page_alloc.c 106 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/bootmem.h>
  22. #include <linux/compiler.h>
  23. #include <linux/kernel.h>
  24. #include <linux/module.h>
  25. #include <linux/suspend.h>
  26. #include <linux/pagevec.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/slab.h>
  29. #include <linux/notifier.h>
  30. #include <linux/topology.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/cpuset.h>
  34. #include <linux/memory_hotplug.h>
  35. #include <linux/nodemask.h>
  36. #include <linux/vmalloc.h>
  37. #include <linux/mempolicy.h>
  38. #include <linux/stop_machine.h>
  39. #include <linux/sort.h>
  40. #include <linux/pfn.h>
  41. #include <linux/backing-dev.h>
  42. #include <linux/fault-inject.h>
  43. #include <asm/tlbflush.h>
  44. #include <asm/div64.h>
  45. #include "internal.h"
  46. /*
  47. * MCD - HACK: Find somewhere to initialize this EARLY, or make this
  48. * initializer cleaner
  49. */
  50. nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
  51. EXPORT_SYMBOL(node_online_map);
  52. nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
  53. EXPORT_SYMBOL(node_possible_map);
  54. unsigned long totalram_pages __read_mostly;
  55. unsigned long totalreserve_pages __read_mostly;
  56. long nr_swap_pages;
  57. int percpu_pagelist_fraction;
  58. static void __free_pages_ok(struct page *page, unsigned int order);
  59. /*
  60. * results with 256, 32 in the lowmem_reserve sysctl:
  61. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  62. * 1G machine -> (16M dma, 784M normal, 224M high)
  63. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  64. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  65. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  66. *
  67. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  68. * don't need any ZONE_NORMAL reservation
  69. */
  70. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  71. #ifdef CONFIG_ZONE_DMA
  72. 256,
  73. #endif
  74. #ifdef CONFIG_ZONE_DMA32
  75. 256,
  76. #endif
  77. #ifdef CONFIG_HIGHMEM
  78. 32,
  79. #endif
  80. 32,
  81. };
  82. EXPORT_SYMBOL(totalram_pages);
  83. static char * const zone_names[MAX_NR_ZONES] = {
  84. #ifdef CONFIG_ZONE_DMA
  85. "DMA",
  86. #endif
  87. #ifdef CONFIG_ZONE_DMA32
  88. "DMA32",
  89. #endif
  90. "Normal",
  91. #ifdef CONFIG_HIGHMEM
  92. "HighMem",
  93. #endif
  94. "Movable",
  95. };
  96. int min_free_kbytes = 1024;
  97. unsigned long __meminitdata nr_kernel_pages;
  98. unsigned long __meminitdata nr_all_pages;
  99. static unsigned long __meminitdata dma_reserve;
  100. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  101. /*
  102. * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
  103. * ranges of memory (RAM) that may be registered with add_active_range().
  104. * Ranges passed to add_active_range() will be merged if possible
  105. * so the number of times add_active_range() can be called is
  106. * related to the number of nodes and the number of holes
  107. */
  108. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  109. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  110. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  111. #else
  112. #if MAX_NUMNODES >= 32
  113. /* If there can be many nodes, allow up to 50 holes per node */
  114. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  115. #else
  116. /* By default, allow up to 256 distinct regions */
  117. #define MAX_ACTIVE_REGIONS 256
  118. #endif
  119. #endif
  120. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  121. static int __meminitdata nr_nodemap_entries;
  122. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  123. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  124. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  125. static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
  126. static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
  127. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  128. unsigned long __initdata required_kernelcore;
  129. unsigned long __initdata required_movablecore;
  130. unsigned long __initdata zone_movable_pfn[MAX_NUMNODES];
  131. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  132. int movable_zone;
  133. EXPORT_SYMBOL(movable_zone);
  134. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  135. #if MAX_NUMNODES > 1
  136. int nr_node_ids __read_mostly = MAX_NUMNODES;
  137. EXPORT_SYMBOL(nr_node_ids);
  138. #endif
  139. #ifdef CONFIG_DEBUG_VM
  140. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  141. {
  142. int ret = 0;
  143. unsigned seq;
  144. unsigned long pfn = page_to_pfn(page);
  145. do {
  146. seq = zone_span_seqbegin(zone);
  147. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  148. ret = 1;
  149. else if (pfn < zone->zone_start_pfn)
  150. ret = 1;
  151. } while (zone_span_seqretry(zone, seq));
  152. return ret;
  153. }
  154. static int page_is_consistent(struct zone *zone, struct page *page)
  155. {
  156. if (!pfn_valid_within(page_to_pfn(page)))
  157. return 0;
  158. if (zone != page_zone(page))
  159. return 0;
  160. return 1;
  161. }
  162. /*
  163. * Temporary debugging check for pages not lying within a given zone.
  164. */
  165. static int bad_range(struct zone *zone, struct page *page)
  166. {
  167. if (page_outside_zone_boundaries(zone, page))
  168. return 1;
  169. if (!page_is_consistent(zone, page))
  170. return 1;
  171. return 0;
  172. }
  173. #else
  174. static inline int bad_range(struct zone *zone, struct page *page)
  175. {
  176. return 0;
  177. }
  178. #endif
  179. static void bad_page(struct page *page)
  180. {
  181. printk(KERN_EMERG "Bad page state in process '%s'\n"
  182. KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
  183. KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
  184. KERN_EMERG "Backtrace:\n",
  185. current->comm, page, (int)(2*sizeof(unsigned long)),
  186. (unsigned long)page->flags, page->mapping,
  187. page_mapcount(page), page_count(page));
  188. dump_stack();
  189. page->flags &= ~(1 << PG_lru |
  190. 1 << PG_private |
  191. 1 << PG_locked |
  192. 1 << PG_active |
  193. 1 << PG_dirty |
  194. 1 << PG_reclaim |
  195. 1 << PG_slab |
  196. 1 << PG_swapcache |
  197. 1 << PG_writeback |
  198. 1 << PG_buddy );
  199. set_page_count(page, 0);
  200. reset_page_mapcount(page);
  201. page->mapping = NULL;
  202. add_taint(TAINT_BAD_PAGE);
  203. }
  204. /*
  205. * Higher-order pages are called "compound pages". They are structured thusly:
  206. *
  207. * The first PAGE_SIZE page is called the "head page".
  208. *
  209. * The remaining PAGE_SIZE pages are called "tail pages".
  210. *
  211. * All pages have PG_compound set. All pages have their ->private pointing at
  212. * the head page (even the head page has this).
  213. *
  214. * The first tail page's ->lru.next holds the address of the compound page's
  215. * put_page() function. Its ->lru.prev holds the order of allocation.
  216. * This usage means that zero-order pages may not be compound.
  217. */
  218. static void free_compound_page(struct page *page)
  219. {
  220. __free_pages_ok(page, compound_order(page));
  221. }
  222. static void prep_compound_page(struct page *page, unsigned long order)
  223. {
  224. int i;
  225. int nr_pages = 1 << order;
  226. set_compound_page_dtor(page, free_compound_page);
  227. set_compound_order(page, order);
  228. __SetPageHead(page);
  229. for (i = 1; i < nr_pages; i++) {
  230. struct page *p = page + i;
  231. __SetPageTail(p);
  232. p->first_page = page;
  233. }
  234. }
  235. static void destroy_compound_page(struct page *page, unsigned long order)
  236. {
  237. int i;
  238. int nr_pages = 1 << order;
  239. if (unlikely(compound_order(page) != order))
  240. bad_page(page);
  241. if (unlikely(!PageHead(page)))
  242. bad_page(page);
  243. __ClearPageHead(page);
  244. for (i = 1; i < nr_pages; i++) {
  245. struct page *p = page + i;
  246. if (unlikely(!PageTail(p) |
  247. (p->first_page != page)))
  248. bad_page(page);
  249. __ClearPageTail(p);
  250. }
  251. }
  252. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  253. {
  254. int i;
  255. VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
  256. /*
  257. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  258. * and __GFP_HIGHMEM from hard or soft interrupt context.
  259. */
  260. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  261. for (i = 0; i < (1 << order); i++)
  262. clear_highpage(page + i);
  263. }
  264. /*
  265. * function for dealing with page's order in buddy system.
  266. * zone->lock is already acquired when we use these.
  267. * So, we don't need atomic page->flags operations here.
  268. */
  269. static inline unsigned long page_order(struct page *page)
  270. {
  271. return page_private(page);
  272. }
  273. static inline void set_page_order(struct page *page, int order)
  274. {
  275. set_page_private(page, order);
  276. __SetPageBuddy(page);
  277. }
  278. static inline void rmv_page_order(struct page *page)
  279. {
  280. __ClearPageBuddy(page);
  281. set_page_private(page, 0);
  282. }
  283. /*
  284. * Locate the struct page for both the matching buddy in our
  285. * pair (buddy1) and the combined O(n+1) page they form (page).
  286. *
  287. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  288. * the following equation:
  289. * B2 = B1 ^ (1 << O)
  290. * For example, if the starting buddy (buddy2) is #8 its order
  291. * 1 buddy is #10:
  292. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  293. *
  294. * 2) Any buddy B will have an order O+1 parent P which
  295. * satisfies the following equation:
  296. * P = B & ~(1 << O)
  297. *
  298. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  299. */
  300. static inline struct page *
  301. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  302. {
  303. unsigned long buddy_idx = page_idx ^ (1 << order);
  304. return page + (buddy_idx - page_idx);
  305. }
  306. static inline unsigned long
  307. __find_combined_index(unsigned long page_idx, unsigned int order)
  308. {
  309. return (page_idx & ~(1 << order));
  310. }
  311. /*
  312. * This function checks whether a page is free && is the buddy
  313. * we can do coalesce a page and its buddy if
  314. * (a) the buddy is not in a hole &&
  315. * (b) the buddy is in the buddy system &&
  316. * (c) a page and its buddy have the same order &&
  317. * (d) a page and its buddy are in the same zone.
  318. *
  319. * For recording whether a page is in the buddy system, we use PG_buddy.
  320. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  321. *
  322. * For recording page's order, we use page_private(page).
  323. */
  324. static inline int page_is_buddy(struct page *page, struct page *buddy,
  325. int order)
  326. {
  327. if (!pfn_valid_within(page_to_pfn(buddy)))
  328. return 0;
  329. if (page_zone_id(page) != page_zone_id(buddy))
  330. return 0;
  331. if (PageBuddy(buddy) && page_order(buddy) == order) {
  332. BUG_ON(page_count(buddy) != 0);
  333. return 1;
  334. }
  335. return 0;
  336. }
  337. /*
  338. * Freeing function for a buddy system allocator.
  339. *
  340. * The concept of a buddy system is to maintain direct-mapped table
  341. * (containing bit values) for memory blocks of various "orders".
  342. * The bottom level table contains the map for the smallest allocatable
  343. * units of memory (here, pages), and each level above it describes
  344. * pairs of units from the levels below, hence, "buddies".
  345. * At a high level, all that happens here is marking the table entry
  346. * at the bottom level available, and propagating the changes upward
  347. * as necessary, plus some accounting needed to play nicely with other
  348. * parts of the VM system.
  349. * At each level, we keep a list of pages, which are heads of continuous
  350. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  351. * order is recorded in page_private(page) field.
  352. * So when we are allocating or freeing one, we can derive the state of the
  353. * other. That is, if we allocate a small block, and both were
  354. * free, the remainder of the region must be split into blocks.
  355. * If a block is freed, and its buddy is also free, then this
  356. * triggers coalescing into a block of larger size.
  357. *
  358. * -- wli
  359. */
  360. static inline void __free_one_page(struct page *page,
  361. struct zone *zone, unsigned int order)
  362. {
  363. unsigned long page_idx;
  364. int order_size = 1 << order;
  365. if (unlikely(PageCompound(page)))
  366. destroy_compound_page(page, order);
  367. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  368. VM_BUG_ON(page_idx & (order_size - 1));
  369. VM_BUG_ON(bad_range(zone, page));
  370. __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
  371. while (order < MAX_ORDER-1) {
  372. unsigned long combined_idx;
  373. struct free_area *area;
  374. struct page *buddy;
  375. buddy = __page_find_buddy(page, page_idx, order);
  376. if (!page_is_buddy(page, buddy, order))
  377. break; /* Move the buddy up one level. */
  378. list_del(&buddy->lru);
  379. area = zone->free_area + order;
  380. area->nr_free--;
  381. rmv_page_order(buddy);
  382. combined_idx = __find_combined_index(page_idx, order);
  383. page = page + (combined_idx - page_idx);
  384. page_idx = combined_idx;
  385. order++;
  386. }
  387. set_page_order(page, order);
  388. list_add(&page->lru, &zone->free_area[order].free_list);
  389. zone->free_area[order].nr_free++;
  390. }
  391. static inline int free_pages_check(struct page *page)
  392. {
  393. if (unlikely(page_mapcount(page) |
  394. (page->mapping != NULL) |
  395. (page_count(page) != 0) |
  396. (page->flags & (
  397. 1 << PG_lru |
  398. 1 << PG_private |
  399. 1 << PG_locked |
  400. 1 << PG_active |
  401. 1 << PG_slab |
  402. 1 << PG_swapcache |
  403. 1 << PG_writeback |
  404. 1 << PG_reserved |
  405. 1 << PG_buddy ))))
  406. bad_page(page);
  407. if (PageDirty(page))
  408. __ClearPageDirty(page);
  409. /*
  410. * For now, we report if PG_reserved was found set, but do not
  411. * clear it, and do not free the page. But we shall soon need
  412. * to do more, for when the ZERO_PAGE count wraps negative.
  413. */
  414. return PageReserved(page);
  415. }
  416. /*
  417. * Frees a list of pages.
  418. * Assumes all pages on list are in same zone, and of same order.
  419. * count is the number of pages to free.
  420. *
  421. * If the zone was previously in an "all pages pinned" state then look to
  422. * see if this freeing clears that state.
  423. *
  424. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  425. * pinned" detection logic.
  426. */
  427. static void free_pages_bulk(struct zone *zone, int count,
  428. struct list_head *list, int order)
  429. {
  430. spin_lock(&zone->lock);
  431. zone->all_unreclaimable = 0;
  432. zone->pages_scanned = 0;
  433. while (count--) {
  434. struct page *page;
  435. VM_BUG_ON(list_empty(list));
  436. page = list_entry(list->prev, struct page, lru);
  437. /* have to delete it as __free_one_page list manipulates */
  438. list_del(&page->lru);
  439. __free_one_page(page, zone, order);
  440. }
  441. spin_unlock(&zone->lock);
  442. }
  443. static void free_one_page(struct zone *zone, struct page *page, int order)
  444. {
  445. spin_lock(&zone->lock);
  446. zone->all_unreclaimable = 0;
  447. zone->pages_scanned = 0;
  448. __free_one_page(page, zone, order);
  449. spin_unlock(&zone->lock);
  450. }
  451. static void __free_pages_ok(struct page *page, unsigned int order)
  452. {
  453. unsigned long flags;
  454. int i;
  455. int reserved = 0;
  456. for (i = 0 ; i < (1 << order) ; ++i)
  457. reserved += free_pages_check(page + i);
  458. if (reserved)
  459. return;
  460. if (!PageHighMem(page))
  461. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  462. arch_free_page(page, order);
  463. kernel_map_pages(page, 1 << order, 0);
  464. local_irq_save(flags);
  465. __count_vm_events(PGFREE, 1 << order);
  466. free_one_page(page_zone(page), page, order);
  467. local_irq_restore(flags);
  468. }
  469. /*
  470. * permit the bootmem allocator to evade page validation on high-order frees
  471. */
  472. void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
  473. {
  474. if (order == 0) {
  475. __ClearPageReserved(page);
  476. set_page_count(page, 0);
  477. set_page_refcounted(page);
  478. __free_page(page);
  479. } else {
  480. int loop;
  481. prefetchw(page);
  482. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  483. struct page *p = &page[loop];
  484. if (loop + 1 < BITS_PER_LONG)
  485. prefetchw(p + 1);
  486. __ClearPageReserved(p);
  487. set_page_count(p, 0);
  488. }
  489. set_page_refcounted(page);
  490. __free_pages(page, order);
  491. }
  492. }
  493. /*
  494. * The order of subdivision here is critical for the IO subsystem.
