fork.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/mnt_namespace.h>
  19. #include <linux/personality.h>
  20. #include <linux/mempolicy.h>
  21. #include <linux/sem.h>
  22. #include <linux/file.h>
  23. #include <linux/key.h>
  24. #include <linux/binfmts.h>
  25. #include <linux/mman.h>
  26. #include <linux/fs.h>
  27. #include <linux/nsproxy.h>
  28. #include <linux/capability.h>
  29. #include <linux/cpu.h>
  30. #include <linux/cpuset.h>
  31. #include <linux/security.h>
  32. #include <linux/swap.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/jiffies.h>
  35. #include <linux/futex.h>
  36. #include <linux/task_io_accounting_ops.h>
  37. #include <linux/rcupdate.h>
  38. #include <linux/ptrace.h>
  39. #include <linux/mount.h>
  40. #include <linux/audit.h>
  41. #include <linux/profile.h>
  42. #include <linux/rmap.h>
  43. #include <linux/acct.h>
  44. #include <linux/tsacct_kern.h>
  45. #include <linux/cn_proc.h>
  46. #include <linux/freezer.h>
  47. #include <linux/delayacct.h>
  48. #include <linux/taskstats_kern.h>
  49. #include <linux/random.h>
  50. #include <linux/tty.h>
  51. #include <asm/pgtable.h>
  52. #include <asm/pgalloc.h>
  53. #include <asm/uaccess.h>
  54. #include <asm/mmu_context.h>
  55. #include <asm/cacheflush.h>
  56. #include <asm/tlbflush.h>
  57. /*
  58. * Protected counters by write_lock_irq(&tasklist_lock)
  59. */
  60. unsigned long total_forks; /* Handle normal Linux uptimes. */
  61. int nr_threads; /* The idle threads do not count.. */
  62. int max_threads; /* tunable limit on nr_threads */
  63. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  64. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  65. int nr_processes(void)
  66. {
  67. int cpu;
  68. int total = 0;
  69. for_each_online_cpu(cpu)
  70. total += per_cpu(process_counts, cpu);
  71. return total;
  72. }
  73. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  74. # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
  75. # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
  76. static struct kmem_cache *task_struct_cachep;
  77. #endif
  78. /* SLAB cache for signal_struct structures (tsk->signal) */
  79. static struct kmem_cache *signal_cachep;
  80. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  81. struct kmem_cache *sighand_cachep;
  82. /* SLAB cache for files_struct structures (tsk->files) */
  83. struct kmem_cache *files_cachep;
  84. /* SLAB cache for fs_struct structures (tsk->fs) */
  85. struct kmem_cache *fs_cachep;
  86. /* SLAB cache for vm_area_struct structures */
  87. struct kmem_cache *vm_area_cachep;
  88. /* SLAB cache for mm_struct structures (tsk->mm) */
  89. static struct kmem_cache *mm_cachep;
  90. void free_task(struct task_struct *tsk)
  91. {
  92. free_thread_info(tsk->stack);
  93. rt_mutex_debug_task_free(tsk);
  94. free_task_struct(tsk);
  95. }
  96. EXPORT_SYMBOL(free_task);
  97. void __put_task_struct(struct task_struct *tsk)
  98. {
  99. WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
  100. WARN_ON(atomic_read(&tsk->usage));
  101. WARN_ON(tsk == current);
  102. security_task_free(tsk);
  103. free_uid(tsk->user);
  104. put_group_info(tsk->group_info);
  105. delayacct_tsk_free(tsk);
  106. if (!profile_handoff_task(tsk))
  107. free_task(tsk);
  108. }
  109. EXPORT_SYMBOL_GPL(__put_task_struct);
  110. void __init fork_init(unsigned long mempages)
  111. {
  112. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  113. #ifndef ARCH_MIN_TASKALIGN
  114. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  115. #endif
  116. /* create a slab on which task_structs can be allocated */
  117. task_struct_cachep =
  118. kmem_cache_create("task_struct", sizeof(struct task_struct),
  119. ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
  120. #endif
  121. /*
  122. * The default maximum number of threads is set to a safe
  123. * value: the thread structures can take up at most half
  124. * of memory.
  125. */
  126. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  127. /*
  128. * we need to allow at least 20 threads to boot a system
  129. */
  130. if(max_threads < 20)
  131. max_threads = 20;
  132. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  133. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  134. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  135. init_task.signal->rlim[RLIMIT_NPROC];
  136. }
  137. static struct task_struct *dup_task_struct(struct task_struct *orig)
  138. {
  139. struct task_struct *tsk;
  140. struct thread_info *ti;
  141. prepare_to_copy(orig);
  142. tsk = alloc_task_struct();
  143. if (!tsk)
  144. return NULL;
  145. ti = alloc_thread_info(tsk);
  146. if (!ti) {
  147. free_task_struct(tsk);
  148. return NULL;
  149. }
  150. *tsk = *orig;
  151. tsk->stack = ti;
  152. setup_thread_stack(tsk, orig);
  153. #ifdef CONFIG_CC_STACKPROTECTOR
  154. tsk->stack_canary = get_random_int();
  155. #endif
  156. /* One for us, one for whoever does the "release_task()" (usually parent) */
  157. atomic_set(&tsk->usage,2);
  158. atomic_set(&tsk->fs_excl, 0);
  159. #ifdef CONFIG_BLK_DEV_IO_TRACE
  160. tsk->btrace_seq = 0;
  161. #endif
  162. tsk->splice_pipe = NULL;
  163. return tsk;
  164. }
  165. #ifdef CONFIG_MMU
  166. static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  167. {
  168. struct vm_area_struct *mpnt, *tmp, **pprev;
  169. struct rb_node **rb_link, *rb_parent;
  170. int retval;
  171. unsigned long charge;
  172. struct mempolicy *pol;
  173. down_write(&oldmm->mmap_sem);
  174. flush_cache_dup_mm(oldmm);
  175. /*
  176. * Not linked in yet - no deadlock potential:
  177. */
  178. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  179. mm->locked_vm = 0;
  180. mm->mmap = NULL;
  181. mm->mmap_cache = NULL;
  182. mm->free_area_cache = oldmm->mmap_base;
  183. mm->cached_hole_size = ~0UL;
  184. mm->map_count = 0;
  185. cpus_clear(mm->cpu_vm_mask);
  186. mm->mm_rb = RB_ROOT;
  187. rb_link = &mm->mm_rb.rb_node;
  188. rb_parent = NULL;
  189. pprev = &mm->mmap;
  190. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  191. struct file *file;
  192. if (mpnt->vm_flags & VM_DONTCOPY) {
  193. long pages = vma_pages(mpnt);
  194. mm->total_vm -= pages;
  195. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  196. -pages);
  197. continue;
  198. }
  199. charge = 0;
  200. if (mpnt->vm_flags & VM_ACCOUNT) {
  201. unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
  202. if (security_vm_enough_memory(len))
  203. goto fail_nomem;
  204. charge = len;
  205. }
  206. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  207. if (!tmp)
  208. goto fail_nomem;
  209. *tmp = *mpnt;
  210. pol = mpol_copy(vma_policy(mpnt));
  211. retval = PTR_ERR(pol);
  212. if (IS_ERR(pol))
  213. goto fail_nomem_policy;
  214. vma_set_policy(tmp, pol);
  215. tmp->vm_flags &= ~VM_LOCKED;
  216. tmp->vm_mm = mm;
  217. tmp->vm_next = NULL;
  218. anon_vma_link(tmp);
  219. file = tmp->vm_file;
  220. if (file) {
  221. struct inode *inode = file->f_path.dentry->d_inode;
  222. get_file(file);
  223. if (tmp->vm_flags & VM_DENYWRITE)
  224. atomic_dec(&inode->i_writecount);
  225. /* insert tmp into the share list, just after mpnt */
  226. spin_lock(&file->f_mapping->i_mmap_lock);
  227. tmp->vm_truncate_count = mpnt->vm_truncate_count;
  228. flush_dcache_mmap_lock(file->f_mapping);
  229. vma_prio_tree_add(tmp, mpnt);
  230. flush_dcache_mmap_unlock(file->f_mapping);
  231. spin_unlock(&file->f_mapping->i_mmap_lock);
  232. }
  233. /*
  234. * Link in the new vma and copy the page table entries.
