af_iucv.c 25 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192
  1. /*
  2. * linux/net/iucv/af_iucv.c
  3. *
  4. * IUCV protocol stack for Linux on zSeries
  5. *
  6. * Copyright 2006 IBM Corporation
  7. *
  8. * Author(s): Jennifer Hunt <jenhunt@us.ibm.com>
  9. */
  10. #include <linux/module.h>
  11. #include <linux/types.h>
  12. #include <linux/list.h>
  13. #include <linux/errno.h>
  14. #include <linux/kernel.h>
  15. #include <linux/sched.h>
  16. #include <linux/slab.h>
  17. #include <linux/skbuff.h>
  18. #include <linux/init.h>
  19. #include <linux/poll.h>
  20. #include <net/sock.h>
  21. #include <asm/ebcdic.h>
  22. #include <asm/cpcmd.h>
  23. #include <linux/kmod.h>
  24. #include <net/iucv/iucv.h>
  25. #include <net/iucv/af_iucv.h>
  26. #define CONFIG_IUCV_SOCK_DEBUG 1
  27. #define IPRMDATA 0x80
  28. #define VERSION "1.0"
  29. static char iucv_userid[80];
  30. static struct proto_ops iucv_sock_ops;
  31. static struct proto iucv_proto = {
  32. .name = "AF_IUCV",
  33. .owner = THIS_MODULE,
  34. .obj_size = sizeof(struct iucv_sock),
  35. };
  36. /* Call Back functions */
  37. static void iucv_callback_rx(struct iucv_path *, struct iucv_message *);
  38. static void iucv_callback_txdone(struct iucv_path *, struct iucv_message *);
  39. static void iucv_callback_connack(struct iucv_path *, u8 ipuser[16]);
  40. static int iucv_callback_connreq(struct iucv_path *, u8 ipvmid[8],
  41. u8 ipuser[16]);
  42. static void iucv_callback_connrej(struct iucv_path *, u8 ipuser[16]);
  43. static struct iucv_sock_list iucv_sk_list = {
  44. .lock = RW_LOCK_UNLOCKED,
  45. .autobind_name = ATOMIC_INIT(0)
  46. };
  47. static struct iucv_handler af_iucv_handler = {
  48. .path_pending = iucv_callback_connreq,
  49. .path_complete = iucv_callback_connack,
  50. .path_severed = iucv_callback_connrej,
  51. .message_pending = iucv_callback_rx,
  52. .message_complete = iucv_callback_txdone
  53. };
  54. static inline void high_nmcpy(unsigned char *dst, char *src)
  55. {
  56. memcpy(dst, src, 8);
  57. }
  58. static inline void low_nmcpy(unsigned char *dst, char *src)
  59. {
  60. memcpy(&dst[8], src, 8);
  61. }
  62. /* Timers */
  63. static void iucv_sock_timeout(unsigned long arg)
  64. {
  65. struct sock *sk = (struct sock *)arg;
  66. bh_lock_sock(sk);
  67. sk->sk_err = ETIMEDOUT;
  68. sk->sk_state_change(sk);
  69. bh_unlock_sock(sk);
  70. iucv_sock_kill(sk);
  71. sock_put(sk);
  72. }
  73. static void iucv_sock_clear_timer(struct sock *sk)
  74. {
  75. sk_stop_timer(sk, &sk->sk_timer);
  76. }
  77. static void iucv_sock_init_timer(struct sock *sk)
  78. {
  79. init_timer(&sk->sk_timer);
  80. sk->sk_timer.function = iucv_sock_timeout;
  81. sk->sk_timer.data = (unsigned long)sk;
  82. }
  83. static struct sock *__iucv_get_sock_by_name(char *nm)
  84. {
  85. struct sock *sk;
  86. struct hlist_node *node;
  87. sk_for_each(sk, node, &iucv_sk_list.head)
  88. if (!memcmp(&iucv_sk(sk)->src_name, nm, 8))
  89. return sk;
  90. return NULL;
  91. }
  92. static void iucv_sock_destruct(struct sock *sk)
  93. {
  94. skb_queue_purge(&sk->sk_receive_queue);
  95. skb_queue_purge(&sk->sk_write_queue);
  96. }
  97. /* Cleanup Listen */
  98. static void iucv_sock_cleanup_listen(struct sock *parent)
  99. {
  100. struct sock *sk;
  101. /* Close non-accepted connections */
  102. while ((sk = iucv_accept_dequeue(parent, NULL))) {
  103. iucv_sock_close(sk);
  104. iucv_sock_kill(sk);
  105. }
  106. parent->sk_state = IUCV_CLOSED;
  107. sock_set_flag(parent, SOCK_ZAPPED);
  108. }
  109. /* Kill socket */
  110. static void iucv_sock_kill(struct sock *sk)
  111. {
  112. if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
  113. return;
  114. iucv_sock_unlink(&iucv_sk_list, sk);
  115. sock_set_flag(sk, SOCK_DEAD);
  116. sock_put(sk);
