vm86.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843
  1. /*
  2. * linux/kernel/vm86.c
  3. *
  4. * Copyright (C) 1994 Linus Torvalds
  5. *
  6. * 29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
  7. * stack - Manfred Spraul <manfred@colorfullife.com>
  8. *
  9. * 22 mar 2002 - Manfred detected the stackfaults, but didn't handle
  10. * them correctly. Now the emulation will be in a
  11. * consistent state after stackfaults - Kasper Dupont
  12. * <kasperd@daimi.au.dk>
  13. *
  14. * 22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
  15. * <kasperd@daimi.au.dk>
  16. *
  17. * ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
  18. * caused by Kasper Dupont's changes - Stas Sergeev
  19. *
  20. * 4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
  21. * Kasper Dupont <kasperd@daimi.au.dk>
  22. *
  23. * 9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
  24. * Kasper Dupont <kasperd@daimi.au.dk>
  25. *
  26. * 9 apr 2002 - Changed stack access macros to jump to a label
  27. * instead of returning to userspace. This simplifies
  28. * do_int, and is needed by handle_vm6_fault. Kasper
  29. * Dupont <kasperd@daimi.au.dk>
  30. *
  31. */
  32. #include <linux/capability.h>
  33. #include <linux/errno.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/sched.h>
  36. #include <linux/kernel.h>
  37. #include <linux/signal.h>
  38. #include <linux/string.h>
  39. #include <linux/mm.h>
  40. #include <linux/smp.h>
  41. #include <linux/highmem.h>
  42. #include <linux/ptrace.h>
  43. #include <linux/audit.h>
  44. #include <linux/stddef.h>
  45. #include <asm/uaccess.h>
  46. #include <asm/io.h>
  47. #include <asm/tlbflush.h>
  48. #include <asm/irq.h>
  49. /*
  50. * Known problems:
  51. *
  52. * Interrupt handling is not guaranteed:
  53. * - a real x86 will disable all interrupts for one instruction
  54. * after a "mov ss,xx" to make stack handling atomic even without
  55. * the 'lss' instruction. We can't guarantee this in v86 mode,
  56. * as the next instruction might result in a page fault or similar.
  57. * - a real x86 will have interrupts disabled for one instruction
  58. * past the 'sti' that enables them. We don't bother with all the
  59. * details yet.
  60. *
  61. * Let's hope these problems do not actually matter for anything.
  62. */
  63. #define KVM86 ((struct kernel_vm86_struct *)regs)
  64. #define VMPI KVM86->vm86plus
  65. /*
  66. * 8- and 16-bit register defines..
  67. */
  68. #define AL(regs) (((unsigned char *)&((regs)->pt.eax))[0])
  69. #define AH(regs) (((unsigned char *)&((regs)->pt.eax))[1])
  70. #define IP(regs) (*(unsigned short *)&((regs)->pt.eip))
  71. #define SP(regs) (*(unsigned short *)&((regs)->pt.esp))
  72. /*
  73. * virtual flags (16 and 32-bit versions)
  74. */
  75. #define VFLAGS (*(unsigned short *)&(current->thread.v86flags))
  76. #define VEFLAGS (current->thread.v86flags)
  77. #define set_flags(X,new,mask) \
  78. ((X) = ((X) & ~(mask)) | ((new) & (mask)))
  79. #define SAFE_MASK (0xDD5)
  80. #define RETURN_MASK (0xDFF)
  81. /* convert kernel_vm86_regs to vm86_regs */
  82. static int copy_vm86_regs_to_user(struct vm86_regs __user *user,
  83. const struct kernel_vm86_regs *regs)
  84. {
  85. int ret = 0;
  86. /* kernel_vm86_regs is missing xgs, so copy everything up to