  235. */
  236. *pprev = tmp;
  237. pprev = &tmp->vm_next;
  238. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  239. rb_link = &tmp->vm_rb.rb_right;
  240. rb_parent = &tmp->vm_rb;
  241. mm->map_count++;
  242. retval = copy_page_range(mm, oldmm, mpnt);
  243. if (tmp->vm_ops && tmp->vm_ops->open)
  244. tmp->vm_ops->open(tmp);
  245. if (retval)
  246. goto out;
  247. }
  248. /* a new mm has just been created */
  249. arch_dup_mmap(oldmm, mm);
  250. retval = 0;
  251. out:
  252. up_write(&mm->mmap_sem);
  253. flush_tlb_mm(oldmm);
  254. up_write(&oldmm->mmap_sem);
  255. return retval;
  256. fail_nomem_policy:
  257. kmem_cache_free(vm_area_cachep, tmp);
  258. fail_nomem:
  259. retval = -ENOMEM;
  260. vm_unacct_memory(charge);
  261. goto out;
  262. }
  263. static inline int mm_alloc_pgd(struct mm_struct * mm)
  264. {
  265. mm->pgd = pgd_alloc(mm);
  266. if (unlikely(!mm->pgd))
  267. return -ENOMEM;
  268. return 0;
  269. }
  270. static inline void mm_free_pgd(struct mm_struct * mm)
  271. {
  272. pgd_free(mm->pgd);
  273. }
  274. #else
  275. #define dup_mmap(mm, oldmm) (0)
  276. #define mm_alloc_pgd(mm) (0)
  277. #define mm_free_pgd(mm)
  278. #endif /* CONFIG_MMU */
  279. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  280. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  281. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  282. #include <linux/init_task.h>
  283. static struct mm_struct * mm_init(struct mm_struct * mm)
  284. {
  285. atomic_set(&mm->mm_users, 1);
  286. atomic_set(&mm->mm_count, 1);
  287. init_rwsem(&mm->mmap_sem);
  288. INIT_LIST_HEAD(&mm->mmlist);
  289. mm->flags = (current->mm) ? current->mm->flags
  290. : MMF_DUMP_FILTER_DEFAULT;
  291. mm->core_waiters = 0;
  292. mm->nr_ptes = 0;
  293. set_mm_counter(mm, file_rss, 0);
  294. set_mm_counter(mm, anon_rss, 0);
  295. spin_lock_init(&mm->page_table_lock);
  296. rwlock_init(&mm->ioctx_list_lock);
  297. mm->ioctx_list = NULL;
  298. mm->free_area_cache = TASK_UNMAPPED_BASE;
  299. mm->cached_hole_size = ~0UL;
  300. if (likely(!mm_alloc_pgd(mm))) {
  301. mm->def_flags = 0;
  302. return mm;
  303. }
  304. free_mm(mm);
  305. return NULL;
  306. }
  307. /*
  308. * Allocate and initialize an mm_struct.
  309. */
  310. struct mm_struct * mm_alloc(void)
  311. {
  312. struct mm_struct * mm;
  313. mm = allocate_mm();
  314. if (mm) {
  315. memset(mm, 0, sizeof(*mm));
  316. mm = mm_init(mm);
  317. }
  318. return mm;
  319. }
  320. /*
  321. * Called when the last reference to the mm
  322. * is dropped: either by a lazy thread or by
  323. * mmput. Free the page directory and the mm.
  324. */
  325. void fastcall __mmdrop(struct mm_struct *mm)
  326. {
  327. BUG_ON(mm == &init_mm);
  328. mm_free_pgd(mm);
  329. destroy_context(mm);
  330. free_mm(mm);
  331. }
  332. /*
  333. * Decrement the use count and release all resources for an mm.
  334. */
  335. void mmput(struct mm_struct *mm)
  336. {
  337. might_sleep();
  338. if (atomic_dec_and_test(&mm->mm_users)) {
  339. exit_aio(mm);
  340. exit_mmap(mm);
  341. if (!list_empty(&mm->mmlist)) {
  342. spin_lock(&mmlist_lock);
  343. list_del(&mm->mmlist);
  344. spin_unlock(&mmlist_lock);
  345. }
  346. put_swap_token(mm);
  347. mmdrop(mm);
  348. }
  349. }
  350. EXPORT_SYMBOL_GPL(mmput);
  351. /**
  352. * get_task_mm - acquire a reference to the task's mm
  353. *
  354. * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
  355. * this kernel workthread has transiently adopted a user mm with use_mm,
  356. * to do its AIO) is not set and if so returns a reference to it, after
  357. * bumping up the use count. User must release the mm via mmput()
  358. * after use. Typically used by /proc and ptrace.
  359. */
  360. struct mm_struct *get_task_mm(struct task_struct *task)
  361. {
  362. struct mm_struct *mm;
  363. task_lock(task);
  364. mm = task->mm;
  365. if (mm) {
  366. if (task->flags & PF_BORROWED_MM)
  367. mm = NULL;
  368. else
  369. atomic_inc(&mm->mm_users);
  370. }
  371. task_unlock(task);
  372. return mm;
  373. }
  374. EXPORT_SYMBOL_GPL(get_task_mm);
  375. /* Please note the differences between mmput and mm_release.
  376. * mmput is called whenever we stop holding onto a mm_struct,
  377. * error success whatever.
  378. *
  379. * mm_release is called after a mm_struct has been removed
  380. * from the current process.