  117. }
  118. /* Close an IUCV socket */
  119. static void iucv_sock_close(struct sock *sk)
  120. {
  121. unsigned char user_data[16];
  122. struct iucv_sock *iucv = iucv_sk(sk);
  123. int err;
  124. unsigned long timeo;
  125. iucv_sock_clear_timer(sk);
  126. lock_sock(sk);
  127. switch (sk->sk_state) {
  128. case IUCV_LISTEN:
  129. iucv_sock_cleanup_listen(sk);
  130. break;
  131. case IUCV_CONNECTED:
  132. case IUCV_DISCONN:
  133. err = 0;
  134. sk->sk_state = IUCV_CLOSING;
  135. sk->sk_state_change(sk);
  136. if (!skb_queue_empty(&iucv->send_skb_q)) {
  137. if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime)
  138. timeo = sk->sk_lingertime;
  139. else
  140. timeo = IUCV_DISCONN_TIMEOUT;
  141. err = iucv_sock_wait_state(sk, IUCV_CLOSED, 0, timeo);
  142. }
  143. sk->sk_state = IUCV_CLOSED;
  144. sk->sk_state_change(sk);
  145. if (iucv->path) {
  146. low_nmcpy(user_data, iucv->src_name);
  147. high_nmcpy(user_data, iucv->dst_name);
  148. ASCEBC(user_data, sizeof(user_data));
  149. err = iucv_path_sever(iucv->path, user_data);
  150. iucv_path_free(iucv->path);
  151. iucv->path = NULL;
  152. }
  153. sk->sk_err = ECONNRESET;
  154. sk->sk_state_change(sk);
  155. skb_queue_purge(&iucv->send_skb_q);
  156. skb_queue_purge(&iucv->backlog_skb_q);
  157. sock_set_flag(sk, SOCK_ZAPPED);
  158. break;
  159. default:
  160. sock_set_flag(sk, SOCK_ZAPPED);
  161. break;
  162. }
  163. release_sock(sk);
  164. iucv_sock_kill(sk);
  165. }
  166. static void iucv_sock_init(struct sock *sk, struct sock *parent)
  167. {
  168. if (parent)
  169. sk->sk_type = parent->sk_type;
  170. }
  171. static struct sock *iucv_sock_alloc(struct socket *sock, int proto, gfp_t prio)
  172. {
  173. struct sock *sk;
  174. sk = sk_alloc(PF_IUCV, prio, &iucv_proto, 1);
  175. if (!sk)
  176. return NULL;
  177. sock_init_data(sock, sk);
  178. INIT_LIST_HEAD(&iucv_sk(sk)->accept_q);
  179. spin_lock_init(&iucv_sk(sk)->accept_q_lock);
  180. skb_queue_head_init(&iucv_sk(sk)->send_skb_q);
  181. skb_queue_head_init(&iucv_sk(sk)->backlog_skb_q);
  182. iucv_sk(sk)->send_tag = 0;
  183. sk->sk_destruct = iucv_sock_destruct;
  184. sk->sk_sndtimeo = IUCV_CONN_TIMEOUT;
  185. sk->sk_allocation = GFP_DMA;
  186. sock_reset_flag(sk, SOCK_ZAPPED);
  187. sk->sk_protocol = proto;
  188. sk->sk_state = IUCV_OPEN;
  189. iucv_sock_init_timer(sk);
  190. iucv_sock_link(&iucv_sk_list, sk);
  191. return sk;
  192. }
  193. /* Create an IUCV socket */
  194. static int iucv_sock_create(struct socket *sock, int protocol)
  195. {
  196. struct sock *sk;
  197. if (sock->type != SOCK_STREAM)
  198. return -ESOCKTNOSUPPORT;
  199. sock->state = SS_UNCONNECTED;
  200. sock->ops = &iucv_sock_ops;
  201. sk = iucv_sock_alloc(sock, protocol, GFP_KERNEL);
  202. if (!sk)
  203. return -ENOMEM;
  204. iucv_sock_init(sk, NULL);
  205. return 0;
  206. }
  207. void iucv_sock_link(struct iucv_sock_list *l, struct sock *sk)
  208. {
  209. write_lock_bh(&l->lock);
  210. sk_add_node(sk, &l->head);
  211. write_unlock_bh(&l->lock);
  212. }
  213. void iucv_sock_unlink(struct iucv_sock_list *l, struct sock *sk)
  214. {
  215. write_lock_bh(&l->lock);
  216. sk_del_node_init(sk);
  217. write_unlock_bh(&l->lock);
  218. }
  219. void iucv_accept_enqueue(struct sock *parent, struct sock *sk)
  220. {
  221. unsigned long flags;
  222. struct iucv_sock *par = iucv_sk(parent);
  223. sock_hold(sk);
  224. spin_lock_irqsave(&par->accept_q_lock, flags);
  225. list_add_tail(&iucv_sk(sk)->accept_q, &par->accept_q);
  226. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  227. iucv_sk(sk)->parent = parent;
  228. parent->sk_ack_backlog++;
  229. }
  230. void iucv_accept_unlink(struct sock *sk)
  231. {
  232. unsigned long flags;
  233. struct iucv_sock *par = iucv_sk(iucv_sk(sk)->parent);
