hw.c 67 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639
  1. /*
  2. * Copyright (c) 2008-2010 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <asm/unaligned.h>
  19. #include "hw.h"
  20. #include "hw-ops.h"
  21. #include "rc.h"
  22. #include "ar9003_mac.h"
  23. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  24. MODULE_AUTHOR("Atheros Communications");
  25. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  26. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  27. MODULE_LICENSE("Dual BSD/GPL");
  28. static int __init ath9k_init(void)
  29. {
  30. return 0;
  31. }
  32. module_init(ath9k_init);
  33. static void __exit ath9k_exit(void)
  34. {
  35. return;
  36. }
  37. module_exit(ath9k_exit);
  38. /* Private hardware callbacks */
  39. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  40. {
  41. ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  42. }
  43. static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
  44. {
  45. ath9k_hw_private_ops(ah)->init_mode_regs(ah);
  46. }
  47. static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  48. struct ath9k_channel *chan)
  49. {
  50. return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  51. }
  52. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  53. {
  54. if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  55. return;
  56. ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  57. }
  58. static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  59. {
  60. /* You will not have this callback if using the old ANI */
  61. if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  62. return;
  63. ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  64. }
  65. /********************/
  66. /* Helper Functions */
  67. /********************/
  68. static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  69. {
  70. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  71. struct ath_common *common = ath9k_hw_common(ah);
  72. unsigned int clockrate;
  73. if (!ah->curchan) /* should really check for CCK instead */
  74. clockrate = ATH9K_CLOCK_RATE_CCK;
  75. else if (conf->channel->band == IEEE80211_BAND_2GHZ)
  76. clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  77. else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  78. clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  79. else
  80. clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  81. if (conf_is_ht40(conf))
  82. clockrate *= 2;
  83. common->clockrate = clockrate;
  84. }
  85. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  86. {
  87. struct ath_common *common = ath9k_hw_common(ah);
  88. return usecs * common->clockrate;
  89. }
  90. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  91. {
  92. int i;
  93. BUG_ON(timeout < AH_TIME_QUANTUM);
  94. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  95. if ((REG_READ(ah, reg) & mask) == val)
  96. return true;
  97. udelay(AH_TIME_QUANTUM);
  98. }
  99. ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
  100. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  101. timeout, reg, REG_READ(ah, reg), mask, val);
  102. return false;
  103. }
  104. EXPORT_SYMBOL(ath9k_hw_wait);
  105. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  106. {
  107. u32 retval;
  108. int i;
  109. for (i = 0, retval = 0; i < n; i++) {
  110. retval = (retval << 1) | (val & 1);
  111. val >>= 1;
  112. }
  113. return retval;
  114. }
  115. bool ath9k_get_channel_edges(struct ath_hw *ah,
  116. u16 flags, u16 *low,
  117. u16 *high)
  118. {
  119. struct ath9k_hw_capabilities *pCap = &ah->caps;
  120. if (flags & CHANNEL_5GHZ) {
  121. *low = pCap->low_5ghz_chan;
  122. *high = pCap->high_5ghz_chan;
  123. return true;
  124. }
  125. if ((flags & CHANNEL_2GHZ)) {
  126. *low = pCap->low_2ghz_chan;
  127. *high = pCap->high_2ghz_chan;
  128. return true;
  129. }
  130. return false;
  131. }
  132. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  133. u8 phy, int kbps,
  134. u32 frameLen, u16 rateix,
  135. bool shortPreamble)
  136. {
  137. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  138. if (kbps == 0)
  139. return 0;
  140. switch (phy) {
  141. case WLAN_RC_PHY_CCK:
  142. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  143. if (shortPreamble)
  144. phyTime >>= 1;
  145. numBits = frameLen << 3;
  146. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  147. break;
  148. case WLAN_RC_PHY_OFDM:
  149. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  150. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  151. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  152. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  153. txTime = OFDM_SIFS_TIME_QUARTER
  154. + OFDM_PREAMBLE_TIME_QUARTER
  155. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  156. } else if (ah->curchan &&
  157. IS_CHAN_HALF_RATE(ah->curchan)) {
  158. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  159. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  160. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  161. txTime = OFDM_SIFS_TIME_HALF +
  162. OFDM_PREAMBLE_TIME_HALF
  163. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  164. } else {
  165. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  166. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  167. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  168. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  169. + (numSymbols * OFDM_SYMBOL_TIME);
  170. }
  171. break;
  172. default:
  173. ath_err(ath9k_hw_common(ah),
  174. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  175. txTime = 0;
  176. break;
  177. }
  178. return txTime;
  179. }