  381. *
  382. * This difference is important for error handling, when we
  383. * only half set up a mm_struct for a new process and need to restore
  384. * the old one. Because we mmput the new mm_struct before
  385. * restoring the old one. . .
  386. * Eric Biederman 10 January 1998
  387. */
  388. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  389. {
  390. struct completion *vfork_done = tsk->vfork_done;
  391. /* Get rid of any cached register state */
  392. deactivate_mm(tsk, mm);
  393. /* notify parent sleeping on vfork() */
  394. if (vfork_done) {
  395. tsk->vfork_done = NULL;
  396. complete(vfork_done);
  397. }
  398. /*
  399. * If we're exiting normally, clear a user-space tid field if
  400. * requested. We leave this alone when dying by signal, to leave
  401. * the value intact in a core dump, and to save the unnecessary
  402. * trouble otherwise. Userland only wants this done for a sys_exit.
  403. */
  404. if (tsk->clear_child_tid
  405. && !(tsk->flags & PF_SIGNALED)
  406. && atomic_read(&mm->mm_users) > 1) {
  407. u32 __user * tidptr = tsk->clear_child_tid;
  408. tsk->clear_child_tid = NULL;
  409. /*
  410. * We don't check the error code - if userspace has
  411. * not set up a proper pointer then tough luck.
  412. */
  413. put_user(0, tidptr);
  414. sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
  415. }
  416. }
  417. /*
  418. * Allocate a new mm structure and copy contents from the
  419. * mm structure of the passed in task structure.
  420. */
  421. static struct mm_struct *dup_mm(struct task_struct *tsk)
  422. {
  423. struct mm_struct *mm, *oldmm = current->mm;
  424. int err;
  425. if (!oldmm)
  426. return NULL;
  427. mm = allocate_mm();
  428. if (!mm)
  429. goto fail_nomem;
  430. memcpy(mm, oldmm, sizeof(*mm));
  431. /* Initializing for Swap token stuff */
  432. mm->token_priority = 0;
  433. mm->last_interval = 0;
  434. if (!mm_init(mm))
  435. goto fail_nomem;
  436. if (init_new_context(tsk, mm))
  437. goto fail_nocontext;
  438. err = dup_mmap(mm, oldmm);
  439. if (err)
  440. goto free_pt;
  441. mm->hiwater_rss = get_mm_rss(mm);
  442. mm->hiwater_vm = mm->total_vm;
  443. return mm;
  444. free_pt:
  445. mmput(mm);
  446. fail_nomem:
  447. return NULL;
  448. fail_nocontext:
  449. /*
  450. * If init_new_context() failed, we cannot use mmput() to free the mm
  451. * because it calls destroy_context()
  452. */
  453. mm_free_pgd(mm);
  454. free_mm(mm);
  455. return NULL;
  456. }
  457. static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
  458. {
  459. struct mm_struct * mm, *oldmm;
  460. int retval;
  461. tsk->min_flt = tsk->maj_flt = 0;
  462. tsk->nvcsw = tsk->nivcsw = 0;
  463. tsk->mm = NULL;
  464. tsk->active_mm = NULL;
  465. /*
  466. * Are we cloning a kernel thread?
  467. *
  468. * We need to steal a active VM for that..
  469. */
  470. oldmm = current->mm;
  471. if (!oldmm)
  472. return 0;
  473. if (clone_flags & CLONE_VM) {
  474. atomic_inc(&oldmm->mm_users);
  475. mm = oldmm;
  476. goto good_mm;
  477. }
  478. retval = -ENOMEM;
  479. mm = dup_mm(tsk);
  480. if (!mm)
  481. goto fail_nomem;
  482. good_mm:
  483. /* Initializing for Swap token stuff */
  484. mm->token_priority = 0;
  485. mm->last_interval = 0;
  486. tsk->mm = mm;
  487. tsk->active_mm = mm;
  488. return 0;
  489. fail_nomem:
  490. return retval;
  491. }
  492. static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
  493. {
  494. struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
  495. /* We don't need to lock fs - think why ;-) */
  496. if (fs) {
  497. atomic_set(&fs->count, 1);
  498. rwlock_init(&fs->lock);
  499. fs->umask = old->umask;
  500. read_lock(&old->lock);
  501. fs->rootmnt = mntget(old->rootmnt);
  502. fs->root = dget(old->root);
  503. fs->pwdmnt = mntget(old->pwdmnt);
  504. fs->pwd = dget(old->pwd);
  505. if (old->altroot) {
  506. fs->altrootmnt = mntget(old->altrootmnt);
  507. fs->altroot = dget(old->altroot);
  508. } else {
  509. fs->altrootmnt = NULL;
  510. fs->altroot = NULL;
  511. }
  512. read_unlock(&old->lock);
  513. }
  514. return fs;
  515. }
  516. struct fs_struct *copy_fs_struct(struct fs_struct *old)
  517. {
  518. return __copy_fs_struct(old);
  519. }
  520. EXPORT_SYMBOL_GPL(copy_fs_struct);
  521. static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
  522. {
  523. if (clone_flags & CLONE_FS) {
  524. atomic_inc(&current->fs->count);
  525. return 0;
  526. }
  527. tsk->fs = __copy_fs_struct(current->fs);
  528. if (!tsk->fs)
  529. return -ENOMEM;
  530. return 0;
  531. }
  532. static int count_open_files(struct fdtable *fdt)
  533. {
  534. int size = fdt->max_fds;
  535. int i;
  536. /* Find the last open fd */
  537. for (i = size/(8*sizeof(long)); i > 0; ) {
  538. if (fdt->open_fds->fds_bits[--i])
  539. break;
  540. }
  541. i = (i+1) * 8 * sizeof(long);
  542. return i;
  543. }
  544. static struct files_struct *alloc_files(void)
  545. {
  546. struct files_struct *newf;
  547. struct fdtable *fdt;
  548. newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
  549. if (!newf)
  550. goto out;
  551. atomic_set(&newf->count, 1);
  552. spin_lock_init(&newf->file_lock);
  553. newf->next_fd = 0;
  554. fdt = &newf->fdtab;
  555. fdt->max_fds = NR_OPEN_DEFAULT;
  556. fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
  557. fdt->open_fds = (fd_set *)&newf->open_fds_init;
  558. fdt->fd = &newf->fd_array[0];
  559. INIT_RCU_HEAD(&fdt->rcu);
  560. fdt->next = NULL;
  561. rcu_assign_pointer(newf->fdt, fdt);
  562. out:
  563. return newf;
  564. }
  565. /*
  566. * Allocate a new files structure and copy contents from the
  567. * passed in files structure.
  568. * errorp will be valid only when the returned files_struct is NULL.