  234. spin_lock_irqsave(&par->accept_q_lock, flags);
  235. list_del_init(&iucv_sk(sk)->accept_q);
  236. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  237. iucv_sk(sk)->parent->sk_ack_backlog--;
  238. iucv_sk(sk)->parent = NULL;
  239. sock_put(sk);
  240. }
  241. struct sock *iucv_accept_dequeue(struct sock *parent, struct socket *newsock)
  242. {
  243. struct iucv_sock *isk, *n;
  244. struct sock *sk;
  245. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  246. sk = (struct sock *) isk;
  247. lock_sock(sk);
  248. if (sk->sk_state == IUCV_CLOSED) {
  249. iucv_accept_unlink(sk);
  250. release_sock(sk);
  251. continue;
  252. }
  253. if (sk->sk_state == IUCV_CONNECTED ||
  254. sk->sk_state == IUCV_SEVERED ||
  255. !newsock) {
  256. iucv_accept_unlink(sk);
  257. if (newsock)
  258. sock_graft(sk, newsock);
  259. if (sk->sk_state == IUCV_SEVERED)
  260. sk->sk_state = IUCV_DISCONN;
  261. release_sock(sk);
  262. return sk;
  263. }
  264. release_sock(sk);
  265. }
  266. return NULL;
  267. }
  268. int iucv_sock_wait_state(struct sock *sk, int state, int state2,
  269. unsigned long timeo)
  270. {
  271. DECLARE_WAITQUEUE(wait, current);
  272. int err = 0;
  273. add_wait_queue(sk->sk_sleep, &wait);
  274. while (sk->sk_state != state && sk->sk_state != state2) {
  275. set_current_state(TASK_INTERRUPTIBLE);
  276. if (!timeo) {
  277. err = -EAGAIN;
  278. break;
  279. }
  280. if (signal_pending(current)) {
  281. err = sock_intr_errno(timeo);
  282. break;
  283. }
  284. release_sock(sk);
  285. timeo = schedule_timeout(timeo);
  286. lock_sock(sk);
  287. err = sock_error(sk);
  288. if (err)
  289. break;
  290. }
  291. set_current_state(TASK_RUNNING);
  292. remove_wait_queue(sk->sk_sleep, &wait);
  293. return err;
  294. }
  295. /* Bind an unbound socket */
  296. static int iucv_sock_bind(struct socket *sock, struct sockaddr *addr,
  297. int addr_len)
  298. {
  299. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  300. struct sock *sk = sock->sk;
  301. struct iucv_sock *iucv;
  302. int err;
  303. /* Verify the input sockaddr */
  304. if (!addr || addr->sa_family != AF_IUCV)
  305. return -EINVAL;
  306. lock_sock(sk);
  307. if (sk->sk_state != IUCV_OPEN) {
  308. err = -EBADFD;
  309. goto done;
  310. }
  311. write_lock_bh(&iucv_sk_list.lock);
  312. iucv = iucv_sk(sk);
  313. if (__iucv_get_sock_by_name(sa->siucv_name)) {
  314. err = -EADDRINUSE;
  315. goto done_unlock;
  316. }
  317. if (iucv->path) {
  318. err = 0;
  319. goto done_unlock;
  320. }
  321. /* Bind the socket */
  322. memcpy(iucv->src_name, sa->siucv_name, 8);
  323. /* Copy the user id */
  324. memcpy(iucv->src_user_id, iucv_userid, 8);
  325. sk->sk_state = IUCV_BOUND;
  326. err = 0;
  327. done_unlock:
  328. /* Release the socket list lock */
  329. write_unlock_bh(&iucv_sk_list.lock);
  330. done:
  331. release_sock(sk);
  332. return err;
  333. }
  334. /* Automatically bind an unbound socket */
  335. static int iucv_sock_autobind(struct sock *sk)
  336. {
  337. struct iucv_sock *iucv = iucv_sk(sk);
  338. char query_buffer[80];
  339. char name[12];
  340. int err = 0;
  341. /* Set the userid and name */
  342. cpcmd("QUERY USERID", query_buffer, sizeof(query_buffer), &err);
  343. if (unlikely(err))
  344. return -EPROTO;
  345. memcpy(iucv->src_user_id, query_buffer, 8);
  346. write_lock_bh(&iucv_sk_list.lock);
  347. sprintf(name, "%08x", atomic_inc_return(&iucv_sk_list.autobind_name));
  348. while (__iucv_get_sock_by_name(name)) {
  349. sprintf(name, "%08x",
  350. atomic_inc_return(&iucv_sk_list.autobind_name));
  351. }
  352. write_unlock_bh(&iucv_sk_list.lock);
  353. memcpy(&iucv->src_name, name, 8);
  354. return err;
  355. }
  356. /* Connect an unconnected socket */
  357. static int iucv_sock_connect(struct socket *sock, struct sockaddr *addr,