  495. * Please do not alter this order without good reasons and regression
  496. * testing. Specifically, as large blocks of memory are subdivided,
  497. * the order in which smaller blocks are delivered depends on the order
  498. * they're subdivided in this function. This is the primary factor
  499. * influencing the order in which pages are delivered to the IO
  500. * subsystem according to empirical testing, and this is also justified
  501. * by considering the behavior of a buddy system containing a single
  502. * large block of memory acted on by a series of small allocations.
  503. * This behavior is a critical factor in sglist merging's success.
  504. *
  505. * -- wli
  506. */
  507. static inline void expand(struct zone *zone, struct page *page,
  508. int low, int high, struct free_area *area)
  509. {
  510. unsigned long size = 1 << high;
  511. while (high > low) {
  512. area--;
  513. high--;
  514. size >>= 1;
  515. VM_BUG_ON(bad_range(zone, &page[size]));
  516. list_add(&page[size].lru, &area->free_list);
  517. area->nr_free++;
  518. set_page_order(&page[size], high);
  519. }
  520. }
  521. /*
  522. * This page is about to be returned from the page allocator
  523. */
  524. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  525. {
  526. if (unlikely(page_mapcount(page) |
  527. (page->mapping != NULL) |
  528. (page_count(page) != 0) |
  529. (page->flags & (
  530. 1 << PG_lru |
  531. 1 << PG_private |
  532. 1 << PG_locked |
  533. 1 << PG_active |
  534. 1 << PG_dirty |
  535. 1 << PG_slab |
  536. 1 << PG_swapcache |
  537. 1 << PG_writeback |
  538. 1 << PG_reserved |
  539. 1 << PG_buddy ))))
  540. bad_page(page);
  541. /*
  542. * For now, we report if PG_reserved was found set, but do not
  543. * clear it, and do not allocate the page: as a safety net.
  544. */
  545. if (PageReserved(page))
  546. return 1;
  547. page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
  548. 1 << PG_referenced | 1 << PG_arch_1 |
  549. 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
  550. set_page_private(page, 0);
  551. set_page_refcounted(page);
  552. arch_alloc_page(page, order);
  553. kernel_map_pages(page, 1 << order, 1);
  554. if (gfp_flags & __GFP_ZERO)
  555. prep_zero_page(page, order, gfp_flags);
  556. if (order && (gfp_flags & __GFP_COMP))
  557. prep_compound_page(page, order);
  558. return 0;
  559. }
  560. /*
  561. * Do the hard work of removing an element from the buddy allocator.
  562. * Call me with the zone->lock already held.
  563. */
  564. static struct page *__rmqueue(struct zone *zone, unsigned int order)
  565. {
  566. struct free_area * area;
  567. unsigned int current_order;
  568. struct page *page;
  569. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  570. area = zone->free_area + current_order;
  571. if (list_empty(&area->free_list))
  572. continue;
  573. page = list_entry(area->free_list.next, struct page, lru);
  574. list_del(&page->lru);
  575. rmv_page_order(page);
  576. area->nr_free--;
  577. __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
  578. expand(zone, page, order, current_order, area);
  579. return page;
  580. }
  581. return NULL;
  582. }
  583. /*
  584. * Obtain a specified number of elements from the buddy allocator, all under
  585. * a single hold of the lock, for efficiency. Add them to the supplied list.
  586. * Returns the number of new pages which were placed at *list.
  587. */
  588. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  589. unsigned long count, struct list_head *list)
  590. {
  591. int i;
  592. spin_lock(&zone->lock);
  593. for (i = 0; i < count; ++i) {
  594. struct page *page = __rmqueue(zone, order);
  595. if (unlikely(page == NULL))
  596. break;
  597. list_add_tail(&page->lru, list);
  598. }
  599. spin_unlock(&zone->lock);
  600. return i;
  601. }
  602. #ifdef CONFIG_NUMA
  603. /*
  604. * Called from the vmstat counter updater to drain pagesets of this
  605. * currently executing processor on remote nodes after they have
  606. * expired.
  607. *
  608. * Note that this function must be called with the thread pinned to
  609. * a single processor.
  610. */
  611. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  612. {
  613. unsigned long flags;
  614. int to_drain;
  615. local_irq_save(flags);
  616. if (pcp->count >= pcp->batch)
  617. to_drain = pcp->batch;
  618. else
  619. to_drain = pcp->count;
  620. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  621. pcp->count -= to_drain;
  622. local_irq_restore(flags);
  623. }
  624. #endif
  625. static void __drain_pages(unsigned int cpu)
  626. {
  627. unsigned long flags;
  628. struct zone *zone;
  629. int i;
  630. for_each_zone(zone) {
  631. struct per_cpu_pageset *pset;
  632. if (!populated_zone(zone))
  633. continue;
  634. pset = zone_pcp(zone, cpu);
  635. for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
  636. struct per_cpu_pages *pcp;
  637. pcp = &pset->pcp[i];
  638. local_irq_save(flags);
  639. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  640. pcp->count = 0;
  641. local_irq_restore(flags);
  642. }
  643. }
  644. }
  645. #ifdef CONFIG_PM
  646. void mark_free_pages(struct zone *zone)
  647. {
  648. unsigned long pfn, max_zone_pfn;
  649. unsigned long flags;
  650. int order;
  651. struct list_head *curr;
  652. if (!zone->spanned_pages)
  653. return;
  654. spin_lock_irqsave(&zone->lock, flags);
  655. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  656. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  657. if (pfn_valid(pfn)) {
  658. struct page *page = pfn_to_page(pfn);
  659. if (!swsusp_page_is_forbidden(page))
  660. swsusp_unset_page_free(page);
  661. }
  662. for (order = MAX_ORDER - 1; order >= 0; --order)
  663. list_for_each(curr, &zone->free_area[order].free_list) {
  664. unsigned long i;
  665. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  666. for (i = 0; i < (1UL << order); i++)
  667. swsusp_set_page_free(pfn_to_page(pfn + i));
  668. }
  669. spin_unlock_irqrestore(&zone->lock, flags);
  670. }
  671. /*
  672. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  673. */
  674. void drain_local_pages(void)
  675. {
  676. unsigned long flags;
  677. local_irq_save(flags);
  678. __drain_pages(smp_processor_id());
  679. local_irq_restore(flags);
  680. }
  681. #endif /* CONFIG_PM */
  682. /*
  683. * Free a 0-order page
  684. */
  685. static void fastcall free_hot_cold_page(struct page *page, int cold)
  686. {
  687. struct zone *zone = page_zone(page);
  688. struct per_cpu_pages *pcp;
  689. unsigned long flags;
  690. if (PageAnon(page))
  691. page->mapping = NULL;
  692. if (free_pages_check(page))
  693. return;
  694. if (!PageHighMem(page))
  695. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  696. arch_free_page(page, 0);
  697. kernel_map_pages(page, 1, 0);
  698. pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
  699. local_irq_save(flags);
  700. __count_vm_event(PGFREE);
  701. list_add(&page->lru, &pcp->list);
  702. pcp->count++;
  703. if (pcp->count >= pcp->high) {
  704. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  705. pcp->count -= pcp->batch;
  706. }
  707. local_irq_restore(flags);
  708. put_cpu();
  709. }
  710. void fastcall free_hot_page(struct page *page)
  711. {
  712. free_hot_cold_page(page, 0);
  713. }
  714. void fastcall free_cold_page(struct page *page)
  715. {
  716. free_hot_cold_page(page, 1);
  717. }
  718. /*
  719. * split_page takes a non-compound higher-order page, and splits it into
  720. * n (1<<order) sub-pages: page[0..n]
  721. * Each sub-page must be freed individually.
  722. *
  723. * Note: this is probably too low level an operation for use in drivers.
  724. * Please consult with lkml before using this in your driver.
  725. */
  726. void split_page(struct page *page, unsigned int order)
  727. {
  728. int i;
  729. VM_BUG_ON(PageCompound(page));
  730. VM_BUG_ON(!page_count(page));
  731. for (i = 1; i < (1 << order); i++)
  732. set_page_refcounted(page + i);
  733. }
  734. /*
  735. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  736. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  737. * or two.
  738. */
  739. static struct page *buffered_rmqueue(struct zonelist *zonelist,
  740. struct zone *zone, int order, gfp_t gfp_flags)
  741. {
  742. unsigned long flags;
  743. struct page *page;
  744. int cold = !!(gfp_flags & __GFP_COLD);
  745. int cpu;
  746. again:
  747. cpu = get_cpu();
  748. if (likely(order == 0)) {
  749. struct per_cpu_pages *pcp;
  750. pcp = &zone_pcp(zone, cpu)->pcp[cold];
  751. local_irq_save(flags);
  752. if (!pcp->count) {
  753. pcp->count = rmqueue_bulk(zone, 0,
  754. pcp->batch, &pcp->list);
  755. if (unlikely(!pcp->count))
  756. goto failed;
  757. }
  758. page = list_entry(pcp->list.next, struct page, lru);
  759. list_del(&page->lru);
  760. pcp->count--;
  761. } else {
  762. spin_lock_irqsave(&zone->lock, flags);
  763. page = __rmqueue(zone, order);
  764. spin_unlock(&zone->lock);
  765. if (!page)
  766. goto failed;
  767. }
  768. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  769. zone_statistics(zonelist, zone);
  770. local_irq_restore(flags);
  771. put_cpu();
  772. VM_BUG_ON(bad_range(zone, page));
  773. if (prep_new_page(page, order, gfp_flags))
  774. goto again;
  775. return page;
  776. failed:
  777. local_irq_restore(flags);
  778. put_cpu();
  779. return NULL;
  780. }
  781. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  782. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  783. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  784. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  785. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  786. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  787. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  788. #ifdef CONFIG_FAIL_PAGE_ALLOC
  789. static struct fail_page_alloc_attr {
  790. struct fault_attr attr;
  791. u32 ignore_gfp_highmem;
  792. u32 ignore_gfp_wait;
  793. u32 min_order;
  794. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  795. struct dentry *ignore_gfp_highmem_file;
  796. struct dentry *ignore_gfp_wait_file;
  797. struct dentry *min_order_file;
  798. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  799. } fail_page_alloc = {
  800. .attr = FAULT_ATTR_INITIALIZER,
  801. .ignore_gfp_wait = 1,
  802. .ignore_gfp_highmem = 1,
  803. .min_order = 1,
  804. };
  805. static int __init setup_fail_page_alloc(char *str)
  806. {
  807. return setup_fault_attr(&fail_page_alloc.attr, str);
  808. }
  809. __setup("fail_page_alloc=", setup_fail_page_alloc);
  810. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  811. {
  812. if (order < fail_page_alloc.min_order)
  813. return 0;
  814. if (gfp_mask & __GFP_NOFAIL)
  815. return 0;
  816. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  817. return 0;
  818. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  819. return 0;
  820. return should_fail(&fail_page_alloc.attr, 1 << order);
  821. }
  822. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  823. static int __init fail_page_alloc_debugfs(void)
  824. {
  825. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  826. struct dentry *dir;
  827. int err;
  828. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  829. "fail_page_alloc");
  830. if (err)
  831. return err;
  832. dir = fail_page_alloc.attr.dentries.dir;
  833. fail_page_alloc.ignore_gfp_wait_file =
  834. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  835. &fail_page_alloc.ignore_gfp_wait);
  836. fail_page_alloc.ignore_gfp_highmem_file =
  837. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  838. &fail_page_alloc.ignore_gfp_highmem);
  839. fail_page_alloc.min_order_file =
  840. debugfs_create_u32("min-order", mode, dir,
  841. &fail_page_alloc.min_order);
  842. if (!fail_page_alloc.ignore_gfp_wait_file ||
  843. !fail_page_alloc.ignore_gfp_highmem_file ||
  844. !fail_page_alloc.min_order_file) {
  845. err = -ENOMEM;
  846. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  847. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  848. debugfs_remove(fail_page_alloc.min_order_file);
  849. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  850. }
  851. return err;
  852. }
  853. late_initcall(fail_page_alloc_debugfs);
  854. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  855. #else /* CONFIG_FAIL_PAGE_ALLOC */
  856. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  857. {
  858. return 0;
  859. }
  860. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  861. /*
  862. * Return 1 if free pages are above 'mark'. This takes into account the order
  863. * of the allocation.
  864. */
  865. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  866. int classzone_idx, int alloc_flags)
  867. {
  868. /* free_pages my go negative - that's OK */
  869. long min = mark;
  870. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  871. int o;
  872. if (alloc_flags & ALLOC_HIGH)
  873. min -= min / 2;
  874. if (alloc_flags & ALLOC_HARDER)
  875. min -= min / 4;
  876. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  877. return 0;
  878. for (o = 0; o < order; o++) {
  879. /* At the next order, this order's pages become unavailable */
  880. free_pages -= z->free_area[o].nr_free << o;
  881. /* Require fewer higher order pages to be free */
  882. min >>= 1;
  883. if (free_pages <= min)
  884. return 0;
  885. }
  886. return 1;
  887. }
  888. #ifdef CONFIG_NUMA
  889. /*
  890. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  891. * skip over zones that are not allowed by the cpuset, or that have
  892. * been recently (in last second) found to be nearly full. See further
  893. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  894. * that have to skip over alot of full or unallowed zones.
  895. *
  896. * If the zonelist cache is present in the passed in zonelist, then
  897. * returns a pointer to the allowed node mask (either the current
  898. * tasks mems_allowed, or node_online_map.)
  899. *
  900. * If the zonelist cache is not available for this zonelist, does
  901. * nothing and returns NULL.
  902. *
  903. * If the fullzones BITMAP in the zonelist cache is stale (more than
  904. * a second since last zap'd) then we zap it out (clear its bits.)
  905. *
  906. * We hold off even calling zlc_setup, until after we've checked the
  907. * first zone in the zonelist, on the theory that most allocations will
  908. * be satisfied from that first zone, so best to examine that zone as
  909. * quickly as we can.
  910. */
  911. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  912. {
  913. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  914. nodemask_t *allowednodes; /* zonelist_cache approximation */
  915. zlc = zonelist->zlcache_ptr;
  916. if (!zlc)
  917. return NULL;
  918. if (jiffies - zlc->last_full_zap > 1 * HZ) {
  919. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  920. zlc->last_full_zap = jiffies;
  921. }
  922. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  923. &cpuset_current_mems_allowed :
  924. &node_online_map;
  925. return allowednodes;
  926. }
  927. /*
  928. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  929. * if it is worth looking at further for free memory:
  930. * 1) Check that the zone isn't thought to be full (doesn't have its
  931. * bit set in the zonelist_cache fullzones BITMAP).
