time.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time. (for iSeries, we calibrate the timebase
  21. * against the Titan chip's clock.)
  22. * - for astronomical applications: add a new function to get
  23. * non ambiguous timestamps even around leap seconds. This needs
  24. * a new timestamp format and a good name.
  25. *
  26. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  27. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  28. *
  29. * This program is free software; you can redistribute it and/or
  30. * modify it under the terms of the GNU General Public License
  31. * as published by the Free Software Foundation; either version
  32. * 2 of the License, or (at your option) any later version.
  33. */
  34. #include <linux/errno.h>
  35. #include <linux/module.h>
  36. #include <linux/sched.h>
  37. #include <linux/kernel.h>
  38. #include <linux/param.h>
  39. #include <linux/string.h>
  40. #include <linux/mm.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/timex.h>
  43. #include <linux/kernel_stat.h>
  44. #include <linux/time.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <linux/irq.h>
  54. #include <asm/io.h>
  55. #include <asm/processor.h>
  56. #include <asm/nvram.h>
  57. #include <asm/cache.h>
  58. #include <asm/machdep.h>
  59. #include <asm/uaccess.h>
  60. #include <asm/time.h>
  61. #include <asm/prom.h>
  62. #include <asm/irq.h>
  63. #include <asm/div64.h>
  64. #include <asm/smp.h>
  65. #include <asm/vdso_datapage.h>
  66. #ifdef CONFIG_PPC64
  67. #include <asm/firmware.h>
  68. #endif
  69. #ifdef CONFIG_PPC_ISERIES
  70. #include <asm/iseries/it_lp_queue.h>
  71. #include <asm/iseries/hv_call_xm.h>
  72. #endif
  73. #include <asm/smp.h>
  74. /* keep track of when we need to update the rtc */
  75. time_t last_rtc_update;
  76. #ifdef CONFIG_PPC_ISERIES
  77. static unsigned long __initdata iSeries_recal_titan;
  78. static signed long __initdata iSeries_recal_tb;
  79. #endif
  80. /* The decrementer counts down by 128 every 128ns on a 601. */
  81. #define DECREMENTER_COUNT_601 (1000000000 / HZ)
  82. #define XSEC_PER_SEC (1024*1024)
  83. #ifdef CONFIG_PPC64
  84. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  85. #else
  86. /* compute ((xsec << 12) * max) >> 32 */
  87. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  88. #endif
  89. unsigned long tb_ticks_per_jiffy;
  90. unsigned long tb_ticks_per_usec = 100; /* sane default */
  91. EXPORT_SYMBOL(tb_ticks_per_usec);
  92. unsigned long tb_ticks_per_sec;
  93. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  94. u64 tb_to_xs;
  95. unsigned tb_to_us;
  96. #define TICKLEN_SCALE TICK_LENGTH_SHIFT
  97. u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
  98. u64 ticklen_to_xs; /* 0.64 fraction */
  99. /* If last_tick_len corresponds to about 1/HZ seconds, then
  100. last_tick_len << TICKLEN_SHIFT will be about 2^63. */
  101. #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
  102. DEFINE_SPINLOCK(rtc_lock);
  103. EXPORT_SYMBOL_GPL(rtc_lock);
  104. static u64 tb_to_ns_scale __read_mostly;
  105. static unsigned tb_to_ns_shift __read_mostly;
  106. static unsigned long boot_tb __read_mostly;
  107. struct gettimeofday_struct do_gtod;
  108. extern struct timezone sys_tz;
  109. static long timezone_offset;
  110. unsigned long ppc_proc_freq;
  111. unsigned long ppc_tb_freq;
  112. static u64 tb_last_jiffy __cacheline_aligned_in_smp;
  113. static DEFINE_PER_CPU(u64, last_jiffy);
  114. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  115. /*
  116. * Factors for converting from cputime_t (timebase ticks) to
  117. * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
  118. * These are all stored as 0.64 fixed-point binary fractions.
  119. */
  120. u64 __cputime_jiffies_factor;
  121. EXPORT_SYMBOL(__cputime_jiffies_factor);
  122. u64 __cputime_msec_factor;
  123. EXPORT_SYMBOL(__cputime_msec_factor);
  124. u64 __cputime_sec_factor;
  125. EXPORT_SYMBOL(__cputime_sec_factor);
  126. u64 __cputime_clockt_factor;
  127. EXPORT_SYMBOL(__cputime_clockt_factor);
  128. static void calc_cputime_factors(void)
  129. {
  130. struct div_result res;
  131. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  132. __cputime_jiffies_factor = res.result_low;
  133. div128_by_32(1000, 0, tb_ticks_per_sec, &res);
  134. __cputime_msec_factor = res.result_low;
  135. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  136. __cputime_sec_factor = res.result_low;
  137. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  138. __cputime_clockt_factor = res.result_low;
  139. }
  140. /*
  141. * Read the PURR on systems that have it, otherwise the timebase.