  180. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  181. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  182. struct ath9k_channel *chan,
  183. struct chan_centers *centers)
  184. {
  185. int8_t extoff;
  186. if (!IS_CHAN_HT40(chan)) {
  187. centers->ctl_center = centers->ext_center =
  188. centers->synth_center = chan->channel;
  189. return;
  190. }
  191. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  192. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  193. centers->synth_center =
  194. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  195. extoff = 1;
  196. } else {
  197. centers->synth_center =
  198. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  199. extoff = -1;
  200. }
  201. centers->ctl_center =
  202. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  203. /* 25 MHz spacing is supported by hw but not on upper layers */
  204. centers->ext_center =
  205. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  206. }
  207. /******************/
  208. /* Chip Revisions */
  209. /******************/
  210. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  211. {
  212. u32 val;
  213. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  214. if (val == 0xFF) {
  215. val = REG_READ(ah, AR_SREV);
  216. ah->hw_version.macVersion =
  217. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  218. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  219. ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  220. } else {
  221. if (!AR_SREV_9100(ah))
  222. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  223. ah->hw_version.macRev = val & AR_SREV_REVISION;
  224. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  225. ah->is_pciexpress = true;
  226. }
  227. }
  228. /************************************/
  229. /* HW Attach, Detach, Init Routines */
  230. /************************************/
  231. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  232. {
  233. if (!AR_SREV_5416(ah))
  234. return;
  235. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  236. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  237. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  238. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  239. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  240. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  241. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  242. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  243. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  244. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  245. }
  246. /* This should work for all families including legacy */
  247. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  248. {
  249. struct ath_common *common = ath9k_hw_common(ah);
  250. u32 regAddr[2] = { AR_STA_ID0 };
  251. u32 regHold[2];
  252. static const u32 patternData[4] = {
  253. 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
  254. };
  255. int i, j, loop_max;
  256. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  257. loop_max = 2;
  258. regAddr[1] = AR_PHY_BASE + (8 << 2);
  259. } else
  260. loop_max = 1;
  261. for (i = 0; i < loop_max; i++) {
  262. u32 addr = regAddr[i];
  263. u32 wrData, rdData;
  264. regHold[i] = REG_READ(ah, addr);
  265. for (j = 0; j < 0x100; j++) {
  266. wrData = (j << 16) | j;
  267. REG_WRITE(ah, addr, wrData);
  268. rdData = REG_READ(ah, addr);
  269. if (rdData != wrData) {
  270. ath_err(common,
  271. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  272. addr, wrData, rdData);
  273. return false;
  274. }
  275. }
  276. for (j = 0; j < 4; j++) {
  277. wrData = patternData[j];
  278. REG_WRITE(ah, addr, wrData);
  279. rdData = REG_READ(ah, addr);
  280. if (wrData != rdData) {
  281. ath_err(common,
  282. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  283. addr, wrData, rdData);
  284. return false;
  285. }
  286. }
  287. REG_WRITE(ah, regAddr[i], regHold[i]);
  288. }
  289. udelay(100);
  290. return true;
  291. }
  292. static void ath9k_hw_init_config(struct ath_hw *ah)
  293. {
  294. int i;
  295. ah->config.dma_beacon_response_time = 2;
  296. ah->config.sw_beacon_response_time = 10;
  297. ah->config.additional_swba_backoff = 0;
  298. ah->config.ack_6mb = 0x0;
  299. ah->config.cwm_ignore_extcca = 0;
  300. ah->config.pcie_powersave_enable = 0;
  301. ah->config.pcie_clock_req = 0;
  302. ah->config.pcie_waen = 0;
  303. ah->config.analog_shiftreg = 1;
  304. ah->config.enable_ani = true;
  305. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  306. ah->config.spurchans[i][0] = AR_NO_SPUR;
  307. ah->config.spurchans[i][1] = AR_NO_SPUR;
  308. }
  309. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  310. ah->config.ht_enable = 1;
  311. else
  312. ah->config.ht_enable = 0;
  313. /* PAPRD needs some more work to be enabled */
  314. ah->config.paprd_disable = 1;
  315. ah->config.rx_intr_mitigation = true;
  316. ah->config.pcieSerDesWrite = true;
  317. /*
  318. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  319. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  320. * This means we use it for all AR5416 devices, and the few
  321. * minor PCI AR9280 devices out there.
  322. *
  323. * Serialization is required because these devices do not handle
  324. * well the case of two concurrent reads/writes due to the latency
  325. * involved. During one read/write another read/write can be issued
  326. * on another CPU while the previous read/write may still be working
  327. * on our hardware, if we hit this case the hardware poops in a loop.
  328. * We prevent this by serializing reads and writes.
  329. *
  330. * This issue is not present on PCI-Express devices or pre-AR5416
  331. * devices (legacy, 802.11abg).