  932. * 2) Check that the zones node (obtained from the zonelist_cache
  933. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  934. * Return true (non-zero) if zone is worth looking at further, or
  935. * else return false (zero) if it is not.
  936. *
  937. * This check -ignores- the distinction between various watermarks,
  938. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  939. * found to be full for any variation of these watermarks, it will
  940. * be considered full for up to one second by all requests, unless
  941. * we are so low on memory on all allowed nodes that we are forced
  942. * into the second scan of the zonelist.
  943. *
  944. * In the second scan we ignore this zonelist cache and exactly
  945. * apply the watermarks to all zones, even it is slower to do so.
  946. * We are low on memory in the second scan, and should leave no stone
  947. * unturned looking for a free page.
  948. */
  949. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
  950. nodemask_t *allowednodes)
  951. {
  952. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  953. int i; /* index of *z in zonelist zones */
  954. int n; /* node that zone *z is on */
  955. zlc = zonelist->zlcache_ptr;
  956. if (!zlc)
  957. return 1;
  958. i = z - zonelist->zones;
  959. n = zlc->z_to_n[i];
  960. /* This zone is worth trying if it is allowed but not full */
  961. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  962. }
  963. /*
  964. * Given 'z' scanning a zonelist, set the corresponding bit in
  965. * zlc->fullzones, so that subsequent attempts to allocate a page
  966. * from that zone don't waste time re-examining it.
  967. */
  968. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
  969. {
  970. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  971. int i; /* index of *z in zonelist zones */
  972. zlc = zonelist->zlcache_ptr;
  973. if (!zlc)
  974. return;
  975. i = z - zonelist->zones;
  976. set_bit(i, zlc->fullzones);
  977. }
  978. #else /* CONFIG_NUMA */
  979. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  980. {
  981. return NULL;
  982. }
  983. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
  984. nodemask_t *allowednodes)
  985. {
  986. return 1;
  987. }
  988. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
  989. {
  990. }
  991. #endif /* CONFIG_NUMA */
  992. /*
  993. * get_page_from_freelist goes through the zonelist trying to allocate
  994. * a page.
  995. */
  996. static struct page *
  997. get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
  998. struct zonelist *zonelist, int alloc_flags)
  999. {
  1000. struct zone **z;
  1001. struct page *page = NULL;
  1002. int classzone_idx = zone_idx(zonelist->zones[0]);
  1003. struct zone *zone;
  1004. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1005. int zlc_active = 0; /* set if using zonelist_cache */
  1006. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1007. zonelist_scan:
  1008. /*
  1009. * Scan zonelist, looking for a zone with enough free.
  1010. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1011. */
  1012. z = zonelist->zones;
  1013. do {
  1014. if (NUMA_BUILD && zlc_active &&
  1015. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1016. continue;
  1017. zone = *z;
  1018. if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
  1019. zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
  1020. break;
  1021. if ((alloc_flags & ALLOC_CPUSET) &&
  1022. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1023. goto try_next_zone;
  1024. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1025. unsigned long mark;
  1026. if (alloc_flags & ALLOC_WMARK_MIN)
  1027. mark = zone->pages_min;
  1028. else if (alloc_flags & ALLOC_WMARK_LOW)
  1029. mark = zone->pages_low;
  1030. else
  1031. mark = zone->pages_high;
  1032. if (!zone_watermark_ok(zone, order, mark,
  1033. classzone_idx, alloc_flags)) {
  1034. if (!zone_reclaim_mode ||
  1035. !zone_reclaim(zone, gfp_mask, order))
  1036. goto this_zone_full;
  1037. }
  1038. }
  1039. page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
  1040. if (page)
  1041. break;
  1042. this_zone_full:
  1043. if (NUMA_BUILD)
  1044. zlc_mark_zone_full(zonelist, z);
  1045. try_next_zone:
  1046. if (NUMA_BUILD && !did_zlc_setup) {
  1047. /* we do zlc_setup after the first zone is tried */
  1048. allowednodes = zlc_setup(zonelist, alloc_flags);
  1049. zlc_active = 1;
  1050. did_zlc_setup = 1;
  1051. }
  1052. } while (*(++z) != NULL);
  1053. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1054. /* Disable zlc cache for second zonelist scan */
  1055. zlc_active = 0;
  1056. goto zonelist_scan;
  1057. }
  1058. return page;
  1059. }
  1060. /*
  1061. * This is the 'heart' of the zoned buddy allocator.
  1062. */
  1063. struct page * fastcall
  1064. __alloc_pages(gfp_t gfp_mask, unsigned int order,
  1065. struct zonelist *zonelist)
  1066. {
  1067. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1068. struct zone **z;
  1069. struct page *page;
  1070. struct reclaim_state reclaim_state;
  1071. struct task_struct *p = current;
  1072. int do_retry;
  1073. int alloc_flags;
  1074. int did_some_progress;
  1075. might_sleep_if(wait);
  1076. if (should_fail_alloc_page(gfp_mask, order))
  1077. return NULL;
  1078. restart:
  1079. z = zonelist->zones; /* the list of zones suitable for gfp_mask */
  1080. if (unlikely(*z == NULL)) {
  1081. /* Should this ever happen?? */
  1082. return NULL;
  1083. }
  1084. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  1085. zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  1086. if (page)
  1087. goto got_pg;
  1088. /*
  1089. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1090. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1091. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1092. * using a larger set of nodes after it has established that the
  1093. * allowed per node queues are empty and that nodes are
  1094. * over allocated.
  1095. */
  1096. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1097. goto nopage;
  1098. for (z = zonelist->zones; *z; z++)
  1099. wakeup_kswapd(*z, order);
  1100. /*
  1101. * OK, we're below the kswapd watermark and have kicked background
  1102. * reclaim. Now things get more complex, so set up alloc_flags according
  1103. * to how we want to proceed.
  1104. *
  1105. * The caller may dip into page reserves a bit more if the caller
  1106. * cannot run direct reclaim, or if the caller has realtime scheduling
  1107. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1108. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1109. */
  1110. alloc_flags = ALLOC_WMARK_MIN;
  1111. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  1112. alloc_flags |= ALLOC_HARDER;
  1113. if (gfp_mask & __GFP_HIGH)
  1114. alloc_flags |= ALLOC_HIGH;
  1115. if (wait)
  1116. alloc_flags |= ALLOC_CPUSET;
  1117. /*
  1118. * Go through the zonelist again. Let __GFP_HIGH and allocations
  1119. * coming from realtime tasks go deeper into reserves.
  1120. *
  1121. * This is the last chance, in general, before the goto nopage.
  1122. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1123. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1124. */
  1125. page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
  1126. if (page)
  1127. goto got_pg;
  1128. /* This allocation should allow future memory freeing. */
  1129. rebalance:
  1130. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  1131. && !in_interrupt()) {
  1132. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  1133. nofail_alloc:
  1134. /* go through the zonelist yet again, ignoring mins */
  1135. page = get_page_from_freelist(gfp_mask, order,
  1136. zonelist, ALLOC_NO_WATERMARKS);
  1137. if (page)
  1138. goto got_pg;
  1139. if (gfp_mask & __GFP_NOFAIL) {
  1140. congestion_wait(WRITE, HZ/50);
  1141. goto nofail_alloc;
  1142. }
  1143. }
  1144. goto nopage;
  1145. }
  1146. /* Atomic allocations - we can't balance anything */
  1147. if (!wait)
  1148. goto nopage;
  1149. cond_resched();
  1150. /* We now go into synchronous reclaim */
  1151. cpuset_memory_pressure_bump();
  1152. p->flags |= PF_MEMALLOC;
  1153. reclaim_state.reclaimed_slab = 0;
  1154. p->reclaim_state = &reclaim_state;
  1155. did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
  1156. p->reclaim_state = NULL;
  1157. p->flags &= ~PF_MEMALLOC;
  1158. cond_resched();
  1159. if (likely(did_some_progress)) {
  1160. page = get_page_from_freelist(gfp_mask, order,
  1161. zonelist, alloc_flags);
  1162. if (page)
  1163. goto got_pg;
  1164. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1165. /*
  1166. * Go through the zonelist yet one more time, keep
  1167. * very high watermark here, this is only to catch
  1168. * a parallel oom killing, we must fail if we're still
  1169. * under heavy pressure.
  1170. */
  1171. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  1172. zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  1173. if (page)
  1174. goto got_pg;
  1175. out_of_memory(zonelist, gfp_mask, order);
  1176. goto restart;
  1177. }
  1178. /*
  1179. * Don't let big-order allocations loop unless the caller explicitly
  1180. * requests that. Wait for some write requests to complete then retry.
  1181. *
  1182. * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
  1183. * <= 3, but that may not be true in other implementations.
  1184. */
  1185. do_retry = 0;
  1186. if (!(gfp_mask & __GFP_NORETRY)) {
  1187. if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
  1188. (gfp_mask & __GFP_REPEAT))
  1189. do_retry = 1;
  1190. if (gfp_mask & __GFP_NOFAIL)
  1191. do_retry = 1;
  1192. }
  1193. if (do_retry) {
  1194. congestion_wait(WRITE, HZ/50);
  1195. goto rebalance;
  1196. }
  1197. nopage:
  1198. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1199. printk(KERN_WARNING "%s: page allocation failure."
  1200. " order:%d, mode:0x%x\n",
  1201. p->comm, order, gfp_mask);
  1202. dump_stack();
  1203. show_mem();
  1204. }
  1205. got_pg:
  1206. return page;
  1207. }
  1208. EXPORT_SYMBOL(__alloc_pages);
  1209. /*
  1210. * Common helper functions.
  1211. */
  1212. fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1213. {
  1214. struct page * page;
  1215. page = alloc_pages(gfp_mask, order);
  1216. if (!page)
  1217. return 0;
  1218. return (unsigned long) page_address(page);
  1219. }
  1220. EXPORT_SYMBOL(__get_free_pages);
  1221. fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
  1222. {
  1223. struct page * page;
  1224. /*
  1225. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1226. * a highmem page
  1227. */
  1228. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1229. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1230. if (page)
  1231. return (unsigned long) page_address(page);
  1232. return 0;
  1233. }
  1234. EXPORT_SYMBOL(get_zeroed_page);
  1235. void __pagevec_free(struct pagevec *pvec)
  1236. {
  1237. int i = pagevec_count(pvec);
  1238. while (--i >= 0)
  1239. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1240. }
  1241. fastcall void __free_pages(struct page *page, unsigned int order)
  1242. {
  1243. if (put_page_testzero(page)) {
  1244. if (order == 0)
  1245. free_hot_page(page);
  1246. else
  1247. __free_pages_ok(page, order);
  1248. }
  1249. }
  1250. EXPORT_SYMBOL(__free_pages);
  1251. fastcall void free_pages(unsigned long addr, unsigned int order)
  1252. {
  1253. if (addr != 0) {
  1254. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1255. __free_pages(virt_to_page((void *)addr), order);
  1256. }
  1257. }
  1258. EXPORT_SYMBOL(free_pages);
  1259. static unsigned int nr_free_zone_pages(int offset)
  1260. {
  1261. /* Just pick one node, since fallback list is circular */
  1262. pg_data_t *pgdat = NODE_DATA(numa_node_id());
  1263. unsigned int sum = 0;
  1264. struct zonelist *zonelist = pgdat->node_zonelists + offset;
  1265. struct zone **zonep = zonelist->zones;
  1266. struct zone *zone;
  1267. for (zone = *zonep++; zone; zone = *zonep++) {
  1268. unsigned long size = zone->present_pages;
  1269. unsigned long high = zone->pages_high;
  1270. if (size > high)
  1271. sum += size - high;
  1272. }
  1273. return sum;
  1274. }
  1275. /*
  1276. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1277. */
  1278. unsigned int nr_free_buffer_pages(void)
  1279. {
  1280. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1281. }
  1282. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1283. /*
  1284. * Amount of free RAM allocatable within all zones
  1285. */
  1286. unsigned int nr_free_pagecache_pages(void)
  1287. {
  1288. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1289. }
  1290. static inline void show_node(struct zone *zone)
  1291. {
  1292. if (NUMA_BUILD)
  1293. printk("Node %d ", zone_to_nid(zone));
  1294. }
  1295. void si_meminfo(struct sysinfo *val)
  1296. {
  1297. val->totalram = totalram_pages;
  1298. val->sharedram = 0;
  1299. val->freeram = global_page_state(NR_FREE_PAGES);
  1300. val->bufferram = nr_blockdev_pages();
  1301. val->totalhigh = totalhigh_pages;
  1302. val->freehigh = nr_free_highpages();
  1303. val->mem_unit = PAGE_SIZE;
  1304. }
  1305. EXPORT_SYMBOL(si_meminfo);
  1306. #ifdef CONFIG_NUMA
  1307. void si_meminfo_node(struct sysinfo *val, int nid)
  1308. {
  1309. pg_data_t *pgdat = NODE_DATA(nid);
  1310. val->totalram = pgdat->node_present_pages;
  1311. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1312. #ifdef CONFIG_HIGHMEM
  1313. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1314. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1315. NR_FREE_PAGES);
  1316. #else
  1317. val->totalhigh = 0;
  1318. val->freehigh = 0;
  1319. #endif
  1320. val->mem_unit = PAGE_SIZE;
  1321. }
  1322. #endif
  1323. #define K(x) ((x) << (PAGE_SHIFT-10))
  1324. /*
  1325. * Show free area list (used inside shift_scroll-lock stuff)
  1326. * We also calculate the percentage fragmentation. We do this by counting the
  1327. * memory on each free list with the exception of the first item on the list.