  87. (but not including) orig_eax, and then rest including orig_eax. */
  88. ret += copy_to_user(user, regs, offsetof(struct kernel_vm86_regs, pt.orig_eax));
  89. ret += copy_to_user(&user->orig_eax, &regs->pt.orig_eax,
  90. sizeof(struct kernel_vm86_regs) -
  91. offsetof(struct kernel_vm86_regs, pt.orig_eax));
  92. return ret;
  93. }
  94. /* convert vm86_regs to kernel_vm86_regs */
  95. static int copy_vm86_regs_from_user(struct kernel_vm86_regs *regs,
  96. const struct vm86_regs __user *user,
  97. unsigned extra)
  98. {
  99. int ret = 0;
  100. /* copy eax-xfs inclusive */
  101. ret += copy_from_user(regs, user, offsetof(struct kernel_vm86_regs, pt.orig_eax));
  102. /* copy orig_eax-__gsh+extra */
  103. ret += copy_from_user(&regs->pt.orig_eax, &user->orig_eax,
  104. sizeof(struct kernel_vm86_regs) -
  105. offsetof(struct kernel_vm86_regs, pt.orig_eax) +
  106. extra);
  107. return ret;
  108. }
  109. struct pt_regs * FASTCALL(save_v86_state(struct kernel_vm86_regs * regs));
  110. struct pt_regs * fastcall save_v86_state(struct kernel_vm86_regs * regs)
  111. {
  112. struct tss_struct *tss;
  113. struct pt_regs *ret;
  114. unsigned long tmp;
  115. /*
  116. * This gets called from entry.S with interrupts disabled, but
  117. * from process context. Enable interrupts here, before trying
  118. * to access user space.
  119. */
  120. local_irq_enable();
  121. if (!current->thread.vm86_info) {
  122. printk("no vm86_info: BAD\n");
  123. do_exit(SIGSEGV);
  124. }
  125. set_flags(regs->pt.eflags, VEFLAGS, VIF_MASK | current->thread.v86mask);
  126. tmp = copy_vm86_regs_to_user(&current->thread.vm86_info->regs,regs);
  127. tmp += put_user(current->thread.screen_bitmap,&current->thread.vm86_info->screen_bitmap);
  128. if (tmp) {
  129. printk("vm86: could not access userspace vm86_info\n");
  130. do_exit(SIGSEGV);
  131. }
  132. tss = &per_cpu(init_tss, get_cpu());
  133. current->thread.esp0 = current->thread.saved_esp0;
  134. current->thread.sysenter_cs = __KERNEL_CS;
  135. load_esp0(tss, &current->thread);
  136. current->thread.saved_esp0 = 0;
  137. put_cpu();
  138. ret = KVM86->regs32;
  139. ret->xfs = current->thread.saved_fs;
  140. loadsegment(gs, current->thread.saved_gs);
  141. return ret;
  142. }
  143. static void mark_screen_rdonly(struct mm_struct *mm)
  144. {
  145. pgd_t *pgd;
  146. pud_t *pud;
  147. pmd_t *pmd;
  148. pte_t *pte;
  149. spinlock_t *ptl;
  150. int i;
  151. pgd = pgd_offset(mm, 0xA0000);
  152. if (pgd_none_or_clear_bad(pgd))
  153. goto out;
  154. pud = pud_offset(pgd, 0xA0000);
  155. if (pud_none_or_clear_bad(pud))
  156. goto out;
  157. pmd = pmd_offset(pud, 0xA0000);
  158. if (pmd_none_or_clear_bad(pmd))
  159. goto out;
  160. pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
  161. for (i = 0; i < 32; i++) {
  162. if (pte_present(*pte))
  163. set_pte(pte, pte_wrprotect(*pte));
  164. pte++;
  165. }
  166. pte_unmap_unlock(pte, ptl);
  167. out:
  168. flush_tlb();
  169. }
  170. static int do_vm86_irq_handling(int subfunction, int irqnumber);
  171. static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk);
  172. asmlinkage int sys_vm86old(struct pt_regs regs)
  173. {
  174. struct vm86_struct __user *v86 = (struct vm86_struct __user *)regs.ebx;
  175. struct kernel_vm86_struct info; /* declare this _on top_,
  176. * this avoids wasting of stack space.
