sched_debug.c 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275
  1. /*
  2. * kernel/time/sched_debug.c
  3. *
  4. * Print the CFS rbtree
  5. *
  6. * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/proc_fs.h>
  13. #include <linux/sched.h>
  14. #include <linux/seq_file.h>
  15. #include <linux/kallsyms.h>
  16. #include <linux/utsname.h>
  17. /*
  18. * This allows printing both to /proc/sched_debug and
  19. * to the console
  20. */
  21. #define SEQ_printf(m, x...) \
  22. do { \
  23. if (m) \
  24. seq_printf(m, x); \
  25. else \
  26. printk(x); \
  27. } while (0)
  28. static void
  29. print_task(struct seq_file *m, struct rq *rq, struct task_struct *p, u64 now)
  30. {
  31. if (rq->curr == p)
  32. SEQ_printf(m, "R");
  33. else
  34. SEQ_printf(m, " ");
  35. SEQ_printf(m, "%15s %5d %15Ld %13Ld %13Ld %9Ld %5d "
  36. "%15Ld %15Ld %15Ld %15Ld %15Ld\n",
  37. p->comm, p->pid,
  38. (long long)p->se.fair_key,
  39. (long long)(p->se.fair_key - rq->cfs.fair_clock),
  40. (long long)p->se.wait_runtime,
  41. (long long)(p->nvcsw + p->nivcsw),
  42. p->prio,
  43. (long long)p->se.sum_exec_runtime,
  44. (long long)p->se.sum_wait_runtime,
  45. (long long)p->se.sum_sleep_runtime,
  46. (long long)p->se.wait_runtime_overruns,
  47. (long long)p->se.wait_runtime_underruns);
  48. }
  49. static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu, u64 now)
  50. {
  51. struct task_struct *g, *p;
  52. SEQ_printf(m,
  53. "\nrunnable tasks:\n"
  54. " task PID tree-key delta waiting"
  55. " switches prio"
  56. " sum-exec sum-wait sum-sleep"
  57. " wait-overrun wait-underrun\n"
  58. "------------------------------------------------------------------"
  59. "----------------"
  60. "------------------------------------------------"
  61. "--------------------------------\n");
  62. read_lock_irq(&tasklist_lock);
  63. do_each_thread(g, p) {
  64. if (!p->se.on_rq || task_cpu(p) != rq_cpu)
  65. continue;
  66. print_task(m, rq, p, now);
  67. } while_each_thread(g, p);
  68. read_unlock_irq(&tasklist_lock);
  69. }
  70. static void
  71. print_cfs_rq_runtime_sum(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
  72. {
  73. s64 wait_runtime_rq_sum = 0;
  74. struct task_struct *p;
  75. struct rb_node *curr;
  76. unsigned long flags;
  77. struct rq *rq = &per_cpu(runqueues, cpu);
  78. spin_lock_irqsave(&rq->lock, flags);
  79. curr = first_fair(cfs_rq);
  80. while (curr) {
  81. p = rb_entry(curr, struct task_struct, se.run_node);
  82. wait_runtime_rq_sum += p->se.wait_runtime;
  83. curr = rb_next(curr);
  84. }
  85. spin_unlock_irqrestore(&rq->lock, flags);
  86. SEQ_printf(m, " .%-30s: %Ld\n", "wait_runtime_rq_sum",
  87. (long long)wait_runtime_rq_sum);
  88. }
  89. void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq, u64 now)
  90. {
  91. SEQ_printf(m, "\ncfs_rq %p\n", cfs_rq);
  92. #define P(x) \
  93. SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(cfs_rq->x))
  94. P(fair_clock);
  95. P(exec_clock);
  96. P(wait_runtime);
  97. P(wait_runtime_overruns);
  98. P(wait_runtime_underruns);
  99. P(sleeper_bonus);
  100. #undef P
  101. print_cfs_rq_runtime_sum(m, cpu, cfs_rq);
  102. }
  103. static void print_cpu(struct seq_file *m, int cpu, u64 now)
  104. {
  105. struct rq *rq = &per_cpu(runqueues, cpu);
  106. #ifdef CONFIG_X86
  107. {
  108. unsigned int freq = cpu_khz ? : 1;
  109. SEQ_printf(m, "\ncpu#%d, %u.%03u MHz\n",
  110. cpu, freq / 1000, (freq % 1000));
  111. }
  112. #else
  113. SEQ_printf(m, "\ncpu#%d\n", cpu);
  114. #endif
  115. #define P(x) \