  1328. */
  1329. void show_free_areas(void)
  1330. {
  1331. int cpu;
  1332. struct zone *zone;
  1333. for_each_zone(zone) {
  1334. if (!populated_zone(zone))
  1335. continue;
  1336. show_node(zone);
  1337. printk("%s per-cpu:\n", zone->name);
  1338. for_each_online_cpu(cpu) {
  1339. struct per_cpu_pageset *pageset;
  1340. pageset = zone_pcp(zone, cpu);
  1341. printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
  1342. "Cold: hi:%5d, btch:%4d usd:%4d\n",
  1343. cpu, pageset->pcp[0].high,
  1344. pageset->pcp[0].batch, pageset->pcp[0].count,
  1345. pageset->pcp[1].high, pageset->pcp[1].batch,
  1346. pageset->pcp[1].count);
  1347. }
  1348. }
  1349. printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  1350. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1351. global_page_state(NR_ACTIVE),
  1352. global_page_state(NR_INACTIVE),
  1353. global_page_state(NR_FILE_DIRTY),
  1354. global_page_state(NR_WRITEBACK),
  1355. global_page_state(NR_UNSTABLE_NFS),
  1356. global_page_state(NR_FREE_PAGES),
  1357. global_page_state(NR_SLAB_RECLAIMABLE) +
  1358. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1359. global_page_state(NR_FILE_MAPPED),
  1360. global_page_state(NR_PAGETABLE),
  1361. global_page_state(NR_BOUNCE));
  1362. for_each_zone(zone) {
  1363. int i;
  1364. if (!populated_zone(zone))
  1365. continue;
  1366. show_node(zone);
  1367. printk("%s"
  1368. " free:%lukB"
  1369. " min:%lukB"
  1370. " low:%lukB"
  1371. " high:%lukB"
  1372. " active:%lukB"
  1373. " inactive:%lukB"
  1374. " present:%lukB"
  1375. " pages_scanned:%lu"
  1376. " all_unreclaimable? %s"
  1377. "\n",
  1378. zone->name,
  1379. K(zone_page_state(zone, NR_FREE_PAGES)),
  1380. K(zone->pages_min),
  1381. K(zone->pages_low),
  1382. K(zone->pages_high),
  1383. K(zone_page_state(zone, NR_ACTIVE)),
  1384. K(zone_page_state(zone, NR_INACTIVE)),
  1385. K(zone->present_pages),
  1386. zone->pages_scanned,
  1387. (zone->all_unreclaimable ? "yes" : "no")
  1388. );
  1389. printk("lowmem_reserve[]:");
  1390. for (i = 0; i < MAX_NR_ZONES; i++)
  1391. printk(" %lu", zone->lowmem_reserve[i]);
  1392. printk("\n");
  1393. }
  1394. for_each_zone(zone) {
  1395. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1396. if (!populated_zone(zone))
  1397. continue;
  1398. show_node(zone);
  1399. printk("%s: ", zone->name);
  1400. spin_lock_irqsave(&zone->lock, flags);
  1401. for (order = 0; order < MAX_ORDER; order++) {
  1402. nr[order] = zone->free_area[order].nr_free;
  1403. total += nr[order] << order;
  1404. }
  1405. spin_unlock_irqrestore(&zone->lock, flags);
  1406. for (order = 0; order < MAX_ORDER; order++)
  1407. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1408. printk("= %lukB\n", K(total));
  1409. }
  1410. show_swap_cache_info();
  1411. }
  1412. /*
  1413. * Builds allocation fallback zone lists.
  1414. *
  1415. * Add all populated zones of a node to the zonelist.
  1416. */
  1417. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1418. int nr_zones, enum zone_type zone_type)
  1419. {
  1420. struct zone *zone;
  1421. BUG_ON(zone_type >= MAX_NR_ZONES);
  1422. zone_type++;
  1423. do {
  1424. zone_type--;
  1425. zone = pgdat->node_zones + zone_type;
  1426. if (populated_zone(zone)) {
  1427. zonelist->zones[nr_zones++] = zone;
  1428. check_highest_zone(zone_type);
  1429. }
  1430. } while (zone_type);
  1431. return nr_zones;
  1432. }
  1433. /*
  1434. * zonelist_order:
  1435. * 0 = automatic detection of better ordering.
  1436. * 1 = order by ([node] distance, -zonetype)
  1437. * 2 = order by (-zonetype, [node] distance)
  1438. *
  1439. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1440. * the same zonelist. So only NUMA can configure this param.
  1441. */
  1442. #define ZONELIST_ORDER_DEFAULT 0
  1443. #define ZONELIST_ORDER_NODE 1
  1444. #define ZONELIST_ORDER_ZONE 2
  1445. /* zonelist order in the kernel.
  1446. * set_zonelist_order() will set this to NODE or ZONE.
  1447. */
  1448. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1449. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1450. #ifdef CONFIG_NUMA
  1451. /* The value user specified ....changed by config */
  1452. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1453. /* string for sysctl */
  1454. #define NUMA_ZONELIST_ORDER_LEN 16
  1455. char numa_zonelist_order[16] = "default";
  1456. /*
  1457. * interface for configure zonelist ordering.
  1458. * command line option "numa_zonelist_order"
  1459. * = "[dD]efault - default, automatic configuration.
  1460. * = "[nN]ode - order by node locality, then by zone within node
  1461. * = "[zZ]one - order by zone, then by locality within zone
  1462. */
  1463. static int __parse_numa_zonelist_order(char *s)
  1464. {
  1465. if (*s == 'd' || *s == 'D') {
  1466. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1467. } else if (*s == 'n' || *s == 'N') {
  1468. user_zonelist_order = ZONELIST_ORDER_NODE;
  1469. } else if (*s == 'z' || *s == 'Z') {
  1470. user_zonelist_order = ZONELIST_ORDER_ZONE;
  1471. } else {
  1472. printk(KERN_WARNING
  1473. "Ignoring invalid numa_zonelist_order value: "
  1474. "%s\n", s);
  1475. return -EINVAL;
  1476. }
  1477. return 0;
  1478. }
  1479. static __init int setup_numa_zonelist_order(char *s)
  1480. {
  1481. if (s)
  1482. return __parse_numa_zonelist_order(s);
  1483. return 0;
  1484. }
  1485. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  1486. /*
  1487. * sysctl handler for numa_zonelist_order
  1488. */
  1489. int numa_zonelist_order_handler(ctl_table *table, int write,
  1490. struct file *file, void __user *buffer, size_t *length,
  1491. loff_t *ppos)
  1492. {
  1493. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  1494. int ret;
  1495. if (write)
  1496. strncpy(saved_string, (char*)table->data,
  1497. NUMA_ZONELIST_ORDER_LEN);
  1498. ret = proc_dostring(table, write, file, buffer, length, ppos);
  1499. if (ret)
  1500. return ret;
  1501. if (write) {
  1502. int oldval = user_zonelist_order;
  1503. if (__parse_numa_zonelist_order((char*)table->data)) {
  1504. /*
  1505. * bogus value. restore saved string
  1506. */
  1507. strncpy((char*)table->data, saved_string,
  1508. NUMA_ZONELIST_ORDER_LEN);
  1509. user_zonelist_order = oldval;
  1510. } else if (oldval != user_zonelist_order)
  1511. build_all_zonelists();
  1512. }
  1513. return 0;
  1514. }
  1515. #define MAX_NODE_LOAD (num_online_nodes())
  1516. static int node_load[MAX_NUMNODES];
  1517. /**
  1518. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1519. * @node: node whose fallback list we're appending
  1520. * @used_node_mask: nodemask_t of already used nodes
  1521. *
  1522. * We use a number of factors to determine which is the next node that should
  1523. * appear on a given node's fallback list. The node should not have appeared
  1524. * already in @node's fallback list, and it should be the next closest node
  1525. * according to the distance array (which contains arbitrary distance values
  1526. * from each node to each node in the system), and should also prefer nodes
  1527. * with no CPUs, since presumably they'll have very little allocation pressure
  1528. * on them otherwise.
  1529. * It returns -1 if no node is found.
  1530. */
  1531. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  1532. {
  1533. int n, val;
  1534. int min_val = INT_MAX;
  1535. int best_node = -1;
  1536. /* Use the local node if we haven't already */
  1537. if (!node_isset(node, *used_node_mask)) {
  1538. node_set(node, *used_node_mask);
  1539. return node;
  1540. }
  1541. for_each_online_node(n) {
  1542. cpumask_t tmp;
  1543. /* Don't want a node to appear more than once */
  1544. if (node_isset(n, *used_node_mask))
  1545. continue;
  1546. /* Use the distance array to find the distance */
  1547. val = node_distance(node, n);
  1548. /* Penalize nodes under us ("prefer the next node") */
  1549. val += (n < node);
  1550. /* Give preference to headless and unused nodes */
  1551. tmp = node_to_cpumask(n);
  1552. if (!cpus_empty(tmp))
  1553. val += PENALTY_FOR_NODE_WITH_CPUS;
  1554. /* Slight preference for less loaded node */
  1555. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1556. val += node_load[n];
  1557. if (val < min_val) {
  1558. min_val = val;
  1559. best_node = n;
  1560. }
  1561. }
  1562. if (best_node >= 0)
  1563. node_set(best_node, *used_node_mask);
  1564. return best_node;
  1565. }
  1566. /*
  1567. * Build zonelists ordered by node and zones within node.
  1568. * This results in maximum locality--normal zone overflows into local
  1569. * DMA zone, if any--but risks exhausting DMA zone.
  1570. */
  1571. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  1572. {
  1573. enum zone_type i;
  1574. int j;
  1575. struct zonelist *zonelist;
  1576. for (i = 0; i < MAX_NR_ZONES; i++) {
  1577. zonelist = pgdat->node_zonelists + i;
  1578. for (j = 0; zonelist->zones[j] != NULL; j++)
  1579. ;
  1580. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1581. zonelist->zones[j] = NULL;
  1582. }
  1583. }
  1584. /*
  1585. * Build zonelists ordered by zone and nodes within zones.
  1586. * This results in conserving DMA zone[s] until all Normal memory is
  1587. * exhausted, but results in overflowing to remote node while memory
  1588. * may still exist in local DMA zone.
  1589. */
  1590. static int node_order[MAX_NUMNODES];
  1591. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  1592. {
  1593. enum zone_type i;
  1594. int pos, j, node;
  1595. int zone_type; /* needs to be signed */
  1596. struct zone *z;
  1597. struct zonelist *zonelist;
  1598. for (i = 0; i < MAX_NR_ZONES; i++) {
  1599. zonelist = pgdat->node_zonelists + i;
  1600. pos = 0;
  1601. for (zone_type = i; zone_type >= 0; zone_type--) {
  1602. for (j = 0; j < nr_nodes; j++) {
  1603. node = node_order[j];
  1604. z = &NODE_DATA(node)->node_zones[zone_type];
  1605. if (populated_zone(z)) {
  1606. zonelist->zones[pos++] = z;
  1607. check_highest_zone(zone_type);
  1608. }
  1609. }
  1610. }
  1611. zonelist->zones[pos] = NULL;
  1612. }
  1613. }
  1614. static int default_zonelist_order(void)
  1615. {
  1616. int nid, zone_type;
  1617. unsigned long low_kmem_size,total_size;
  1618. struct zone *z;
  1619. int average_size;
  1620. /*
  1621. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  1622. * If they are really small and used heavily, the system can fall
  1623. * into OOM very easily.
  1624. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  1625. */
  1626. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  1627. low_kmem_size = 0;
  1628. total_size = 0;
  1629. for_each_online_node(nid) {
  1630. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1631. z = &NODE_DATA(nid)->node_zones[zone_type];
  1632. if (populated_zone(z)) {
  1633. if (zone_type < ZONE_NORMAL)
  1634. low_kmem_size += z->present_pages;
  1635. total_size += z->present_pages;
  1636. }
  1637. }
  1638. }
  1639. if (!low_kmem_size || /* there are no DMA area. */
  1640. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  1641. return ZONELIST_ORDER_NODE;
  1642. /*
  1643. * look into each node's config.
  1644. * If there is a node whose DMA/DMA32 memory is very big area on
  1645. * local memory, NODE_ORDER may be suitable.
  1646. */
  1647. average_size = total_size / (num_online_nodes() + 1);
  1648. for_each_online_node(nid) {
  1649. low_kmem_size = 0;
  1650. total_size = 0;
  1651. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1652. z = &NODE_DATA(nid)->node_zones[zone_type];
  1653. if (populated_zone(z)) {
  1654. if (zone_type < ZONE_NORMAL)
  1655. low_kmem_size += z->present_pages;
  1656. total_size += z->present_pages;
  1657. }
  1658. }
  1659. if (low_kmem_size &&
  1660. total_size > average_size && /* ignore small node */
  1661. low_kmem_size > total_size * 70/100)
  1662. return ZONELIST_ORDER_NODE;
  1663. }
  1664. return ZONELIST_ORDER_ZONE;
  1665. }
  1666. static void set_zonelist_order(void)
  1667. {
  1668. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  1669. current_zonelist_order = default_zonelist_order();
  1670. else
  1671. current_zonelist_order = user_zonelist_order;
  1672. }
  1673. static void build_zonelists(pg_data_t *pgdat)
  1674. {
  1675. int j, node, load;
  1676. enum zone_type i;
  1677. nodemask_t used_mask;
  1678. int local_node, prev_node;
  1679. struct zonelist *zonelist;
  1680. int order = current_zonelist_order;
  1681. /* initialize zonelists */
  1682. for (i = 0; i < MAX_NR_ZONES; i++) {
  1683. zonelist = pgdat->node_zonelists + i;
  1684. zonelist->zones[0] = NULL;
  1685. }
  1686. /* NUMA-aware ordering of nodes */
  1687. local_node = pgdat->node_id;
  1688. load = num_online_nodes();
  1689. prev_node = local_node;
  1690. nodes_clear(used_mask);
  1691. memset(node_load, 0, sizeof(node_load));
  1692. memset(node_order, 0, sizeof(node_order));
  1693. j = 0;
  1694. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  1695. int distance = node_distance(local_node, node);
  1696. /*
  1697. * If another node is sufficiently far away then it is better
  1698. * to reclaim pages in a zone before going off node.
  1699. */
  1700. if (distance > RECLAIM_DISTANCE)
  1701. zone_reclaim_mode = 1;
  1702. /*
  1703. * We don't want to pressure a particular node.
  1704. * So adding penalty to the first node in same
  1705. * distance group to make it round-robin.
  1706. */
  1707. if (distance != node_distance(local_node, prev_node))
  1708. node_load[node] = load;
  1709. prev_node = node;
  1710. load--;
  1711. if (order == ZONELIST_ORDER_NODE)
  1712. build_zonelists_in_node_order(pgdat, node);
  1713. else
  1714. node_order[j++] = node; /* remember order */
  1715. }
  1716. if (order == ZONELIST_ORDER_ZONE) {
  1717. /* calculate node order -- i.e., DMA last! */
  1718. build_zonelists_in_zone_order(pgdat, j);
  1719. }
  1720. }
  1721. /* Construct the zonelist performance cache - see further mmzone.h */
  1722. static void build_zonelist_cache(pg_data_t *pgdat)
  1723. {
  1724. int i;
  1725. for (i = 0; i < MAX_NR_ZONES; i++) {
  1726. struct zonelist *zonelist;
  1727. struct zonelist_cache *zlc;
  1728. struct zone **z;
  1729. zonelist = pgdat->node_zonelists + i;
  1730. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  1731. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1732. for (z = zonelist->zones; *z; z++)
  1733. zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
  1734. }
  1735. }
  1736. #else /* CONFIG_NUMA */
  1737. static void set_zonelist_order(void)
  1738. {
  1739. current_zonelist_order = ZONELIST_ORDER_ZONE;
  1740. }
  1741. static void build_zonelists(pg_data_t *pgdat)
  1742. {
  1743. int node, local_node;
  1744. enum zone_type i,j;
  1745. local_node = pgdat->node_id;
  1746. for (i = 0; i < MAX_NR_ZONES; i++) {
  1747. struct zonelist *zonelist;
  1748. zonelist = pgdat->node_zonelists + i;
  1749. j = build_zonelists_node(pgdat, zonelist, 0, i);
  1750. /*
  1751. * Now we build the zonelist so that it contains the zones
  1752. * of all the other nodes.