  177. * This remains on the stack until we
  178. * return to 32 bit user space.
  179. */
  180. struct task_struct *tsk;
  181. int tmp, ret = -EPERM;
  182. tsk = current;
  183. if (tsk->thread.saved_esp0)
  184. goto out;
  185. tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
  186. offsetof(struct kernel_vm86_struct, vm86plus) -
  187. sizeof(info.regs));
  188. ret = -EFAULT;
  189. if (tmp)
  190. goto out;
  191. memset(&info.vm86plus, 0, (int)&info.regs32 - (int)&info.vm86plus);
  192. info.regs32 = &regs;
  193. tsk->thread.vm86_info = v86;
  194. do_sys_vm86(&info, tsk);
  195. ret = 0; /* we never return here */
  196. out:
  197. return ret;
  198. }
  199. asmlinkage int sys_vm86(struct pt_regs regs)
  200. {
  201. struct kernel_vm86_struct info; /* declare this _on top_,
  202. * this avoids wasting of stack space.
  203. * This remains on the stack until we
  204. * return to 32 bit user space.
  205. */
  206. struct task_struct *tsk;
  207. int tmp, ret;
  208. struct vm86plus_struct __user *v86;
  209. tsk = current;
  210. switch (regs.ebx) {
  211. case VM86_REQUEST_IRQ:
  212. case VM86_FREE_IRQ:
  213. case VM86_GET_IRQ_BITS:
  214. case VM86_GET_AND_RESET_IRQ:
  215. ret = do_vm86_irq_handling(regs.ebx, (int)regs.ecx);
  216. goto out;
  217. case VM86_PLUS_INSTALL_CHECK:
  218. /* NOTE: on old vm86 stuff this will return the error
  219. from access_ok(), because the subfunction is
  220. interpreted as (invalid) address to vm86_struct.
  221. So the installation check works.
  222. */
  223. ret = 0;
  224. goto out;
  225. }
  226. /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
  227. ret = -EPERM;
  228. if (tsk->thread.saved_esp0)
  229. goto out;
  230. v86 = (struct vm86plus_struct __user *)regs.ecx;
  231. tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
  232. offsetof(struct kernel_vm86_struct, regs32) -
  233. sizeof(info.regs));
  234. ret = -EFAULT;
  235. if (tmp)
  236. goto out;
  237. info.regs32 = &regs;
  238. info.vm86plus.is_vm86pus = 1;
  239. tsk->thread.vm86_info = (struct vm86_struct __user *)v86;
  240. do_sys_vm86(&info, tsk);
  241. ret = 0; /* we never return here */
  242. out:
  243. return ret;
  244. }
  245. static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk)
  246. {
  247. struct tss_struct *tss;
  248. /*
  249. * make sure the vm86() system call doesn't try to do anything silly
  250. */
  251. info->regs.pt.xds = 0;
  252. info->regs.pt.xes = 0;
  253. info->regs.pt.xfs = 0;
  254. /* we are clearing gs later just before "jmp resume_userspace",
  255. * because it is not saved/restored.
  256. */
  257. /*
  258. * The eflags register is also special: we cannot trust that the user
  259. * has set it up safely, so this makes sure interrupt etc flags are
  260. * inherited from protected mode.