  332. */
  333. if (num_possible_cpus() > 1)
  334. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  335. }
  336. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  337. {
  338. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  339. regulatory->country_code = CTRY_DEFAULT;
  340. regulatory->power_limit = MAX_RATE_POWER;
  341. regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
  342. ah->hw_version.magic = AR5416_MAGIC;
  343. ah->hw_version.subvendorid = 0;
  344. ah->atim_window = 0;
  345. ah->sta_id1_defaults =
  346. AR_STA_ID1_CRPT_MIC_ENABLE |
  347. AR_STA_ID1_MCAST_KSRCH;
  348. if (AR_SREV_9100(ah))
  349. ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
  350. ah->enable_32kHz_clock = DONT_USE_32KHZ;
  351. ah->slottime = 20;
  352. ah->globaltxtimeout = (u32) -1;
  353. ah->power_mode = ATH9K_PM_UNDEFINED;
  354. }
  355. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  356. {
  357. struct ath_common *common = ath9k_hw_common(ah);
  358. u32 sum;
  359. int i;
  360. u16 eeval;
  361. static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
  362. sum = 0;
  363. for (i = 0; i < 3; i++) {
  364. eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
  365. sum += eeval;
  366. common->macaddr[2 * i] = eeval >> 8;
  367. common->macaddr[2 * i + 1] = eeval & 0xff;
  368. }
  369. if (sum == 0 || sum == 0xffff * 3)
  370. return -EADDRNOTAVAIL;
  371. return 0;
  372. }
  373. static int ath9k_hw_post_init(struct ath_hw *ah)
  374. {
  375. struct ath_common *common = ath9k_hw_common(ah);
  376. int ecode;
  377. if (common->bus_ops->ath_bus_type != ATH_USB) {
  378. if (!ath9k_hw_chip_test(ah))
  379. return -ENODEV;
  380. }
  381. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  382. ecode = ar9002_hw_rf_claim(ah);
  383. if (ecode != 0)
  384. return ecode;
  385. }
  386. ecode = ath9k_hw_eeprom_init(ah);
  387. if (ecode != 0)
  388. return ecode;
  389. ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
  390. "Eeprom VER: %d, REV: %d\n",
  391. ah->eep_ops->get_eeprom_ver(ah),
  392. ah->eep_ops->get_eeprom_rev(ah));
  393. ecode = ath9k_hw_rf_alloc_ext_banks(ah);
  394. if (ecode) {
  395. ath_err(ath9k_hw_common(ah),
  396. "Failed allocating banks for external radio\n");
  397. ath9k_hw_rf_free_ext_banks(ah);
  398. return ecode;
  399. }
  400. if (!AR_SREV_9100(ah)) {
  401. ath9k_hw_ani_setup(ah);
  402. ath9k_hw_ani_init(ah);
  403. }
  404. return 0;
  405. }
  406. static void ath9k_hw_attach_ops(struct ath_hw *ah)
  407. {
  408. if (AR_SREV_9300_20_OR_LATER(ah))
  409. ar9003_hw_attach_ops(ah);
  410. else
  411. ar9002_hw_attach_ops(ah);
  412. }
  413. /* Called for all hardware families */
  414. static int __ath9k_hw_init(struct ath_hw *ah)
  415. {
  416. struct ath_common *common = ath9k_hw_common(ah);
  417. int r = 0;
  418. if (ah->hw_version.devid == AR5416_AR9100_DEVID)
  419. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  420. ath9k_hw_read_revisions(ah);
  421. /*
  422. * Read back AR_WA into a permanent copy and set bits 14 and 17.
  423. * We need to do this to avoid RMW of this register. We cannot
  424. * read the reg when chip is asleep.
  425. */
  426. ah->WARegVal = REG_READ(ah, AR_WA);
  427. ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
  428. AR_WA_ASPM_TIMER_BASED_DISABLE);
  429. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  430. ath_err(common, "Couldn't reset chip\n");
  431. return -EIO;
  432. }
  433. ath9k_hw_init_defaults(ah);
  434. ath9k_hw_init_config(ah);
  435. ath9k_hw_attach_ops(ah);
  436. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  437. ath_err(common, "Couldn't wakeup chip\n");
  438. return -EIO;
  439. }
  440. if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  441. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  442. ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
  443. !ah->is_pciexpress)) {
  444. ah->config.serialize_regmode =
  445. SER_REG_MODE_ON;
  446. } else {
  447. ah->config.serialize_regmode =
  448. SER_REG_MODE_OFF;
  449. }
  450. }
  451. ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
  452. ah->config.serialize_regmode);
  453. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  454. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  455. else
  456. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  457. switch (ah->hw_version.macVersion) {
  458. case AR_SREV_VERSION_5416_PCI:
  459. case AR_SREV_VERSION_5416_PCIE:
  460. case AR_SREV_VERSION_9160:
  461. case AR_SREV_VERSION_9100:
  462. case AR_SREV_VERSION_9280:
  463. case AR_SREV_VERSION_9285:
  464. case AR_SREV_VERSION_9287:
  465. case AR_SREV_VERSION_9271:
  466. case AR_SREV_VERSION_9300:
  467. case AR_SREV_VERSION_9485:
  468. break;
  469. default:
  470. ath_err(common,
  471. "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
  472. ah->hw_version.macVersion, ah->hw_version.macRev);
  473. return -EOPNOTSUPP;
  474. }
  475. if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
  476. ah->is_pciexpress = false;
  477. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  478. ath9k_hw_init_cal_settings(ah);
  479. ah->ani_function = ATH9K_ANI_ALL;
  480. if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  481. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  482. if (!AR_SREV_9300_20_OR_LATER(ah))
  483. ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
  484. ath9k_hw_init_mode_regs(ah);
  485. if (ah->is_pciexpress)
  486. ath9k_hw_configpcipowersave(ah, 0, 0);
  487. else
  488. ath9k_hw_disablepcie(ah);
