time.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762
  1. /*
  2. * linux/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. *
  6. * This file contains the interface functions for the various
  7. * time related system calls: time, stime, gettimeofday, settimeofday,
  8. * adjtime
  9. */
  10. /*
  11. * Modification history kernel/time.c
  12. *
  13. * 1993-09-02 Philip Gladstone
  14. * Created file with time related functions from sched.c and adjtimex()
  15. * 1993-10-08 Torsten Duwe
  16. * adjtime interface update and CMOS clock write code
  17. * 1995-08-13 Torsten Duwe
  18. * kernel PLL updated to 1994-12-13 specs (rfc-1589)
  19. * 1999-01-16 Ulrich Windl
  20. * Introduced error checking for many cases in adjtimex().
  21. * Updated NTP code according to technical memorandum Jan '96
  22. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  23. * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
  24. * (Even though the technical memorandum forbids it)
  25. * 2004-07-14 Christoph Lameter
  26. * Added getnstimeofday to allow the posix timer functions to return
  27. * with nanosecond accuracy
  28. */
  29. #include <linux/module.h>
  30. #include <linux/timex.h>
  31. #include <linux/capability.h>
  32. #include <linux/errno.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/security.h>
  35. #include <linux/fs.h>
  36. #include <linux/module.h>
  37. #include <asm/uaccess.h>
  38. #include <asm/unistd.h>
  39. /*
  40. * The timezone where the local system is located. Used as a default by some
  41. * programs who obtain this value by using gettimeofday.
  42. */
  43. struct timezone sys_tz;
  44. EXPORT_SYMBOL(sys_tz);
  45. #ifdef __ARCH_WANT_SYS_TIME
  46. /*
  47. * sys_time() can be implemented in user-level using
  48. * sys_gettimeofday(). Is this for backwards compatibility? If so,
  49. * why not move it into the appropriate arch directory (for those
  50. * architectures that need it).
  51. */
  52. asmlinkage long sys_time(time_t __user * tloc)
  53. {
  54. /*
  55. * We read xtime.tv_sec atomically - it's updated
  56. * atomically by update_wall_time(), so no need to
  57. * even read-lock the xtime seqlock:
  58. */
  59. time_t i = xtime.tv_sec;
  60. smp_rmb(); /* sys_time() results are coherent */
  61. if (tloc) {
  62. if (put_user(i, tloc))
  63. i = -EFAULT;
  64. }
  65. return i;
  66. }
  67. /*
  68. * sys_stime() can be implemented in user-level using
  69. * sys_settimeofday(). Is this for backwards compatibility? If so,
  70. * why not move it into the appropriate arch directory (for those
  71. * architectures that need it).
  72. */
  73. asmlinkage long sys_stime(time_t __user *tptr)
  74. {
  75. struct timespec tv;
  76. int err;
  77. if (get_user(tv.tv_sec, tptr))
  78. return -EFAULT;
  79. tv.tv_nsec = 0;
  80. err = security_settime(&tv, NULL);
  81. if (err)
  82. return err;
  83. do_settimeofday(&tv);
  84. return 0;
  85. }
  86. #endif /* __ARCH_WANT_SYS_TIME */
  87. asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz)
  88. {
  89. if (likely(tv != NULL)) {
  90. struct timeval ktv;
  91. do_gettimeofday(&ktv);
  92. if (copy_to_user(tv, &ktv, sizeof(ktv)))
  93. return -EFAULT;
  94. }
  95. if (unlikely(tz != NULL)) {
  96. if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
  97. return -EFAULT;
  98. }
  99. return 0;
  100. }
  101. /*
  102. * Adjust the time obtained from the CMOS to be UTC time instead of
  103. * local time.
  104. *
  105. * This is ugly, but preferable to the alternatives. Otherwise we
  106. * would either need to write a program to do it in /etc/rc (and risk
  107. * confusion if the program gets run more than once; it would also be
  108. * hard to make the program warp the clock precisely n hours) or
  109. * compile in the timezone information into the kernel. Bad, bad....