  569. */
  570. static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
  571. {
  572. struct files_struct *newf;
  573. struct file **old_fds, **new_fds;
  574. int open_files, size, i;
  575. struct fdtable *old_fdt, *new_fdt;
  576. *errorp = -ENOMEM;
  577. newf = alloc_files();
  578. if (!newf)
  579. goto out;
  580. spin_lock(&oldf->file_lock);
  581. old_fdt = files_fdtable(oldf);
  582. new_fdt = files_fdtable(newf);
  583. open_files = count_open_files(old_fdt);
  584. /*
  585. * Check whether we need to allocate a larger fd array and fd set.
  586. * Note: we're not a clone task, so the open count won't change.
  587. */
  588. if (open_files > new_fdt->max_fds) {
  589. new_fdt->max_fds = 0;
  590. spin_unlock(&oldf->file_lock);
  591. spin_lock(&newf->file_lock);
  592. *errorp = expand_files(newf, open_files-1);
  593. spin_unlock(&newf->file_lock);
  594. if (*errorp < 0)
  595. goto out_release;
  596. new_fdt = files_fdtable(newf);
  597. /*
  598. * Reacquire the oldf lock and a pointer to its fd table
  599. * who knows it may have a new bigger fd table. We need
  600. * the latest pointer.
  601. */
  602. spin_lock(&oldf->file_lock);
  603. old_fdt = files_fdtable(oldf);
  604. }
  605. old_fds = old_fdt->fd;
  606. new_fds = new_fdt->fd;
  607. memcpy(new_fdt->open_fds->fds_bits,
  608. old_fdt->open_fds->fds_bits, open_files/8);
  609. memcpy(new_fdt->close_on_exec->fds_bits,
  610. old_fdt->close_on_exec->fds_bits, open_files/8);
  611. for (i = open_files; i != 0; i--) {
  612. struct file *f = *old_fds++;
  613. if (f) {
  614. get_file(f);
  615. } else {
  616. /*
  617. * The fd may be claimed in the fd bitmap but not yet
  618. * instantiated in the files array if a sibling thread
  619. * is partway through open(). So make sure that this
  620. * fd is available to the new process.
  621. */
  622. FD_CLR(open_files - i, new_fdt->open_fds);
  623. }
  624. rcu_assign_pointer(*new_fds++, f);
  625. }
  626. spin_unlock(&oldf->file_lock);
  627. /* compute the remainder to be cleared */
  628. size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
  629. /* This is long word aligned thus could use a optimized version */
  630. memset(new_fds, 0, size);
  631. if (new_fdt->max_fds > open_files) {
  632. int left = (new_fdt->max_fds-open_files)/8;
  633. int start = open_files / (8 * sizeof(unsigned long));
  634. memset(&new_fdt->open_fds->fds_bits[start], 0, left);
  635. memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
  636. }
  637. return newf;
  638. out_release:
  639. kmem_cache_free(files_cachep, newf);
  640. out:
  641. return NULL;
  642. }
  643. static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
  644. {
  645. struct files_struct *oldf, *newf;
  646. int error = 0;
  647. /*
  648. * A background process may not have any files ...
  649. */
  650. oldf = current->files;
  651. if (!oldf)
  652. goto out;
  653. if (clone_flags & CLONE_FILES) {
  654. atomic_inc(&oldf->count);
  655. goto out;
  656. }
  657. /*
  658. * Note: we may be using current for both targets (See exec.c)
  659. * This works because we cache current->files (old) as oldf. Don't
  660. * break this.
  661. */
  662. tsk->files = NULL;
  663. newf = dup_fd(oldf, &error);
  664. if (!newf)
  665. goto out;
  666. tsk->files = newf;
  667. error = 0;
  668. out:
  669. return error;
  670. }
  671. /*
  672. * Helper to unshare the files of the current task.
  673. * We don't want to expose copy_files internals to
  674. * the exec layer of the kernel.
  675. */
  676. int unshare_files(void)
  677. {
  678. struct files_struct *files = current->files;
  679. int rc;
  680. BUG_ON(!files);
  681. /* This can race but the race causes us to copy when we don't
  682. need to and drop the copy */
  683. if(atomic_read(&files->count) == 1)
  684. {
  685. atomic_inc(&files->count);
  686. return 0;
  687. }
  688. rc = copy_files(0, current);
  689. if(rc)
  690. current->files = files;
  691. return rc;
  692. }
  693. EXPORT_SYMBOL(unshare_files);
  694. static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
  695. {
  696. struct sighand_struct *sig;
  697. if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
  698. atomic_inc(&current->sighand->count);
  699. return 0;
  700. }
  701. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  702. rcu_assign_pointer(tsk->sighand, sig);
  703. if (!sig)
  704. return -ENOMEM;
  705. atomic_set(&sig->count, 1);
  706. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  707. return 0;
  708. }
  709. void __cleanup_sighand(struct sighand_struct *sighand)
  710. {
  711. if (atomic_dec_and_test(&sighand->count))
  712. kmem_cache_free(sighand_cachep, sighand);
  713. }
  714. static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
  715. {
  716. struct signal_struct *sig;
  717. int ret;
  718. if (clone_flags & CLONE_THREAD) {
  719. atomic_inc(&current->signal->count);
  720. atomic_inc(&current->signal->live);
  721. return 0;
  722. }
  723. sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
  724. tsk->signal = sig;
  725. if (!sig)
  726. return -ENOMEM;
  727. ret = copy_thread_group_keys(tsk);
  728. if (ret < 0) {
  729. kmem_cache_free(signal_cachep, sig);
  730. return ret;
  731. }
  732. atomic_set(&sig->count, 1);
  733. atomic_set(&sig->live, 1);
  734. init_waitqueue_head(&sig->wait_chldexit);
  735. sig->flags = 0;
  736. sig->group_exit_code = 0;
  737. sig->group_exit_task = NULL;
  738. sig->group_stop_count = 0;
  739. sig->curr_target = NULL;
  740. init_sigpending(&sig->shared_pending);
  741. INIT_LIST_HEAD(&sig->posix_timers);
  742. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  743. sig->it_real_incr.tv64 = 0;
  744. sig->real_timer.function = it_real_fn;
  745. sig->tsk = tsk;
  746. sig->it_virt_expires = cputime_zero;
  747. sig->it_virt_incr = cputime_zero;
  748. sig->it_prof_expires = cputime_zero;
  749. sig->it_prof_incr = cputime_zero;
  750. sig->leader = 0; /* session leadership doesn't inherit */
  751. sig->tty_old_pgrp = NULL;
  752. sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
  753. sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
  754. sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
  755. sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
  756. sig->sum_sched_runtime = 0;
  757. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  758. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  759. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  760. taskstats_tgid_init(sig);
  761. task_lock(current->group_leader);
  762. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  763. task_unlock(current->group_leader);
  764. if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
  765. /*
  766. * New sole thread in the process gets an expiry time
  767. * of the whole CPU time limit.