  358. int alen, int flags)
  359. {
  360. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  361. struct sock *sk = sock->sk;
  362. struct iucv_sock *iucv;
  363. unsigned char user_data[16];
  364. int err;
  365. if (addr->sa_family != AF_IUCV || alen < sizeof(struct sockaddr_iucv))
  366. return -EINVAL;
  367. if (sk->sk_state != IUCV_OPEN && sk->sk_state != IUCV_BOUND)
  368. return -EBADFD;
  369. if (sk->sk_type != SOCK_STREAM)
  370. return -EINVAL;
  371. iucv = iucv_sk(sk);
  372. if (sk->sk_state == IUCV_OPEN) {
  373. err = iucv_sock_autobind(sk);
  374. if (unlikely(err))
  375. return err;
  376. }
  377. lock_sock(sk);
  378. /* Set the destination information */
  379. memcpy(iucv_sk(sk)->dst_user_id, sa->siucv_user_id, 8);
  380. memcpy(iucv_sk(sk)->dst_name, sa->siucv_name, 8);
  381. high_nmcpy(user_data, sa->siucv_name);
  382. low_nmcpy(user_data, iucv_sk(sk)->src_name);
  383. ASCEBC(user_data, sizeof(user_data));
  384. iucv = iucv_sk(sk);
  385. /* Create path. */
  386. iucv->path = iucv_path_alloc(IUCV_QUEUELEN_DEFAULT,
  387. IPRMDATA, GFP_KERNEL);
  388. err = iucv_path_connect(iucv->path, &af_iucv_handler,
  389. sa->siucv_user_id, NULL, user_data, sk);
  390. if (err) {
  391. iucv_path_free(iucv->path);
  392. iucv->path = NULL;
  393. err = -ECONNREFUSED;
  394. goto done;
  395. }
  396. if (sk->sk_state != IUCV_CONNECTED) {
  397. err = iucv_sock_wait_state(sk, IUCV_CONNECTED, IUCV_DISCONN,
  398. sock_sndtimeo(sk, flags & O_NONBLOCK));
  399. }
  400. if (sk->sk_state == IUCV_DISCONN) {
  401. release_sock(sk);
  402. return -ECONNREFUSED;
  403. }
  404. done:
  405. release_sock(sk);
  406. return err;
  407. }
  408. /* Move a socket into listening state. */
  409. static int iucv_sock_listen(struct socket *sock, int backlog)
  410. {
  411. struct sock *sk = sock->sk;
  412. int err;
  413. lock_sock(sk);
  414. err = -EINVAL;
  415. if (sk->sk_state != IUCV_BOUND || sock->type != SOCK_STREAM)
  416. goto done;
  417. sk->sk_max_ack_backlog = backlog;
  418. sk->sk_ack_backlog = 0;
  419. sk->sk_state = IUCV_LISTEN;
  420. err = 0;
  421. done:
  422. release_sock(sk);
  423. return err;
  424. }
  425. /* Accept a pending connection */
  426. static int iucv_sock_accept(struct socket *sock, struct socket *newsock,
  427. int flags)
  428. {
  429. DECLARE_WAITQUEUE(wait, current);
  430. struct sock *sk = sock->sk, *nsk;
  431. long timeo;
  432. int err = 0;
  433. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  434. if (sk->sk_state != IUCV_LISTEN) {
  435. err = -EBADFD;
  436. goto done;
  437. }
  438. timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
  439. /* Wait for an incoming connection */
  440. add_wait_queue_exclusive(sk->sk_sleep, &wait);
  441. while (!(nsk = iucv_accept_dequeue(sk, newsock))) {
  442. set_current_state(TASK_INTERRUPTIBLE);
  443. if (!timeo) {
  444. err = -EAGAIN;
  445. break;
  446. }
  447. release_sock(sk);
  448. timeo = schedule_timeout(timeo);
  449. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  450. if (sk->sk_state != IUCV_LISTEN) {
  451. err = -EBADFD;
  452. break;
  453. }
  454. if (signal_pending(current)) {
  455. err = sock_intr_errno(timeo);
  456. break;
  457. }
  458. }
  459. set_current_state(TASK_RUNNING);
  460. remove_wait_queue(sk->sk_sleep, &wait);
  461. if (err)
  462. goto done;
  463. newsock->state = SS_CONNECTED;
  464. done:
  465. release_sock(sk);
  466. return err;
  467. }
  468. static int iucv_sock_getname(struct socket *sock, struct sockaddr *addr,
  469. int *len, int peer)
  470. {
  471. struct sockaddr_iucv *siucv = (struct sockaddr_iucv *) addr;
  472. struct sock *sk = sock->sk;
  473. addr->sa_family = AF_IUCV;
  474. *len = sizeof(struct sockaddr_iucv);
  475. if (peer) {