  142. */
  143. static u64 read_purr(void)
  144. {
  145. if (cpu_has_feature(CPU_FTR_PURR))
  146. return mfspr(SPRN_PURR);
  147. return mftb();
  148. }
  149. /*
  150. * Account time for a transition between system, hard irq
  151. * or soft irq state.
  152. */
  153. void account_system_vtime(struct task_struct *tsk)
  154. {
  155. u64 now, delta;
  156. unsigned long flags;
  157. local_irq_save(flags);
  158. now = read_purr();
  159. delta = now - get_paca()->startpurr;
  160. get_paca()->startpurr = now;
  161. if (!in_interrupt()) {
  162. delta += get_paca()->system_time;
  163. get_paca()->system_time = 0;
  164. }
  165. account_system_time(tsk, 0, delta);
  166. local_irq_restore(flags);
  167. }
  168. /*
  169. * Transfer the user and system times accumulated in the paca
  170. * by the exception entry and exit code to the generic process
  171. * user and system time records.
  172. * Must be called with interrupts disabled.
  173. */
  174. void account_process_vtime(struct task_struct *tsk)
  175. {
  176. cputime_t utime;
  177. utime = get_paca()->user_time;
  178. get_paca()->user_time = 0;
  179. account_user_time(tsk, utime);
  180. }
  181. static void account_process_time(struct pt_regs *regs)
  182. {
  183. int cpu = smp_processor_id();
  184. account_process_vtime(current);
  185. run_local_timers();
  186. if (rcu_pending(cpu))
  187. rcu_check_callbacks(cpu, user_mode(regs));
  188. scheduler_tick();
  189. run_posix_cpu_timers(current);
  190. }
  191. /*
  192. * Stuff for accounting stolen time.
  193. */
  194. struct cpu_purr_data {
  195. int initialized; /* thread is running */
  196. u64 tb; /* last TB value read */
  197. u64 purr; /* last PURR value read */
  198. };
  199. /*
  200. * Each entry in the cpu_purr_data array is manipulated only by its
  201. * "owner" cpu -- usually in the timer interrupt but also occasionally
  202. * in process context for cpu online. As long as cpus do not touch
  203. * each others' cpu_purr_data, disabling local interrupts is
  204. * sufficient to serialize accesses.
  205. */
  206. static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
  207. static void snapshot_tb_and_purr(void *data)
  208. {
  209. unsigned long flags;
  210. struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
  211. local_irq_save(flags);
  212. p->tb = mftb();
  213. p->purr = mfspr(SPRN_PURR);
  214. wmb();
  215. p->initialized = 1;
  216. local_irq_restore(flags);
  217. }
  218. /*
  219. * Called during boot when all cpus have come up.
  220. */
  221. void snapshot_timebases(void)
  222. {
  223. if (!cpu_has_feature(CPU_FTR_PURR))
  224. return;
  225. on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
  226. }
  227. /*
  228. * Must be called with interrupts disabled.
  229. */
  230. void calculate_steal_time(void)
  231. {
  232. u64 tb, purr;
  233. s64 stolen;
  234. struct cpu_purr_data *pme;
  235. if (!cpu_has_feature(CPU_FTR_PURR))
  236. return;
  237. pme = &per_cpu(cpu_purr_data, smp_processor_id());
  238. if (!pme->initialized)
  239. return; /* this can happen in early boot */
  240. tb = mftb();
  241. purr = mfspr(SPRN_PURR);
  242. stolen = (tb - pme->tb) - (purr - pme->purr);
  243. if (stolen > 0)
  244. account_steal_time(current, stolen);
  245. pme->tb = tb;
  246. pme->purr = purr;
  247. }
  248. #ifdef CONFIG_PPC_SPLPAR
  249. /*
  250. * Must be called before the cpu is added to the online map when
  251. * a cpu is being brought up at runtime.
  252. */
  253. static void snapshot_purr(void)
  254. {
  255. struct cpu_purr_data *pme;
  256. unsigned long flags;
  257. if (!cpu_has_feature(CPU_FTR_PURR))
  258. return;
  259. local_irq_save(flags);
  260. pme = &per_cpu(cpu_purr_data, smp_processor_id());
  261. pme->tb = mftb();
  262. pme->purr = mfspr(SPRN_PURR);
  263. pme->initialized = 1;
  264. local_irq_restore(flags);
  265. }
  266. #endif /* CONFIG_PPC_SPLPAR */
  267. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
  268. #define calc_cputime_factors()
  269. #define account_process_time(regs) update_process_times(user_mode(regs))
  270. #define calculate_steal_time() do { } while (0)
  271. #endif
  272. #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
  273. #define snapshot_purr() do { } while (0)
  274. #endif
  275. /*
  276. * Called when a cpu comes up after the system has finished booting,
  277. * i.e. as a result of a hotplug cpu action.