  1753. * We don't want to pressure a particular node, so when
  1754. * building the zones for node N, we make sure that the
  1755. * zones coming right after the local ones are those from
  1756. * node N+1 (modulo N)
  1757. */
  1758. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  1759. if (!node_online(node))
  1760. continue;
  1761. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1762. }
  1763. for (node = 0; node < local_node; node++) {
  1764. if (!node_online(node))
  1765. continue;
  1766. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1767. }
  1768. zonelist->zones[j] = NULL;
  1769. }
  1770. }
  1771. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  1772. static void build_zonelist_cache(pg_data_t *pgdat)
  1773. {
  1774. int i;
  1775. for (i = 0; i < MAX_NR_ZONES; i++)
  1776. pgdat->node_zonelists[i].zlcache_ptr = NULL;
  1777. }
  1778. #endif /* CONFIG_NUMA */
  1779. /* return values int ....just for stop_machine_run() */
  1780. static int __build_all_zonelists(void *dummy)
  1781. {
  1782. int nid;
  1783. for_each_online_node(nid) {
  1784. build_zonelists(NODE_DATA(nid));
  1785. build_zonelist_cache(NODE_DATA(nid));
  1786. }
  1787. return 0;
  1788. }
  1789. void build_all_zonelists(void)
  1790. {
  1791. set_zonelist_order();
  1792. if (system_state == SYSTEM_BOOTING) {
  1793. __build_all_zonelists(NULL);
  1794. cpuset_init_current_mems_allowed();
  1795. } else {
  1796. /* we have to stop all cpus to guaranntee there is no user
  1797. of zonelist */
  1798. stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
  1799. /* cpuset refresh routine should be here */
  1800. }
  1801. vm_total_pages = nr_free_pagecache_pages();
  1802. printk("Built %i zonelists in %s order. Total pages: %ld\n",
  1803. num_online_nodes(),
  1804. zonelist_order_name[current_zonelist_order],
  1805. vm_total_pages);
  1806. #ifdef CONFIG_NUMA
  1807. printk("Policy zone: %s\n", zone_names[policy_zone]);
  1808. #endif
  1809. }
  1810. /*
  1811. * Helper functions to size the waitqueue hash table.
  1812. * Essentially these want to choose hash table sizes sufficiently
  1813. * large so that collisions trying to wait on pages are rare.
  1814. * But in fact, the number of active page waitqueues on typical
  1815. * systems is ridiculously low, less than 200. So this is even
  1816. * conservative, even though it seems large.
  1817. *
  1818. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  1819. * waitqueues, i.e. the size of the waitq table given the number of pages.
  1820. */
  1821. #define PAGES_PER_WAITQUEUE 256
  1822. #ifndef CONFIG_MEMORY_HOTPLUG
  1823. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  1824. {
  1825. unsigned long size = 1;
  1826. pages /= PAGES_PER_WAITQUEUE;
  1827. while (size < pages)
  1828. size <<= 1;
  1829. /*
  1830. * Once we have dozens or even hundreds of threads sleeping
  1831. * on IO we've got bigger problems than wait queue collision.
  1832. * Limit the size of the wait table to a reasonable size.
  1833. */
  1834. size = min(size, 4096UL);
  1835. return max(size, 4UL);
  1836. }
  1837. #else
  1838. /*
  1839. * A zone's size might be changed by hot-add, so it is not possible to determine
  1840. * a suitable size for its wait_table. So we use the maximum size now.
  1841. *
  1842. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  1843. *
  1844. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  1845. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  1846. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  1847. *
  1848. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  1849. * or more by the traditional way. (See above). It equals:
  1850. *
  1851. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  1852. * ia64(16K page size) : = ( 8G + 4M)byte.
  1853. * powerpc (64K page size) : = (32G +16M)byte.
  1854. */
  1855. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  1856. {
  1857. return 4096UL;
  1858. }
  1859. #endif
  1860. /*
  1861. * This is an integer logarithm so that shifts can be used later
  1862. * to extract the more random high bits from the multiplicative
  1863. * hash function before the remainder is taken.
  1864. */
  1865. static inline unsigned long wait_table_bits(unsigned long size)
  1866. {
  1867. return ffz(~size);
  1868. }
  1869. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  1870. /*
  1871. * Initially all pages are reserved - free ones are freed
  1872. * up by free_all_bootmem() once the early boot process is
  1873. * done. Non-atomic initialization, single-pass.
  1874. */
  1875. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  1876. unsigned long start_pfn, enum memmap_context context)
  1877. {
  1878. struct page *page;
  1879. unsigned long end_pfn = start_pfn + size;
  1880. unsigned long pfn;
  1881. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  1882. /*
  1883. * There can be holes in boot-time mem_map[]s
  1884. * handed to this function. They do not
  1885. * exist on hotplugged memory.
  1886. */
  1887. if (context == MEMMAP_EARLY) {
  1888. if (!early_pfn_valid(pfn))
  1889. continue;
  1890. if (!early_pfn_in_nid(pfn, nid))
  1891. continue;
  1892. }
  1893. page = pfn_to_page(pfn);
  1894. set_page_links(page, zone, nid, pfn);
  1895. init_page_count(page);
  1896. reset_page_mapcount(page);
  1897. SetPageReserved(page);
  1898. INIT_LIST_HEAD(&page->lru);
  1899. #ifdef WANT_PAGE_VIRTUAL
  1900. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  1901. if (!is_highmem_idx(zone))
  1902. set_page_address(page, __va(pfn << PAGE_SHIFT));
  1903. #endif
  1904. }
  1905. }
  1906. static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
  1907. struct zone *zone, unsigned long size)
  1908. {
  1909. int order;
  1910. for (order = 0; order < MAX_ORDER ; order++) {
  1911. INIT_LIST_HEAD(&zone->free_area[order].free_list);
  1912. zone->free_area[order].nr_free = 0;
  1913. }
  1914. }
  1915. #ifndef __HAVE_ARCH_MEMMAP_INIT
  1916. #define memmap_init(size, nid, zone, start_pfn) \
  1917. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  1918. #endif
  1919. static int __devinit zone_batchsize(struct zone *zone)
  1920. {
  1921. int batch;
  1922. /*
  1923. * The per-cpu-pages pools are set to around 1000th of the
  1924. * size of the zone. But no more than 1/2 of a meg.
  1925. *
  1926. * OK, so we don't know how big the cache is. So guess.
  1927. */
  1928. batch = zone->present_pages / 1024;
  1929. if (batch * PAGE_SIZE > 512 * 1024)
  1930. batch = (512 * 1024) / PAGE_SIZE;
  1931. batch /= 4; /* We effectively *= 4 below */
  1932. if (batch < 1)
  1933. batch = 1;
  1934. /*
  1935. * Clamp the batch to a 2^n - 1 value. Having a power
  1936. * of 2 value was found to be more likely to have
  1937. * suboptimal cache aliasing properties in some cases.
  1938. *
  1939. * For example if 2 tasks are alternately allocating
  1940. * batches of pages, one task can end up with a lot
  1941. * of pages of one half of the possible page colors
  1942. * and the other with pages of the other colors.
  1943. */
  1944. batch = (1 << (fls(batch + batch/2)-1)) - 1;
  1945. return batch;
  1946. }
  1947. inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  1948. {
  1949. struct per_cpu_pages *pcp;
  1950. memset(p, 0, sizeof(*p));
  1951. pcp = &p->pcp[0]; /* hot */
  1952. pcp->count = 0;
  1953. pcp->high = 6 * batch;
  1954. pcp->batch = max(1UL, 1 * batch);
  1955. INIT_LIST_HEAD(&pcp->list);
  1956. pcp = &p->pcp[1]; /* cold*/
  1957. pcp->count = 0;
  1958. pcp->high = 2 * batch;
  1959. pcp->batch = max(1UL, batch/2);
  1960. INIT_LIST_HEAD(&pcp->list);
  1961. }
  1962. /*
  1963. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  1964. * to the value high for the pageset p.
  1965. */
  1966. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  1967. unsigned long high)
  1968. {
  1969. struct per_cpu_pages *pcp;
  1970. pcp = &p->pcp[0]; /* hot list */
  1971. pcp->high = high;
  1972. pcp->batch = max(1UL, high/4);
  1973. if ((high/4) > (PAGE_SHIFT * 8))
  1974. pcp->batch = PAGE_SHIFT * 8;
  1975. }
  1976. #ifdef CONFIG_NUMA
  1977. /*
  1978. * Boot pageset table. One per cpu which is going to be used for all
  1979. * zones and all nodes. The parameters will be set in such a way
  1980. * that an item put on a list will immediately be handed over to
  1981. * the buddy list. This is safe since pageset manipulation is done
  1982. * with interrupts disabled.
  1983. *
  1984. * Some NUMA counter updates may also be caught by the boot pagesets.
  1985. *
  1986. * The boot_pagesets must be kept even after bootup is complete for
  1987. * unused processors and/or zones. They do play a role for bootstrapping
  1988. * hotplugged processors.
  1989. *
  1990. * zoneinfo_show() and maybe other functions do
  1991. * not check if the processor is online before following the pageset pointer.
  1992. * Other parts of the kernel may not check if the zone is available.
  1993. */
  1994. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  1995. /*
  1996. * Dynamically allocate memory for the
  1997. * per cpu pageset array in struct zone.
  1998. */
  1999. static int __cpuinit process_zones(int cpu)
  2000. {
  2001. struct zone *zone, *dzone;
  2002. for_each_zone(zone) {
  2003. if (!populated_zone(zone))
  2004. continue;
  2005. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2006. GFP_KERNEL, cpu_to_node(cpu));
  2007. if (!zone_pcp(zone, cpu))
  2008. goto bad;
  2009. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2010. if (percpu_pagelist_fraction)
  2011. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2012. (zone->present_pages / percpu_pagelist_fraction));
  2013. }
  2014. return 0;
  2015. bad:
  2016. for_each_zone(dzone) {
  2017. if (dzone == zone)
  2018. break;
  2019. kfree(zone_pcp(dzone, cpu));
  2020. zone_pcp(dzone, cpu) = NULL;
  2021. }
  2022. return -ENOMEM;
  2023. }
  2024. static inline void free_zone_pagesets(int cpu)
  2025. {
  2026. struct zone *zone;
  2027. for_each_zone(zone) {
  2028. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2029. /* Free per_cpu_pageset if it is slab allocated */
  2030. if (pset != &boot_pageset[cpu])
  2031. kfree(pset);
  2032. zone_pcp(zone, cpu) = NULL;
  2033. }
  2034. }
  2035. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2036. unsigned long action,
  2037. void *hcpu)
  2038. {
  2039. int cpu = (long)hcpu;
  2040. int ret = NOTIFY_OK;
  2041. switch (action) {
  2042. case CPU_UP_PREPARE:
  2043. case CPU_UP_PREPARE_FROZEN:
  2044. if (process_zones(cpu))
  2045. ret = NOTIFY_BAD;
  2046. break;
  2047. case CPU_UP_CANCELED:
  2048. case CPU_UP_CANCELED_FROZEN:
  2049. case CPU_DEAD:
  2050. case CPU_DEAD_FROZEN:
  2051. free_zone_pagesets(cpu);
  2052. break;
  2053. default:
  2054. break;
  2055. }
  2056. return ret;
  2057. }
  2058. static struct notifier_block __cpuinitdata pageset_notifier =
  2059. { &pageset_cpuup_callback, NULL, 0 };
  2060. void __init setup_per_cpu_pageset(void)
  2061. {
  2062. int err;
  2063. /* Initialize per_cpu_pageset for cpu 0.
  2064. * A cpuup callback will do this for every cpu
  2065. * as it comes online
  2066. */
  2067. err = process_zones(smp_processor_id());
  2068. BUG_ON(err);
  2069. register_cpu_notifier(&pageset_notifier);
  2070. }
  2071. #endif
  2072. static noinline __init_refok
  2073. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2074. {
  2075. int i;
  2076. struct pglist_data *pgdat = zone->zone_pgdat;
  2077. size_t alloc_size;
  2078. /*
  2079. * The per-page waitqueue mechanism uses hashed waitqueues
  2080. * per zone.
  2081. */
  2082. zone->wait_table_hash_nr_entries =
  2083. wait_table_hash_nr_entries(zone_size_pages);
  2084. zone->wait_table_bits =
  2085. wait_table_bits(zone->wait_table_hash_nr_entries);
  2086. alloc_size = zone->wait_table_hash_nr_entries
  2087. * sizeof(wait_queue_head_t);
  2088. if (system_state == SYSTEM_BOOTING) {
  2089. zone->wait_table = (wait_queue_head_t *)
  2090. alloc_bootmem_node(pgdat, alloc_size);
  2091. } else {
  2092. /*
  2093. * This case means that a zone whose size was 0 gets new memory
  2094. * via memory hot-add.
  2095. * But it may be the case that a new node was hot-added. In
  2096. * this case vmalloc() will not be able to use this new node's
  2097. * memory - this wait_table must be initialized to use this new
  2098. * node itself as well.
  2099. * To use this new node's memory, further consideration will be
  2100. * necessary.
  2101. */
  2102. zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
  2103. }
  2104. if (!zone->wait_table)
  2105. return -ENOMEM;
  2106. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2107. init_waitqueue_head(zone->wait_table + i);
  2108. return 0;
  2109. }
  2110. static __meminit void zone_pcp_init(struct zone *zone)
  2111. {
  2112. int cpu;
  2113. unsigned long batch = zone_batchsize(zone);
  2114. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2115. #ifdef CONFIG_NUMA
  2116. /* Early boot. Slab allocator not functional yet */
  2117. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2118. setup_pageset(&boot_pageset[cpu],0);
  2119. #else
  2120. setup_pageset(zone_pcp(zone,cpu), batch);
  2121. #endif
  2122. }
  2123. if (zone->present_pages)
  2124. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2125. zone->name, zone->present_pages, batch);
  2126. }
  2127. __meminit int init_currently_empty_zone(struct zone *zone,
  2128. unsigned long zone_start_pfn,
  2129. unsigned long size,
  2130. enum memmap_context context)
  2131. {
  2132. struct pglist_data *pgdat = zone->zone_pgdat;
  2133. int ret;
  2134. ret = zone_wait_table_init(zone, size);
  2135. if (ret)
  2136. return ret;
  2137. pgdat->nr_zones = zone_idx(zone) + 1;
  2138. zone->zone_start_pfn = zone_start_pfn;
  2139. memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
  2140. zone_init_free_lists(pgdat, zone, zone->spanned_pages);
  2141. return 0;
  2142. }
  2143. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2144. /*
  2145. * Basic iterator support. Return the first range of PFNs for a node
  2146. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2147. */
  2148. static int __meminit first_active_region_index_in_nid(int nid)
  2149. {
  2150. int i;
  2151. for (i = 0; i < nr_nodemap_entries; i++)
  2152. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2153. return i;
  2154. return -1;
  2155. }
  2156. /*
  2157. * Basic iterator support. Return the next active range of PFNs for a node
  2158. * Note: nid == MAX_NUMNODES returns next region regardles of node
  2159. */
  2160. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2161. {
  2162. for (index = index + 1; index < nr_nodemap_entries; index++)
  2163. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2164. return index;
  2165. return -1;
  2166. }
  2167. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2168. /*
  2169. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2170. * Architectures may implement their own version but if add_active_range()
  2171. * was used and there are no special requirements, this is a convenient
  2172. * alternative
  2173. */
  2174. int __meminit early_pfn_to_nid(unsigned long pfn)
  2175. {
  2176. int i;
  2177. for (i = 0; i < nr_nodemap_entries; i++) {
  2178. unsigned long start_pfn = early_node_map[i].start_pfn;
  2179. unsigned long end_pfn = early_node_map[i].end_pfn;
  2180. if (start_pfn <= pfn && pfn < end_pfn)
  2181. return early_node_map[i].nid;
  2182. }
  2183. return 0;
  2184. }
  2185. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2186. /* Basic iterator support to walk early_node_map[] */
  2187. #define for_each_active_range_index_in_nid(i, nid) \
  2188. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2189. i = next_active_region_index_in_nid(i, nid))
  2190. /**
  2191. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2192. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2193. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2194. *
  2195. * If an architecture guarantees that all ranges registered with
  2196. * add_active_ranges() contain no holes and may be freed, this
  2197. * this function may be used instead of calling free_bootmem() manually.
