wb, work);
  837. }
  838. /*
  839. * Check for periodic writeback, kupdated() style
  840. */
  841. wrote += wb_check_old_data_flush(wb);
  842. return wrote;
  843. }
  844. /*
  845. * Handle writeback of dirty data for the device backed by this bdi. Also
  846. * wakes up periodically and does kupdated style flushing.
  847. */
  848. int bdi_writeback_task(struct bdi_writeback *wb)
  849. {
  850. unsigned long last_active = jiffies;
  851. unsigned long wait_jiffies = -1UL;
  852. long pages_written;
  853. while (!kthread_should_stop()) {
  854. pages_written = wb_do_writeback(wb, 0);
  855. if (pages_written)
  856. last_active = jiffies;
  857. else if (wait_jiffies != -1UL) {
  858. unsigned long max_idle;
  859. /*
  860. * Longest period of inactivity that we tolerate. If we
  861. * see dirty data again later, the task will get
  862. * recreated automatically.
  863. */
  864. max_idle = max(5UL * 60 * HZ, wait_jiffies);
  865. if (time_after(jiffies, max_idle + last_active))
  866. break;
  867. }
  868. if (dirty_writeback_interval) {
  869. wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
  870. schedule_timeout_interruptible(wait_jiffies);
  871. } else {
  872. set_current_state(TASK_INTERRUPTIBLE);
  873. if (list_empty_careful(&wb->bdi->work_list) &&
  874. !kthread_should_stop())
  875. schedule();
  876. __set_current_state(TASK_RUNNING);
  877. }
  878. try_to_freeze();
  879. }
  880. return 0;
  881. }
  882. /*
  883. * Schedule writeback for all backing devices. This does WB_SYNC_NONE
  884. * writeback, for integrity writeback see bdi_sync_writeback().
  885. */
  886. static void bdi_writeback_all(struct super_block *sb, long nr_pages)
  887. {
  888. struct wb_writeback_args args = {
  889. .sb = sb,
  890. .nr_pages = nr_pages,
  891. .sync_mode = WB_SYNC_NONE,
  892. };
  893. struct backing_dev_info *bdi;
  894. rcu_read_lock();
  895. list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
  896. if (!bdi_has_dirty_io(bdi))
  897. continue;
  898. bdi_alloc_queue_work(bdi, &args, 0);
  899. }
  900. rcu_read_unlock();
  901. }
  902. /*
  903. * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
  904. * the whole world.
  905. */
  906. void wakeup_flusher_threads(long nr_pages)
  907. {
  908. if (nr_pages == 0)
  909. nr_pages = global_page_state(NR_FILE_DIRTY) +
  910. global_page_state(NR_UNSTABLE_NFS);
  911. bdi_writeback_all(NULL, nr_pages);
  912. }
  913. static noinline void block_dump___mark_inode_dirty(struct inode *inode)
  914. {
  915. if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
  916. struct dentry *dentry;
  917. const char *name = "?";
  918. dentry = d_find_alias(inode);
  919. if (dentry) {
  920. spin_lock(&dentry->d_lock);
  921. name = (const char *) dentry->d_name.name;
  922. }
  923. printk(KERN_DEBUG
  924. "%s(%d): dirtied inode %lu (%s) on %s\n",
  925. current->comm, task_pid_nr(current), inode->i_ino,
  926. name, inode->i_sb->s_id);
  927. if (dentry) {
  928. spin_unlock(&dentry->d_lock);
  929. dput(dentry);
  930. }
  931. }
  932. }
  933. /**
  934. * __mark_inode_dirty - internal function
  935. * @inode: inode to mark
  936. * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
  937. * Mark an inode as dirty. Callers should use mark_inode_dirty or
  938. * mark_inode_dirty_sync.
  939. *
  940. * Put the inode on the super block's dirty list.
  941. *
  942. * CAREFUL! We mark it dirty unconditionally, but move it onto the
  943. * dirty list only if it is hashed or if it refers to a blockdev.
  944. * If it was not hashed, it will never be added to the dirty list
  945. * even if it is later hashed, as it will have been marked dirty already.
  946. *
  947. * In short, make sure you hash any inodes _before_ you start marking
  948. * them dirty.
  949. *
  950. * This function *must* be atomic for the I_DIRTY_PAGES case -
  951. * set_page_dirty() is called under spinlock in several places.
  952. *
  953. * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
  954. * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
  955. * the kernel-internal blockdev inode represents the dirtying time of the
  956. * blockdev's pages. This is why for I_DIRTY_PAGES we always use
  957. * page->mapping->host, so the page-dirtying time is recorded in the internal
  958. * blockdev inode.