  278. */
  279. void snapshot_timebase(void)
  280. {
  281. __get_cpu_var(last_jiffy) = get_tb();
  282. snapshot_purr();
  283. }
  284. void __delay(unsigned long loops)
  285. {
  286. unsigned long start;
  287. int diff;
  288. if (__USE_RTC()) {
  289. start = get_rtcl();
  290. do {
  291. /* the RTCL register wraps at 1000000000 */
  292. diff = get_rtcl() - start;
  293. if (diff < 0)
  294. diff += 1000000000;
  295. } while (diff < loops);
  296. } else {
  297. start = get_tbl();
  298. while (get_tbl() - start < loops)
  299. HMT_low();
  300. HMT_medium();
  301. }
  302. }
  303. EXPORT_SYMBOL(__delay);
  304. void udelay(unsigned long usecs)
  305. {
  306. __delay(tb_ticks_per_usec * usecs);
  307. }
  308. EXPORT_SYMBOL(udelay);
  309. static __inline__ void timer_check_rtc(void)
  310. {
  311. /*
  312. * update the rtc when needed, this should be performed on the
  313. * right fraction of a second. Half or full second ?
  314. * Full second works on mk48t59 clocks, others need testing.
  315. * Note that this update is basically only used through
  316. * the adjtimex system calls. Setting the HW clock in
  317. * any other way is a /dev/rtc and userland business.
  318. * This is still wrong by -0.5/+1.5 jiffies because of the
  319. * timer interrupt resolution and possible delay, but here we
  320. * hit a quantization limit which can only be solved by higher
  321. * resolution timers and decoupling time management from timer
  322. * interrupts. This is also wrong on the clocks
  323. * which require being written at the half second boundary.
  324. * We should have an rtc call that only sets the minutes and
  325. * seconds like on Intel to avoid problems with non UTC clocks.
  326. */
  327. if (ppc_md.set_rtc_time && ntp_synced() &&
  328. xtime.tv_sec - last_rtc_update >= 659 &&
  329. abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) {
  330. struct rtc_time tm;
  331. to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
  332. tm.tm_year -= 1900;
  333. tm.tm_mon -= 1;
  334. if (ppc_md.set_rtc_time(&tm) == 0)
  335. last_rtc_update = xtime.tv_sec + 1;
  336. else
  337. /* Try again one minute later */
  338. last_rtc_update += 60;
  339. }
  340. }
  341. /*
  342. * This version of gettimeofday has microsecond resolution.
  343. */
  344. static inline void __do_gettimeofday(struct timeval *tv)
  345. {
  346. unsigned long sec, usec;
  347. u64 tb_ticks, xsec;
  348. struct gettimeofday_vars *temp_varp;
  349. u64 temp_tb_to_xs, temp_stamp_xsec;
  350. /*
  351. * These calculations are faster (gets rid of divides)
  352. * if done in units of 1/2^20 rather than microseconds.
  353. * The conversion to microseconds at the end is done
  354. * without a divide (and in fact, without a multiply)
  355. */
  356. temp_varp = do_gtod.varp;
  357. /* Sampling the time base must be done after loading
  358. * do_gtod.varp in order to avoid racing with update_gtod.
  359. */
  360. data_barrier(temp_varp);
  361. tb_ticks = get_tb() - temp_varp->tb_orig_stamp;
  362. temp_tb_to_xs = temp_varp->tb_to_xs;
  363. temp_stamp_xsec = temp_varp->stamp_xsec;
  364. xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
  365. sec = xsec / XSEC_PER_SEC;
  366. usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
  367. usec = SCALE_XSEC(usec, 1000000);
  368. tv->tv_sec = sec;
  369. tv->tv_usec = usec;
  370. }
  371. void do_gettimeofday(struct timeval *tv)
  372. {
  373. if (__USE_RTC()) {
  374. /* do this the old way */
  375. unsigned long flags, seq;
  376. unsigned int sec, nsec, usec;
  377. do {
  378. seq = read_seqbegin_irqsave(&xtime_lock, flags);
  379. sec = xtime.tv_sec;
  380. nsec = xtime.tv_nsec + tb_ticks_since(tb_last_jiffy);
  381. } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
  382. usec = nsec / 1000;
  383. while (usec >= 1000000) {
  384. usec -= 1000000;
  385. ++sec;
  386. }
  387. tv->tv_sec = sec;
  388. tv->tv_usec = usec;
  389. return;
  390. }
  391. __do_gettimeofday(tv);
  392. }
  393. EXPORT_SYMBOL(do_gettimeofday);
  394. /*
  395. * There are two copies of tb_to_xs and stamp_xsec so that no
  396. * lock is needed to access and use these values in
  397. * do_gettimeofday. We alternate the copies and as long as a
  398. * reasonable time elapses between changes, there will never
  399. * be inconsistent values. ntpd has a minimum of one minute
  400. * between updates.