  489. if (!AR_SREV_9300_20_OR_LATER(ah))
  490. ar9002_hw_cck_chan14_spread(ah);
  491. r = ath9k_hw_post_init(ah);
  492. if (r)
  493. return r;
  494. ath9k_hw_init_mode_gain_regs(ah);
  495. r = ath9k_hw_fill_cap_info(ah);
  496. if (r)
  497. return r;
  498. r = ath9k_hw_init_macaddr(ah);
  499. if (r) {
  500. ath_err(common, "Failed to initialize MAC address\n");
  501. return r;
  502. }
  503. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  504. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  505. else
  506. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  507. ah->bb_watchdog_timeout_ms = 25;
  508. common->state = ATH_HW_INITIALIZED;
  509. return 0;
  510. }
  511. int ath9k_hw_init(struct ath_hw *ah)
  512. {
  513. int ret;
  514. struct ath_common *common = ath9k_hw_common(ah);
  515. /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
  516. switch (ah->hw_version.devid) {
  517. case AR5416_DEVID_PCI:
  518. case AR5416_DEVID_PCIE:
  519. case AR5416_AR9100_DEVID:
  520. case AR9160_DEVID_PCI:
  521. case AR9280_DEVID_PCI:
  522. case AR9280_DEVID_PCIE:
  523. case AR9285_DEVID_PCIE:
  524. case AR9287_DEVID_PCI:
  525. case AR9287_DEVID_PCIE:
  526. case AR2427_DEVID_PCIE:
  527. case AR9300_DEVID_PCIE:
  528. case AR9300_DEVID_AR9485_PCIE:
  529. break;
  530. default:
  531. if (common->bus_ops->ath_bus_type == ATH_USB)
  532. break;
  533. ath_err(common, "Hardware device ID 0x%04x not supported\n",
  534. ah->hw_version.devid);
  535. return -EOPNOTSUPP;
  536. }
  537. ret = __ath9k_hw_init(ah);
  538. if (ret) {
  539. ath_err(common,
  540. "Unable to initialize hardware; initialization status: %d\n",
  541. ret);
  542. return ret;
  543. }
  544. return 0;
  545. }
  546. EXPORT_SYMBOL(ath9k_hw_init);
  547. static void ath9k_hw_init_qos(struct ath_hw *ah)
  548. {
  549. ENABLE_REGWRITE_BUFFER(ah);
  550. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  551. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  552. REG_WRITE(ah, AR_QOS_NO_ACK,
  553. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  554. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  555. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  556. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  557. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  558. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  559. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  560. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  561. REGWRITE_BUFFER_FLUSH(ah);
  562. }
  563. unsigned long ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
  564. {
  565. REG_WRITE(ah, PLL3, (REG_READ(ah, PLL3) & ~(PLL3_DO_MEAS_MASK)));
  566. udelay(100);
  567. REG_WRITE(ah, PLL3, (REG_READ(ah, PLL3) | PLL3_DO_MEAS_MASK));
  568. while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
  569. udelay(100);
  570. return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
  571. }
  572. EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
  573. #define DPLL2_KD_VAL 0x3D
  574. #define DPLL2_KI_VAL 0x06
  575. #define DPLL3_PHASE_SHIFT_VAL 0x1
  576. static void ath9k_hw_init_pll(struct ath_hw *ah,
  577. struct ath9k_channel *chan)
  578. {
  579. u32 pll;
  580. if (AR_SREV_9485(ah)) {
  581. REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0x886666);
  582. REG_WRITE(ah, AR_CH0_DDR_DPLL2, 0x19e82f01);
  583. REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
  584. AR_CH0_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL);
  585. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  586. udelay(1000);
  587. REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0x886666);
  588. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  589. AR_CH0_DPLL2_KD, DPLL2_KD_VAL);
  590. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  591. AR_CH0_DPLL2_KI, DPLL2_KI_VAL);
  592. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  593. AR_CH0_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL);
  594. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x142c);
  595. udelay(1000);
  596. }
  597. pll = ath9k_hw_compute_pll_control(ah, chan);
  598. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  599. /* Switch the core clock for ar9271 to 117Mhz */
  600. if (AR_SREV_9271(ah)) {
  601. udelay(500);
  602. REG_WRITE(ah, 0x50040, 0x304);
  603. }
  604. udelay(RTC_PLL_SETTLE_DELAY);
  605. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  606. }
  607. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  608. enum nl80211_iftype opmode)
  609. {
  610. u32 imr_reg = AR_IMR_TXERR |
  611. AR_IMR_TXURN |
  612. AR_IMR_RXERR |
  613. AR_IMR_RXORN |
  614. AR_IMR_BCNMISC;
  615. if (AR_SREV_9300_20_OR_LATER(ah)) {
  616. imr_reg |= AR_IMR_RXOK_HP;
  617. if (ah->config.rx_intr_mitigation)
  618. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  619. else
  620. imr_reg |= AR_IMR_RXOK_LP;
  621. } else {
  622. if (ah->config.rx_intr_mitigation)
  623. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  624. else
  625. imr_reg |= AR_IMR_RXOK;
  626. }
  627. if (ah->config.tx_intr_mitigation)
  628. imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
  629. else
  630. imr_reg |= AR_IMR_TXOK;
  631. if (opmode == NL80211_IFTYPE_AP)
  632. imr_reg |= AR_IMR_MIB;
  633. ENABLE_REGWRITE_BUFFER(ah);
  634. REG_WRITE(ah, AR_IMR, imr_reg);
  635. ah->imrs2_reg |= AR_IMR_S2_GTT;
  636. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  637. if (!AR_SREV_9100(ah)) {
  638. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  639. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