  959. */
  960. void __mark_inode_dirty(struct inode *inode, int flags)
  961. {
  962. struct super_block *sb = inode->i_sb;
  963. /*
  964. * Don't do this for I_DIRTY_PAGES - that doesn't actually
  965. * dirty the inode itself
  966. */
  967. if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
  968. if (sb->s_op->dirty_inode)
  969. sb->s_op->dirty_inode(inode);
  970. }
  971. /*
  972. * make sure that changes are seen by all cpus before we test i_state
  973. * -- mikulas
  974. */
  975. smp_mb();
  976. /* avoid the locking if we can */
  977. if ((inode->i_state & flags) == flags)
  978. return;
  979. if (unlikely(block_dump))
  980. block_dump___mark_inode_dirty(inode);
  981. spin_lock(&inode_lock);
  982. if ((inode->i_state & flags) != flags) {
  983. const int was_dirty = inode->i_state & I_DIRTY;
  984. inode->i_state |= flags;
  985. /*
  986. * If the inode is being synced, just update its dirty state.
  987. * The unlocker will place the inode on the appropriate
  988. * superblock list, based upon its state.
  989. */
  990. if (inode->i_state & I_SYNC)
  991. goto out;
  992. /*
  993. * Only add valid (hashed) inodes to the superblock's
  994. * dirty list. Add blockdev inodes as well.
  995. */
  996. if (!S_ISBLK(inode->i_mode)) {
  997. if (hlist_unhashed(&inode->i_hash))
  998. goto out;
  999. }
  1000. if (inode->i_state & (I_FREEING|I_CLEAR))
  1001. goto out;
  1002. /*
  1003. * If the inode was already on b_dirty/b_io/b_more_io, don't
  1004. * reposition it (that would break b_dirty time-ordering).
  1005. */
  1006. if (!was_dirty) {
  1007. struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
  1008. struct backing_dev_info *bdi = wb->bdi;
  1009. if (bdi_cap_writeback_dirty(bdi) &&
  1010. !test_bit(BDI_registered, &bdi->state)) {
  1011. WARN_ON(1);
  1012. printk(KERN_ERR "bdi-%s not registered\n",
  1013. bdi->name);
  1014. }
  1015. inode->dirtied_when = jiffies;
  1016. list_move(&inode->i_list, &wb->b_dirty);
  1017. }
  1018. }
  1019. out:
  1020. spin_unlock(&inode_lock);
  1021. }
  1022. EXPORT_SYMBOL(__mark_inode_dirty);
  1023. /*
  1024. * Write out a superblock's list of dirty inodes. A wait will be performed
  1025. * upon no inodes, all inodes or the final one, depending upon sync_mode.
  1026. *
  1027. * If older_than_this is non-NULL, then only write out inodes which
  1028. * had their first dirtying at a time earlier than *older_than_this.
  1029. *
  1030. * If `bdi' is non-zero then we're being asked to writeback a specific queue.
  1031. * This function assumes that the blockdev superblock's inodes are backed by
  1032. * a variety of queues, so all inodes are searched. For other superblocks,
  1033. * assume that all inodes are backed by the same queue.
  1034. *
  1035. * The inodes to be written are parked on bdi->b_io. They are moved back onto
  1036. * bdi->b_dirty as they are selected for writing. This way, none can be missed
  1037. * on the writer throttling path, and we get decent balancing between many
  1038. * throttled threads: we don't want them all piling up on inode_sync_wait.
  1039. */
  1040. static void wait_sb_inodes(struct super_block *sb)
  1041. {
  1042. struct inode *inode, *old_inode = NULL;
  1043. /*
  1044. * We need to be protected against the filesystem going from
  1045. * r/o to r/w or vice versa.
  1046. */
  1047. WARN_ON(!rwsem_is_locked(&sb->s_umount));
  1048. spin_lock(&inode_lock);
  1049. /*
  1050. * Data integrity sync. Must wait for all pages under writeback,
  1051. * because there may have been pages dirtied before our sync
  1052. * call, but which had writeout started before we write it out.
  1053. * In which case, the inode may not be on the dirty list, but
  1054. * we still have to wait for that writeout.
  1055. */
  1056. list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
  1057. struct address_space *mapping;
  1058. if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
  1059. continue;
  1060. mapping = inode->i_mapping;
  1061. if (mapping->nrpages == 0)
  1062. continue;
  1063. __iget(inode);
  1064. spin_unlock(&inode_lock);
  1065. /*
  1066. * We hold a reference to 'inode' so it couldn't have
  1067. * been removed from s_inodes list while we dropped the
  1068. * inode_lock. We cannot iput the inode now as we can
  1069. * be holding the last reference and we cannot iput it
  1070. * under inode_lock. So we keep the reference and iput
  1071. * it later.