  401. */
  402. static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
  403. u64 new_tb_to_xs)
  404. {
  405. unsigned temp_idx;
  406. struct gettimeofday_vars *temp_varp;
  407. temp_idx = (do_gtod.var_idx == 0);
  408. temp_varp = &do_gtod.vars[temp_idx];
  409. temp_varp->tb_to_xs = new_tb_to_xs;
  410. temp_varp->tb_orig_stamp = new_tb_stamp;
  411. temp_varp->stamp_xsec = new_stamp_xsec;
  412. smp_mb();
  413. do_gtod.varp = temp_varp;
  414. do_gtod.var_idx = temp_idx;
  415. /*
  416. * tb_update_count is used to allow the userspace gettimeofday code
  417. * to assure itself that it sees a consistent view of the tb_to_xs and
  418. * stamp_xsec variables. It reads the tb_update_count, then reads
  419. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  420. * the two values of tb_update_count match and are even then the
  421. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  422. * loops back and reads them again until this criteria is met.
  423. * We expect the caller to have done the first increment of
  424. * vdso_data->tb_update_count already.
  425. */
  426. vdso_data->tb_orig_stamp = new_tb_stamp;
  427. vdso_data->stamp_xsec = new_stamp_xsec;
  428. vdso_data->tb_to_xs = new_tb_to_xs;
  429. vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
  430. vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
  431. smp_wmb();
  432. ++(vdso_data->tb_update_count);
  433. }
  434. /*
  435. * When the timebase - tb_orig_stamp gets too big, we do a manipulation
  436. * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
  437. * difference tb - tb_orig_stamp small enough to always fit inside a
  438. * 32 bits number. This is a requirement of our fast 32 bits userland
  439. * implementation in the vdso. If we "miss" a call to this function
  440. * (interrupt latency, CPU locked in a spinlock, ...) and we end up
  441. * with a too big difference, then the vdso will fallback to calling
  442. * the syscall
  443. */
  444. static __inline__ void timer_recalc_offset(u64 cur_tb)
  445. {
  446. unsigned long offset;
  447. u64 new_stamp_xsec;
  448. u64 tlen, t2x;
  449. u64 tb, xsec_old, xsec_new;
  450. struct gettimeofday_vars *varp;
  451. if (__USE_RTC())
  452. return;
  453. tlen = current_tick_length();
  454. offset = cur_tb - do_gtod.varp->tb_orig_stamp;
  455. if (tlen == last_tick_len && offset < 0x80000000u)
  456. return;
  457. if (tlen != last_tick_len) {
  458. t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
  459. last_tick_len = tlen;
  460. } else
  461. t2x = do_gtod.varp->tb_to_xs;
  462. new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
  463. do_div(new_stamp_xsec, 1000000000);
  464. new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
  465. ++vdso_data->tb_update_count;
  466. smp_mb();
  467. /*
  468. * Make sure time doesn't go backwards for userspace gettimeofday.
  469. */
  470. tb = get_tb();
  471. varp = do_gtod.varp;
  472. xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
  473. + varp->stamp_xsec;
  474. xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
  475. if (xsec_new < xsec_old)
  476. new_stamp_xsec += xsec_old - xsec_new;
  477. update_gtod(cur_tb, new_stamp_xsec, t2x);
  478. }
  479. #ifdef CONFIG_SMP
  480. unsigned long profile_pc(struct pt_regs *regs)
  481. {
  482. unsigned long pc = instruction_pointer(regs);
  483. if (in_lock_functions(pc))
  484. return regs->link;
  485. return pc;
  486. }
  487. EXPORT_SYMBOL(profile_pc);
  488. #endif
  489. #ifdef CONFIG_PPC_ISERIES
  490. /*
  491. * This function recalibrates the timebase based on the 49-bit time-of-day
  492. * value in the Titan chip. The Titan is much more accurate than the value
  493. * returned by the service processor for the timebase frequency.