  2198. */
  2199. void __init free_bootmem_with_active_regions(int nid,
  2200. unsigned long max_low_pfn)
  2201. {
  2202. int i;
  2203. for_each_active_range_index_in_nid(i, nid) {
  2204. unsigned long size_pages = 0;
  2205. unsigned long end_pfn = early_node_map[i].end_pfn;
  2206. if (early_node_map[i].start_pfn >= max_low_pfn)
  2207. continue;
  2208. if (end_pfn > max_low_pfn)
  2209. end_pfn = max_low_pfn;
  2210. size_pages = end_pfn - early_node_map[i].start_pfn;
  2211. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2212. PFN_PHYS(early_node_map[i].start_pfn),
  2213. size_pages << PAGE_SHIFT);
  2214. }
  2215. }
  2216. /**
  2217. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2218. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2219. *
  2220. * If an architecture guarantees that all ranges registered with
  2221. * add_active_ranges() contain no holes and may be freed, this
  2222. * function may be used instead of calling memory_present() manually.
  2223. */
  2224. void __init sparse_memory_present_with_active_regions(int nid)
  2225. {
  2226. int i;
  2227. for_each_active_range_index_in_nid(i, nid)
  2228. memory_present(early_node_map[i].nid,
  2229. early_node_map[i].start_pfn,
  2230. early_node_map[i].end_pfn);
  2231. }
  2232. /**
  2233. * push_node_boundaries - Push node boundaries to at least the requested boundary
  2234. * @nid: The nid of the node to push the boundary for
  2235. * @start_pfn: The start pfn of the node
  2236. * @end_pfn: The end pfn of the node
  2237. *
  2238. * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
  2239. * time. Specifically, on x86_64, SRAT will report ranges that can potentially
  2240. * be hotplugged even though no physical memory exists. This function allows
  2241. * an arch to push out the node boundaries so mem_map is allocated that can
  2242. * be used later.
  2243. */
  2244. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  2245. void __init push_node_boundaries(unsigned int nid,
  2246. unsigned long start_pfn, unsigned long end_pfn)
  2247. {
  2248. printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
  2249. nid, start_pfn, end_pfn);
  2250. /* Initialise the boundary for this node if necessary */
  2251. if (node_boundary_end_pfn[nid] == 0)
  2252. node_boundary_start_pfn[nid] = -1UL;
  2253. /* Update the boundaries */
  2254. if (node_boundary_start_pfn[nid] > start_pfn)
  2255. node_boundary_start_pfn[nid] = start_pfn;
  2256. if (node_boundary_end_pfn[nid] < end_pfn)
  2257. node_boundary_end_pfn[nid] = end_pfn;
  2258. }
  2259. /* If necessary, push the node boundary out for reserve hotadd */
  2260. static void __meminit account_node_boundary(unsigned int nid,
  2261. unsigned long *start_pfn, unsigned long *end_pfn)
  2262. {
  2263. printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
  2264. nid, *start_pfn, *end_pfn);
  2265. /* Return if boundary information has not been provided */
  2266. if (node_boundary_end_pfn[nid] == 0)
  2267. return;
  2268. /* Check the boundaries and update if necessary */
  2269. if (node_boundary_start_pfn[nid] < *start_pfn)
  2270. *start_pfn = node_boundary_start_pfn[nid];
  2271. if (node_boundary_end_pfn[nid] > *end_pfn)
  2272. *end_pfn = node_boundary_end_pfn[nid];
  2273. }
  2274. #else
  2275. void __init push_node_boundaries(unsigned int nid,
  2276. unsigned long start_pfn, unsigned long end_pfn) {}
  2277. static void __meminit account_node_boundary(unsigned int nid,
  2278. unsigned long *start_pfn, unsigned long *end_pfn) {}
  2279. #endif
  2280. /**
  2281. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2282. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2283. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2284. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2285. *
  2286. * It returns the start and end page frame of a node based on information
  2287. * provided by an arch calling add_active_range(). If called for a node
  2288. * with no available memory, a warning is printed and the start and end
  2289. * PFNs will be 0.
  2290. */
  2291. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2292. unsigned long *start_pfn, unsigned long *end_pfn)
  2293. {
  2294. int i;
  2295. *start_pfn = -1UL;
  2296. *end_pfn = 0;
  2297. for_each_active_range_index_in_nid(i, nid) {
  2298. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2299. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2300. }
  2301. if (*start_pfn == -1UL) {
  2302. printk(KERN_WARNING "Node %u active with no memory\n", nid);
  2303. *start_pfn = 0;
  2304. }
  2305. /* Push the node boundaries out if requested */
  2306. account_node_boundary(nid, start_pfn, end_pfn);
  2307. }
  2308. /*
  2309. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2310. * assumption is made that zones within a node are ordered in monotonic
  2311. * increasing memory addresses so that the "highest" populated zone is used
  2312. */
  2313. void __init find_usable_zone_for_movable(void)
  2314. {
  2315. int zone_index;
  2316. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2317. if (zone_index == ZONE_MOVABLE)
  2318. continue;
  2319. if (arch_zone_highest_possible_pfn[zone_index] >
  2320. arch_zone_lowest_possible_pfn[zone_index])
  2321. break;
  2322. }
  2323. VM_BUG_ON(zone_index == -1);
  2324. movable_zone = zone_index;
  2325. }
  2326. /*
  2327. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2328. * because it is sized independant of architecture. Unlike the other zones,
  2329. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2330. * in each node depending on the size of each node and how evenly kernelcore
  2331. * is distributed. This helper function adjusts the zone ranges
  2332. * provided by the architecture for a given node by using the end of the
  2333. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2334. * zones within a node are in order of monotonic increases memory addresses
  2335. */
  2336. void __meminit adjust_zone_range_for_zone_movable(int nid,
  2337. unsigned long zone_type,
  2338. unsigned long node_start_pfn,
  2339. unsigned long node_end_pfn,
  2340. unsigned long *zone_start_pfn,
  2341. unsigned long *zone_end_pfn)
  2342. {
  2343. /* Only adjust if ZONE_MOVABLE is on this node */
  2344. if (zone_movable_pfn[nid]) {
  2345. /* Size ZONE_MOVABLE */
  2346. if (zone_type == ZONE_MOVABLE) {
  2347. *zone_start_pfn = zone_movable_pfn[nid];
  2348. *zone_end_pfn = min(node_end_pfn,
  2349. arch_zone_highest_possible_pfn[movable_zone]);
  2350. /* Adjust for ZONE_MOVABLE starting within this range */
  2351. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  2352. *zone_end_pfn > zone_movable_pfn[nid]) {
  2353. *zone_end_pfn = zone_movable_pfn[nid];
  2354. /* Check if this whole range is within ZONE_MOVABLE */
  2355. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  2356. *zone_start_pfn = *zone_end_pfn;
  2357. }
  2358. }
  2359. /*
  2360. * Return the number of pages a zone spans in a node, including holes
  2361. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2362. */
  2363. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2364. unsigned long zone_type,
  2365. unsigned long *ignored)
  2366. {
  2367. unsigned long node_start_pfn, node_end_pfn;
  2368. unsigned long zone_start_pfn, zone_end_pfn;
  2369. /* Get the start and end of the node and zone */
  2370. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2371. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2372. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2373. adjust_zone_range_for_zone_movable(nid, zone_type,
  2374. node_start_pfn, node_end_pfn,
  2375. &zone_start_pfn, &zone_end_pfn);
  2376. /* Check that this node has pages within the zone's required range */
  2377. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2378. return 0;
  2379. /* Move the zone boundaries inside the node if necessary */
  2380. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2381. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2382. /* Return the spanned pages */
  2383. return zone_end_pfn - zone_start_pfn;
  2384. }
  2385. /*
  2386. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2387. * then all holes in the requested range will be accounted for.
  2388. */
  2389. unsigned long __meminit __absent_pages_in_range(int nid,
  2390. unsigned long range_start_pfn,
  2391. unsigned long range_end_pfn)
  2392. {
  2393. int i = 0;
  2394. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2395. unsigned long start_pfn;
  2396. /* Find the end_pfn of the first active range of pfns in the node */
  2397. i = first_active_region_index_in_nid(nid);
  2398. if (i == -1)
  2399. return 0;
  2400. /* Account for ranges before physical memory on this node */
  2401. if (early_node_map[i].start_pfn > range_start_pfn)
  2402. hole_pages = early_node_map[i].start_pfn - range_start_pfn;
  2403. prev_end_pfn = early_node_map[i].start_pfn;
  2404. /* Find all holes for the zone within the node */
  2405. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2406. /* No need to continue if prev_end_pfn is outside the zone */
  2407. if (prev_end_pfn >= range_end_pfn)
  2408. break;
  2409. /* Make sure the end of the zone is not within the hole */
  2410. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2411. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2412. /* Update the hole size cound and move on */
  2413. if (start_pfn > range_start_pfn) {
  2414. BUG_ON(prev_end_pfn > start_pfn);
  2415. hole_pages += start_pfn - prev_end_pfn;
  2416. }
  2417. prev_end_pfn = early_node_map[i].end_pfn;
  2418. }
  2419. /* Account for ranges past physical memory on this node */
  2420. if (range_end_pfn > prev_end_pfn)
  2421. hole_pages += range_end_pfn -
  2422. max(range_start_pfn, prev_end_pfn);
  2423. return hole_pages;
  2424. }
  2425. /**
  2426. * absent_pages_in_range - Return number of page frames in holes within a range
  2427. * @start_pfn: The start PFN to start searching for holes
  2428. * @end_pfn: The end PFN to stop searching for holes
  2429. *
  2430. * It returns the number of pages frames in memory holes within a range.
  2431. */
  2432. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2433. unsigned long end_pfn)
  2434. {
  2435. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2436. }
  2437. /* Return the number of page frames in holes in a zone on a node */
  2438. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  2439. unsigned long zone_type,
  2440. unsigned long *ignored)
  2441. {
  2442. unsigned long node_start_pfn, node_end_pfn;
  2443. unsigned long zone_start_pfn, zone_end_pfn;
  2444. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2445. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2446. node_start_pfn);
  2447. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2448. node_end_pfn);
  2449. adjust_zone_range_for_zone_movable(nid, zone_type,
  2450. node_start_pfn, node_end_pfn,
  2451. &zone_start_pfn, &zone_end_pfn);
  2452. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2453. }
  2454. #else
  2455. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2456. unsigned long zone_type,
  2457. unsigned long *zones_size)
  2458. {
  2459. return zones_size[zone_type];
  2460. }
  2461. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  2462. unsigned long zone_type,
  2463. unsigned long *zholes_size)
  2464. {
  2465. if (!zholes_size)
  2466. return 0;
  2467. return zholes_size[zone_type];
  2468. }
  2469. #endif
  2470. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  2471. unsigned long *zones_size, unsigned long *zholes_size)
  2472. {
  2473. unsigned long realtotalpages, totalpages = 0;
  2474. enum zone_type i;
  2475. for (i = 0; i < MAX_NR_ZONES; i++)
  2476. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  2477. zones_size);
  2478. pgdat->node_spanned_pages = totalpages;
  2479. realtotalpages = totalpages;
  2480. for (i = 0; i < MAX_NR_ZONES; i++)
  2481. realtotalpages -=
  2482. zone_absent_pages_in_node(pgdat->node_id, i,
  2483. zholes_size);
  2484. pgdat->node_present_pages = realtotalpages;
  2485. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  2486. realtotalpages);
  2487. }
  2488. /*
  2489. * Set up the zone data structures:
  2490. * - mark all pages reserved
  2491. * - mark all memory queues empty
  2492. * - clear the memory bitmaps
  2493. */
  2494. static void __meminit free_area_init_core(struct pglist_data *pgdat,
  2495. unsigned long *zones_size, unsigned long *zholes_size)
  2496. {
  2497. enum zone_type j;
  2498. int nid = pgdat->node_id;
  2499. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  2500. int ret;
  2501. pgdat_resize_init(pgdat);
  2502. pgdat->nr_zones = 0;
  2503. init_waitqueue_head(&pgdat->kswapd_wait);
  2504. pgdat->kswapd_max_order = 0;
  2505. for (j = 0; j < MAX_NR_ZONES; j++) {
  2506. struct zone *zone = pgdat->node_zones + j;
  2507. unsigned long size, realsize, memmap_pages;
  2508. size = zone_spanned_pages_in_node(nid, j, zones_size);
  2509. realsize = size - zone_absent_pages_in_node(nid, j,
  2510. zholes_size);
  2511. /*
  2512. * Adjust realsize so that it accounts for how much memory
  2513. * is used by this zone for memmap. This affects the watermark
  2514. * and per-cpu initialisations
  2515. */
  2516. memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
  2517. if (realsize >= memmap_pages) {
  2518. realsize -= memmap_pages;
  2519. printk(KERN_DEBUG
  2520. " %s zone: %lu pages used for memmap\n",
  2521. zone_names[j], memmap_pages);
  2522. } else
  2523. printk(KERN_WARNING
  2524. " %s zone: %lu pages exceeds realsize %lu\n",
  2525. zone_names[j], memmap_pages, realsize);
  2526. /* Account for reserved pages */
  2527. if (j == 0 && realsize > dma_reserve) {
  2528. realsize -= dma_reserve;
  2529. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  2530. zone_names[0], dma_reserve);
  2531. }
  2532. if (!is_highmem_idx(j))
  2533. nr_kernel_pages += realsize;
  2534. nr_all_pages += realsize;
  2535. zone->spanned_pages = size;
  2536. zone->present_pages = realsize;
  2537. #ifdef CONFIG_NUMA
  2538. zone->node = nid;
  2539. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  2540. / 100;
  2541. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  2542. #endif
  2543. zone->name = zone_names[j];
  2544. spin_lock_init(&zone->lock);
  2545. spin_lock_init(&zone->lru_lock);
  2546. zone_seqlock_init(zone);
  2547. zone->zone_pgdat = pgdat;
  2548. zone->prev_priority = DEF_PRIORITY;
  2549. zone_pcp_init(zone);
  2550. INIT_LIST_HEAD(&zone->active_list);
  2551. INIT_LIST_HEAD(&zone->inactive_list);
  2552. zone->nr_scan_active = 0;
  2553. zone->nr_scan_inactive = 0;
  2554. zap_zone_vm_stats(zone);
  2555. atomic_set(&zone->reclaim_in_progress, 0);
  2556. if (!size)
  2557. continue;
  2558. ret = init_currently_empty_zone(zone, zone_start_pfn,
  2559. size, MEMMAP_EARLY);
  2560. BUG_ON(ret);
  2561. zone_start_pfn += size;
  2562. }
  2563. }
  2564. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  2565. {
  2566. /* Skip empty nodes */
  2567. if (!pgdat->node_spanned_pages)
  2568. return;
  2569. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  2570. /* ia64 gets its own node_mem_map, before this, without bootmem */
  2571. if (!pgdat->node_mem_map) {
  2572. unsigned long size, start, end;
  2573. struct page *map;
  2574. /*
  2575. * The zone's endpoints aren't required to be MAX_ORDER
  2576. * aligned but the node_mem_map endpoints must be in order
  2577. * for the buddy allocator to function correctly.