  768. */
  769. tsk->it_prof_expires =
  770. secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
  771. }
  772. acct_init_pacct(&sig->pacct);
  773. tty_audit_fork(sig);
  774. return 0;
  775. }
  776. void __cleanup_signal(struct signal_struct *sig)
  777. {
  778. exit_thread_group_keys(sig);
  779. kmem_cache_free(signal_cachep, sig);
  780. }
  781. static inline void cleanup_signal(struct task_struct *tsk)
  782. {
  783. struct signal_struct *sig = tsk->signal;
  784. atomic_dec(&sig->live);
  785. if (atomic_dec_and_test(&sig->count))
  786. __cleanup_signal(sig);
  787. }
  788. static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
  789. {
  790. unsigned long new_flags = p->flags;
  791. new_flags &= ~PF_SUPERPRIV;
  792. new_flags |= PF_FORKNOEXEC;
  793. if (!(clone_flags & CLONE_PTRACE))
  794. p->ptrace = 0;
  795. p->flags = new_flags;
  796. }
  797. asmlinkage long sys_set_tid_address(int __user *tidptr)
  798. {
  799. current->clear_child_tid = tidptr;
  800. return current->pid;
  801. }
  802. static inline void rt_mutex_init_task(struct task_struct *p)
  803. {
  804. spin_lock_init(&p->pi_lock);
  805. #ifdef CONFIG_RT_MUTEXES
  806. plist_head_init(&p->pi_waiters, &p->pi_lock);
  807. p->pi_blocked_on = NULL;
  808. #endif
  809. }
  810. /*
  811. * This creates a new process as a copy of the old one,
  812. * but does not actually start it yet.
  813. *
  814. * It copies the registers, and all the appropriate
  815. * parts of the process environment (as per the clone
  816. * flags). The actual kick-off is left to the caller.
  817. */
  818. static struct task_struct *copy_process(unsigned long clone_flags,
  819. unsigned long stack_start,
  820. struct pt_regs *regs,
  821. unsigned long stack_size,
  822. int __user *parent_tidptr,
  823. int __user *child_tidptr,
  824. struct pid *pid)
  825. {
  826. int retval;
  827. struct task_struct *p = NULL;
  828. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  829. return ERR_PTR(-EINVAL);
  830. /*
  831. * Thread groups must share signals as well, and detached threads
  832. * can only be started up within the thread group.
  833. */
  834. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  835. return ERR_PTR(-EINVAL);
  836. /*
  837. * Shared signal handlers imply shared VM. By way of the above,
  838. * thread groups also imply shared VM. Blocking this case allows
  839. * for various simplifications in other code.
  840. */
  841. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  842. return ERR_PTR(-EINVAL);
  843. retval = security_task_create(clone_flags);
  844. if (retval)
  845. goto fork_out;
  846. retval = -ENOMEM;
  847. p = dup_task_struct(current);
  848. if (!p)
  849. goto fork_out;
  850. rt_mutex_init_task(p);
  851. #ifdef CONFIG_TRACE_IRQFLAGS
  852. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  853. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  854. #endif
  855. retval = -EAGAIN;
  856. if (atomic_read(&p->user->processes) >=
  857. p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
  858. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  859. p->user != current->nsproxy->user_ns->root_user)
  860. goto bad_fork_free;
  861. }
  862. atomic_inc(&p->user->__count);
  863. atomic_inc(&p->user->processes);
  864. get_group_info(p->group_info);
  865. /*
  866. * If multiple threads are within copy_process(), then this check
  867. * triggers too late. This doesn't hurt, the check is only there
  868. * to stop root fork bombs.
  869. */
  870. if (nr_threads >= max_threads)
  871. goto bad_fork_cleanup_count;
  872. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  873. goto bad_fork_cleanup_count;
  874. if (p->binfmt && !try_module_get(p->binfmt->module))
  875. goto bad_fork_cleanup_put_domain;
  876. p->did_exec = 0;
  877. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  878. copy_flags(clone_flags, p);
  879. p->pid = pid_nr(pid);
  880. retval = -EFAULT;
  881. if (clone_flags & CLONE_PARENT_SETTID)
  882. if (put_user(p->pid, parent_tidptr))
  883. goto bad_fork_cleanup_delays_binfmt;
  884. INIT_LIST_HEAD(&p->children);
  885. INIT_LIST_HEAD(&p->sibling);
  886. p->vfork_done = NULL;
  887. spin_lock_init(&p->alloc_lock);
  888. clear_tsk_thread_flag(p, TIF_SIGPENDING);
  889. init_sigpending(&p->pending);
  890. p->utime = cputime_zero;
  891. p->stime = cputime_zero;
  892. #ifdef CONFIG_TASK_XACCT
  893. p->rchar = 0; /* I/O counter: bytes read */
  894. p->wchar = 0; /* I/O counter: bytes written */
  895. p->syscr = 0; /* I/O counter: read syscalls */
  896. p->syscw = 0; /* I/O counter: write syscalls */
  897. #endif
  898. task_io_accounting_init(p);
  899. acct_clear_integrals(p);
  900. p->it_virt_expires = cputime_zero;
  901. p->it_prof_expires = cputime_zero;
  902. p->it_sched_expires = 0;
  903. INIT_LIST_HEAD(&p->cpu_timers[0]);
  904. INIT_LIST_HEAD(&p->cpu_timers[1]);
  905. INIT_LIST_HEAD(&p->cpu_timers[2]);
  906. p->lock_depth = -1; /* -1 = no lock */
  907. do_posix_clock_monotonic_gettime(&p->start_time);
  908. p->real_start_time = p->start_time;
  909. monotonic_to_bootbased(&p->real_start_time);
  910. p->security = NULL;
  911. p->io_context = NULL;
  912. p->io_wait = NULL;
  913. p->audit_context = NULL;
  914. cpuset_fork(p);
  915. #ifdef CONFIG_NUMA
  916. p->mempolicy = mpol_copy(p->mempolicy);
  917. if (IS_ERR(p->mempolicy)) {
  918. retval = PTR_ERR(p->mempolicy);
  919. p->mempolicy = NULL;
  920. goto bad_fork_cleanup_cpuset;
  921. }
  922. mpol_fix_fork_child_flag(p);
  923. #endif
  924. #ifdef CONFIG_TRACE_IRQFLAGS
  925. p->irq_events = 0;
  926. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  927. p->hardirqs_enabled = 1;
  928. #else
  929. p->hardirqs_enabled = 0;
  930. #endif
  931. p->hardirq_enable_ip = 0;
  932. p->hardirq_enable_event = 0;
  933. p->hardirq_disable_ip = _THIS_IP_;
  934. p->hardirq_disable_event = 0;
  935. p->softirqs_enabled = 1;
  936. p->softirq_enable_ip = _THIS_IP_;
  937. p->softirq_enable_event = 0;
  938. p->softirq_disable_ip = 0;
  939. p->softirq_disable_event = 0;
  940. p->hardirq_context = 0;
  941. p->softirq_context = 0;
  942. #endif
  943. #ifdef CONFIG_LOCKDEP
  944. p->lockdep_depth = 0; /* no locks held yet */
  945. p->curr_chain_key = 0;
  946. p->lockdep_recursion = 0;
  947. #endif
  948. #ifdef CONFIG_DEBUG_MUTEXES
  949. p->blocked_on = NULL; /* not blocked yet */
  950. #endif
  951. p->tgid = p->pid;
  952. if (clone_flags & CLONE_THREAD)
  953. p->tgid = current->tgid;
  954. if ((retval = security_task_alloc(p)))
  955. goto bad_fork_cleanup_policy;
  956. if ((retval = audit_alloc(p)))
  957. goto bad_fork_cleanup_security;
  958. /* copy all the process information */
  959. if ((retval = copy_semundo(clone_flags, p)))
  960. goto bad_fork_cleanup_audit;
  961. if ((retval = copy_files(clone_flags, p)))
  962. goto bad_fork_cleanup_semundo;
  963. if ((retval = copy_fs(clone_flags, p)))
  964. goto bad_fork_cleanup_files;
  965. if ((retval = copy_sighand(clone_flags, p)))
  966. goto bad_fork_cleanup_fs;
  967. if ((retval = copy_signal(clone_flags, p)))
  968. goto bad_fork_cleanup_sighand;
  969. if ((retval = copy_mm(clone_flags, p)))
  970. goto bad_fork_cleanup_signal;
  971. if ((retval = copy_keys(clone_flags, p)))
  972. goto bad_fork_cleanup_mm;
  973. if ((retval = copy_namespaces(clone_flags, p)))
  974. goto bad_fork_cleanup_keys;
  975. retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
  976. if (retval)
  977. goto bad_fork_cleanup_namespaces;
  978. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  979. /*
  980. * Clear TID on mm_release()?
