setup.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397
  1. /*
  2. * arch/sh/kernel/setup.c
  3. *
  4. * This file handles the architecture-dependent parts of initialization
  5. *
  6. * Copyright (C) 1999 Niibe Yutaka
  7. * Copyright (C) 2002 - 2007 Paul Mundt
  8. */
  9. #include <linux/screen_info.h>
  10. #include <linux/ioport.h>
  11. #include <linux/init.h>
  12. #include <linux/initrd.h>
  13. #include <linux/bootmem.h>
  14. #include <linux/console.h>
  15. #include <linux/seq_file.h>
  16. #include <linux/root_dev.h>
  17. #include <linux/utsname.h>
  18. #include <linux/nodemask.h>
  19. #include <linux/cpu.h>
  20. #include <linux/pfn.h>
  21. #include <linux/fs.h>
  22. #include <linux/mm.h>
  23. #include <linux/kexec.h>
  24. #include <asm/uaccess.h>
  25. #include <asm/io.h>
  26. #include <asm/page.h>
  27. #include <asm/sections.h>
  28. #include <asm/irq.h>
  29. #include <asm/setup.h>
  30. #include <asm/clock.h>
  31. #include <asm/mmu_context.h>
  32. extern void * __rd_start, * __rd_end;
  33. /*
  34. * Machine setup..
  35. */
  36. /*
  37. * Initialize loops_per_jiffy as 10000000 (1000MIPS).
  38. * This value will be used at the very early stage of serial setup.
  39. * The bigger value means no problem.
  40. */
  41. struct sh_cpuinfo boot_cpu_data = { CPU_SH_NONE, 10000000, };
  42. /*
  43. * The machine vector. First entry in .machvec.init, or clobbered by
  44. * sh_mv= on the command line, prior to .machvec.init teardown.
  45. */
  46. struct sh_machine_vector sh_mv = { .mv_name = "generic", };
  47. #ifdef CONFIG_VT
  48. struct screen_info screen_info;
  49. #endif
  50. extern int root_mountflags;
  51. /*
  52. * This is set up by the setup-routine at boot-time
  53. */
  54. #define PARAM ((unsigned char *)empty_zero_page)
  55. #define MOUNT_ROOT_RDONLY (*(unsigned long *) (PARAM+0x000))
  56. #define RAMDISK_FLAGS (*(unsigned long *) (PARAM+0x004))
  57. #define ORIG_ROOT_DEV (*(unsigned long *) (PARAM+0x008))
  58. #define LOADER_TYPE (*(unsigned long *) (PARAM+0x00c))
  59. #define INITRD_START (*(unsigned long *) (PARAM+0x010))
  60. #define INITRD_SIZE (*(unsigned long *) (PARAM+0x014))
  61. /* ... */
  62. #define COMMAND_LINE ((char *) (PARAM+0x100))
  63. #define RAMDISK_IMAGE_START_MASK 0x07FF
  64. #define RAMDISK_PROMPT_FLAG 0x8000
  65. #define RAMDISK_LOAD_FLAG 0x4000
  66. static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
  67. static struct resource code_resource = { .name = "Kernel code", };
  68. static struct resource data_resource = { .name = "Kernel data", };
  69. unsigned long memory_start, memory_end;
  70. static int __init early_parse_mem(char *p)
  71. {
  72. unsigned long size;
  73. memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START;
  74. size = memparse(p, &p);
  75. memory_end = memory_start + size;
  76. return 0;
  77. }
  78. early_param("mem", early_parse_mem);
  79. /*
  80. * Register fully available low RAM pages with the bootmem allocator.
  81. */
  82. static void __init register_bootmem_low_pages(void)
  83. {
  84. unsigned long curr_pfn, last_pfn, pages;
  85. /*
  86. * We are rounding up the start address of usable memory:
  87. */
  88. curr_pfn = PFN_UP(__MEMORY_START);
  89. /*
  90. * ... and at the end of the usable range downwards:
  91. */
  92. last_pfn = PFN_DOWN(__pa(memory_end));
  93. if (last_pfn > max_low_pfn)
  94. last_pfn = max_low_pfn;
  95. pages = last_pfn - curr_pfn;
  96. free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
  97. }
  98. void __init setup_bootmem_allocator(unsigned long free_pfn)
  99. {
  100. unsigned long bootmap_size;
  101. /*
  102. * Find a proper area for the bootmem bitmap. After this
  103. * bootstrap step all allocations (until the page allocator
  104. * is intact) must be done via bootmem_alloc().