  110. *
  111. * - TYT, 1992-01-01
  112. *
  113. * The best thing to do is to keep the CMOS clock in universal time (UTC)
  114. * as real UNIX machines always do it. This avoids all headaches about
  115. * daylight saving times and warping kernel clocks.
  116. */
  117. static inline void warp_clock(void)
  118. {
  119. write_seqlock_irq(&xtime_lock);
  120. wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
  121. xtime.tv_sec += sys_tz.tz_minuteswest * 60;
  122. time_interpolator_reset();
  123. write_sequnlock_irq(&xtime_lock);
  124. clock_was_set();
  125. }
  126. /*
  127. * In case for some reason the CMOS clock has not already been running
  128. * in UTC, but in some local time: The first time we set the timezone,
  129. * we will warp the clock so that it is ticking UTC time instead of
  130. * local time. Presumably, if someone is setting the timezone then we
  131. * are running in an environment where the programs understand about
  132. * timezones. This should be done at boot time in the /etc/rc script,
  133. * as soon as possible, so that the clock can be set right. Otherwise,
  134. * various programs will get confused when the clock gets warped.
  135. */
  136. int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
  137. {
  138. static int firsttime = 1;
  139. int error = 0;
  140. if (tv && !timespec_valid(tv))
  141. return -EINVAL;
  142. error = security_settime(tv, tz);
  143. if (error)
  144. return error;
  145. if (tz) {
  146. /* SMP safe, global irq locking makes it work. */
  147. sys_tz = *tz;
  148. if (firsttime) {
  149. firsttime = 0;
  150. if (!tv)
  151. warp_clock();
  152. }
  153. }
  154. if (tv)
  155. {
  156. /* SMP safe, again the code in arch/foo/time.c should
  157. * globally block out interrupts when it runs.
  158. */
  159. return do_settimeofday(tv);
  160. }
  161. return 0;
  162. }
  163. asmlinkage long sys_settimeofday(struct timeval __user *tv,
  164. struct timezone __user *tz)
  165. {
  166. struct timeval user_tv;
  167. struct timespec new_ts;
  168. struct timezone new_tz;
  169. if (tv) {
  170. if (copy_from_user(&user_tv, tv, sizeof(*tv)))
  171. return -EFAULT;
  172. new_ts.tv_sec = user_tv.tv_sec;
  173. new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
  174. }
  175. if (tz) {
  176. if (copy_from_user(&new_tz, tz, sizeof(*tz)))
  177. return -EFAULT;
  178. }
  179. return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
  180. }
  181. asmlinkage long sys_adjtimex(struct timex __user *txc_p)
  182. {
  183. struct timex txc; /* Local copy of parameter */
  184. int ret;
  185. /* Copy the user data space into the kernel copy
  186. * structure. But bear in mind that the structures
  187. * may change
  188. */
  189. if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
  190. return -EFAULT;
  191. ret = do_adjtimex(&txc);
  192. return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
  193. }
  194. inline struct timespec current_kernel_time(void)
  195. {
  196. struct timespec now;
  197. unsigned long seq;
  198. do {
  199. seq = read_seqbegin(&xtime_lock);
  200. now = xtime;
  201. } while (read_seqretry(&xtime_lock, seq));
  202. return now;
  203. }
  204. EXPORT_SYMBOL(current_kernel_time);
  205. /**
  206. * current_fs_time - Return FS time
  207. * @sb: Superblock.
  208. *
  209. * Return the current time truncated to the time granularity supported by
  210. * the fs.
  211. */
  212. struct timespec current_fs_time(struct super_block *sb)
  213. {
  214. struct timespec now = current_kernel_time();
  215. return timespec_trunc(now, sb->s_time_gran);
  216. }
  217. EXPORT_SYMBOL(current_fs_time);
  218. /*
  219. * Convert jiffies to milliseconds and back.