  261. */
  262. VEFLAGS = info->regs.pt.eflags;
  263. info->regs.pt.eflags &= SAFE_MASK;
  264. info->regs.pt.eflags |= info->regs32->eflags & ~SAFE_MASK;
  265. info->regs.pt.eflags |= VM_MASK;
  266. switch (info->cpu_type) {
  267. case CPU_286:
  268. tsk->thread.v86mask = 0;
  269. break;
  270. case CPU_386:
  271. tsk->thread.v86mask = NT_MASK | IOPL_MASK;
  272. break;
  273. case CPU_486:
  274. tsk->thread.v86mask = AC_MASK | NT_MASK | IOPL_MASK;
  275. break;
  276. default:
  277. tsk->thread.v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
  278. break;
  279. }
  280. /*
  281. * Save old state, set default return value (%eax) to 0
  282. */
  283. info->regs32->eax = 0;
  284. tsk->thread.saved_esp0 = tsk->thread.esp0;
  285. tsk->thread.saved_fs = info->regs32->xfs;
  286. savesegment(gs, tsk->thread.saved_gs);
  287. tss = &per_cpu(init_tss, get_cpu());
  288. tsk->thread.esp0 = (unsigned long) &info->VM86_TSS_ESP0;
  289. if (cpu_has_sep)
  290. tsk->thread.sysenter_cs = 0;
  291. load_esp0(tss, &tsk->thread);
  292. put_cpu();
  293. tsk->thread.screen_bitmap = info->screen_bitmap;
  294. if (info->flags & VM86_SCREEN_BITMAP)
  295. mark_screen_rdonly(tsk->mm);
  296. /*call audit_syscall_exit since we do not exit via the normal paths */
  297. if (unlikely(current->audit_context))
  298. audit_syscall_exit(AUDITSC_RESULT(0), 0);
  299. __asm__ __volatile__(
  300. "movl %0,%%esp\n\t"
  301. "movl %1,%%ebp\n\t"
  302. "mov %2, %%gs\n\t"
  303. "jmp resume_userspace"
  304. : /* no outputs */
  305. :"r" (&info->regs), "r" (task_thread_info(tsk)), "r" (0));
  306. /* we never return here */
  307. }
  308. static inline void return_to_32bit(struct kernel_vm86_regs * regs16, int retval)
  309. {
  310. struct pt_regs * regs32;
  311. regs32 = save_v86_state(regs16);
  312. regs32->eax = retval;
  313. __asm__ __volatile__("movl %0,%%esp\n\t"
  314. "movl %1,%%ebp\n\t"
  315. "jmp resume_userspace"
  316. : : "r" (regs32), "r" (current_thread_info()));
  317. }
  318. static inline void set_IF(struct kernel_vm86_regs * regs)
  319. {
  320. VEFLAGS |= VIF_MASK;
  321. if (VEFLAGS & VIP_MASK)
  322. return_to_32bit(regs, VM86_STI);
  323. }
  324. static inline void clear_IF(struct kernel_vm86_regs * regs)
  325. {
  326. VEFLAGS &= ~VIF_MASK;
  327. }
  328. static inline void clear_TF(struct kernel_vm86_regs * regs)
  329. {
  330. regs->pt.eflags &= ~TF_MASK;
  331. }
  332. static inline void clear_AC(struct kernel_vm86_regs * regs)
  333. {
  334. regs->pt.eflags &= ~AC_MASK;
  335. }
  336. /* It is correct to call set_IF(regs) from the set_vflags_*
  337. * functions. However someone forgot to call clear_IF(regs)
  338. * in the opposite case.
  339. * After the command sequence CLI PUSHF STI POPF you should
  340. * end up with interrups disabled, but you ended up with
  341. * interrupts enabled.