  981. */
  982. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
  983. p->robust_list = NULL;
  984. #ifdef CONFIG_COMPAT
  985. p->compat_robust_list = NULL;
  986. #endif
  987. INIT_LIST_HEAD(&p->pi_state_list);
  988. p->pi_state_cache = NULL;
  989. /*
  990. * sigaltstack should be cleared when sharing the same VM
  991. */
  992. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  993. p->sas_ss_sp = p->sas_ss_size = 0;
  994. /*
  995. * Syscall tracing should be turned off in the child regardless
  996. * of CLONE_PTRACE.
  997. */
  998. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  999. #ifdef TIF_SYSCALL_EMU
  1000. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1001. #endif
  1002. /* Our parent execution domain becomes current domain
  1003. These must match for thread signalling to apply */
  1004. p->parent_exec_id = p->self_exec_id;
  1005. /* ok, now we should be set up.. */
  1006. p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
  1007. p->pdeath_signal = 0;
  1008. p->exit_state = 0;
  1009. /*
  1010. * Ok, make it visible to the rest of the system.
  1011. * We dont wake it up yet.
  1012. */
  1013. p->group_leader = p;
  1014. INIT_LIST_HEAD(&p->thread_group);
  1015. INIT_LIST_HEAD(&p->ptrace_children);
  1016. INIT_LIST_HEAD(&p->ptrace_list);
  1017. /* Perform scheduler related setup. Assign this task to a CPU. */
  1018. sched_fork(p, clone_flags);
  1019. /* Need tasklist lock for parent etc handling! */
  1020. write_lock_irq(&tasklist_lock);
  1021. /* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
  1022. p->ioprio = current->ioprio;
  1023. /*
  1024. * The task hasn't been attached yet, so its cpus_allowed mask will
  1025. * not be changed, nor will its assigned CPU.
  1026. *
  1027. * The cpus_allowed mask of the parent may have changed after it was
  1028. * copied first time - so re-copy it here, then check the child's CPU
  1029. * to ensure it is on a valid CPU (and if not, just force it back to
  1030. * parent's CPU). This avoids alot of nasty races.
  1031. */
  1032. p->cpus_allowed = current->cpus_allowed;
  1033. if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
  1034. !cpu_online(task_cpu(p))))
  1035. set_task_cpu(p, smp_processor_id());
  1036. /* CLONE_PARENT re-uses the old parent */
  1037. if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
  1038. p->real_parent = current->real_parent;
  1039. else
  1040. p->real_parent = current;
  1041. p->parent = p->real_parent;
  1042. spin_lock(&current->sighand->siglock);
  1043. /*
  1044. * Process group and session signals need to be delivered to just the
  1045. * parent before the fork or both the parent and the child after the
  1046. * fork. Restart if a signal comes in before we add the new process to
  1047. * it's process group.
  1048. * A fatal signal pending means that current will exit, so the new
  1049. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1050. */
  1051. recalc_sigpending();
  1052. if (signal_pending(current)) {
  1053. spin_unlock(&current->sighand->siglock);
  1054. write_unlock_irq(&tasklist_lock);
  1055. retval = -ERESTARTNOINTR;
  1056. goto bad_fork_cleanup_namespaces;
  1057. }
  1058. if (clone_flags & CLONE_THREAD) {
  1059. p->group_leader = current->group_leader;
  1060. list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
  1061. if (!cputime_eq(current->signal->it_virt_expires,
  1062. cputime_zero) ||
  1063. !cputime_eq(current->signal->it_prof_expires,
  1064. cputime_zero) ||
  1065. current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
  1066. !list_empty(&current->signal->cpu_timers[0]) ||
  1067. !list_empty(&current->signal->cpu_timers[1]) ||
  1068. !list_empty(&current->signal->cpu_timers[2])) {
  1069. /*
  1070. * Have child wake up on its first tick to check
  1071. * for process CPU timers.