  476. memcpy(siucv->siucv_user_id, iucv_sk(sk)->dst_user_id, 8);
  477. memcpy(siucv->siucv_name, &iucv_sk(sk)->dst_name, 8);
  478. } else {
  479. memcpy(siucv->siucv_user_id, iucv_sk(sk)->src_user_id, 8);
  480. memcpy(siucv->siucv_name, iucv_sk(sk)->src_name, 8);
  481. }
  482. memset(&siucv->siucv_port, 0, sizeof(siucv->siucv_port));
  483. memset(&siucv->siucv_addr, 0, sizeof(siucv->siucv_addr));
  484. memset(siucv->siucv_nodeid, 0, sizeof(siucv->siucv_nodeid));
  485. return 0;
  486. }
  487. static int iucv_sock_sendmsg(struct kiocb *iocb, struct socket *sock,
  488. struct msghdr *msg, size_t len)
  489. {
  490. struct sock *sk = sock->sk;
  491. struct iucv_sock *iucv = iucv_sk(sk);
  492. struct sk_buff *skb;
  493. struct iucv_message txmsg;
  494. int err;
  495. err = sock_error(sk);
  496. if (err)
  497. return err;
  498. if (msg->msg_flags & MSG_OOB)
  499. return -EOPNOTSUPP;
  500. lock_sock(sk);
  501. if (sk->sk_shutdown & SEND_SHUTDOWN) {
  502. err = -EPIPE;
  503. goto out;
  504. }
  505. if (sk->sk_state == IUCV_CONNECTED) {
  506. if (!(skb = sock_alloc_send_skb(sk, len,
  507. msg->msg_flags & MSG_DONTWAIT,
  508. &err)))
  509. goto out;
  510. if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) {
  511. err = -EFAULT;
  512. goto fail;
  513. }
  514. txmsg.class = 0;
  515. txmsg.tag = iucv->send_tag++;
  516. memcpy(skb->cb, &txmsg.tag, 4);
  517. skb_queue_tail(&iucv->send_skb_q, skb);
  518. err = iucv_message_send(iucv->path, &txmsg, 0, 0,
  519. (void *) skb->data, skb->len);
  520. if (err) {
  521. if (err == 3)
  522. printk(KERN_ERR "AF_IUCV msg limit exceeded\n");
  523. skb_unlink(skb, &iucv->send_skb_q);
  524. err = -EPIPE;
  525. goto fail;
  526. }
  527. } else {
  528. err = -ENOTCONN;
  529. goto out;
  530. }
  531. release_sock(sk);
  532. return len;
  533. fail:
  534. kfree_skb(skb);
  535. out:
  536. release_sock(sk);
  537. return err;
  538. }
  539. static int iucv_sock_recvmsg(struct kiocb *iocb, struct socket *sock,
  540. struct msghdr *msg, size_t len, int flags)
  541. {
  542. int noblock = flags & MSG_DONTWAIT;
  543. struct sock *sk = sock->sk;
  544. struct iucv_sock *iucv = iucv_sk(sk);
  545. int target, copied = 0;
  546. struct sk_buff *skb, *rskb, *cskb;
  547. int err = 0;
  548. if ((sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_SEVERED) &&
  549. skb_queue_empty(&iucv->backlog_skb_q) &&
  550. skb_queue_empty(&sk->sk_receive_queue))
  551. return 0;
  552. if (flags & (MSG_OOB))
  553. return -EOPNOTSUPP;
  554. target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
  555. skb = skb_recv_datagram(sk, flags, noblock, &err);
  556. if (!skb) {
  557. if (sk->sk_shutdown & RCV_SHUTDOWN)
  558. return 0;
  559. return err;
  560. }
  561. copied = min_t(unsigned int, skb->len, len);
  562. cskb = skb;
  563. if (memcpy_toiovec(msg->msg_iov, cskb->data, copied)) {
  564. skb_queue_head(&sk->sk_receive_queue, skb);
  565. if (copied == 0)
  566. return -EFAULT;
  567. goto done;
  568. }
  569. len -= copied;
  570. /* Mark read part of skb as used */
  571. if (!(flags & MSG_PEEK)) {
  572. skb_pull(skb, copied);
  573. if (skb->len) {
  574. skb_queue_head(&sk->sk_receive_queue, skb);
  575. goto done;
  576. }
  577. kfree_skb(skb);
  578. /* Queue backlog skbs */
  579. rskb = skb_dequeue(&iucv_sk(sk)->backlog_skb_q);
  580. while (rskb) {
  581. if (sock_queue_rcv_skb(sk, rskb)) {
  582. skb_queue_head(&iucv_sk(sk)->backlog_skb_q,
  583. rskb);
  584. break;
  585. } else {
  586. rskb = skb_dequeue(&iucv_sk(sk)->backlog_skb_q);
  587. }
  588. }
  589. } else
  590. skb_queue_head(&sk->sk_receive_queue, skb);
  591. done:
  592. return err ? : copied;
  593. }
  594. static inline unsigned int iucv_accept_poll(struct sock *parent)
  595. {
  596. struct iucv_sock *isk, *n;
  597. struct sock *sk;