  640. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  641. }
  642. REGWRITE_BUFFER_FLUSH(ah);
  643. if (AR_SREV_9300_20_OR_LATER(ah)) {
  644. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
  645. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
  646. REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
  647. REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
  648. }
  649. }
  650. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  651. {
  652. u32 val = ath9k_hw_mac_to_clks(ah, us);
  653. val = min(val, (u32) 0xFFFF);
  654. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  655. }
  656. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  657. {
  658. u32 val = ath9k_hw_mac_to_clks(ah, us);
  659. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  660. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  661. }
  662. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  663. {
  664. u32 val = ath9k_hw_mac_to_clks(ah, us);
  665. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  666. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  667. }
  668. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  669. {
  670. if (tu > 0xFFFF) {
  671. ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
  672. "bad global tx timeout %u\n", tu);
  673. ah->globaltxtimeout = (u32) -1;
  674. return false;
  675. } else {
  676. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  677. ah->globaltxtimeout = tu;
  678. return true;
  679. }
  680. }
  681. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  682. {
  683. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  684. int acktimeout;
  685. int slottime;
  686. int sifstime;
  687. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
  688. ah->misc_mode);
  689. if (ah->misc_mode != 0)
  690. REG_WRITE(ah, AR_PCU_MISC,
  691. REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
  692. if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
  693. sifstime = 16;
  694. else
  695. sifstime = 10;
  696. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  697. slottime = ah->slottime + 3 * ah->coverage_class;
  698. acktimeout = slottime + sifstime;
  699. /*
  700. * Workaround for early ACK timeouts, add an offset to match the
  701. * initval's 64us ack timeout value.
  702. * This was initially only meant to work around an issue with delayed
  703. * BA frames in some implementations, but it has been found to fix ACK
  704. * timeout issues in other cases as well.
  705. */
  706. if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
  707. acktimeout += 64 - sifstime - ah->slottime;
  708. ath9k_hw_setslottime(ah, ah->slottime);
  709. ath9k_hw_set_ack_timeout(ah, acktimeout);
  710. ath9k_hw_set_cts_timeout(ah, acktimeout);
  711. if (ah->globaltxtimeout != (u32) -1)
  712. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  713. }
  714. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  715. void ath9k_hw_deinit(struct ath_hw *ah)
  716. {
  717. struct ath_common *common = ath9k_hw_common(ah);
  718. if (common->state < ATH_HW_INITIALIZED)
  719. goto free_hw;
  720. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  721. free_hw:
  722. ath9k_hw_rf_free_ext_banks(ah);
  723. }
  724. EXPORT_SYMBOL(ath9k_hw_deinit);
  725. /*******/
  726. /* INI */
  727. /*******/
  728. u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
  729. {
  730. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  731. if (IS_CHAN_B(chan))
  732. ctl |= CTL_11B;
  733. else if (IS_CHAN_G(chan))
  734. ctl |= CTL_11G;
  735. else
  736. ctl |= CTL_11A;
  737. return ctl;
  738. }
  739. /****************************************/
  740. /* Reset and Channel Switching Routines */
  741. /****************************************/
  742. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  743. {
  744. struct ath_common *common = ath9k_hw_common(ah);
  745. u32 regval;
  746. ENABLE_REGWRITE_BUFFER(ah);
  747. /*
  748. * set AHB_MODE not to do cacheline prefetches
  749. */
  750. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  751. regval = REG_READ(ah, AR_AHB_MODE);
  752. REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
  753. }
  754. /*
  755. * let mac dma reads be in 128 byte chunks
  756. */
  757. regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
  758. REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
  759. REGWRITE_BUFFER_FLUSH(ah);
  760. /*
  761. * Restore TX Trigger Level to its pre-reset value.
  762. * The initial value depends on whether aggregation is enabled, and is
  763. * adjusted whenever underruns are detected.
  764. */
  765. if (!AR_SREV_9300_20_OR_LATER(ah))
  766. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  767. ENABLE_REGWRITE_BUFFER(ah);
  768. /*
  769. * let mac dma writes be in 128 byte chunks
  770. */
  771. regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
  772. REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
  773. /*
  774. * Setup receive FIFO threshold to hold off TX activities
  775. */
  776. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  777. if (AR_SREV_9300_20_OR_LATER(ah)) {
  778. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
  779. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
  780. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  781. ah->caps.rx_status_len);
  782. }
  783. /*
  784. * reduce the number of usable entries in PCU TXBUF to avoid
  785. * wrap around issues.
  786. */
  787. if (AR_SREV_9285(ah)) {
  788. /* For AR9285 the number of Fifos are reduced to half.