  494. */
  495. static int __init iSeries_tb_recal(void)
  496. {
  497. struct div_result divres;
  498. unsigned long titan, tb;
  499. /* Make sure we only run on iSeries */
  500. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  501. return -ENODEV;
  502. tb = get_tb();
  503. titan = HvCallXm_loadTod();
  504. if ( iSeries_recal_titan ) {
  505. unsigned long tb_ticks = tb - iSeries_recal_tb;
  506. unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
  507. unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
  508. unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
  509. long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
  510. char sign = '+';
  511. /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
  512. new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
  513. if ( tick_diff < 0 ) {
  514. tick_diff = -tick_diff;
  515. sign = '-';
  516. }
  517. if ( tick_diff ) {
  518. if ( tick_diff < tb_ticks_per_jiffy/25 ) {
  519. printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
  520. new_tb_ticks_per_jiffy, sign, tick_diff );
  521. tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
  522. tb_ticks_per_sec = new_tb_ticks_per_sec;
  523. calc_cputime_factors();
  524. div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
  525. do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
  526. tb_to_xs = divres.result_low;
  527. do_gtod.varp->tb_to_xs = tb_to_xs;
  528. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  529. vdso_data->tb_to_xs = tb_to_xs;
  530. }
  531. else {
  532. printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
  533. " new tb_ticks_per_jiffy = %lu\n"
  534. " old tb_ticks_per_jiffy = %lu\n",
  535. new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
  536. }
  537. }
  538. }
  539. iSeries_recal_titan = titan;
  540. iSeries_recal_tb = tb;
  541. return 0;
  542. }
  543. late_initcall(iSeries_tb_recal);
  544. /* Called from platform early init */
  545. void __init iSeries_time_init_early(void)
  546. {
  547. iSeries_recal_tb = get_tb();
  548. iSeries_recal_titan = HvCallXm_loadTod();
  549. }
  550. #endif /* CONFIG_PPC_ISERIES */
  551. /*
  552. * For iSeries shared processors, we have to let the hypervisor
  553. * set the hardware decrementer. We set a virtual decrementer
  554. * in the lppaca and call the hypervisor if the virtual
  555. * decrementer is less than the current value in the hardware
  556. * decrementer. (almost always the new decrementer value will
  557. * be greater than the current hardware decementer so the hypervisor
  558. * call will not be needed)
  559. */
  560. /*
  561. * timer_interrupt - gets called when the decrementer overflows,
  562. * with interrupts disabled.
  563. */
  564. void timer_interrupt(struct pt_regs * regs)
  565. {
  566. struct pt_regs *old_regs;
  567. int next_dec;
  568. int cpu = smp_processor_id();
  569. unsigned long ticks;
  570. u64 tb_next_jiffy;
  571. #ifdef CONFIG_PPC32
  572. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  573. do_IRQ(regs);
  574. #endif
  575. old_regs = set_irq_regs(regs);
  576. irq_enter();
  577. profile_tick(CPU_PROFILING);
  578. calculate_steal_time();
  579. #ifdef CONFIG_PPC_ISERIES
  580. if (firmware_has_feature(FW_FEATURE_ISERIES))
  581. get_lppaca()->int_dword.fields.decr_int = 0;
  582. #endif
  583. while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
  584. >= tb_ticks_per_jiffy) {
  585. /* Update last_jiffy */
  586. per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
  587. /* Handle RTCL overflow on 601 */
  588. if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
  589. per_cpu(last_jiffy, cpu) -= 1000000000;
  590. /*
  591. * We cannot disable the decrementer, so in the period
  592. * between this cpu's being marked offline in cpu_online_map
  593. * and calling stop-self, it is taking timer interrupts.
  594. * Avoid calling into the scheduler rebalancing code if this
  595. * is the case.
  596. */
  597. if (!cpu_is_offline(cpu))
  598. account_process_time(regs);
  599. /*
  600. * No need to check whether cpu is offline here; boot_cpuid
  601. * should have been fixed up by now.
  602. */
  603. if (cpu != boot_cpuid)
  604. continue;
  605. write_seqlock(&xtime_lock);
  606. tb_next_jiffy = tb_last_jiffy + tb_ticks_per_jiffy;
  607. if (per_cpu(last_jiffy, cpu) >= tb_next_jiffy) {
  608. tb_last_jiffy = tb_next_jiffy;
  609. do_timer(1);
  610. timer_recalc_offset(tb_last_jiffy);
  611. timer_check_rtc();
  612. }
  613. write_sequnlock(&xtime_lock);
  614. }
  615. next_dec = tb_ticks_per_jiffy - ticks;
  616. set_dec(next_dec);
  617. #ifdef CONFIG_PPC_ISERIES
  618. if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
  619. process_hvlpevents();
  620. #endif
  621. #ifdef CONFIG_PPC64
  622. /* collect purr register values often, for accurate calculations */
  623. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  624. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  625. cu->current_tb = mfspr(SPRN_PURR);
  626. }
  627. #endif
  628. irq_exit();
  629. set_irq_regs(old_regs);
  630. }
  631. void wakeup_decrementer(void)
  632. {
  633. unsigned long ticks;
  634. /*
  635. * The timebase gets saved on sleep and restored on wakeup,
  636. * so all we need to do is to reset the decrementer.