  598. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  599. sk = (struct sock *) isk;
  600. if (sk->sk_state == IUCV_CONNECTED)
  601. return POLLIN | POLLRDNORM;
  602. }
  603. return 0;
  604. }
  605. unsigned int iucv_sock_poll(struct file *file, struct socket *sock,
  606. poll_table *wait)
  607. {
  608. struct sock *sk = sock->sk;
  609. unsigned int mask = 0;
  610. poll_wait(file, sk->sk_sleep, wait);
  611. if (sk->sk_state == IUCV_LISTEN)
  612. return iucv_accept_poll(sk);
  613. if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
  614. mask |= POLLERR;
  615. if (sk->sk_shutdown & RCV_SHUTDOWN)
  616. mask |= POLLRDHUP;
  617. if (sk->sk_shutdown == SHUTDOWN_MASK)
  618. mask |= POLLHUP;
  619. if (!skb_queue_empty(&sk->sk_receive_queue) ||
  620. (sk->sk_shutdown & RCV_SHUTDOWN))
  621. mask |= POLLIN | POLLRDNORM;
  622. if (sk->sk_state == IUCV_CLOSED)
  623. mask |= POLLHUP;
  624. if (sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_SEVERED)
  625. mask |= POLLIN;
  626. if (sock_writeable(sk))
  627. mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
  628. else
  629. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  630. return mask;
  631. }
  632. static int iucv_sock_shutdown(struct socket *sock, int how)
  633. {
  634. struct sock *sk = sock->sk;
  635. struct iucv_sock *iucv = iucv_sk(sk);
  636. struct iucv_message txmsg;
  637. int err = 0;
  638. u8 prmmsg[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01};
  639. how++;
  640. if ((how & ~SHUTDOWN_MASK) || !how)
  641. return -EINVAL;
  642. lock_sock(sk);
  643. switch (sk->sk_state) {
  644. case IUCV_CLOSED:
  645. err = -ENOTCONN;
  646. goto fail;
  647. default:
  648. sk->sk_shutdown |= how;
  649. break;
  650. }
  651. if (how == SEND_SHUTDOWN || how == SHUTDOWN_MASK) {
  652. txmsg.class = 0;
  653. txmsg.tag = 0;
  654. err = iucv_message_send(iucv->path, &txmsg, IUCV_IPRMDATA, 0,
  655. (void *) prmmsg, 8);
  656. if (err) {
  657. switch (err) {
  658. case 1:
  659. err = -ENOTCONN;
  660. break;
  661. case 2:
  662. err = -ECONNRESET;
  663. break;
  664. default:
  665. err = -ENOTCONN;
  666. break;
  667. }
  668. }
  669. }
  670. if (how == RCV_SHUTDOWN || how == SHUTDOWN_MASK) {
  671. err = iucv_path_quiesce(iucv_sk(sk)->path, NULL);
  672. if (err)
  673. err = -ENOTCONN;
  674. skb_queue_purge(&sk->sk_receive_queue);
  675. }
  676. /* Wake up anyone sleeping in poll */
  677. sk->sk_state_change(sk);
  678. fail:
  679. release_sock(sk);
  680. return err;
  681. }
  682. static int iucv_sock_release(struct socket *sock)
  683. {
  684. struct sock *sk = sock->sk;
  685. int err = 0;
  686. if (!sk)
  687. return 0;
  688. iucv_sock_close(sk);
  689. /* Unregister with IUCV base support */
  690. if (iucv_sk(sk)->path) {
  691. iucv_path_sever(iucv_sk(sk)->path, NULL);
  692. iucv_path_free(iucv_sk(sk)->path);
  693. iucv_sk(sk)->path = NULL;
  694. }
  695. sock_orphan(sk);
  696. iucv_sock_kill(sk);
  697. return err;
  698. }
  699. /* Callback wrappers - called from iucv base support */
  700. static int iucv_callback_connreq(struct iucv_path *path,
  701. u8 ipvmid[8], u8 ipuser[16])
  702. {
  703. unsigned char user_data[16];
  704. unsigned char nuser_data[16];
  705. unsigned char src_name[8];
  706. struct hlist_node *node;
  707. struct sock *sk, *nsk;
  708. struct iucv_sock *iucv, *niucv;
  709. int err;
  710. memcpy(src_name, ipuser, 8);
  711. EBCASC(src_name, 8);
  712. /* Find out if this path belongs to af_iucv. */
  713. read_lock(&iucv_sk_list.lock);
  714. iucv = NULL;
  715. sk = NULL;
  716. sk_for_each(sk, node, &iucv_sk_list.head)
  717. if (sk->sk_state == IUCV_LISTEN &&
  718. !memcmp(&iucv_sk(sk)->src_name, src_name, 8)) {
  719. /*
  720. * Found a listening socket with
  721. * src_name == ipuser[0-7].