  2578. */
  2579. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  2580. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  2581. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  2582. size = (end - start) * sizeof(struct page);
  2583. map = alloc_remap(pgdat->node_id, size);
  2584. if (!map)
  2585. map = alloc_bootmem_node(pgdat, size);
  2586. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  2587. }
  2588. #ifndef CONFIG_NEED_MULTIPLE_NODES
  2589. /*
  2590. * With no DISCONTIG, the global mem_map is just set as node 0's
  2591. */
  2592. if (pgdat == NODE_DATA(0)) {
  2593. mem_map = NODE_DATA(0)->node_mem_map;
  2594. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2595. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  2596. mem_map -= pgdat->node_start_pfn;
  2597. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  2598. }
  2599. #endif
  2600. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  2601. }
  2602. void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
  2603. unsigned long *zones_size, unsigned long node_start_pfn,
  2604. unsigned long *zholes_size)
  2605. {
  2606. pgdat->node_id = nid;
  2607. pgdat->node_start_pfn = node_start_pfn;
  2608. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  2609. alloc_node_mem_map(pgdat);
  2610. free_area_init_core(pgdat, zones_size, zholes_size);
  2611. }
  2612. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2613. #if MAX_NUMNODES > 1
  2614. /*
  2615. * Figure out the number of possible node ids.
  2616. */
  2617. static void __init setup_nr_node_ids(void)
  2618. {
  2619. unsigned int node;
  2620. unsigned int highest = 0;
  2621. for_each_node_mask(node, node_possible_map)
  2622. highest = node;
  2623. nr_node_ids = highest + 1;
  2624. }
  2625. #else
  2626. static inline void setup_nr_node_ids(void)
  2627. {
  2628. }
  2629. #endif
  2630. /**
  2631. * add_active_range - Register a range of PFNs backed by physical memory
  2632. * @nid: The node ID the range resides on
  2633. * @start_pfn: The start PFN of the available physical memory
  2634. * @end_pfn: The end PFN of the available physical memory
  2635. *
  2636. * These ranges are stored in an early_node_map[] and later used by
  2637. * free_area_init_nodes() to calculate zone sizes and holes. If the
  2638. * range spans a memory hole, it is up to the architecture to ensure
  2639. * the memory is not freed by the bootmem allocator. If possible
  2640. * the range being registered will be merged with existing ranges.
  2641. */
  2642. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  2643. unsigned long end_pfn)
  2644. {
  2645. int i;
  2646. printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
  2647. "%d entries of %d used\n",
  2648. nid, start_pfn, end_pfn,
  2649. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  2650. /* Merge with existing active regions if possible */
  2651. for (i = 0; i < nr_nodemap_entries; i++) {
  2652. if (early_node_map[i].nid != nid)
  2653. continue;
  2654. /* Skip if an existing region covers this new one */
  2655. if (start_pfn >= early_node_map[i].start_pfn &&
  2656. end_pfn <= early_node_map[i].end_pfn)
  2657. return;
  2658. /* Merge forward if suitable */
  2659. if (start_pfn <= early_node_map[i].end_pfn &&
  2660. end_pfn > early_node_map[i].end_pfn) {
  2661. early_node_map[i].end_pfn = end_pfn;
  2662. return;
  2663. }
  2664. /* Merge backward if suitable */
  2665. if (start_pfn < early_node_map[i].end_pfn &&
  2666. end_pfn >= early_node_map[i].start_pfn) {
  2667. early_node_map[i].start_pfn = start_pfn;
  2668. return;
  2669. }
  2670. }
  2671. /* Check that early_node_map is large enough */
  2672. if (i >= MAX_ACTIVE_REGIONS) {
  2673. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  2674. MAX_ACTIVE_REGIONS);
  2675. return;
  2676. }
  2677. early_node_map[i].nid = nid;
  2678. early_node_map[i].start_pfn = start_pfn;
  2679. early_node_map[i].end_pfn = end_pfn;
  2680. nr_nodemap_entries = i + 1;
  2681. }
  2682. /**
  2683. * shrink_active_range - Shrink an existing registered range of PFNs
  2684. * @nid: The node id the range is on that should be shrunk
  2685. * @old_end_pfn: The old end PFN of the range
  2686. * @new_end_pfn: The new PFN of the range
  2687. *
  2688. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  2689. * The map is kept at the end physical page range that has already been
  2690. * registered with add_active_range(). This function allows an arch to shrink
  2691. * an existing registered range.
  2692. */
  2693. void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
  2694. unsigned long new_end_pfn)
  2695. {
  2696. int i;
  2697. /* Find the old active region end and shrink */
  2698. for_each_active_range_index_in_nid(i, nid)
  2699. if (early_node_map[i].end_pfn == old_end_pfn) {
  2700. early_node_map[i].end_pfn = new_end_pfn;
  2701. break;
  2702. }
  2703. }
  2704. /**
  2705. * remove_all_active_ranges - Remove all currently registered regions
  2706. *
  2707. * During discovery, it may be found that a table like SRAT is invalid
  2708. * and an alternative discovery method must be used. This function removes
  2709. * all currently registered regions.
  2710. */
  2711. void __init remove_all_active_ranges(void)
  2712. {
  2713. memset(early_node_map, 0, sizeof(early_node_map));
  2714. nr_nodemap_entries = 0;
  2715. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  2716. memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
  2717. memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
  2718. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  2719. }
  2720. /* Compare two active node_active_regions */
  2721. static int __init cmp_node_active_region(const void *a, const void *b)
  2722. {
  2723. struct node_active_region *arange = (struct node_active_region *)a;
  2724. struct node_active_region *brange = (struct node_active_region *)b;
  2725. /* Done this way to avoid overflows */
  2726. if (arange->start_pfn > brange->start_pfn)
  2727. return 1;
  2728. if (arange->start_pfn < brange->start_pfn)
  2729. return -1;
  2730. return 0;
  2731. }
  2732. /* sort the node_map by start_pfn */
  2733. static void __init sort_node_map(void)
  2734. {
  2735. sort(early_node_map, (size_t)nr_nodemap_entries,
  2736. sizeof(struct node_active_region),
  2737. cmp_node_active_region, NULL);
  2738. }
  2739. /* Find the lowest pfn for a node */
  2740. unsigned long __init find_min_pfn_for_node(unsigned long nid)
  2741. {
  2742. int i;
  2743. unsigned long min_pfn = ULONG_MAX;
  2744. /* Assuming a sorted map, the first range found has the starting pfn */
  2745. for_each_active_range_index_in_nid(i, nid)
  2746. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  2747. if (min_pfn == ULONG_MAX) {
  2748. printk(KERN_WARNING
  2749. "Could not find start_pfn for node %lu\n", nid);
  2750. return 0;
  2751. }
  2752. return min_pfn;
  2753. }
  2754. /**
  2755. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  2756. *
  2757. * It returns the minimum PFN based on information provided via
  2758. * add_active_range().
  2759. */
  2760. unsigned long __init find_min_pfn_with_active_regions(void)
  2761. {
  2762. return find_min_pfn_for_node(MAX_NUMNODES);
  2763. }
  2764. /**
  2765. * find_max_pfn_with_active_regions - Find the maximum PFN registered
  2766. *
  2767. * It returns the maximum PFN based on information provided via
  2768. * add_active_range().
  2769. */
  2770. unsigned long __init find_max_pfn_with_active_regions(void)
  2771. {
  2772. int i;
  2773. unsigned long max_pfn = 0;
  2774. for (i = 0; i < nr_nodemap_entries; i++)
  2775. max_pfn = max(max_pfn, early_node_map[i].end_pfn);
  2776. return max_pfn;
  2777. }
  2778. unsigned long __init early_calculate_totalpages(void)
  2779. {
  2780. int i;
  2781. unsigned long totalpages = 0;
  2782. for (i = 0; i < nr_nodemap_entries; i++)
  2783. totalpages += early_node_map[i].end_pfn -
  2784. early_node_map[i].start_pfn;
  2785. return totalpages;
  2786. }
  2787. /*
  2788. * Find the PFN the Movable zone begins in each node. Kernel memory
  2789. * is spread evenly between nodes as long as the nodes have enough
  2790. * memory. When they don't, some nodes will have more kernelcore than
  2791. * others
  2792. */
  2793. void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  2794. {
  2795. int i, nid;
  2796. unsigned long usable_startpfn;
  2797. unsigned long kernelcore_node, kernelcore_remaining;
  2798. int usable_nodes = num_online_nodes();
  2799. /*
  2800. * If movablecore was specified, calculate what size of
  2801. * kernelcore that corresponds so that memory usable for
  2802. * any allocation type is evenly spread. If both kernelcore
  2803. * and movablecore are specified, then the value of kernelcore
  2804. * will be used for required_kernelcore if it's greater than
  2805. * what movablecore would have allowed.
  2806. */
  2807. if (required_movablecore) {
  2808. unsigned long totalpages = early_calculate_totalpages();
  2809. unsigned long corepages;
  2810. /*
  2811. * Round-up so that ZONE_MOVABLE is at least as large as what
  2812. * was requested by the user
  2813. */
  2814. required_movablecore =
  2815. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  2816. corepages = totalpages - required_movablecore;
  2817. required_kernelcore = max(required_kernelcore, corepages);
  2818. }
  2819. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  2820. if (!required_kernelcore)
  2821. return;
  2822. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  2823. find_usable_zone_for_movable();
  2824. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  2825. restart:
  2826. /* Spread kernelcore memory as evenly as possible throughout nodes */
  2827. kernelcore_node = required_kernelcore / usable_nodes;
  2828. for_each_online_node(nid) {
  2829. /*
  2830. * Recalculate kernelcore_node if the division per node
  2831. * now exceeds what is necessary to satisfy the requested
  2832. * amount of memory for the kernel
  2833. */
  2834. if (required_kernelcore < kernelcore_node)
  2835. kernelcore_node = required_kernelcore / usable_nodes;
  2836. /*
  2837. * As the map is walked, we track how much memory is usable
  2838. * by the kernel using kernelcore_remaining. When it is
  2839. * 0, the rest of the node is usable by ZONE_MOVABLE
  2840. */
  2841. kernelcore_remaining = kernelcore_node;
  2842. /* Go through each range of PFNs within this node */
  2843. for_each_active_range_index_in_nid(i, nid) {
  2844. unsigned long start_pfn, end_pfn;
  2845. unsigned long size_pages;
  2846. start_pfn = max(early_node_map[i].start_pfn,
  2847. zone_movable_pfn[nid]);
  2848. end_pfn = early_node_map[i].end_pfn;
  2849. if (start_pfn >= end_pfn)
  2850. continue;
  2851. /* Account for what is only usable for kernelcore */
  2852. if (start_pfn < usable_startpfn) {
  2853. unsigned long kernel_pages;
  2854. kernel_pages = min(end_pfn, usable_startpfn)
  2855. - start_pfn;
  2856. kernelcore_remaining -= min(kernel_pages,
  2857. kernelcore_remaining);
  2858. required_kernelcore -= min(kernel_pages,
  2859. required_kernelcore);
  2860. /* Continue if range is now fully accounted */
  2861. if (end_pfn <= usable_startpfn) {
  2862. /*
  2863. * Push zone_movable_pfn to the end so
  2864. * that if we have to rebalance
  2865. * kernelcore across nodes, we will
  2866. * not double account here
  2867. */
  2868. zone_movable_pfn[nid] = end_pfn;
  2869. continue;
  2870. }
  2871. start_pfn = usable_startpfn;
  2872. }
  2873. /*
  2874. * The usable PFN range for ZONE_MOVABLE is from
  2875. * start_pfn->end_pfn. Calculate size_pages as the
  2876. * number of pages used as kernelcore
  2877. */
  2878. size_pages = end_pfn - start_pfn;
  2879. if (size_pages > kernelcore_remaining)
  2880. size_pages = kernelcore_remaining;
  2881. zone_movable_pfn[nid] = start_pfn + size_pages;
  2882. /*
  2883. * Some kernelcore has been met, update counts and
  2884. * break if the kernelcore for this node has been
  2885. * satisified
  2886. */
  2887. required_kernelcore -= min(required_kernelcore,
  2888. size_pages);
  2889. kernelcore_remaining -= size_pages;
  2890. if (!kernelcore_remaining)
  2891. break;
  2892. }
  2893. }
  2894. /*
  2895. * If there is still required_kernelcore, we do another pass with one
  2896. * less node in the count. This will push zone_movable_pfn[nid] further
  2897. * along on the nodes that still have memory until kernelcore is
  2898. * satisified
  2899. */
  2900. usable_nodes--;
  2901. if (usable_nodes && required_kernelcore > usable_nodes)
  2902. goto restart;
  2903. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  2904. for (nid = 0; nid < MAX_NUMNODES; nid++)
  2905. zone_movable_pfn[nid] =
  2906. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  2907. }
  2908. /**
  2909. * free_area_init_nodes - Initialise all pg_data_t and zone data
  2910. * @max_zone_pfn: an array of max PFNs for each zone
  2911. *
  2912. * This will call free_area_init_node() for each active node in the system.
  2913. * Using the page ranges provided by add_active_range(), the size of each
  2914. * zone in each node and their holes is calculated. If the maximum PFN
  2915. * between two adjacent zones match, it is assumed that the zone is empty.
  2916. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  2917. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  2918. * starts where the previous one ended. For example, ZONE_DMA32 starts
  2919. * at arch_max_dma_pfn.