  789. * So set the usable tx buf size also to half to
  790. * avoid data/delimiter underruns
  791. */
  792. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  793. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  794. } else if (!AR_SREV_9271(ah)) {
  795. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  796. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  797. }
  798. REGWRITE_BUFFER_FLUSH(ah);
  799. if (AR_SREV_9300_20_OR_LATER(ah))
  800. ath9k_hw_reset_txstatus_ring(ah);
  801. }
  802. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  803. {
  804. u32 val;
  805. val = REG_READ(ah, AR_STA_ID1);
  806. val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
  807. switch (opmode) {
  808. case NL80211_IFTYPE_AP:
  809. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
  810. | AR_STA_ID1_KSRCH_MODE);
  811. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  812. break;
  813. case NL80211_IFTYPE_ADHOC:
  814. case NL80211_IFTYPE_MESH_POINT:
  815. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
  816. | AR_STA_ID1_KSRCH_MODE);
  817. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  818. break;
  819. case NL80211_IFTYPE_STATION:
  820. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
  821. break;
  822. default:
  823. if (ah->is_monitoring)
  824. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
  825. break;
  826. }
  827. }
  828. void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
  829. u32 *coef_mantissa, u32 *coef_exponent)
  830. {
  831. u32 coef_exp, coef_man;
  832. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  833. if ((coef_scaled >> coef_exp) & 0x1)
  834. break;
  835. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  836. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  837. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  838. *coef_exponent = coef_exp - 16;
  839. }
  840. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  841. {
  842. u32 rst_flags;
  843. u32 tmpReg;
  844. if (AR_SREV_9100(ah)) {
  845. u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
  846. val &= ~AR_RTC_DERIVED_CLK_PERIOD;
  847. val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
  848. REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
  849. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  850. }
  851. ENABLE_REGWRITE_BUFFER(ah);
  852. if (AR_SREV_9300_20_OR_LATER(ah)) {
  853. REG_WRITE(ah, AR_WA, ah->WARegVal);
  854. udelay(10);
  855. }
  856. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  857. AR_RTC_FORCE_WAKE_ON_INT);
  858. if (AR_SREV_9100(ah)) {
  859. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  860. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  861. } else {
  862. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  863. if (tmpReg &
  864. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  865. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  866. u32 val;
  867. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  868. val = AR_RC_HOSTIF;
  869. if (!AR_SREV_9300_20_OR_LATER(ah))
  870. val |= AR_RC_AHB;
  871. REG_WRITE(ah, AR_RC, val);
  872. } else if (!AR_SREV_9300_20_OR_LATER(ah))
  873. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  874. rst_flags = AR_RTC_RC_MAC_WARM;
  875. if (type == ATH9K_RESET_COLD)
  876. rst_flags |= AR_RTC_RC_MAC_COLD;
  877. }
  878. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  879. REGWRITE_BUFFER_FLUSH(ah);
  880. udelay(50);
  881. REG_WRITE(ah, AR_RTC_RC, 0);
  882. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  883. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  884. "RTC stuck in MAC reset\n");
  885. return false;
  886. }
  887. if (!AR_SREV_9100(ah))
  888. REG_WRITE(ah, AR_RC, 0);
  889. if (AR_SREV_9100(ah))
  890. udelay(50);
  891. return true;
  892. }
  893. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  894. {
  895. ENABLE_REGWRITE_BUFFER(ah);
  896. if (AR_SREV_9300_20_OR_LATER(ah)) {
  897. REG_WRITE(ah, AR_WA, ah->WARegVal);
  898. udelay(10);
  899. }
  900. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  901. AR_RTC_FORCE_WAKE_ON_INT);
  902. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  903. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  904. REG_WRITE(ah, AR_RTC_RESET, 0);
  905. REGWRITE_BUFFER_FLUSH(ah);
  906. if (!AR_SREV_9300_20_OR_LATER(ah))
  907. udelay(2);
  908. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  909. REG_WRITE(ah, AR_RC, 0);
  910. REG_WRITE(ah, AR_RTC_RESET, 1);
  911. if (!ath9k_hw_wait(ah,
  912. AR_RTC_STATUS,
  913. AR_RTC_STATUS_M,
  914. AR_RTC_STATUS_ON,
  915. AH_WAIT_TIMEOUT)) {
  916. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  917. "RTC not waking up\n");
  918. return false;
  919. }
  920. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  921. }
  922. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  923. {
  924. if (AR_SREV_9300_20_OR_LATER(ah)) {
  925. REG_WRITE(ah, AR_WA, ah->WARegVal);
  926. udelay(10);
  927. }
  928. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  929. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  930. switch (type) {
  931. case ATH9K_RESET_POWER_ON:
  932. return ath9k_hw_set_reset_power_on(ah);
  933. case ATH9K_RESET_WARM:
  934. case ATH9K_RESET_COLD:
  935. return ath9k_hw_set_reset(ah, type);
  936. default:
  937. return false;
  938. }
  939. }