  220. *
  221. * Avoid unnecessary multiplications/divisions in the
  222. * two most common HZ cases:
  223. */
  224. unsigned int inline jiffies_to_msecs(const unsigned long j)
  225. {
  226. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  227. return (MSEC_PER_SEC / HZ) * j;
  228. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  229. return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
  230. #else
  231. return (j * MSEC_PER_SEC) / HZ;
  232. #endif
  233. }
  234. EXPORT_SYMBOL(jiffies_to_msecs);
  235. unsigned int inline jiffies_to_usecs(const unsigned long j)
  236. {
  237. #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
  238. return (USEC_PER_SEC / HZ) * j;
  239. #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
  240. return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
  241. #else
  242. return (j * USEC_PER_SEC) / HZ;
  243. #endif
  244. }
  245. EXPORT_SYMBOL(jiffies_to_usecs);
  246. /**
  247. * timespec_trunc - Truncate timespec to a granularity
  248. * @t: Timespec
  249. * @gran: Granularity in ns.
  250. *
  251. * Truncate a timespec to a granularity. gran must be smaller than a second.
  252. * Always rounds down.
  253. *
  254. * This function should be only used for timestamps returned by
  255. * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
  256. * it doesn't handle the better resolution of the later.
  257. */
  258. struct timespec timespec_trunc(struct timespec t, unsigned gran)
  259. {
  260. /*
  261. * Division is pretty slow so avoid it for common cases.
  262. * Currently current_kernel_time() never returns better than
  263. * jiffies resolution. Exploit that.
  264. */
  265. if (gran <= jiffies_to_usecs(1) * 1000) {
  266. /* nothing */
  267. } else if (gran == 1000000000) {
  268. t.tv_nsec = 0;
  269. } else {
  270. t.tv_nsec -= t.tv_nsec % gran;
  271. }
  272. return t;
  273. }
  274. EXPORT_SYMBOL(timespec_trunc);
  275. #ifdef CONFIG_TIME_INTERPOLATION
  276. void getnstimeofday (struct timespec *tv)
  277. {
  278. unsigned long seq,sec,nsec;
  279. do {
  280. seq = read_seqbegin(&xtime_lock);
  281. sec = xtime.tv_sec;
  282. nsec = xtime.tv_nsec+time_interpolator_get_offset();
  283. } while (unlikely(read_seqretry(&xtime_lock, seq)));
  284. while (unlikely(nsec >= NSEC_PER_SEC)) {
  285. nsec -= NSEC_PER_SEC;
  286. ++sec;
  287. }
  288. tv->tv_sec = sec;
  289. tv->tv_nsec = nsec;
  290. }
  291. EXPORT_SYMBOL_GPL(getnstimeofday);
  292. int do_settimeofday (struct timespec *tv)
  293. {
  294. time_t wtm_sec, sec = tv->tv_sec;
  295. long wtm_nsec, nsec = tv->tv_nsec;
  296. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  297. return -EINVAL;
  298. write_seqlock_irq(&xtime_lock);
  299. {
  300. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
  301. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
  302. set_normalized_timespec(&xtime, sec, nsec);
  303. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  304. time_adjust = 0; /* stop active adjtime() */
  305. time_status |= STA_UNSYNC;
  306. time_maxerror = NTP_PHASE_LIMIT;
  307. time_esterror = NTP_PHASE_LIMIT;
  308. time_interpolator_reset();
  309. }
  310. write_sequnlock_irq(&xtime_lock);
  311. clock_was_set();
  312. return 0;
  313. }
  314. EXPORT_SYMBOL(do_settimeofday);
  315. void do_gettimeofday (struct timeval *tv)
  316. {
  317. unsigned long seq, nsec, usec, sec, offset;
  318. do {
  319. seq = read_seqbegin(&xtime_lock);
  320. offset = time_interpolator_get_offset();
  321. sec = xtime.tv_sec;
  322. nsec = xtime.tv_nsec;
  323. } while (unlikely(read_seqretry(&xtime_lock, seq)));
  324. usec = (nsec + offset) / 1000;
  325. while (unlikely(usec >= USEC_PER_SEC)) {
  326. usec -= USEC_PER_SEC;
  327. ++sec;
  328. }
  329. tv->tv_sec = sec;
  330. tv->tv_usec = usec;
  331. /*
  332. * Make sure xtime.tv_sec [returned by sys_time()] always
  333. * follows the gettimeofday() result precisely. This