  342. * ( I was testing my own changes, but the only bug I
  343. * could find was in a function I had not changed. )
  344. * [KD]
  345. */
  346. static inline void set_vflags_long(unsigned long eflags, struct kernel_vm86_regs * regs)
  347. {
  348. set_flags(VEFLAGS, eflags, current->thread.v86mask);
  349. set_flags(regs->pt.eflags, eflags, SAFE_MASK);
  350. if (eflags & IF_MASK)
  351. set_IF(regs);
  352. else
  353. clear_IF(regs);
  354. }
  355. static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs * regs)
  356. {
  357. set_flags(VFLAGS, flags, current->thread.v86mask);
  358. set_flags(regs->pt.eflags, flags, SAFE_MASK);
  359. if (flags & IF_MASK)
  360. set_IF(regs);
  361. else
  362. clear_IF(regs);
  363. }
  364. static inline unsigned long get_vflags(struct kernel_vm86_regs * regs)
  365. {
  366. unsigned long flags = regs->pt.eflags & RETURN_MASK;
  367. if (VEFLAGS & VIF_MASK)
  368. flags |= IF_MASK;
  369. flags |= IOPL_MASK;
  370. return flags | (VEFLAGS & current->thread.v86mask);
  371. }
  372. static inline int is_revectored(int nr, struct revectored_struct * bitmap)
  373. {
  374. __asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
  375. :"=r" (nr)
  376. :"m" (*bitmap),"r" (nr));
  377. return nr;
  378. }
  379. #define val_byte(val, n) (((__u8 *)&val)[n])
  380. #define pushb(base, ptr, val, err_label) \
  381. do { \
  382. __u8 __val = val; \
  383. ptr--; \
  384. if (put_user(__val, base + ptr) < 0) \
  385. goto err_label; \
  386. } while(0)
  387. #define pushw(base, ptr, val, err_label) \
  388. do { \
  389. __u16 __val = val; \
  390. ptr--; \
  391. if (put_user(val_byte(__val, 1), base + ptr) < 0) \
  392. goto err_label; \
  393. ptr--; \
  394. if (put_user(val_byte(__val, 0), base + ptr) < 0) \
  395. goto err_label; \
  396. } while(0)
  397. #define pushl(base, ptr, val, err_label) \
  398. do { \
  399. __u32 __val = val; \
  400. ptr--; \
  401. if (put_user(val_byte(__val, 3), base + ptr) < 0) \
  402. goto err_label; \
  403. ptr--; \
  404. if (put_user(val_byte(__val, 2), base + ptr) < 0) \
  405. goto err_label; \
  406. ptr--; \
  407. if (put_user(val_byte(__val, 1), base + ptr) < 0) \
  408. goto err_label; \
  409. ptr--; \
  410. if (put_user(val_byte(__val, 0), base + ptr) < 0) \
  411. goto err_label; \
  412. } while(0)
  413. #define popb(base, ptr, err_label) \
  414. ({ \
  415. __u8 __res; \
  416. if (get_user(__res, base + ptr) < 0) \
  417. goto err_label; \
  418. ptr++; \
  419. __res; \
  420. })
  421. #define popw(base, ptr, err_label) \
  422. ({ \
  423. __u16 __res; \
  424. if (get_user(val_byte(__res, 0), base + ptr) < 0) \
  425. goto err_label; \
  426. ptr++; \
  427. if (get_user(val_byte(__res, 1), base + ptr) < 0) \
  428. goto err_label; \
  429. ptr++; \
  430. __res; \
  431. })
  432. #define popl(base, ptr, err_label) \
  433. ({ \
  434. __u32 __res; \
  435. if (get_user(val_byte(__res, 0), base + ptr) < 0) \
  436. goto err_label; \
  437. ptr++; \
  438. if (get_user(val_byte(__res, 1), base + ptr) < 0) \
  439. goto err_label; \
  440. ptr++; \
  441. if (get_user(val_byte(__res, 2), base + ptr) < 0) \
  442. goto err_label; \
  443. ptr++; \
  444. if (get_user(val_byte(__res, 3), base + ptr) < 0) \
  445. goto err_label; \
  446. ptr++; \
  447. __res; \
  448. })
  449. /* There are so many possible reasons for this function to return
  450. * VM86_INTx, so adding another doesn't bother me. We can expect
  451. * userspace programs to be able to handle it. (Getting a problem
  452. * in userspace is always better than an Oops anyway.) [KD]
  453. */
  454. static void do_int(struct kernel_vm86_regs *regs, int i,
  455. unsigned char __user * ssp, unsigned short sp)
  456. {
  457. unsigned long __user *intr_ptr;
  458. unsigned long segoffs;
  459. if (regs->pt.xcs == BIOSSEG)
  460. goto cannot_handle;
  461. if (is_revectored(i, &KVM86->int_revectored))
  462. goto cannot_handle;
  463. if (i==0x21 && is_revectored(AH(regs),&KVM86->int21_revectored))
  464. goto cannot_handle;
  465. intr_ptr = (unsigned long __user *) (i << 2);
  466. if (get_user(segoffs, intr_ptr))
  467. goto cannot_handle;
  468. if ((segoffs >> 16) == BIOSSEG)
  469. goto cannot_handle;
  470. pushw(ssp, sp, get_vflags(regs), cannot_handle);
  471. pushw(ssp, sp, regs->pt.xcs, cannot_handle);
  472. pushw(ssp, sp, IP(regs), cannot_handle);
  473. regs->pt.xcs = segoffs >> 16;
  474. SP(regs) -= 6;
  475. IP(regs) = segoffs & 0xffff;
  476. clear_TF(regs);
  477. clear_IF(regs);
  478. clear_AC(regs);
  479. return;
  480. cannot_handle:
  481. return_to_32bit(regs, VM86_INTx + (i << 8));
  482. }
  483. int handle_vm86_trap(struct kernel_vm86_regs * regs, long error_code, int trapno)
  484. {
  485. if (VMPI.is_vm86pus) {
  486. if ( (trapno==3) || (trapno==1) )
  487. return_to_32bit(regs, VM86_TRAP + (trapno << 8));
  488. do_int(regs, trapno, (unsigned char __user *) (regs->pt.xss << 4), SP(regs));
  489. return 0;
  490. }
  491. if (trapno !=1)
  492. return 1; /* we let this handle by the calling routine */
  493. if (current->ptrace & PT_PTRACED) {
  494. unsigned long flags;
  495. spin_lock_irqsave(&current->sighand->siglock, flags);
  496. sigdelset(&current->blocked, SIGTRAP);
  497. recalc_sigpending();
  498. spin_unlock_irqrestore(&current->sighand->siglock, flags);
  499. }
  500. send_sig(SIGTRAP, current, 1);
  501. current->thread.trap_no = trapno;
  502. current->thread.error_code = error_code;
  503. return 0;
  504. }
  505. void handle_vm86_fault(struct kernel_vm86_regs * regs, long error_code)
  506. {
  507. unsigned char opcode;
  508. unsigned char __user *csp;
  509. unsigned char __user *ssp;
  510. unsigned short ip, sp, orig_flags;
  511. int data32, pref_done;
  512. #define CHECK_IF_IN_TRAP \
  513. if (VMPI.vm86dbg_active && VMPI.vm86dbg_TFpendig) \
  514. newflags |= TF_MASK
  515. #define VM86_FAULT_RETURN do { \
  516. if (VMPI.force_return_for_pic && (VEFLAGS & (IF_MASK | VIF_MASK))) \
  517. return_to_32bit(regs, VM86_PICRETURN); \
  518. if (orig_flags & TF_MASK) \
  519. handle_vm86_trap(regs, 0, 1); \
  520. return; } while (0)
  521. orig_flags = *(unsigned short *)&regs->pt.eflags;
  522. csp = (unsigned char __user *) (regs->pt.xcs << 4);
  523. ssp = (unsigned char __user *) (regs->pt.xss << 4);
  524. sp = SP(regs);
  525. ip = IP(regs);
  526. data32 = 0;
  527. pref_done = 0;
  528. do {
  529. switch (opcode = popb(csp, ip, simulate_sigsegv)) {
  530. case 0x66: /* 32-bit data */ data32=1; break;
  531. case 0x67: /* 32-bit address */ break;
  532. case 0x2e: /* CS */ break;
  533. case 0x3e: /* DS */ break;
  534. case 0x26: /* ES */ break;
  535. case 0x36: /* SS */ break;
  536. case 0x65: /* GS */ break;
  537. case 0x64: /* FS */ break;
  538. case 0xf2: /* repnz */ break;
  539. case 0xf3: /* rep */ break;
  540. default: pref_done = 1;
  541. }
  542. } while (!pref_done);
  543. switch (opcode) {
  544. /* pushf */
  545. case 0x9c:
  546. if (data32) {
  547. pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
  548. SP(regs) -= 4;
  549. } else {
  550. pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
  551. SP(regs) -= 2;
  552. }
  553. IP(regs) = ip;
  554. VM86_FAULT_RETURN;
  555. /* popf */
  556. case 0x9d:
  557. {
  558. unsigned long newflags;
  559. if (data32) {
  560. newflags=popl(ssp, sp, simulate_sigsegv);
  561. SP(regs) += 4;
  562. } else {
  563. newflags = popw(ssp, sp, simulate_sigsegv);
  564. SP(regs) += 2;
  565. }
  566. IP(regs) = ip;
  567. CHECK_IF_IN_TRAP;
  568. if (data32) {
  569. set_vflags_long(newflags, regs);
  570. } else {
  571. set_vflags_short(newflags, regs);
  572. }
  573. VM86_FAULT_RETURN;
  574. }
  575. /* int xx */
  576. case 0xcd: {
  577. int intno=popb(csp, ip, simulate_sigsegv);
  578. IP(regs) = ip;
  579. if (VMPI.vm86dbg_active) {
  580. if ( (1 << (intno &7)) & VMPI.vm86dbg_intxxtab[intno >> 3] )
  581. return_to_32bit(regs, VM86_INTx + (intno << 8));
  582. }
  583. do_int(regs, intno, ssp, sp);
  584. return;
  585. }
  586. /* iret */
  587. case 0xcf:
  588. {
  589. unsigned long newip;
  590. unsigned long newcs;
  591. unsigned long newflags;
  592. if (data32) {
  593. newip=popl(ssp, sp, simulate_sigsegv);
  594. newcs=popl(ssp, sp, simulate_sigsegv);
  595. newflags=popl(ssp, sp, simulate_sigsegv);
  596. SP(regs) += 12;
  597. } else {
  598. newip = popw(ssp, sp, simulate_sigsegv);
  599. newcs = popw(ssp, sp, simulate_sigsegv);
  600. newflags = popw(ssp, sp, simulate_sigsegv);
  601. SP(regs) += 6;
  602. }
  603. IP(regs) = newip;
  604. regs->pt.xcs = newcs;
  605. CHECK_IF_IN_TRAP;
  606. if (data32) {
  607. set_vflags_long(newflags, regs);
  608. } else {
  609. set_vflags_short(newflags, regs);
  610. }
  611. VM86_FAULT_RETURN;
  612. }
  613. /* cli */
  614. case 0xfa:
  615. IP(regs) = ip;
  616. clear_IF(regs);
  617. VM86_FAULT_RETURN;
  618. /* sti */
  619. /*
  620. * Damn. This is incorrect: the 'sti' instruction should actually
  621. * enable interrupts after the /next/ instruction. Not good.
  622. *
  623. * Probably needs some horsing around with the TF flag. Aiee..
  624. */
  625. case 0xfb:
  626. IP(regs) = ip;
  627. set_IF(regs);
  628. VM86_FAULT_RETURN;
  629. default:
  630. return_to_32bit(regs, VM86_UNKNOWN);
  631. }
  632. return;
  633. simulate_sigsegv:
  634. /* FIXME: After a long discussion with Stas we finally
  635. * agreed, that this is wrong. Here we should
  636. * really send a SIGSEGV to the user program.
  637. * But how do we create the correct context? We
  638. * are inside a general protection fault handler
  639. * and has just returned from a page fault handler.
  640. * The correct context for the signal handler
  641. * should be a mixture of the two, but how do we
  642. * get the information? [KD]
  643. */
  644. return_to_32bit(regs, VM86_UNKNOWN);
  645. }
  646. /* ---------------- vm86 special IRQ passing stuff ----------------- */
  647. #define VM86_IRQNAME "vm86irq"
  648. static struct vm86_irqs {
  649. struct task_struct *tsk;
  650. int sig;
  651. } vm86_irqs[16];
  652. static DEFINE_SPINLOCK(irqbits_lock);
  653. static int irqbits;
  654. #define ALLOWED_SIGS ( 1 /* 0 = don't send a signal */ \
  655. | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO) | (1 << SIGURG) \
  656. | (1 << SIGUNUSED) )
  657. static irqreturn_t irq_handler(int intno, void *dev_id)
  658. {
  659. int irq_bit;
  660. unsigned long flags;
  661. spin_lock_irqsave(&irqbits_lock, flags);
  662. irq_bit = 1 << intno;
  663. if ((irqbits & irq_bit) || ! vm86_irqs[intno].tsk)
  664. goto out;
  665. irqbits |= irq_bit;
  666. if (vm86_irqs[intno].sig)
  667. send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
  668. /*
  669. * IRQ will be re-enabled when user asks for the irq (whether
  670. * polling or as a result of the signal)
  671. */
  672. disable_irq_nosync(intno);
  673. spin_unlock_irqrestore(&irqbits_lock, flags);
  674. return IRQ_HANDLED;
  675. out:
  676. spin_unlock_irqrestore(&irqbits_lock, flags);
  677. return IRQ_NONE;
  678. }
  679. static inline void free_vm86_irq(int irqnumber)
  680. {
  681. unsigned long flags;
  682. free_irq(irqnumber, NULL);
  683. vm86_irqs[irqnumber].tsk = NULL;
  684. spin_lock_irqsave(&irqbits_lock, flags);
  685. irqbits &= ~(1 << irqnumber);
  686. spin_unlock_irqrestore(&irqbits_lock, flags);
  687. }
  688. void release_vm86_irqs(struct task_struct *task)
  689. {
  690. int i;
  691. for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
  692. if (vm86_irqs[i].tsk == task)
  693. free_vm86_irq(i);
  694. }
  695. static inline int get_and_reset_irq(int irqnumber)
  696. {
  697. int bit;
  698. unsigned long flags;
  699. int ret = 0;
  700. if (invalid_vm86_irq(irqnumber)) return 0;
  701. if (vm86_irqs[irqnumber].tsk != current) return 0;
  702. spin_lock_irqsave(&irqbits_lock, flags);
  703. bit = irqbits & (1 << irqnumber);
  704. irqbits &= ~bit;
  705. if (bit) {
  706. enable_irq(irqnumber);
  707. ret = 1;
  708. }
  709. spin_unlock_irqrestore(&irqbits_lock, flags);
  710. return ret;
  711. }
  712. static int do_vm86_irq_handling(int subfunction, int irqnumber)
  713. {
  714. int ret;
  715. switch (subfunction) {
  716. case VM86_GET_AND_RESET_IRQ: {
  717. return get_and_reset_irq(irqnumber);
  718. }
  719. case VM86_GET_IRQ_BITS: {
  720. return irqbits;
  721. }
  722. case VM86_REQUEST_IRQ: {
  723. int sig = irqnumber >> 8;
  724. int irq = irqnumber & 255;
  725. if (!capable(CAP_SYS_ADMIN)) return -EPERM;
  726. if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
  727. if (invalid_vm86_irq(irq)) return -EPERM;
  728. if (vm86_irqs[irq].tsk) return -EPERM;
  729. ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
  730. if (ret) return ret;
  731. vm86_irqs[irq].sig = sig;
  732. vm86_irqs[irq].tsk = current;
  733. return irq;
  734. }
  735. case VM86_FREE_IRQ: {
  736. if (invalid_vm86_irq(irqnumber)) return -EPERM;
  737. if (!vm86_irqs[irqnumber].tsk) return 0;
  738. if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
  739. free_vm86_irq(irqnumber);
  740. return 0;
  741. }
  742. }
  743. return -EINVAL;
  744. }