  940. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  941. struct ath9k_channel *chan)
  942. {
  943. if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
  944. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
  945. return false;
  946. } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  947. return false;
  948. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  949. return false;
  950. ah->chip_fullsleep = false;
  951. ath9k_hw_init_pll(ah, chan);
  952. ath9k_hw_set_rfmode(ah, chan);
  953. return true;
  954. }
  955. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  956. struct ath9k_channel *chan)
  957. {
  958. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  959. struct ath_common *common = ath9k_hw_common(ah);
  960. struct ieee80211_channel *channel = chan->chan;
  961. u32 qnum;
  962. int r;
  963. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  964. if (ath9k_hw_numtxpending(ah, qnum)) {
  965. ath_dbg(common, ATH_DBG_QUEUE,
  966. "Transmit frames pending on queue %d\n", qnum);
  967. return false;
  968. }
  969. }
  970. if (!ath9k_hw_rfbus_req(ah)) {
  971. ath_err(common, "Could not kill baseband RX\n");
  972. return false;
  973. }
  974. ath9k_hw_set_channel_regs(ah, chan);
  975. r = ath9k_hw_rf_set_freq(ah, chan);
  976. if (r) {
  977. ath_err(common, "Failed to set channel\n");
  978. return false;
  979. }
  980. ath9k_hw_set_clockrate(ah);
  981. ah->eep_ops->set_txpower(ah, chan,
  982. ath9k_regd_get_ctl(regulatory, chan),
  983. channel->max_antenna_gain * 2,
  984. channel->max_power * 2,
  985. min((u32) MAX_RATE_POWER,
  986. (u32) regulatory->power_limit), false);
  987. ath9k_hw_rfbus_done(ah);
  988. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  989. ath9k_hw_set_delta_slope(ah, chan);
  990. ath9k_hw_spur_mitigate_freq(ah, chan);
  991. return true;
  992. }
  993. static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
  994. {
  995. u32 gpio_mask = ah->gpio_mask;
  996. int i;
  997. for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
  998. if (!(gpio_mask & 1))
  999. continue;
  1000. ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  1001. ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
  1002. }
  1003. }
  1004. bool ath9k_hw_check_alive(struct ath_hw *ah)
  1005. {
  1006. int count = 50;
  1007. u32 reg;
  1008. if (AR_SREV_9285_12_OR_LATER(ah))
  1009. return true;
  1010. do {
  1011. reg = REG_READ(ah, AR_OBS_BUS_1);
  1012. if ((reg & 0x7E7FFFEF) == 0x00702400)
  1013. continue;
  1014. switch (reg & 0x7E000B00) {
  1015. case 0x1E000000:
  1016. case 0x52000B00:
  1017. case 0x18000B00:
  1018. continue;
  1019. default:
  1020. return true;
  1021. }
  1022. } while (count-- > 0);
  1023. return false;
  1024. }
  1025. EXPORT_SYMBOL(ath9k_hw_check_alive);
  1026. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  1027. struct ath9k_hw_cal_data *caldata, bool bChannelChange)
  1028. {
  1029. struct ath_common *common = ath9k_hw_common(ah);
  1030. u32 saveLedState;
  1031. struct ath9k_channel *curchan = ah->curchan;
  1032. u32 saveDefAntenna;
  1033. u32 macStaId1;
  1034. u64 tsf = 0;
  1035. int i, r;
  1036. ah->txchainmask = common->tx_chainmask;
  1037. ah->rxchainmask = common->rx_chainmask;
  1038. if ((common->bus_ops->ath_bus_type != ATH_USB) && !ah->chip_fullsleep) {
  1039. ath9k_hw_abortpcurecv(ah);
  1040. if (!ath9k_hw_stopdmarecv(ah)) {
  1041. ath_dbg(common, ATH_DBG_XMIT,
  1042. "Failed to stop receive dma\n");
  1043. bChannelChange = false;
  1044. }
  1045. }
  1046. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1047. return -EIO;
  1048. if (curchan && !ah->chip_fullsleep)
  1049. ath9k_hw_getnf(ah, curchan);
  1050. ah->caldata = caldata;
  1051. if (caldata &&
  1052. (chan->channel != caldata->channel ||
  1053. (chan->channelFlags & ~CHANNEL_CW_INT) !=
  1054. (caldata->channelFlags & ~CHANNEL_CW_INT))) {
  1055. /* Operating channel changed, reset channel calibration data */
  1056. memset(caldata, 0, sizeof(*caldata));
  1057. ath9k_init_nfcal_hist_buffer(ah, chan);
  1058. }
  1059. if (bChannelChange &&
  1060. (ah->chip_fullsleep != true) &&
  1061. (ah->curchan != NULL) &&
  1062. (chan->channel != ah->curchan->channel) &&
  1063. ((chan->channelFlags & CHANNEL_ALL) ==
  1064. (ah->curchan->channelFlags & CHANNEL_ALL)) &&
  1065. (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
  1066. if (ath9k_hw_channel_change(ah, chan)) {
  1067. ath9k_hw_loadnf(ah, ah->curchan);
  1068. ath9k_hw_start_nfcal(ah, true);
  1069. if (AR_SREV_9271(ah))
  1070. ar9002_hw_load_ani_reg(ah, chan);
  1071. return 0;
  1072. }
  1073. }
  1074. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1075. if (saveDefAntenna == 0)
  1076. saveDefAntenna = 1;
  1077. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1078. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1079. if (AR_SREV_9100(ah) ||
  1080. (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
  1081. tsf = ath9k_hw_gettsf64(ah);
  1082. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1083. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1084. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1085. ath9k_hw_mark_phy_inactive(ah);
  1086. ah->paprd_table_write_done = false;
  1087. /* Only required on the first reset */
  1088. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1089. REG_WRITE(ah,
  1090. AR9271_RESET_POWER_DOWN_CONTROL,
  1091. AR9271_RADIO_RF_RST);
  1092. udelay(50);