  637. */
  638. ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
  639. if (ticks < tb_ticks_per_jiffy)
  640. ticks = tb_ticks_per_jiffy - ticks;
  641. else
  642. ticks = 1;
  643. set_dec(ticks);
  644. }
  645. #ifdef CONFIG_SMP
  646. void __init smp_space_timers(unsigned int max_cpus)
  647. {
  648. int i;
  649. u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
  650. /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
  651. previous_tb -= tb_ticks_per_jiffy;
  652. for_each_possible_cpu(i) {
  653. if (i == boot_cpuid)
  654. continue;
  655. per_cpu(last_jiffy, i) = previous_tb;
  656. }
  657. }
  658. #endif
  659. /*
  660. * Scheduler clock - returns current time in nanosec units.
  661. *
  662. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  663. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  664. * are 64-bit unsigned numbers.
  665. */
  666. unsigned long long sched_clock(void)
  667. {
  668. if (__USE_RTC())
  669. return get_rtc();
  670. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  671. }
  672. int do_settimeofday(struct timespec *tv)
  673. {
  674. time_t wtm_sec, new_sec = tv->tv_sec;
  675. long wtm_nsec, new_nsec = tv->tv_nsec;
  676. unsigned long flags;
  677. u64 new_xsec;
  678. unsigned long tb_delta;
  679. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  680. return -EINVAL;
  681. write_seqlock_irqsave(&xtime_lock, flags);
  682. /*
  683. * Updating the RTC is not the job of this code. If the time is
  684. * stepped under NTP, the RTC will be updated after STA_UNSYNC
  685. * is cleared. Tools like clock/hwclock either copy the RTC
  686. * to the system time, in which case there is no point in writing
  687. * to the RTC again, or write to the RTC but then they don't call
  688. * settimeofday to perform this operation.
  689. */
  690. /* Make userspace gettimeofday spin until we're done. */
  691. ++vdso_data->tb_update_count;
  692. smp_mb();
  693. /*
  694. * Subtract off the number of nanoseconds since the
  695. * beginning of the last tick.
  696. */
  697. tb_delta = tb_ticks_since(tb_last_jiffy);
  698. tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
  699. new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
  700. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
  701. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
  702. set_normalized_timespec(&xtime, new_sec, new_nsec);
  703. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  704. /* In case of a large backwards jump in time with NTP, we want the
  705. * clock to be updated as soon as the PLL is again in lock.
  706. */
  707. last_rtc_update = new_sec - 658;
  708. ntp_clear();
  709. new_xsec = xtime.tv_nsec;
  710. if (new_xsec != 0) {
  711. new_xsec *= XSEC_PER_SEC;
  712. do_div(new_xsec, NSEC_PER_SEC);
  713. }
  714. new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
  715. update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
  716. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  717. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  718. write_sequnlock_irqrestore(&xtime_lock, flags);
  719. clock_was_set();
  720. return 0;
  721. }
  722. EXPORT_SYMBOL(do_settimeofday);
  723. static int __init get_freq(char *name, int cells, unsigned long *val)
  724. {
  725. struct device_node *cpu;
  726. const unsigned int *fp;
  727. int found = 0;
  728. /* The cpu node should have timebase and clock frequency properties */
  729. cpu = of_find_node_by_type(NULL, "cpu");
  730. if (cpu) {
  731. fp = of_get_property(cpu, name, NULL);
  732. if (fp) {
  733. found = 1;
  734. *val = of_read_ulong(fp, cells);
  735. }
  736. of_node_put(cpu);
  737. }
  738. return found;
  739. }
  740. void __init generic_calibrate_decr(void)
  741. {
  742. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  743. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  744. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  745. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  746. "(not found)\n");
  747. }
  748. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  749. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  750. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  751. printk(KERN_ERR "WARNING: Estimating processor frequency "
  752. "(not found)\n");
  753. }
  754. #ifdef CONFIG_BOOKE
  755. /* Set the time base to zero */
  756. mtspr(SPRN_TBWL, 0);
  757. mtspr(SPRN_TBWU, 0);
  758. /* Clear any pending timer interrupts */
  759. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  760. /* Enable decrementer interrupt */
  761. mtspr(SPRN_TCR, TCR_DIE);
  762. #endif