  722. */
  723. iucv = iucv_sk(sk);
  724. break;
  725. }
  726. read_unlock(&iucv_sk_list.lock);
  727. if (!iucv)
  728. /* No socket found, not one of our paths. */
  729. return -EINVAL;
  730. bh_lock_sock(sk);
  731. /* Check if parent socket is listening */
  732. low_nmcpy(user_data, iucv->src_name);
  733. high_nmcpy(user_data, iucv->dst_name);
  734. ASCEBC(user_data, sizeof(user_data));
  735. if (sk->sk_state != IUCV_LISTEN) {
  736. err = iucv_path_sever(path, user_data);
  737. goto fail;
  738. }
  739. /* Check for backlog size */
  740. if (sk_acceptq_is_full(sk)) {
  741. err = iucv_path_sever(path, user_data);
  742. goto fail;
  743. }
  744. /* Create the new socket */
  745. nsk = iucv_sock_alloc(NULL, SOCK_STREAM, GFP_ATOMIC);
  746. if (!nsk) {
  747. err = iucv_path_sever(path, user_data);
  748. goto fail;
  749. }
  750. niucv = iucv_sk(nsk);
  751. iucv_sock_init(nsk, sk);
  752. /* Set the new iucv_sock */
  753. memcpy(niucv->dst_name, ipuser + 8, 8);
  754. EBCASC(niucv->dst_name, 8);
  755. memcpy(niucv->dst_user_id, ipvmid, 8);
  756. memcpy(niucv->src_name, iucv->src_name, 8);
  757. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  758. niucv->path = path;
  759. /* Call iucv_accept */
  760. high_nmcpy(nuser_data, ipuser + 8);
  761. memcpy(nuser_data + 8, niucv->src_name, 8);
  762. ASCEBC(nuser_data + 8, 8);
  763. path->msglim = IUCV_QUEUELEN_DEFAULT;
  764. err = iucv_path_accept(path, &af_iucv_handler, nuser_data, nsk);
  765. if (err) {
  766. err = iucv_path_sever(path, user_data);
  767. goto fail;
  768. }
  769. iucv_accept_enqueue(sk, nsk);
  770. /* Wake up accept */
  771. nsk->sk_state = IUCV_CONNECTED;
  772. sk->sk_data_ready(sk, 1);
  773. err = 0;
  774. fail:
  775. bh_unlock_sock(sk);
  776. return 0;
  777. }
  778. static void iucv_callback_connack(struct iucv_path *path, u8 ipuser[16])
  779. {
  780. struct sock *sk = path->private;
  781. sk->sk_state = IUCV_CONNECTED;
  782. sk->sk_state_change(sk);
  783. }
  784. static int iucv_fragment_skb(struct sock *sk, struct sk_buff *skb, int len,
  785. struct sk_buff_head *fragmented_skb_q)
  786. {
  787. int dataleft, size, copied = 0;
  788. struct sk_buff *nskb;
  789. dataleft = len;
  790. while (dataleft) {
  791. if (dataleft >= sk->sk_rcvbuf / 4)
  792. size = sk->sk_rcvbuf / 4;
  793. else
  794. size = dataleft;
  795. nskb = alloc_skb(size, GFP_ATOMIC | GFP_DMA);
  796. if (!nskb)
  797. return -ENOMEM;
  798. memcpy(nskb->data, skb->data + copied, size);
  799. copied += size;
  800. dataleft -= size;
  801. skb_reset_transport_header(nskb);
  802. skb_reset_network_header(nskb);
  803. nskb->len = size;
  804. skb_queue_tail(fragmented_skb_q, nskb);
  805. }
  806. return 0;
  807. }
  808. static void iucv_callback_rx(struct iucv_path *path, struct iucv_message *msg)
  809. {
  810. struct sock *sk = path->private;
  811. struct iucv_sock *iucv = iucv_sk(sk);
  812. struct sk_buff *skb, *fskb;
  813. struct sk_buff_head fragmented_skb_q;
  814. int rc;
  815. skb_queue_head_init(&fragmented_skb_q);
  816. if (sk->sk_shutdown & RCV_SHUTDOWN)
  817. return;
  818. skb = alloc_skb(msg->length, GFP_ATOMIC | GFP_DMA);
  819. if (!skb) {
  820. iucv_path_sever(path, NULL);
  821. return;
  822. }
  823. if (msg->flags & IPRMDATA) {
  824. skb->data = NULL;
  825. skb->len = 0;
  826. } else {
  827. rc = iucv_message_receive(path, msg, 0, skb->data,
  828. msg->length, NULL);
  829. if (rc) {
  830. kfree_skb(skb);
  831. return;
  832. }
  833. if (skb->truesize >= sk->sk_rcvbuf / 4) {
  834. rc = iucv_fragment_skb(sk, skb, msg->length,
  835. &fragmented_skb_q);
  836. kfree_skb(skb);
  837. skb = NULL;
  838. if (rc) {
  839. iucv_path_sever(path, NULL);
  840. return;
  841. }
  842. } else {
  843. skb_reset_transport_header(skb);
  844. skb_reset_network_header(skb);
  845. skb->len = msg->length;
  846. }
  847. }
  848. /* Queue the fragmented skb */
  849. fskb = skb_dequeue(&fragmented_skb_q);
  850. while (fskb) {