  1072. */
  1073. iput(old_inode);
  1074. old_inode = inode;
  1075. filemap_fdatawait(mapping);
  1076. cond_resched();
  1077. spin_lock(&inode_lock);
  1078. }
  1079. spin_unlock(&inode_lock);
  1080. iput(old_inode);
  1081. }
  1082. static void __writeback_inodes_sb(struct super_block *sb, int sb_locked)
  1083. {
  1084. unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
  1085. unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
  1086. long nr_to_write;
  1087. nr_to_write = nr_dirty + nr_unstable +
  1088. (inodes_stat.nr_inodes - inodes_stat.nr_unused);
  1089. bdi_start_writeback(sb->s_bdi, sb, nr_to_write, sb_locked);
  1090. }
  1091. /**
  1092. * writeback_inodes_sb - writeback dirty inodes from given super_block
  1093. * @sb: the superblock
  1094. *
  1095. * Start writeback on some inodes on this super_block. No guarantees are made
  1096. * on how many (if any) will be written, and this function does not wait
  1097. * for IO completion of submitted IO. The number of pages submitted is
  1098. * returned.
  1099. */
  1100. void writeback_inodes_sb(struct super_block *sb)
  1101. {
  1102. __writeback_inodes_sb(sb, 0);
  1103. }
  1104. EXPORT_SYMBOL(writeback_inodes_sb);
  1105. /**
  1106. * writeback_inodes_sb_locked - writeback dirty inodes from given super_block
  1107. * @sb: the superblock
  1108. *
  1109. * Like writeback_inodes_sb(), except the caller already holds the
  1110. * sb umount sem.
  1111. */
  1112. void writeback_inodes_sb_locked(struct super_block *sb)
  1113. {
  1114. __writeback_inodes_sb(sb, 1);
  1115. }
  1116. /**
  1117. * writeback_inodes_sb_if_idle - start writeback if none underway
  1118. * @sb: the superblock
  1119. *
  1120. * Invoke writeback_inodes_sb if no writeback is currently underway.
  1121. * Returns 1 if writeback was started, 0 if not.
  1122. */
  1123. int writeback_inodes_sb_if_idle(struct super_block *sb)
  1124. {
  1125. if (!writeback_in_progress(sb->s_bdi)) {
  1126. writeback_inodes_sb(sb);
  1127. return 1;
  1128. } else
  1129. return 0;
  1130. }
  1131. EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
  1132. /**
  1133. * sync_inodes_sb - sync sb inode pages
  1134. * @sb: the superblock
  1135. *
  1136. * This function writes and waits on any dirty inode belonging to this
  1137. * super_block. The number of pages synced is returned.
  1138. */
  1139. void sync_inodes_sb(struct super_block *sb)
  1140. {
  1141. bdi_sync_writeback(sb->s_bdi, sb);
  1142. wait_sb_inodes(sb);
  1143. }
  1144. EXPORT_SYMBOL(sync_inodes_sb);
  1145. /**
  1146. * write_inode_now - write an inode to disk
  1147. * @inode: inode to write to disk
  1148. * @sync: whether the write should be synchronous or not
  1149. *
  1150. * This function commits an inode to disk immediately if it is dirty. This is
  1151. * primarily needed by knfsd.
  1152. *
  1153. * The caller must either have a ref on the inode or must have set I_WILL_FREE.
  1154. */
  1155. int write_inode_now(struct inode *inode, int sync)
  1156. {
  1157. int ret;
  1158. struct writeback_control wbc = {
  1159. .nr_to_write = LONG_MAX,
  1160. .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
  1161. .range_start = 0,
  1162. .range_end = LLONG_MAX,
  1163. };
  1164. if (!mapping_cap_writeback_dirty(inode->i_mapping))
  1165. wbc.nr_to_write = 0;
  1166. might_sleep();
  1167. spin_lock(&inode_lock);
  1168. ret = writeback_single_inode(inode, &wbc);
  1169. spin_unlock(&inode_lock);
  1170. if (sync)
  1171. inode_sync_wait(inode);
  1172. return ret;
  1173. }
  1174. EXPORT_SYMBOL(write_inode_now);
  1175. /**
  1176. * sync_inode - write an inode and its pages to disk.
  1177. * @inode: the inode to sync
  1178. * @wbc: controls the writeback mode
  1179. *
  1180. * sync_inode() will write an inode and its pages to disk. It will also
  1181. * correctly update the inode on its superblock's dirty inode lists and will
  1182. * update inode->i_state.
  1183. *
  1184. * The caller must have a ref on the inode.
  1185. */
  1186. int sync_inode(struct inode *inode, struct writeback_control *wbc)
  1187. {
  1188. int ret;
  1189. spin_lock(&inode_lock);
  1190. ret = writeback_single_inode(inode, wbc);
  1191. spin_unlock(&inode_lock);
  1192. return ret;
  1193. }
  1194. EXPORT_SYMBOL(sync_inode);