  334. * condition is extremely unlikely, it can hit at most
  335. * once per second:
  336. */
  337. if (unlikely(xtime.tv_sec != tv->tv_sec)) {
  338. unsigned long flags;
  339. write_seqlock_irqsave(&xtime_lock, flags);
  340. update_wall_time();
  341. write_sequnlock_irqrestore(&xtime_lock, flags);
  342. }
  343. }
  344. EXPORT_SYMBOL(do_gettimeofday);
  345. #else /* CONFIG_TIME_INTERPOLATION */
  346. #ifndef CONFIG_GENERIC_TIME
  347. /*
  348. * Simulate gettimeofday using do_gettimeofday which only allows a timeval
  349. * and therefore only yields usec accuracy
  350. */
  351. void getnstimeofday(struct timespec *tv)
  352. {
  353. struct timeval x;
  354. do_gettimeofday(&x);
  355. tv->tv_sec = x.tv_sec;
  356. tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
  357. }
  358. EXPORT_SYMBOL_GPL(getnstimeofday);
  359. #endif
  360. #endif /* CONFIG_TIME_INTERPOLATION */
  361. /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
  362. * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
  363. * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
  364. *
  365. * [For the Julian calendar (which was used in Russia before 1917,
  366. * Britain & colonies before 1752, anywhere else before 1582,
  367. * and is still in use by some communities) leave out the
  368. * -year/100+year/400 terms, and add 10.]
  369. *
  370. * This algorithm was first published by Gauss (I think).
  371. *
  372. * WARNING: this function will overflow on 2106-02-07 06:28:16 on
  373. * machines were long is 32-bit! (However, as time_t is signed, we
  374. * will already get problems at other places on 2038-01-19 03:14:08)
  375. */
  376. unsigned long
  377. mktime(const unsigned int year0, const unsigned int mon0,
  378. const unsigned int day, const unsigned int hour,
  379. const unsigned int min, const unsigned int sec)
  380. {
  381. unsigned int mon = mon0, year = year0;
  382. /* 1..12 -> 11,12,1..10 */
  383. if (0 >= (int) (mon -= 2)) {
  384. mon += 12; /* Puts Feb last since it has leap day */
  385. year -= 1;
  386. }
  387. return ((((unsigned long)
  388. (year/4 - year/100 + year/400 + 367*mon/12 + day) +
  389. year*365 - 719499
  390. )*24 + hour /* now have hours */
  391. )*60 + min /* now have minutes */
  392. )*60 + sec; /* finally seconds */
  393. }
  394. EXPORT_SYMBOL(mktime);
  395. /**
  396. * set_normalized_timespec - set timespec sec and nsec parts and normalize
  397. *
  398. * @ts: pointer to timespec variable to be set
  399. * @sec: seconds to set
  400. * @nsec: nanoseconds to set
  401. *
  402. * Set seconds and nanoseconds field of a timespec variable and
  403. * normalize to the timespec storage format
  404. *
  405. * Note: The tv_nsec part is always in the range of
  406. * 0 <= tv_nsec < NSEC_PER_SEC
  407. * For negative values only the tv_sec field is negative !
  408. */
  409. void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
  410. {
  411. while (nsec >= NSEC_PER_SEC) {
  412. nsec -= NSEC_PER_SEC;
  413. ++sec;
  414. }
  415. while (nsec < 0) {
  416. nsec += NSEC_PER_SEC;
  417. --sec;
  418. }
  419. ts->tv_sec = sec;
  420. ts->tv_nsec = nsec;
  421. }
  422. /**
  423. * ns_to_timespec - Convert nanoseconds to timespec
  424. * @nsec: the nanoseconds value to be converted
  425. *
  426. * Returns the timespec representation of the nsec parameter.
  427. */
  428. struct timespec ns_to_timespec(const s64 nsec)
  429. {
  430. struct timespec ts;
  431. if (!nsec)
  432. return (struct timespec) {0, 0};
  433. ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
  434. if (unlikely(nsec < 0))
  435. set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
  436. return ts;
  437. }
  438. EXPORT_SYMBOL(ns_to_timespec);
  439. /**
  440. * ns_to_timeval - Convert nanoseconds to timeval
  441. * @nsec: the nanoseconds value to be converted
  442. *
  443. * Returns the timeval representation of the nsec parameter.