  105. */
  106. bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
  107. min_low_pfn, max_low_pfn);
  108. add_active_range(0, min_low_pfn, max_low_pfn);
  109. register_bootmem_low_pages();
  110. node_set_online(0);
  111. /*
  112. * Reserve the kernel text and
  113. * Reserve the bootmem bitmap. We do this in two steps (first step
  114. * was init_bootmem()), because this catches the (definitely buggy)
  115. * case of us accidentally initializing the bootmem allocator with
  116. * an invalid RAM area.
  117. */
  118. reserve_bootmem(__MEMORY_START+PAGE_SIZE,
  119. (PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START);
  120. /*
  121. * reserve physical page 0 - it's a special BIOS page on many boxes,
  122. * enabling clean reboots, SMP operation, laptop functions.
  123. */
  124. reserve_bootmem(__MEMORY_START, PAGE_SIZE);
  125. sparse_memory_present_with_active_regions(0);
  126. #ifdef CONFIG_BLK_DEV_INITRD
  127. ROOT_DEV = MKDEV(RAMDISK_MAJOR, 0);
  128. if (&__rd_start != &__rd_end) {
  129. LOADER_TYPE = 1;
  130. INITRD_START = PHYSADDR((unsigned long)&__rd_start) -
  131. __MEMORY_START;
  132. INITRD_SIZE = (unsigned long)&__rd_end -
  133. (unsigned long)&__rd_start;
  134. }
  135. if (LOADER_TYPE && INITRD_START) {
  136. if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
  137. reserve_bootmem(INITRD_START + __MEMORY_START,
  138. INITRD_SIZE);
  139. initrd_start = INITRD_START + PAGE_OFFSET +
  140. __MEMORY_START;
  141. initrd_end = initrd_start + INITRD_SIZE;
  142. } else {
  143. printk("initrd extends beyond end of memory "
  144. "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
  145. INITRD_START + INITRD_SIZE,
  146. max_low_pfn << PAGE_SHIFT);
  147. initrd_start = 0;
  148. }
  149. }
  150. #endif
  151. #ifdef CONFIG_KEXEC
  152. if (crashk_res.start != crashk_res.end)
  153. reserve_bootmem(crashk_res.start,
  154. crashk_res.end - crashk_res.start + 1);
  155. #endif
  156. }
  157. #ifndef CONFIG_NEED_MULTIPLE_NODES
  158. static void __init setup_memory(void)
  159. {
  160. unsigned long start_pfn;
  161. /*
  162. * Partially used pages are not usable - thus
  163. * we are rounding upwards:
  164. */
  165. start_pfn = PFN_UP(__pa(_end));
  166. setup_bootmem_allocator(start_pfn);
  167. }
  168. #else
  169. extern void __init setup_memory(void);
  170. #endif
  171. void __init setup_arch(char **cmdline_p)
  172. {
  173. enable_mmu();
  174. ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
  175. #ifdef CONFIG_BLK_DEV_RAM
  176. rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
  177. rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
  178. rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
  179. #endif
  180. if (!MOUNT_ROOT_RDONLY)
  181. root_mountflags &= ~MS_RDONLY;
  182. init_mm.start_code = (unsigned long) _text;
  183. init_mm.end_code = (unsigned long) _etext;
  184. init_mm.end_data = (unsigned long) _edata;
  185. init_mm.brk = (unsigned long) _end;
  186. code_resource.start = virt_to_phys(_text);
  187. code_resource.end = virt_to_phys(_etext)-1;
  188. data_resource.start = virt_to_phys(_etext);
  189. data_resource.end = virt_to_phys(_edata)-1;
  190. memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START;
  191. memory_end = memory_start + __MEMORY_SIZE;
  192. #ifdef CONFIG_CMDLINE_BOOL
  193. strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
  194. #else
  195. strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
  196. #endif
  197. /* Save unparsed command line copy for /proc/cmdline */
  198. memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
  199. *cmdline_p = command_line;
  200. parse_early_param();
  201. sh_mv_setup();
  202. /*
  203. * Find the highest page frame number we have available
  204. */
  205. max_pfn = PFN_DOWN(__pa(memory_end));
  206. /*
  207. * Determine low and high memory ranges:
  208. */
  209. max_low_pfn = max_pfn;
  210. min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
  211. nodes_clear(node_online_map);
  212. /* Setup bootmem with available RAM */
  213. setup_memory();
  214. sparse_init();