  2920. */
  2921. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  2922. {
  2923. unsigned long nid;
  2924. enum zone_type i;
  2925. /* Sort early_node_map as initialisation assumes it is sorted */
  2926. sort_node_map();
  2927. /* Record where the zone boundaries are */
  2928. memset(arch_zone_lowest_possible_pfn, 0,
  2929. sizeof(arch_zone_lowest_possible_pfn));
  2930. memset(arch_zone_highest_possible_pfn, 0,
  2931. sizeof(arch_zone_highest_possible_pfn));
  2932. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  2933. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  2934. for (i = 1; i < MAX_NR_ZONES; i++) {
  2935. if (i == ZONE_MOVABLE)
  2936. continue;
  2937. arch_zone_lowest_possible_pfn[i] =
  2938. arch_zone_highest_possible_pfn[i-1];
  2939. arch_zone_highest_possible_pfn[i] =
  2940. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  2941. }
  2942. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  2943. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  2944. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  2945. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  2946. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  2947. /* Print out the zone ranges */
  2948. printk("Zone PFN ranges:\n");
  2949. for (i = 0; i < MAX_NR_ZONES; i++) {
  2950. if (i == ZONE_MOVABLE)
  2951. continue;
  2952. printk(" %-8s %8lu -> %8lu\n",
  2953. zone_names[i],
  2954. arch_zone_lowest_possible_pfn[i],
  2955. arch_zone_highest_possible_pfn[i]);
  2956. }
  2957. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  2958. printk("Movable zone start PFN for each node\n");
  2959. for (i = 0; i < MAX_NUMNODES; i++) {
  2960. if (zone_movable_pfn[i])
  2961. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  2962. }
  2963. /* Print out the early_node_map[] */
  2964. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  2965. for (i = 0; i < nr_nodemap_entries; i++)
  2966. printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
  2967. early_node_map[i].start_pfn,
  2968. early_node_map[i].end_pfn);
  2969. /* Initialise every node */
  2970. setup_nr_node_ids();
  2971. for_each_online_node(nid) {
  2972. pg_data_t *pgdat = NODE_DATA(nid);
  2973. free_area_init_node(nid, pgdat, NULL,
  2974. find_min_pfn_for_node(nid), NULL);
  2975. }
  2976. }
  2977. static int __init cmdline_parse_core(char *p, unsigned long *core)
  2978. {
  2979. unsigned long long coremem;
  2980. if (!p)
  2981. return -EINVAL;
  2982. coremem = memparse(p, &p);
  2983. *core = coremem >> PAGE_SHIFT;
  2984. /* Paranoid check that UL is enough for the coremem value */
  2985. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  2986. return 0;
  2987. }
  2988. /*
  2989. * kernelcore=size sets the amount of memory for use for allocations that
  2990. * cannot be reclaimed or migrated.
  2991. */
  2992. static int __init cmdline_parse_kernelcore(char *p)
  2993. {
  2994. return cmdline_parse_core(p, &required_kernelcore);
  2995. }
  2996. /*
  2997. * movablecore=size sets the amount of memory for use for allocations that
  2998. * can be reclaimed or migrated.
  2999. */
  3000. static int __init cmdline_parse_movablecore(char *p)
  3001. {
  3002. return cmdline_parse_core(p, &required_movablecore);
  3003. }
  3004. early_param("kernelcore", cmdline_parse_kernelcore);
  3005. early_param("movablecore", cmdline_parse_movablecore);
  3006. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3007. /**
  3008. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3009. * @new_dma_reserve: The number of pages to mark reserved
  3010. *
  3011. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3012. * In the DMA zone, a significant percentage may be consumed by kernel image
  3013. * and other unfreeable allocations which can skew the watermarks badly. This
  3014. * function may optionally be used to account for unfreeable pages in the
  3015. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3016. * smaller per-cpu batchsize.
  3017. */
  3018. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3019. {
  3020. dma_reserve = new_dma_reserve;
  3021. }
  3022. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3023. static bootmem_data_t contig_bootmem_data;
  3024. struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
  3025. EXPORT_SYMBOL(contig_page_data);
  3026. #endif
  3027. void __init free_area_init(unsigned long *zones_size)
  3028. {
  3029. free_area_init_node(0, NODE_DATA(0), zones_size,
  3030. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3031. }
  3032. static int page_alloc_cpu_notify(struct notifier_block *self,
  3033. unsigned long action, void *hcpu)
  3034. {
  3035. int cpu = (unsigned long)hcpu;
  3036. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3037. local_irq_disable();
  3038. __drain_pages(cpu);
  3039. vm_events_fold_cpu(cpu);
  3040. local_irq_enable();
  3041. refresh_cpu_vm_stats(cpu);
  3042. }
  3043. return NOTIFY_OK;
  3044. }
  3045. void __init page_alloc_init(void)
  3046. {
  3047. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3048. }
  3049. /*
  3050. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3051. * or min_free_kbytes changes.
  3052. */
  3053. static void calculate_totalreserve_pages(void)
  3054. {
  3055. struct pglist_data *pgdat;
  3056. unsigned long reserve_pages = 0;
  3057. enum zone_type i, j;
  3058. for_each_online_pgdat(pgdat) {
  3059. for (i = 0; i < MAX_NR_ZONES; i++) {
  3060. struct zone *zone = pgdat->node_zones + i;
  3061. unsigned long max = 0;
  3062. /* Find valid and maximum lowmem_reserve in the zone */
  3063. for (j = i; j < MAX_NR_ZONES; j++) {
  3064. if (zone->lowmem_reserve[j] > max)
  3065. max = zone->lowmem_reserve[j];
  3066. }
  3067. /* we treat pages_high as reserved pages. */
  3068. max += zone->pages_high;
  3069. if (max > zone->present_pages)
  3070. max = zone->present_pages;
  3071. reserve_pages += max;
  3072. }
  3073. }
  3074. totalreserve_pages = reserve_pages;
  3075. }
  3076. /*
  3077. * setup_per_zone_lowmem_reserve - called whenever
  3078. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3079. * has a correct pages reserved value, so an adequate number of
  3080. * pages are left in the zone after a successful __alloc_pages().
  3081. */
  3082. static void setup_per_zone_lowmem_reserve(void)
  3083. {
  3084. struct pglist_data *pgdat;
  3085. enum zone_type j, idx;
  3086. for_each_online_pgdat(pgdat) {
  3087. for (j = 0; j < MAX_NR_ZONES; j++) {
  3088. struct zone *zone = pgdat->node_zones + j;
  3089. unsigned long present_pages = zone->present_pages;
  3090. zone->lowmem_reserve[j] = 0;
  3091. idx = j;
  3092. while (idx) {
  3093. struct zone *lower_zone;
  3094. idx--;
  3095. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3096. sysctl_lowmem_reserve_ratio[idx] = 1;
  3097. lower_zone = pgdat->node_zones + idx;
  3098. lower_zone->lowmem_reserve[j] = present_pages /
  3099. sysctl_lowmem_reserve_ratio[idx];
  3100. present_pages += lower_zone->present_pages;
  3101. }
  3102. }
  3103. }
  3104. /* update totalreserve_pages */
  3105. calculate_totalreserve_pages();
  3106. }
  3107. /**
  3108. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  3109. *
  3110. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  3111. * with respect to min_free_kbytes.
  3112. */
  3113. void setup_per_zone_pages_min(void)
  3114. {
  3115. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3116. unsigned long lowmem_pages = 0;
  3117. struct zone *zone;
  3118. unsigned long flags;
  3119. /* Calculate total number of !ZONE_HIGHMEM pages */
  3120. for_each_zone(zone) {
  3121. if (!is_highmem(zone))
  3122. lowmem_pages += zone->present_pages;
  3123. }
  3124. for_each_zone(zone) {
  3125. u64 tmp;
  3126. spin_lock_irqsave(&zone->lru_lock, flags);
  3127. tmp = (u64)pages_min * zone->present_pages;
  3128. do_div(tmp, lowmem_pages);
  3129. if (is_highmem(zone)) {
  3130. /*
  3131. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3132. * need highmem pages, so cap pages_min to a small
  3133. * value here.
  3134. *
  3135. * The (pages_high-pages_low) and (pages_low-pages_min)
  3136. * deltas controls asynch page reclaim, and so should
  3137. * not be capped for highmem.
  3138. */
  3139. int min_pages;
  3140. min_pages = zone->present_pages / 1024;
  3141. if (min_pages < SWAP_CLUSTER_MAX)
  3142. min_pages = SWAP_CLUSTER_MAX;
  3143. if (min_pages > 128)
  3144. min_pages = 128;
  3145. zone->pages_min = min_pages;
  3146. } else {
  3147. /*
  3148. * If it's a lowmem zone, reserve a number of pages
  3149. * proportionate to the zone's size.
  3150. */
  3151. zone->pages_min = tmp;
  3152. }
  3153. zone->pages_low = zone->pages_min + (tmp >> 2);
  3154. zone->pages_high = zone->pages_min + (tmp >> 1);
  3155. spin_unlock_irqrestore(&zone->lru_lock, flags);
  3156. }
  3157. /* update totalreserve_pages */
  3158. calculate_totalreserve_pages();
  3159. }
  3160. /*
  3161. * Initialise min_free_kbytes.
  3162. *
  3163. * For small machines we want it small (128k min). For large machines
  3164. * we want it large (64MB max). But it is not linear, because network
  3165. * bandwidth does not increase linearly with machine size. We use
  3166. *
  3167. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  3168. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  3169. *
  3170. * which yields
  3171. *
  3172. * 16MB: 512k
  3173. * 32MB: 724k
  3174. * 64MB: 1024k
  3175. * 128MB: 1448k
  3176. * 256MB: 2048k
  3177. * 512MB: 2896k
  3178. * 1024MB: 4096k
  3179. * 2048MB: 5792k
  3180. * 4096MB: 8192k
  3181. * 8192MB: 11584k
  3182. * 16384MB: 16384k
  3183. */
  3184. static int __init init_per_zone_pages_min(void)
  3185. {
  3186. unsigned long lowmem_kbytes;
  3187. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  3188. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  3189. if (min_free_kbytes < 128)
  3190. min_free_kbytes = 128;
  3191. if (min_free_kbytes > 65536)
  3192. min_free_kbytes = 65536;
  3193. setup_per_zone_pages_min();
  3194. setup_per_zone_lowmem_reserve();
  3195. return 0;
  3196. }
  3197. module_init(init_per_zone_pages_min)
  3198. /*
  3199. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  3200. * that we can call two helper functions whenever min_free_kbytes
  3201. * changes.
  3202. */
  3203. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  3204. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3205. {
  3206. proc_dointvec(table, write, file, buffer, length, ppos);
  3207. if (write)
  3208. setup_per_zone_pages_min();
  3209. return 0;
  3210. }
  3211. #ifdef CONFIG_NUMA
  3212. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  3213. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3214. {
  3215. struct zone *zone;
  3216. int rc;
  3217. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3218. if (rc)
  3219. return rc;
  3220. for_each_zone(zone)
  3221. zone->min_unmapped_pages = (zone->present_pages *
  3222. sysctl_min_unmapped_ratio) / 100;
  3223. return 0;
  3224. }
  3225. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  3226. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3227. {
  3228. struct zone *zone;
  3229. int rc;
  3230. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3231. if (rc)
  3232. return rc;
  3233. for_each_zone(zone)
  3234. zone->min_slab_pages = (zone->present_pages *
  3235. sysctl_min_slab_ratio) / 100;
  3236. return 0;
  3237. }
  3238. #endif
  3239. /*
  3240. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  3241. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  3242. * whenever sysctl_lowmem_reserve_ratio changes.
  3243. *
  3244. * The reserve ratio obviously has absolutely no relation with the
  3245. * pages_min watermarks. The lowmem reserve ratio can only make sense
  3246. * if in function of the boot time zone sizes.
  3247. */
  3248. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  3249. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3250. {
  3251. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3252. setup_per_zone_lowmem_reserve();
  3253. return 0;
  3254. }
  3255. /*
  3256. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  3257. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  3258. * can have before it gets flushed back to buddy allocator.
  3259. */
  3260. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  3261. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3262. {
  3263. struct zone *zone;
  3264. unsigned int cpu;
  3265. int ret;
  3266. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3267. if (!write || (ret == -EINVAL))
  3268. return ret;
  3269. for_each_zone(zone) {
  3270. for_each_online_cpu(cpu) {
  3271. unsigned long high;
  3272. high = zone->present_pages / percpu_pagelist_fraction;
  3273. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  3274. }
  3275. }
  3276. return 0;
  3277. }
  3278. int hashdist = HASHDIST_DEFAULT;
  3279. #ifdef CONFIG_NUMA
  3280. static int __init set_hashdist(char *str)
  3281. {
  3282. if (!str)
  3283. return 0;
  3284. hashdist = simple_strtoul(str, &str, 0);
  3285. return 1;
  3286. }
  3287. __setup("hashdist=", set_hashdist);
  3288. #endif
  3289. /*
  3290. * allocate a large system hash table from bootmem
  3291. * - it is assumed that the hash table must contain an exact power-of-2
  3292. * quantity of entries
  3293. * - limit is the number of hash buckets, not the total allocation size
  3294. */
  3295. void *__init alloc_large_system_hash(const char *tablename,
  3296. unsigned long bucketsize,
  3297. unsigned long numentries,
  3298. int scale,
  3299. int flags,
  3300. unsigned int *_hash_shift,
  3301. unsigned int *_hash_mask,
  3302. unsigned long limit)
  3303. {
  3304. unsigned long long max = limit;
  3305. unsigned long log2qty, size;
  3306. void *table = NULL;
  3307. /* allow the kernel cmdline to have a say */
  3308. if (!numentries) {
  3309. /* round applicable memory size up to nearest megabyte */
  3310. numentries = nr_kernel_pages;
  3311. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  3312. numentries >>= 20 - PAGE_SHIFT;
  3313. numentries <<= 20 - PAGE_SHIFT;
  3314. /* limit to 1 bucket per 2^scale bytes of low memory */
  3315. if (scale > PAGE_SHIFT)
  3316. numentries >>= (scale - PAGE_SHIFT);
  3317. else
  3318. numentries <<= (PAGE_SHIFT - scale);
  3319. /* Make sure we've got at least a 0-order allocation.. */
  3320. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  3321. numentries = PAGE_SIZE / bucketsize;
  3322. }
  3323. numentries = roundup_pow_of_two(numentries);
  3324. /* limit allocation size to 1/16 total memory by default */
  3325. if (max == 0) {
  3326. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  3327. do_div(max, bucketsize);
  3328. }
  3329. if (numentries > max)
  3330. numentries = max;
  3331. log2qty = ilog2(numentries);
  3332. do {
  3333. size = bucketsize << log2qty;
  3334. if (flags & HASH_EARLY)
  3335. table = alloc_bootmem(size);
  3336. else if (hashdist)
  3337. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  3338. else {
  3339. unsigned long order;
  3340. for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
  3341. ;
  3342. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  3343. /*
  3344. * If bucketsize is not a power-of-two, we may free
  3345. * some pages at the end of hash table.
  3346. */
  3347. if (table) {
  3348. unsigned long alloc_end = (unsigned long)table +
  3349. (PAGE_SIZE << order);
  3350. unsigned long used = (unsigned long)table +
  3351. PAGE_ALIGN(size);
  3352. split_page(virt_to_page(table), order);
  3353. while (used < alloc_end) {
  3354. free_page(used);
  3355. used += PAGE_SIZE;
  3356. }
  3357. }
  3358. }
  3359. } while (!table && size > PAGE_SIZE && --log2qty);
  3360. if (!table)
  3361. panic("Failed to allocate %s hash table\n", tablename);
  3362. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  3363. tablename,
  3364. (1U << log2qty),
  3365. ilog2(size) - PAGE_SHIFT,
  3366. size);
  3367. if (_hash_shift)
  3368. *_hash_shift = log2qty;
  3369. if (_hash_mask)
  3370. *_hash_mask = (1 << log2qty) - 1;
  3371. return table;
  3372. }
  3373. #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
  3374. struct page *pfn_to_page(unsigned long pfn)
  3375. {
  3376. return __pfn_to_page(pfn);
  3377. }
  3378. unsigned long page_to_pfn(struct page *page)
  3379. {
  3380. return __page_to_pfn(page);
  3381. }
  3382. EXPORT_SYMBOL(pfn_to_page);
  3383. EXPORT_SYMBOL(page_to_pfn);
  3384. #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */