123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591 |
- #include <linux/clocksource.h>
- #include <linux/clockchips.h>
- #include <linux/errno.h>
- #include <linux/hpet.h>
- #include <linux/init.h>
- #include <linux/sysdev.h>
- #include <linux/pm.h>
- #include <asm/hpet.h>
- #include <asm/io.h>
- extern struct clock_event_device *global_clock_event;
- #define HPET_MASK CLOCKSOURCE_MASK(32)
- #define HPET_SHIFT 22
- /* FSEC = 10^-15 NSEC = 10^-9 */
- #define FSEC_PER_NSEC 1000000
- /*
- * HPET address is set in acpi/boot.c, when an ACPI entry exists
- */
- unsigned long hpet_address;
- static void __iomem * hpet_virt_address;
- static inline unsigned long hpet_readl(unsigned long a)
- {
- return readl(hpet_virt_address + a);
- }
- static inline void hpet_writel(unsigned long d, unsigned long a)
- {
- writel(d, hpet_virt_address + a);
- }
- /*
- * HPET command line enable / disable
- */
- static int boot_hpet_disable;
- static int __init hpet_setup(char* str)
- {
- if (str) {
- if (!strncmp("disable", str, 7))
- boot_hpet_disable = 1;
- }
- return 1;
- }
- __setup("hpet=", hpet_setup);
- static inline int is_hpet_capable(void)
- {
- return (!boot_hpet_disable && hpet_address);
- }
- /*
- * HPET timer interrupt enable / disable
- */
- static int hpet_legacy_int_enabled;
- /**
- * is_hpet_enabled - check whether the hpet timer interrupt is enabled
- */
- int is_hpet_enabled(void)
- {
- return is_hpet_capable() && hpet_legacy_int_enabled;
- }
- /*
- * When the hpet driver (/dev/hpet) is enabled, we need to reserve
- * timer 0 and timer 1 in case of RTC emulation.
- */
- #ifdef CONFIG_HPET
- static void hpet_reserve_platform_timers(unsigned long id)
- {
- struct hpet __iomem *hpet = hpet_virt_address;
- struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
- unsigned int nrtimers, i;
- struct hpet_data hd;
- nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
- memset(&hd, 0, sizeof (hd));
- hd.hd_phys_address = hpet_address;
- hd.hd_address = hpet_virt_address;
- hd.hd_nirqs = nrtimers;
- hd.hd_flags = HPET_DATA_PLATFORM;
- hpet_reserve_timer(&hd, 0);
- #ifdef CONFIG_HPET_EMULATE_RTC
- hpet_reserve_timer(&hd, 1);
- #endif
- hd.hd_irq[0] = HPET_LEGACY_8254;
- hd.hd_irq[1] = HPET_LEGACY_RTC;
- for (i = 2; i < nrtimers; timer++, i++)
- hd.hd_irq[i] = (timer->hpet_config & Tn_INT_ROUTE_CNF_MASK) >>
- Tn_INT_ROUTE_CNF_SHIFT;
- hpet_alloc(&hd);
- }
- #else
- static void hpet_reserve_platform_timers(unsigned long id) { }
- #endif
- /*
- * Common hpet info
- */
- static unsigned long hpet_period;
- static void hpet_set_mode(enum clock_event_mode mode,
- struct clock_event_device *evt);
- static int hpet_next_event(unsigned long delta,
- struct clock_event_device *evt);
- /*
- * The hpet clock event device
- */
- static struct clock_event_device hpet_clockevent = {
- .name = "hpet",
- .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
- .set_mode = hpet_set_mode,
- .set_next_event = hpet_next_event,
- .shift = 32,
- .irq = 0,
- };
- static void hpet_start_counter(void)
- {
- unsigned long cfg = hpet_readl(HPET_CFG);
- cfg &= ~HPET_CFG_ENABLE;
- hpet_writel(cfg, HPET_CFG);
- hpet_writel(0, HPET_COUNTER);
- hpet_writel(0, HPET_COUNTER + 4);
- cfg |= HPET_CFG_ENABLE;
- hpet_writel(cfg, HPET_CFG);
- }
- static void hpet_enable_int(void)
- {
- unsigned long cfg = hpet_readl(HPET_CFG);
- cfg |= HPET_CFG_LEGACY;
- hpet_writel(cfg, HPET_CFG);
- hpet_legacy_int_enabled = 1;
- }
- static void hpet_set_mode(enum clock_event_mode mode,
- struct clock_event_device *evt)
- {
- unsigned long cfg, cmp, now;
- uint64_t delta;
- switch(mode) {
- case CLOCK_EVT_MODE_PERIODIC:
- delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
- delta >>= hpet_clockevent.shift;
- now = hpet_readl(HPET_COUNTER);
- cmp = now + (unsigned long) delta;
- cfg = hpet_readl(HPET_T0_CFG);
- cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
- HPET_TN_SETVAL | HPET_TN_32BIT;
- hpet_writel(cfg, HPET_T0_CFG);
- /*
- * The first write after writing TN_SETVAL to the
- * config register sets the counter value, the second
- * write sets the period.
- */
- hpet_writel(cmp, HPET_T0_CMP);
- udelay(1);
- hpet_writel((unsigned long) delta, HPET_T0_CMP);
- break;
- case CLOCK_EVT_MODE_ONESHOT:
- cfg = hpet_readl(HPET_T0_CFG);
- cfg &= ~HPET_TN_PERIODIC;
- cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
- hpet_writel(cfg, HPET_T0_CFG);
- break;
- case CLOCK_EVT_MODE_UNUSED:
- case CLOCK_EVT_MODE_SHUTDOWN:
- cfg = hpet_readl(HPET_T0_CFG);
- cfg &= ~HPET_TN_ENABLE;
- hpet_writel(cfg, HPET_T0_CFG);
- break;
- }
- }
- static int hpet_next_event(unsigned long delta,
- struct clock_event_device *evt)
- {
- unsigned long cnt;
- cnt = hpet_readl(HPET_COUNTER);
- cnt += delta;
- hpet_writel(cnt, HPET_T0_CMP);
- return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0;
- }
- /*
- * Clock source related code
- */
- static cycle_t read_hpet(void)
- {
- return (cycle_t)hpet_readl(HPET_COUNTER);
- }
- static struct clocksource clocksource_hpet = {
- .name = "hpet",
- .rating = 250,
- .read = read_hpet,
- .mask = HPET_MASK,
- .shift = HPET_SHIFT,
- .flags = CLOCK_SOURCE_IS_CONTINUOUS,
- };
- /*
- * Try to setup the HPET timer
- */
- int __init hpet_enable(void)
- {
- unsigned long id;
- uint64_t hpet_freq;
- u64 tmp;
- if (!is_hpet_capable())
- return 0;
- hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
- /*
- * Read the period and check for a sane value:
- */
- hpet_period = hpet_readl(HPET_PERIOD);
- if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
- goto out_nohpet;
- /*
- * The period is a femto seconds value. We need to calculate the
- * scaled math multiplication factor for nanosecond to hpet tick
- * conversion.
- */
- hpet_freq = 1000000000000000ULL;
- do_div(hpet_freq, hpet_period);
- hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
- NSEC_PER_SEC, 32);
- /* Calculate the min / max delta */
- hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
- &hpet_clockevent);
- hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
- &hpet_clockevent);
- /*
- * Read the HPET ID register to retrieve the IRQ routing
- * information and the number of channels
- */
- id = hpet_readl(HPET_ID);
- #ifdef CONFIG_HPET_EMULATE_RTC
- /*
- * The legacy routing mode needs at least two channels, tick timer
- * and the rtc emulation channel.
- */
- if (!(id & HPET_ID_NUMBER))
- goto out_nohpet;
- #endif
- /* Start the counter */
- hpet_start_counter();
- /* Initialize and register HPET clocksource
- *
- * hpet period is in femto seconds per cycle
- * so we need to convert this to ns/cyc units
- * aproximated by mult/2^shift
- *
- * fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
- * fsec/cyc * 1ns/1000000fsec * 2^shift = mult
- * fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
- * (fsec/cyc << shift)/1000000 = mult
- * (hpet_period << shift)/FSEC_PER_NSEC = mult
- */
- tmp = (u64)hpet_period << HPET_SHIFT;
- do_div(tmp, FSEC_PER_NSEC);
- clocksource_hpet.mult = (u32)tmp;
- clocksource_register(&clocksource_hpet);
- if (id & HPET_ID_LEGSUP) {
- hpet_enable_int();
- hpet_reserve_platform_timers(id);
- /*
- * Start hpet with the boot cpu mask and make it
- * global after the IO_APIC has been initialized.
- */
- hpet_clockevent.cpumask =cpumask_of_cpu(0);
- clockevents_register_device(&hpet_clockevent);
- global_clock_event = &hpet_clockevent;
- return 1;
- }
- return 0;
- out_nohpet:
- iounmap(hpet_virt_address);
- hpet_virt_address = NULL;
- boot_hpet_disable = 1;
- return 0;
- }
- #ifdef CONFIG_HPET_EMULATE_RTC
- /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
- * is enabled, we support RTC interrupt functionality in software.
- * RTC has 3 kinds of interrupts:
- * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
- * is updated
- * 2) Alarm Interrupt - generate an interrupt at a specific time of day
- * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
- * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
- * (1) and (2) above are implemented using polling at a frequency of
- * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
- * overhead. (DEFAULT_RTC_INT_FREQ)
- * For (3), we use interrupts at 64Hz or user specified periodic
- * frequency, whichever is higher.
- */
- #include <linux/mc146818rtc.h>
- #include <linux/rtc.h>
- #define DEFAULT_RTC_INT_FREQ 64
- #define DEFAULT_RTC_SHIFT 6
- #define RTC_NUM_INTS 1
- static unsigned long hpet_rtc_flags;
- static unsigned long hpet_prev_update_sec;
- static struct rtc_time hpet_alarm_time;
- static unsigned long hpet_pie_count;
- static unsigned long hpet_t1_cmp;
- static unsigned long hpet_default_delta;
- static unsigned long hpet_pie_delta;
- static unsigned long hpet_pie_limit;
- /*
- * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
- * is not supported by all HPET implementations for timer 1.
- *
- * hpet_rtc_timer_init() is called when the rtc is initialized.
- */
- int hpet_rtc_timer_init(void)
- {
- unsigned long cfg, cnt, delta, flags;
- if (!is_hpet_enabled())
- return 0;
- if (!hpet_default_delta) {
- uint64_t clc;
- clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
- clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
- hpet_default_delta = (unsigned long) clc;
- }
- if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
- delta = hpet_default_delta;
- else
- delta = hpet_pie_delta;
- local_irq_save(flags);
- cnt = delta + hpet_readl(HPET_COUNTER);
- hpet_writel(cnt, HPET_T1_CMP);
- hpet_t1_cmp = cnt;
- cfg = hpet_readl(HPET_T1_CFG);
- cfg &= ~HPET_TN_PERIODIC;
- cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
- hpet_writel(cfg, HPET_T1_CFG);
- local_irq_restore(flags);
- return 1;
- }
- /*
- * The functions below are called from rtc driver.
- * Return 0 if HPET is not being used.
- * Otherwise do the necessary changes and return 1.
- */
- int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
- {
- if (!is_hpet_enabled())
- return 0;
- hpet_rtc_flags &= ~bit_mask;
- return 1;
- }
- int hpet_set_rtc_irq_bit(unsigned long bit_mask)
- {
- unsigned long oldbits = hpet_rtc_flags;
- if (!is_hpet_enabled())
- return 0;
- hpet_rtc_flags |= bit_mask;
- if (!oldbits)
- hpet_rtc_timer_init();
- return 1;
- }
- int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
- unsigned char sec)
- {
- if (!is_hpet_enabled())
- return 0;
- hpet_alarm_time.tm_hour = hrs;
- hpet_alarm_time.tm_min = min;
- hpet_alarm_time.tm_sec = sec;
- return 1;
- }
- int hpet_set_periodic_freq(unsigned long freq)
- {
- uint64_t clc;
- if (!is_hpet_enabled())
- return 0;
- if (freq <= DEFAULT_RTC_INT_FREQ)
- hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
- else {
- clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
- do_div(clc, freq);
- clc >>= hpet_clockevent.shift;
- hpet_pie_delta = (unsigned long) clc;
- }
- return 1;
- }
- int hpet_rtc_dropped_irq(void)
- {
- return is_hpet_enabled();
- }
- static void hpet_rtc_timer_reinit(void)
- {
- unsigned long cfg, delta;
- int lost_ints = -1;
- if (unlikely(!hpet_rtc_flags)) {
- cfg = hpet_readl(HPET_T1_CFG);
- cfg &= ~HPET_TN_ENABLE;
- hpet_writel(cfg, HPET_T1_CFG);
- return;
- }
- if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
- delta = hpet_default_delta;
- else
- delta = hpet_pie_delta;
- /*
- * Increment the comparator value until we are ahead of the
- * current count.
- */
- do {
- hpet_t1_cmp += delta;
- hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
- lost_ints++;
- } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
- if (lost_ints) {
- if (hpet_rtc_flags & RTC_PIE)
- hpet_pie_count += lost_ints;
- if (printk_ratelimit())
- printk(KERN_WARNING "rtc: lost %d interrupts\n",
- lost_ints);
- }
- }
- irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
- {
- struct rtc_time curr_time;
- unsigned long rtc_int_flag = 0;
- hpet_rtc_timer_reinit();
- if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
- rtc_get_rtc_time(&curr_time);
- if (hpet_rtc_flags & RTC_UIE &&
- curr_time.tm_sec != hpet_prev_update_sec) {
- rtc_int_flag = RTC_UF;
- hpet_prev_update_sec = curr_time.tm_sec;
- }
- if (hpet_rtc_flags & RTC_PIE &&
- ++hpet_pie_count >= hpet_pie_limit) {
- rtc_int_flag |= RTC_PF;
- hpet_pie_count = 0;
- }
- if (hpet_rtc_flags & RTC_PIE &&
- (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
- (curr_time.tm_min == hpet_alarm_time.tm_min) &&
- (curr_time.tm_hour == hpet_alarm_time.tm_hour))
- rtc_int_flag |= RTC_AF;
- if (rtc_int_flag) {
- rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
- rtc_interrupt(rtc_int_flag, dev_id);
- }
- return IRQ_HANDLED;
- }
- #endif
- /*
- * Suspend/resume part
- */
- #ifdef CONFIG_PM
- static int hpet_suspend(struct sys_device *sys_device, pm_message_t state)
- {
- unsigned long cfg = hpet_readl(HPET_CFG);
- cfg &= ~(HPET_CFG_ENABLE|HPET_CFG_LEGACY);
- hpet_writel(cfg, HPET_CFG);
- return 0;
- }
- static int hpet_resume(struct sys_device *sys_device)
- {
- unsigned int id;
- hpet_start_counter();
- id = hpet_readl(HPET_ID);
- if (id & HPET_ID_LEGSUP)
- hpet_enable_int();
- return 0;
- }
- static struct sysdev_class hpet_class = {
- set_kset_name("hpet"),
- .suspend = hpet_suspend,
- .resume = hpet_resume,
- };
- static struct sys_device hpet_device = {
- .id = 0,
- .cls = &hpet_class,
- };
- static __init int hpet_register_sysfs(void)
- {
- int err;
- if (!is_hpet_capable())
- return 0;
- err = sysdev_class_register(&hpet_class);
- if (!err) {
- err = sysdev_register(&hpet_device);
- if (err)
- sysdev_class_unregister(&hpet_class);
- }
- return err;
- }
- device_initcall(hpet_register_sysfs);
- #endif
|