  444. */
  445. struct timeval ns_to_timeval(const s64 nsec)
  446. {
  447. struct timespec ts = ns_to_timespec(nsec);
  448. struct timeval tv;
  449. tv.tv_sec = ts.tv_sec;
  450. tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
  451. return tv;
  452. }
  453. EXPORT_SYMBOL(ns_to_timeval);
  454. /*
  455. * When we convert to jiffies then we interpret incoming values
  456. * the following way:
  457. *
  458. * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
  459. *
  460. * - 'too large' values [that would result in larger than
  461. * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
  462. *
  463. * - all other values are converted to jiffies by either multiplying
  464. * the input value by a factor or dividing it with a factor
  465. *
  466. * We must also be careful about 32-bit overflows.
  467. */
  468. unsigned long msecs_to_jiffies(const unsigned int m)
  469. {
  470. /*
  471. * Negative value, means infinite timeout:
  472. */
  473. if ((int)m < 0)
  474. return MAX_JIFFY_OFFSET;
  475. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  476. /*
  477. * HZ is equal to or smaller than 1000, and 1000 is a nice
  478. * round multiple of HZ, divide with the factor between them,
  479. * but round upwards:
  480. */
  481. return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
  482. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  483. /*
  484. * HZ is larger than 1000, and HZ is a nice round multiple of
  485. * 1000 - simply multiply with the factor between them.
  486. *
  487. * But first make sure the multiplication result cannot
  488. * overflow:
  489. */
  490. if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  491. return MAX_JIFFY_OFFSET;
  492. return m * (HZ / MSEC_PER_SEC);
  493. #else
  494. /*
  495. * Generic case - multiply, round and divide. But first
  496. * check that if we are doing a net multiplication, that
  497. * we wouldnt overflow:
  498. */
  499. if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  500. return MAX_JIFFY_OFFSET;
  501. return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC;
  502. #endif
  503. }
  504. EXPORT_SYMBOL(msecs_to_jiffies);
  505. unsigned long usecs_to_jiffies(const unsigned int u)
  506. {
  507. if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
  508. return MAX_JIFFY_OFFSET;
  509. #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
  510. return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
  511. #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
  512. return u * (HZ / USEC_PER_SEC);
  513. #else
  514. return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC;
  515. #endif
  516. }
  517. EXPORT_SYMBOL(usecs_to_jiffies);
  518. /*
  519. * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
  520. * that a remainder subtract here would not do the right thing as the
  521. * resolution values don't fall on second boundries. I.e. the line:
  522. * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
  523. *
  524. * Rather, we just shift the bits off the right.
  525. *
  526. * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
  527. * value to a scaled second value.
  528. */
  529. unsigned long
  530. timespec_to_jiffies(const struct timespec *value)
  531. {
  532. unsigned long sec = value->tv_sec;
  533. long nsec = value->tv_nsec + TICK_NSEC - 1;
  534. if (sec >= MAX_SEC_IN_JIFFIES){
  535. sec = MAX_SEC_IN_JIFFIES;
  536. nsec = 0;
  537. }
  538. return (((u64)sec * SEC_CONVERSION) +
  539. (((u64)nsec * NSEC_CONVERSION) >>
  540. (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  541. }
  542. EXPORT_SYMBOL(timespec_to_jiffies);
  543. void
  544. jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
  545. {
  546. /*
  547. * Convert jiffies to nanoseconds and separate with
  548. * one divide.
  549. */
  550. u64 nsec = (u64)jiffies * TICK_NSEC;
  551. value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
  552. }
  553. EXPORT_SYMBOL(jiffies_to_timespec);
  554. /* Same for "timeval"
  555. *
  556. * Well, almost. The problem here is that the real system resolution is
  557. * in nanoseconds and the value being converted is in micro seconds.
  558. * Also for some machines (those that use HZ = 1024, in-particular),
  559. * there is a LARGE error in the tick size in microseconds.
  560. * The solution we use is to do the rounding AFTER we convert the
  561. * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
  562. * Instruction wise, this should cost only an additional add with carry
  563. * instruction above the way it was done above.
  564. */
  565. unsigned long
  566. timeval_to_jiffies(const struct timeval *value)
  567. {
  568. unsigned long sec = value->tv_sec;
  569. long usec = value->tv_usec;
  570. if (sec >= MAX_SEC_IN_JIFFIES){
  571. sec = MAX_SEC_IN_JIFFIES;
  572. usec = 0;
  573. }
  574. return (((u64)sec * SEC_CONVERSION) +
  575. (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
  576. (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  577. }
  578. EXPORT_SYMBOL(timeval_to_jiffies);
  579. void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
  580. {
  581. /*
  582. * Convert jiffies to nanoseconds and separate with
  583. * one divide.
  584. */
  585. u64 nsec = (u64)jiffies * TICK_NSEC;
  586. long tv_usec;
  587. value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
  588. tv_usec /= NSEC_PER_USEC;
  589. value->tv_usec = tv_usec;
  590. }
  591. EXPORT_SYMBOL(jiffies_to_timeval);
  592. /*
  593. * Convert jiffies/jiffies_64 to clock_t and back.
  594. */
  595. clock_t jiffies_to_clock_t(long x)
  596. {
  597. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  598. return x / (HZ / USER_HZ);
  599. #else
  600. u64 tmp = (u64)x * TICK_NSEC;
  601. do_div(tmp, (NSEC_PER_SEC / USER_HZ));
  602. return (long)tmp;
  603. #endif
  604. }
  605. EXPORT_SYMBOL(jiffies_to_clock_t);
  606. unsigned long clock_t_to_jiffies(unsigned long x)
  607. {
  608. #if (HZ % USER_HZ)==0
  609. if (x >= ~0UL / (HZ / USER_HZ))
  610. return ~0UL;
  611. return x * (HZ / USER_HZ);
  612. #else
  613. u64 jif;
  614. /* Don't worry about loss of precision here .. */
  615. if (x >= ~0UL / HZ * USER_HZ)
  616. return ~0UL;
  617. /* .. but do try to contain it here */
  618. jif = x * (u64) HZ;
  619. do_div(jif, USER_HZ);
  620. return jif;
  621. #endif
  622. }
  623. EXPORT_SYMBOL(clock_t_to_jiffies);
  624. u64 jiffies_64_to_clock_t(u64 x)
  625. {
  626. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  627. do_div(x, HZ / USER_HZ);
  628. #else
  629. /*
  630. * There are better ways that don't overflow early,
  631. * but even this doesn't overflow in hundreds of years
  632. * in 64 bits, so..
  633. */
  634. x *= TICK_NSEC;
  635. do_div(x, (NSEC_PER_SEC / USER_HZ));
  636. #endif
  637. return x;
  638. }
  639. EXPORT_SYMBOL(jiffies_64_to_clock_t);
  640. u64 nsec_to_clock_t(u64 x)
  641. {
  642. #if (NSEC_PER_SEC % USER_HZ) == 0
  643. do_div(x, (NSEC_PER_SEC / USER_HZ));
  644. #elif (USER_HZ % 512) == 0
  645. x *= USER_HZ/512;
  646. do_div(x, (NSEC_PER_SEC / 512));
  647. #else
  648. /*
  649. * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
  650. * overflow after 64.99 years.
  651. * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
  652. */
  653. x *= 9;
  654. do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
  655. USER_HZ));
  656. #endif
  657. return x;
  658. }
  659. #if (BITS_PER_LONG < 64)
  660. u64 get_jiffies_64(void)
  661. {
  662. unsigned long seq;
  663. u64 ret;
  664. do {
  665. seq = read_seqbegin(&xtime_lock);
  666. ret = jiffies_64;
  667. } while (read_seqretry(&xtime_lock, seq));
  668. return ret;
  669. }
  670. EXPORT_SYMBOL(get_jiffies_64);
  671. #endif
  672. EXPORT_SYMBOL(jiffies);