  215. #ifdef CONFIG_DUMMY_CONSOLE
  216. conswitchp = &dummy_con;
  217. #endif
  218. /* Perform the machine specific initialisation */
  219. if (likely(sh_mv.mv_setup))
  220. sh_mv.mv_setup(cmdline_p);
  221. paging_init();
  222. }
  223. static const char *cpu_name[] = {
  224. [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619",
  225. [CPU_SH7300] = "SH7300",
  226. [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706",
  227. [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708",
  228. [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710",
  229. [CPU_SH7712] = "SH7712",
  230. [CPU_SH7729] = "SH7729", [CPU_SH7750] = "SH7750",
  231. [CPU_SH7750S] = "SH7750S", [CPU_SH7750R] = "SH7750R",
  232. [CPU_SH7751] = "SH7751", [CPU_SH7751R] = "SH7751R",
  233. [CPU_SH7760] = "SH7760", [CPU_SH73180] = "SH73180",
  234. [CPU_ST40RA] = "ST40RA", [CPU_ST40GX1] = "ST40GX1",
  235. [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501",
  236. [CPU_SH7770] = "SH7770", [CPU_SH7780] = "SH7780",
  237. [CPU_SH7781] = "SH7781", [CPU_SH7343] = "SH7343",
  238. [CPU_SH7785] = "SH7785", [CPU_SH7722] = "SH7722",
  239. [CPU_SHX3] = "SH-X3", [CPU_SH_NONE] = "Unknown"
  240. };
  241. const char *get_cpu_subtype(struct sh_cpuinfo *c)
  242. {
  243. return cpu_name[c->type];
  244. }
  245. #ifdef CONFIG_PROC_FS
  246. /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
  247. static const char *cpu_flags[] = {
  248. "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
  249. "ptea", "llsc", "l2", "op32", NULL
  250. };
  251. static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
  252. {
  253. unsigned long i;
  254. seq_printf(m, "cpu flags\t:");
  255. if (!c->flags) {
  256. seq_printf(m, " %s\n", cpu_flags[0]);
  257. return;
  258. }
  259. for (i = 0; cpu_flags[i]; i++)
  260. if ((c->flags & (1 << i)))
  261. seq_printf(m, " %s", cpu_flags[i+1]);
  262. seq_printf(m, "\n");
  263. }
  264. static void show_cacheinfo(struct seq_file *m, const char *type,
  265. struct cache_info info)
  266. {
  267. unsigned int cache_size;
  268. cache_size = info.ways * info.sets * info.linesz;
  269. seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
  270. type, cache_size >> 10, info.ways);
  271. }
  272. /*
  273. * Get CPU information for use by the procfs.
  274. */
  275. static int show_cpuinfo(struct seq_file *m, void *v)
  276. {
  277. struct sh_cpuinfo *c = v;
  278. unsigned int cpu = c - cpu_data;
  279. if (!cpu_online(cpu))
  280. return 0;
  281. if (cpu == 0)
  282. seq_printf(m, "machine\t\t: %s\n", get_system_type());
  283. seq_printf(m, "processor\t: %d\n", cpu);
  284. seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
  285. seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
  286. show_cpuflags(m, c);
  287. seq_printf(m, "cache type\t: ");
  288. /*
  289. * Check for what type of cache we have, we support both the
  290. * unified cache on the SH-2 and SH-3, as well as the harvard
  291. * style cache on the SH-4.
  292. */
  293. if (c->icache.flags & SH_CACHE_COMBINED) {
  294. seq_printf(m, "unified\n");
  295. show_cacheinfo(m, "cache", c->icache);
  296. } else {
  297. seq_printf(m, "split (harvard)\n");
  298. show_cacheinfo(m, "icache", c->icache);
  299. show_cacheinfo(m, "dcache", c->dcache);
  300. }
  301. /* Optional secondary cache */
  302. if (c->flags & CPU_HAS_L2_CACHE)
  303. show_cacheinfo(m, "scache", c->scache);
  304. seq_printf(m, "bogomips\t: %lu.%02lu\n",
  305. c->loops_per_jiffy/(500000/HZ),
  306. (c->loops_per_jiffy/(5000/HZ)) % 100);
  307. return 0;
  308. }
  309. static void *c_start(struct seq_file *m, loff_t *pos)
  310. {
  311. return *pos < NR_CPUS ? cpu_data + *pos : NULL;
  312. }
  313. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  314. {
  315. ++*pos;
  316. return c_start(m, pos);
  317. }
  318. static void c_stop(struct seq_file *m, void *v)
  319. {
  320. }
  321. struct seq_operations cpuinfo_op = {
  322. .start = c_start,
  323. .next = c_next,
  324. .stop = c_stop,
  325. .show = show_cpuinfo,
  326. };
  327. #endif /* CONFIG_PROC_FS */