  116. SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x))
  117. P(nr_running);
  118. SEQ_printf(m, " .%-30s: %lu\n", "load",
  119. rq->ls.load.weight);
  120. P(ls.delta_fair);
  121. P(ls.delta_exec);
  122. P(nr_switches);
  123. P(nr_load_updates);
  124. P(nr_uninterruptible);
  125. SEQ_printf(m, " .%-30s: %lu\n", "jiffies", jiffies);
  126. P(next_balance);
  127. P(curr->pid);
  128. P(clock);
  129. P(prev_clock_raw);
  130. P(clock_warps);
  131. P(clock_overflows);
  132. P(clock_unstable_events);
  133. P(clock_max_delta);
  134. P(cpu_load[0]);
  135. P(cpu_load[1]);
  136. P(cpu_load[2]);
  137. P(cpu_load[3]);
  138. P(cpu_load[4]);
  139. #undef P
  140. print_cfs_stats(m, cpu, now);
  141. print_rq(m, rq, cpu, now);
  142. }
  143. static int sched_debug_show(struct seq_file *m, void *v)
  144. {
  145. u64 now = ktime_to_ns(ktime_get());
  146. int cpu;
  147. SEQ_printf(m, "Sched Debug Version: v0.05, %s %.*s\n",
  148. init_utsname()->release,
  149. (int)strcspn(init_utsname()->version, " "),
  150. init_utsname()->version);
  151. SEQ_printf(m, "now at %Lu nsecs\n", (unsigned long long)now);
  152. for_each_online_cpu(cpu)
  153. print_cpu(m, cpu, now);
  154. SEQ_printf(m, "\n");
  155. return 0;
  156. }
  157. void sysrq_sched_debug_show(void)
  158. {
  159. sched_debug_show(NULL, NULL);
  160. }
  161. static int sched_debug_open(struct inode *inode, struct file *filp)
  162. {
  163. return single_open(filp, sched_debug_show, NULL);
  164. }
  165. static struct file_operations sched_debug_fops = {
  166. .open = sched_debug_open,
  167. .read = seq_read,
  168. .llseek = seq_lseek,
  169. .release = seq_release,
  170. };
  171. static int __init init_sched_debug_procfs(void)
  172. {
  173. struct proc_dir_entry *pe;
  174. pe = create_proc_entry("sched_debug", 0644, NULL);
  175. if (!pe)
  176. return -ENOMEM;
  177. pe->proc_fops = &sched_debug_fops;
  178. return 0;
  179. }
  180. __initcall(init_sched_debug_procfs);
  181. void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
  182. {
  183. unsigned long flags;
  184. int num_threads = 1;
  185. rcu_read_lock();
  186. if (lock_task_sighand(p, &flags)) {
  187. num_threads = atomic_read(&p->signal->count);
  188. unlock_task_sighand(p, &flags);
  189. }
  190. rcu_read_unlock();
  191. SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, p->pid, num_threads);
  192. SEQ_printf(m, "----------------------------------------------\n");
  193. #define P(F) \
  194. SEQ_printf(m, "%-25s:%20Ld\n", #F, (long long)p->F)
  195. P(se.wait_start);
  196. P(se.wait_start_fair);
  197. P(se.exec_start);
  198. P(se.sleep_start);
  199. P(se.sleep_start_fair);
  200. P(se.block_start);
  201. P(se.sleep_max);
  202. P(se.block_max);
  203. P(se.exec_max);
  204. P(se.wait_max);
  205. P(se.wait_runtime);
  206. P(se.wait_runtime_overruns);
  207. P(se.wait_runtime_underruns);
  208. P(se.sum_wait_runtime);
  209. P(se.sum_exec_runtime);
  210. SEQ_printf(m, "%-25s:%20Ld\n",
  211. "nr_switches", (long long)(p->nvcsw + p->nivcsw));
  212. P(se.load.weight);
  213. P(policy);
  214. P(prio);
  215. #undef P
  216. {
  217. u64 t0, t1;
  218. t0 = sched_clock();
  219. t1 = sched_clock();
  220. SEQ_printf(m, "%-25s:%20Ld\n",
  221. "clock-delta", (long long)(t1-t0));
  222. }
  223. }
  224. void proc_sched_set_task(struct task_struct *p)
  225. {
  226. p->se.sleep_max = p->se.block_max = p->se.exec_max = p->se.wait_max = 0;
  227. p->se.wait_runtime_overruns = p->se.wait_runtime_underruns = 0;
  228. p->se.sum_exec_runtime = 0;
  229. }