  763. }
  764. unsigned long get_boot_time(void)
  765. {
  766. struct rtc_time tm;
  767. if (ppc_md.get_boot_time)
  768. return ppc_md.get_boot_time();
  769. if (!ppc_md.get_rtc_time)
  770. return 0;
  771. ppc_md.get_rtc_time(&tm);
  772. return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  773. tm.tm_hour, tm.tm_min, tm.tm_sec);
  774. }
  775. /* This function is only called on the boot processor */
  776. void __init time_init(void)
  777. {
  778. unsigned long flags;
  779. unsigned long tm = 0;
  780. struct div_result res;
  781. u64 scale, x;
  782. unsigned shift;
  783. if (ppc_md.time_init != NULL)
  784. timezone_offset = ppc_md.time_init();
  785. if (__USE_RTC()) {
  786. /* 601 processor: dec counts down by 128 every 128ns */
  787. ppc_tb_freq = 1000000000;
  788. tb_last_jiffy = get_rtcl();
  789. } else {
  790. /* Normal PowerPC with timebase register */
  791. ppc_md.calibrate_decr();
  792. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  793. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  794. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  795. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  796. tb_last_jiffy = get_tb();
  797. }
  798. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  799. tb_ticks_per_sec = ppc_tb_freq;
  800. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  801. tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
  802. calc_cputime_factors();
  803. /*
  804. * Calculate the length of each tick in ns. It will not be
  805. * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
  806. * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
  807. * rounded up.
  808. */
  809. x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
  810. do_div(x, ppc_tb_freq);
  811. tick_nsec = x;
  812. last_tick_len = x << TICKLEN_SCALE;
  813. /*
  814. * Compute ticklen_to_xs, which is a factor which gets multiplied
  815. * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
  816. * It is computed as:
  817. * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
  818. * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
  819. * which turns out to be N = 51 - SHIFT_HZ.
  820. * This gives the result as a 0.64 fixed-point fraction.
  821. * That value is reduced by an offset amounting to 1 xsec per
  822. * 2^31 timebase ticks to avoid problems with time going backwards
  823. * by 1 xsec when we do timer_recalc_offset due to losing the
  824. * fractional xsec. That offset is equal to ppc_tb_freq/2^51
  825. * since there are 2^20 xsec in a second.
  826. */
  827. div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
  828. tb_ticks_per_jiffy << SHIFT_HZ, &res);
  829. div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
  830. ticklen_to_xs = res.result_low;
  831. /* Compute tb_to_xs from tick_nsec */
  832. tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
  833. /*
  834. * Compute scale factor for sched_clock.
  835. * The calibrate_decr() function has set tb_ticks_per_sec,
  836. * which is the timebase frequency.
  837. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  838. * the 128-bit result as a 64.64 fixed-point number.
  839. * We then shift that number right until it is less than 1.0,
  840. * giving us the scale factor and shift count to use in
  841. * sched_clock().
  842. */
  843. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  844. scale = res.result_low;
  845. for (shift = 0; res.result_high != 0; ++shift) {
  846. scale = (scale >> 1) | (res.result_high << 63);
  847. res.result_high >>= 1;
  848. }
  849. tb_to_ns_scale = scale;
  850. tb_to_ns_shift = shift;
  851. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  852. boot_tb = get_tb();
  853. tm = get_boot_time();
  854. write_seqlock_irqsave(&xtime_lock, flags);
  855. /* If platform provided a timezone (pmac), we correct the time */
  856. if (timezone_offset) {
  857. sys_tz.tz_minuteswest = -timezone_offset / 60;
  858. sys_tz.tz_dsttime = 0;
  859. tm -= timezone_offset;
  860. }
  861. xtime.tv_sec = tm;
  862. xtime.tv_nsec = 0;
  863. do_gtod.varp = &do_gtod.vars[0];
  864. do_gtod.var_idx = 0;
  865. do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
  866. __get_cpu_var(last_jiffy) = tb_last_jiffy;
  867. do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
  868. do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
  869. do_gtod.varp->tb_to_xs = tb_to_xs;
  870. do_gtod.tb_to_us = tb_to_us;
  871. vdso_data->tb_orig_stamp = tb_last_jiffy;
  872. vdso_data->tb_update_count = 0;
  873. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  874. vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
  875. vdso_data->tb_to_xs = tb_to_xs;
  876. time_freq = 0;
  877. last_rtc_update = xtime.tv_sec;
  878. set_normalized_timespec(&wall_to_monotonic,
  879. -xtime.tv_sec, -xtime.tv_nsec);
  880. write_sequnlock_irqrestore(&xtime_lock, flags);
  881. /* Not exact, but the timer interrupt takes care of this */
  882. set_dec(tb_ticks_per_jiffy);
  883. }
  884. #define FEBRUARY 2
  885. #define STARTOFTIME 1970
  886. #define SECDAY 86400L
  887. #define SECYR (SECDAY * 365)
  888. #define leapyear(year) ((year) % 4 == 0 && \
  889. ((year) % 100 != 0 || (year) % 400 == 0))
  890. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  891. #define days_in_month(a) (month_days[(a) - 1])
  892. static int month_days[12] = {
  893. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  894. };
  895. /*
  896. * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
  897. */
  898. void GregorianDay(struct rtc_time * tm)
  899. {
  900. int leapsToDate;
  901. int lastYear;
  902. int day;
  903. int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
  904. lastYear = tm->tm_year - 1;
  905. /*
  906. * Number of leap corrections to apply up to end of last year
  907. */
  908. leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
  909. /*
  910. * This year is a leap year if it is divisible by 4 except when it is
  911. * divisible by 100 unless it is divisible by 400
  912. *
  913. * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
  914. */
  915. day = tm->tm_mon > 2 && leapyear(tm->tm_year);
  916. day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
  917. tm->tm_mday;
  918. tm->tm_wday = day % 7;
  919. }
  920. void to_tm(int tim, struct rtc_time * tm)
  921. {
  922. register int i;
  923. register long hms, day;
  924. day = tim / SECDAY;
  925. hms = tim % SECDAY;
  926. /* Hours, minutes, seconds are easy */
  927. tm->tm_hour = hms / 3600;
  928. tm->tm_min = (hms % 3600) / 60;
  929. tm->tm_sec = (hms % 3600) % 60;
  930. /* Number of years in days */
  931. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  932. day -= days_in_year(i);
  933. tm->tm_year = i;
  934. /* Number of months in days left */
  935. if (leapyear(tm->tm_year))
  936. days_in_month(FEBRUARY) = 29;
  937. for (i = 1; day >= days_in_month(i); i++)
  938. day -= days_in_month(i);
  939. days_in_month(FEBRUARY) = 28;
  940. tm->tm_mon = i;
  941. /* Days are what is left over (+1) from all that. */
  942. tm->tm_mday = day + 1;
  943. /*
  944. * Determine the day of week
  945. */
  946. GregorianDay(tm);
  947. }
  948. /* Auxiliary function to compute scaling factors */
  949. /* Actually the choice of a timebase running at 1/4 the of the bus
  950. * frequency giving resolution of a few tens of nanoseconds is quite nice.
  951. * It makes this computation very precise (27-28 bits typically) which
  952. * is optimistic considering the stability of most processor clock
  953. * oscillators and the precision with which the timebase frequency
  954. * is measured but does not harm.
  955. */
  956. unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
  957. {
  958. unsigned mlt=0, tmp, err;
  959. /* No concern for performance, it's done once: use a stupid
  960. * but safe and compact method to find the multiplier.
  961. */
  962. for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
  963. if (mulhwu(inscale, mlt|tmp) < outscale)
  964. mlt |= tmp;
  965. }
  966. /* We might still be off by 1 for the best approximation.
  967. * A side effect of this is that if outscale is too large
  968. * the returned value will be zero.
  969. * Many corner cases have been checked and seem to work,
  970. * some might have been forgotten in the test however.
  971. */
  972. err = inscale * (mlt+1);
  973. if (err <= inscale/2)
  974. mlt++;
  975. return mlt;
  976. }
  977. /*
  978. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  979. * result.
  980. */
  981. void div128_by_32(u64 dividend_high, u64 dividend_low,
  982. unsigned divisor, struct div_result *dr)
  983. {
  984. unsigned long a, b, c, d;
  985. unsigned long w, x, y, z;
  986. u64 ra, rb, rc;
  987. a = dividend_high >> 32;
  988. b = dividend_high & 0xffffffff;
  989. c = dividend_low >> 32;
  990. d = dividend_low & 0xffffffff;
  991. w = a / divisor;
  992. ra = ((u64)(a - (w * divisor)) << 32) + b;
  993. rb = ((u64) do_div(ra, divisor) << 32) + c;
  994. x = ra;
  995. rc = ((u64) do_div(rb, divisor) << 32) + d;
  996. y = rb;
  997. do_div(rc, divisor);
  998. z = rc;
  999. dr->result_high = ((u64)w << 32) + x;
  1000. dr->result_low = ((u64)y << 32) + z;
  1001. }