  1072. */
  1073. p->it_prof_expires = jiffies_to_cputime(1);
  1074. }
  1075. }
  1076. if (likely(p->pid)) {
  1077. add_parent(p);
  1078. if (unlikely(p->ptrace & PT_PTRACED))
  1079. __ptrace_link(p, current->parent);
  1080. if (thread_group_leader(p)) {
  1081. p->signal->tty = current->signal->tty;
  1082. p->signal->pgrp = process_group(current);
  1083. set_signal_session(p->signal, process_session(current));
  1084. attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1085. attach_pid(p, PIDTYPE_SID, task_session(current));
  1086. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1087. __get_cpu_var(process_counts)++;
  1088. }
  1089. attach_pid(p, PIDTYPE_PID, pid);
  1090. nr_threads++;
  1091. }
  1092. total_forks++;
  1093. spin_unlock(&current->sighand->siglock);
  1094. write_unlock_irq(&tasklist_lock);
  1095. proc_fork_connector(p);
  1096. return p;
  1097. bad_fork_cleanup_namespaces:
  1098. exit_task_namespaces(p);
  1099. bad_fork_cleanup_keys:
  1100. exit_keys(p);
  1101. bad_fork_cleanup_mm:
  1102. if (p->mm)
  1103. mmput(p->mm);
  1104. bad_fork_cleanup_signal:
  1105. cleanup_signal(p);
  1106. bad_fork_cleanup_sighand:
  1107. __cleanup_sighand(p->sighand);
  1108. bad_fork_cleanup_fs:
  1109. exit_fs(p); /* blocking */
  1110. bad_fork_cleanup_files:
  1111. exit_files(p); /* blocking */
  1112. bad_fork_cleanup_semundo:
  1113. exit_sem(p);
  1114. bad_fork_cleanup_audit:
  1115. audit_free(p);
  1116. bad_fork_cleanup_security:
  1117. security_task_free(p);
  1118. bad_fork_cleanup_policy:
  1119. #ifdef CONFIG_NUMA
  1120. mpol_free(p->mempolicy);
  1121. bad_fork_cleanup_cpuset:
  1122. #endif
  1123. cpuset_exit(p);
  1124. bad_fork_cleanup_delays_binfmt:
  1125. delayacct_tsk_free(p);
  1126. if (p->binfmt)
  1127. module_put(p->binfmt->module);
  1128. bad_fork_cleanup_put_domain:
  1129. module_put(task_thread_info(p)->exec_domain->module);
  1130. bad_fork_cleanup_count:
  1131. put_group_info(p->group_info);
  1132. atomic_dec(&p->user->processes);
  1133. free_uid(p->user);
  1134. bad_fork_free:
  1135. free_task(p);
  1136. fork_out:
  1137. return ERR_PTR(retval);
  1138. }
  1139. noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
  1140. {
  1141. memset(regs, 0, sizeof(struct pt_regs));
  1142. return regs;
  1143. }
  1144. struct task_struct * __cpuinit fork_idle(int cpu)
  1145. {
  1146. struct task_struct *task;
  1147. struct pt_regs regs;
  1148. task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL,
  1149. &init_struct_pid);
  1150. if (!IS_ERR(task))
  1151. init_idle(task, cpu);
  1152. return task;
  1153. }
  1154. static inline int fork_traceflag (unsigned clone_flags)
  1155. {
  1156. if (clone_flags & CLONE_UNTRACED)
  1157. return 0;
  1158. else if (clone_flags & CLONE_VFORK) {
  1159. if (current->ptrace & PT_TRACE_VFORK)
  1160. return PTRACE_EVENT_VFORK;
  1161. } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
  1162. if (current->ptrace & PT_TRACE_CLONE)
  1163. return PTRACE_EVENT_CLONE;
  1164. } else if (current->ptrace & PT_TRACE_FORK)
  1165. return PTRACE_EVENT_FORK;
  1166. return 0;
  1167. }
  1168. /*
  1169. * Ok, this is the main fork-routine.
  1170. *
  1171. * It copies the process, and if successful kick-starts
  1172. * it and waits for it to finish using the VM if required.
  1173. */
  1174. long do_fork(unsigned long clone_flags,
  1175. unsigned long stack_start,
  1176. struct pt_regs *regs,
  1177. unsigned long stack_size,
  1178. int __user *parent_tidptr,
  1179. int __user *child_tidptr)
  1180. {
  1181. struct task_struct *p;
  1182. int trace = 0;
  1183. struct pid *pid = alloc_pid();
  1184. long nr;
  1185. if (!pid)
  1186. return -EAGAIN;
  1187. nr = pid->nr;
  1188. if (unlikely(current->ptrace)) {
  1189. trace = fork_traceflag (clone_flags);
  1190. if (trace)
  1191. clone_flags |= CLONE_PTRACE;
  1192. }
  1193. p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
  1194. /*
  1195. * Do this prior waking up the new thread - the thread pointer
  1196. * might get invalid after that point, if the thread exits quickly.
  1197. */
  1198. if (!IS_ERR(p)) {
  1199. struct completion vfork;
  1200. if (clone_flags & CLONE_VFORK) {
  1201. p->vfork_done = &vfork;
  1202. init_completion(&vfork);
  1203. }
  1204. if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
  1205. /*
  1206. * We'll start up with an immediate SIGSTOP.
  1207. */
  1208. sigaddset(&p->pending.signal, SIGSTOP);
  1209. set_tsk_thread_flag(p, TIF_SIGPENDING);
  1210. }
  1211. if (!(clone_flags & CLONE_STOPPED))
  1212. wake_up_new_task(p, clone_flags);
  1213. else
  1214. p->state = TASK_STOPPED;
  1215. if (unlikely (trace)) {
  1216. current->ptrace_message = nr;
  1217. ptrace_notify ((trace << 8) | SIGTRAP);
  1218. }
  1219. if (clone_flags & CLONE_VFORK) {
  1220. freezer_do_not_count();
  1221. wait_for_completion(&vfork);
  1222. freezer_count();
  1223. if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
  1224. current->ptrace_message = nr;
  1225. ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
  1226. }
  1227. }
  1228. } else {
  1229. free_pid(pid);
  1230. nr = PTR_ERR(p);
  1231. }
  1232. return nr;
  1233. }
  1234. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1235. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1236. #endif
  1237. static void sighand_ctor(void *data, struct kmem_cache *cachep,
  1238. unsigned long flags)
  1239. {
  1240. struct sighand_struct *sighand = data;
  1241. spin_lock_init(&sighand->siglock);
  1242. INIT_LIST_HEAD(&sighand->signalfd_list);
  1243. }
  1244. void __init proc_caches_init(void)
  1245. {
  1246. sighand_cachep = kmem_cache_create("sighand_cache",
  1247. sizeof(struct sighand_struct), 0,
  1248. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
  1249. sighand_ctor, NULL);
  1250. signal_cachep = kmem_cache_create("signal_cache",
  1251. sizeof(struct signal_struct), 0,
  1252. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1253. files_cachep = kmem_cache_create("files_cache",
  1254. sizeof(struct files_struct), 0,
  1255. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1256. fs_cachep = kmem_cache_create("fs_cache",
  1257. sizeof(struct fs_struct), 0,
  1258. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1259. vm_area_cachep = kmem_cache_create("vm_area_struct",
  1260. sizeof(struct vm_area_struct), 0,
  1261. SLAB_PANIC, NULL, NULL);
  1262. mm_cachep = kmem_cache_create("mm_struct",
  1263. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1264. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1265. }
  1266. /*
  1267. * Check constraints on flags passed to the unshare system call and
  1268. * force unsharing of additional process context as appropriate.
  1269. */
  1270. static inline void check_unshare_flags(unsigned long *flags_ptr)
  1271. {
  1272. /*
  1273. * If unsharing a thread from a thread group, must also
  1274. * unshare vm.