  851. if (!skb_queue_empty(&iucv->backlog_skb_q))
  852. skb_queue_tail(&iucv->backlog_skb_q, fskb);
  853. else if (sock_queue_rcv_skb(sk, fskb))
  854. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, fskb);
  855. fskb = skb_dequeue(&fragmented_skb_q);
  856. }
  857. /* Queue the original skb if it exists (was not fragmented) */
  858. if (skb) {
  859. if (!skb_queue_empty(&iucv->backlog_skb_q))
  860. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, skb);
  861. else if (sock_queue_rcv_skb(sk, skb))
  862. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, skb);
  863. }
  864. }
  865. static void iucv_callback_txdone(struct iucv_path *path,
  866. struct iucv_message *msg)
  867. {
  868. struct sock *sk = path->private;
  869. struct sk_buff *this;
  870. struct sk_buff_head *list = &iucv_sk(sk)->send_skb_q;
  871. struct sk_buff *list_skb = list->next;
  872. unsigned long flags;
  873. if (list_skb) {
  874. spin_lock_irqsave(&list->lock, flags);
  875. do {
  876. this = list_skb;
  877. list_skb = list_skb->next;
  878. } while (memcmp(&msg->tag, this->cb, 4) && list_skb);
  879. spin_unlock_irqrestore(&list->lock, flags);
  880. skb_unlink(this, &iucv_sk(sk)->send_skb_q);
  881. kfree_skb(this);
  882. }
  883. if (sk->sk_state == IUCV_CLOSING) {
  884. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  885. sk->sk_state = IUCV_CLOSED;
  886. sk->sk_state_change(sk);
  887. }
  888. }
  889. }
  890. static void iucv_callback_connrej(struct iucv_path *path, u8 ipuser[16])
  891. {
  892. struct sock *sk = path->private;
  893. if (!list_empty(&iucv_sk(sk)->accept_q))
  894. sk->sk_state = IUCV_SEVERED;
  895. else
  896. sk->sk_state = IUCV_DISCONN;
  897. sk->sk_state_change(sk);
  898. }
  899. static struct proto_ops iucv_sock_ops = {
  900. .family = PF_IUCV,
  901. .owner = THIS_MODULE,
  902. .release = iucv_sock_release,
  903. .bind = iucv_sock_bind,
  904. .connect = iucv_sock_connect,
  905. .listen = iucv_sock_listen,
  906. .accept = iucv_sock_accept,
  907. .getname = iucv_sock_getname,
  908. .sendmsg = iucv_sock_sendmsg,
  909. .recvmsg = iucv_sock_recvmsg,
  910. .poll = iucv_sock_poll,
  911. .ioctl = sock_no_ioctl,
  912. .mmap = sock_no_mmap,
  913. .socketpair = sock_no_socketpair,
  914. .shutdown = iucv_sock_shutdown,
  915. .setsockopt = sock_no_setsockopt,
  916. .getsockopt = sock_no_getsockopt
  917. };
  918. static struct net_proto_family iucv_sock_family_ops = {
  919. .family = AF_IUCV,
  920. .owner = THIS_MODULE,
  921. .create = iucv_sock_create,
  922. };
  923. static int __init afiucv_init(void)
  924. {
  925. int err;
  926. if (!MACHINE_IS_VM) {
  927. printk(KERN_ERR "AF_IUCV connection needs VM as base\n");
  928. err = -EPROTONOSUPPORT;
  929. goto out;
  930. }
  931. cpcmd("QUERY USERID", iucv_userid, sizeof(iucv_userid), &err);
  932. if (unlikely(err)) {
  933. printk(KERN_ERR "AF_IUCV needs the VM userid\n");
  934. err = -EPROTONOSUPPORT;
  935. goto out;
  936. }
  937. err = iucv_register(&af_iucv_handler, 0);
  938. if (err)
  939. goto out;
  940. err = proto_register(&iucv_proto, 0);
  941. if (err)
  942. goto out_iucv;
  943. err = sock_register(&iucv_sock_family_ops);
  944. if (err)
  945. goto out_proto;
  946. printk(KERN_INFO "AF_IUCV lowlevel driver initialized\n");
  947. return 0;
  948. out_proto:
  949. proto_unregister(&iucv_proto);
  950. out_iucv:
  951. iucv_unregister(&af_iucv_handler, 0);
  952. out:
  953. return err;
  954. }
  955. static void __exit afiucv_exit(void)
  956. {
  957. sock_unregister(PF_IUCV);
  958. proto_unregister(&iucv_proto);
  959. iucv_unregister(&af_iucv_handler, 0);
  960. printk(KERN_INFO "AF_IUCV lowlevel driver unloaded\n");
  961. }
  962. module_init(afiucv_init);
  963. module_exit(afiucv_exit);
  964. MODULE_AUTHOR("Jennifer Hunt <jenhunt@us.ibm.com>");
  965. MODULE_DESCRIPTION("IUCV Sockets ver " VERSION);
  966. MODULE_VERSION(VERSION);
  967. MODULE_LICENSE("GPL");
  968. MODULE_ALIAS_NETPROTO(PF_IUCV);