  1275. */
  1276. if (*flags_ptr & CLONE_THREAD)
  1277. *flags_ptr |= CLONE_VM;
  1278. /*
  1279. * If unsharing vm, must also unshare signal handlers.
  1280. */
  1281. if (*flags_ptr & CLONE_VM)
  1282. *flags_ptr |= CLONE_SIGHAND;
  1283. /*
  1284. * If unsharing signal handlers and the task was created
  1285. * using CLONE_THREAD, then must unshare the thread
  1286. */
  1287. if ((*flags_ptr & CLONE_SIGHAND) &&
  1288. (atomic_read(&current->signal->count) > 1))
  1289. *flags_ptr |= CLONE_THREAD;
  1290. /*
  1291. * If unsharing namespace, must also unshare filesystem information.
  1292. */
  1293. if (*flags_ptr & CLONE_NEWNS)
  1294. *flags_ptr |= CLONE_FS;
  1295. }
  1296. /*
  1297. * Unsharing of tasks created with CLONE_THREAD is not supported yet
  1298. */
  1299. static int unshare_thread(unsigned long unshare_flags)
  1300. {
  1301. if (unshare_flags & CLONE_THREAD)
  1302. return -EINVAL;
  1303. return 0;
  1304. }
  1305. /*
  1306. * Unshare the filesystem structure if it is being shared
  1307. */
  1308. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1309. {
  1310. struct fs_struct *fs = current->fs;
  1311. if ((unshare_flags & CLONE_FS) &&
  1312. (fs && atomic_read(&fs->count) > 1)) {
  1313. *new_fsp = __copy_fs_struct(current->fs);
  1314. if (!*new_fsp)
  1315. return -ENOMEM;
  1316. }
  1317. return 0;
  1318. }
  1319. /*
  1320. * Unsharing of sighand is not supported yet
  1321. */
  1322. static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
  1323. {
  1324. struct sighand_struct *sigh = current->sighand;
  1325. if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
  1326. return -EINVAL;
  1327. else
  1328. return 0;
  1329. }
  1330. /*
  1331. * Unshare vm if it is being shared
  1332. */
  1333. static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
  1334. {
  1335. struct mm_struct *mm = current->mm;
  1336. if ((unshare_flags & CLONE_VM) &&
  1337. (mm && atomic_read(&mm->mm_users) > 1)) {
  1338. return -EINVAL;
  1339. }
  1340. return 0;
  1341. }
  1342. /*
  1343. * Unshare file descriptor table if it is being shared
  1344. */
  1345. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1346. {
  1347. struct files_struct *fd = current->files;
  1348. int error = 0;
  1349. if ((unshare_flags & CLONE_FILES) &&
  1350. (fd && atomic_read(&fd->count) > 1)) {
  1351. *new_fdp = dup_fd(fd, &error);
  1352. if (!*new_fdp)
  1353. return error;
  1354. }
  1355. return 0;
  1356. }
  1357. /*
  1358. * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
  1359. * supported yet
  1360. */
  1361. static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
  1362. {
  1363. if (unshare_flags & CLONE_SYSVSEM)
  1364. return -EINVAL;
  1365. return 0;
  1366. }
  1367. /*
  1368. * unshare allows a process to 'unshare' part of the process
  1369. * context which was originally shared using clone. copy_*
  1370. * functions used by do_fork() cannot be used here directly
  1371. * because they modify an inactive task_struct that is being
  1372. * constructed. Here we are modifying the current, active,
  1373. * task_struct.
  1374. */
  1375. asmlinkage long sys_unshare(unsigned long unshare_flags)
  1376. {
  1377. int err = 0;
  1378. struct fs_struct *fs, *new_fs = NULL;
  1379. struct sighand_struct *new_sigh = NULL;
  1380. struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
  1381. struct files_struct *fd, *new_fd = NULL;
  1382. struct sem_undo_list *new_ulist = NULL;
  1383. struct nsproxy *new_nsproxy = NULL, *old_nsproxy = NULL;
  1384. check_unshare_flags(&unshare_flags);
  1385. /* Return -EINVAL for all unsupported flags */
  1386. err = -EINVAL;
  1387. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1388. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1389. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER))
  1390. goto bad_unshare_out;
  1391. if ((err = unshare_thread(unshare_flags)))
  1392. goto bad_unshare_out;
  1393. if ((err = unshare_fs(unshare_flags, &new_fs)))
  1394. goto bad_unshare_cleanup_thread;
  1395. if ((err = unshare_sighand(unshare_flags, &new_sigh)))
  1396. goto bad_unshare_cleanup_fs;
  1397. if ((err = unshare_vm(unshare_flags, &new_mm)))
  1398. goto bad_unshare_cleanup_sigh;
  1399. if ((err = unshare_fd(unshare_flags, &new_fd)))
  1400. goto bad_unshare_cleanup_vm;
  1401. if ((err = unshare_semundo(unshare_flags, &new_ulist)))
  1402. goto bad_unshare_cleanup_fd;
  1403. if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1404. new_fs)))
  1405. goto bad_unshare_cleanup_semundo;
  1406. if (new_fs || new_mm || new_fd || new_ulist || new_nsproxy) {
  1407. task_lock(current);
  1408. if (new_nsproxy) {
  1409. old_nsproxy = current->nsproxy;
  1410. current->nsproxy = new_nsproxy;
  1411. new_nsproxy = old_nsproxy;
  1412. }
  1413. if (new_fs) {
  1414. fs = current->fs;
  1415. current->fs = new_fs;
  1416. new_fs = fs;
  1417. }
  1418. if (new_mm) {
  1419. mm = current->mm;
  1420. active_mm = current->active_mm;
  1421. current->mm = new_mm;
  1422. current->active_mm = new_mm;
  1423. activate_mm(active_mm, new_mm);
  1424. new_mm = mm;
  1425. }
  1426. if (new_fd) {
  1427. fd = current->files;
  1428. current->files = new_fd;
  1429. new_fd = fd;
  1430. }
  1431. task_unlock(current);
  1432. }
  1433. if (new_nsproxy)
  1434. put_nsproxy(new_nsproxy);
  1435. bad_unshare_cleanup_semundo:
  1436. bad_unshare_cleanup_fd:
  1437. if (new_fd)
  1438. put_files_struct(new_fd);
  1439. bad_unshare_cleanup_vm:
  1440. if (new_mm)
  1441. mmput(new_mm);
  1442. bad_unshare_cleanup_sigh:
  1443. if (new_sigh)
  1444. if (atomic_dec_and_test(&new_sigh->count))
  1445. kmem_cache_free(sighand_cachep, new_sigh);
  1446. bad_unshare_cleanup_fs:
  1447. if (new_fs)
  1448. put_fs_struct(new_fs);
  1449. bad_unshare_cleanup_thread:
  1450. bad_unshare_out:
  1451. return err;
  1452. }