  1093. }
  1094. if (!ath9k_hw_chip_reset(ah, chan)) {
  1095. ath_err(common, "Chip reset failed\n");
  1096. return -EINVAL;
  1097. }
  1098. /* Only required on the first reset */
  1099. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1100. ah->htc_reset_init = false;
  1101. REG_WRITE(ah,
  1102. AR9271_RESET_POWER_DOWN_CONTROL,
  1103. AR9271_GATE_MAC_CTL);
  1104. udelay(50);
  1105. }
  1106. /* Restore TSF */
  1107. if (tsf)
  1108. ath9k_hw_settsf64(ah, tsf);
  1109. if (AR_SREV_9280_20_OR_LATER(ah))
  1110. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1111. if (!AR_SREV_9300_20_OR_LATER(ah))
  1112. ar9002_hw_enable_async_fifo(ah);
  1113. r = ath9k_hw_process_ini(ah, chan);
  1114. if (r)
  1115. return r;
  1116. /*
  1117. * Some AR91xx SoC devices frequently fail to accept TSF writes
  1118. * right after the chip reset. When that happens, write a new
  1119. * value after the initvals have been applied, with an offset
  1120. * based on measured time difference
  1121. */
  1122. if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
  1123. tsf += 1500;
  1124. ath9k_hw_settsf64(ah, tsf);
  1125. }
  1126. /* Setup MFP options for CCMP */
  1127. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1128. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1129. * frames when constructing CCMP AAD. */
  1130. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1131. 0xc7ff);
  1132. ah->sw_mgmt_crypto = false;
  1133. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1134. /* Disable hardware crypto for management frames */
  1135. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1136. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1137. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1138. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1139. ah->sw_mgmt_crypto = true;
  1140. } else
  1141. ah->sw_mgmt_crypto = true;
  1142. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1143. ath9k_hw_set_delta_slope(ah, chan);
  1144. ath9k_hw_spur_mitigate_freq(ah, chan);
  1145. ah->eep_ops->set_board_values(ah, chan);
  1146. ENABLE_REGWRITE_BUFFER(ah);
  1147. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
  1148. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
  1149. | macStaId1
  1150. | AR_STA_ID1_RTS_USE_DEF
  1151. | (ah->config.
  1152. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1153. | ah->sta_id1_defaults);
  1154. ath_hw_setbssidmask(common);
  1155. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1156. ath9k_hw_write_associd(ah);
  1157. REG_WRITE(ah, AR_ISR, ~0);
  1158. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1159. REGWRITE_BUFFER_FLUSH(ah);
  1160. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1161. r = ath9k_hw_rf_set_freq(ah, chan);
  1162. if (r)
  1163. return r;
  1164. ath9k_hw_set_clockrate(ah);
  1165. ENABLE_REGWRITE_BUFFER(ah);
  1166. for (i = 0; i < AR_NUM_DCU; i++)
  1167. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1168. REGWRITE_BUFFER_FLUSH(ah);
  1169. ah->intr_txqs = 0;
  1170. for (i = 0; i < ah->caps.total_queues; i++)
  1171. ath9k_hw_resettxqueue(ah, i);
  1172. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1173. ath9k_hw_ani_cache_ini_regs(ah);
  1174. ath9k_hw_init_qos(ah);
  1175. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1176. ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
  1177. ath9k_hw_init_global_settings(ah);
  1178. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  1179. ar9002_hw_update_async_fifo(ah);
  1180. ar9002_hw_enable_wep_aggregation(ah);
  1181. }
  1182. REG_WRITE(ah, AR_STA_ID1,
  1183. REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
  1184. ath9k_hw_set_dma(ah);
  1185. REG_WRITE(ah, AR_OBS, 8);
  1186. if (ah->config.rx_intr_mitigation) {
  1187. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1188. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1189. }
  1190. if (ah->config.tx_intr_mitigation) {
  1191. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
  1192. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
  1193. }
  1194. ath9k_hw_init_bb(ah, chan);
  1195. if (!ath9k_hw_init_cal(ah, chan))
  1196. return -EIO;
  1197. ENABLE_REGWRITE_BUFFER(ah);
  1198. ath9k_hw_restore_chainmask(ah);
  1199. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1200. REGWRITE_BUFFER_FLUSH(ah);
  1201. /*
  1202. * For big endian systems turn on swapping for descriptors
  1203. */
  1204. if (AR_SREV_9100(ah)) {
  1205. u32 mask;
  1206. mask = REG_READ(ah, AR_CFG);
  1207. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1208. ath_dbg(common, ATH_DBG_RESET,
  1209. "CFG Byte Swap Set 0x%x\n", mask);
  1210. } else {
  1211. mask =
  1212. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1213. REG_WRITE(ah, AR_CFG, mask);
  1214. ath_dbg(common, ATH_DBG_RESET,
  1215. "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
  1216. }
  1217. } else {
  1218. if (common->bus_ops->ath_bus_type == ATH_USB) {
  1219. /* Configure AR9271 target WLAN */
  1220. if (AR_SREV_9271(ah))
  1221. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1222. else
  1223. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1224. }
  1225. #ifdef __BIG_ENDIAN
  1226. else
  1227. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1228. #endif
  1229. }
  1230. if (ah->btcoex_hw.enabled)
  1231. ath9k_hw_btcoex_enable(ah);
  1232. if (AR_SREV_9300_20_OR_LATER(ah))
  1233. ar9003_hw_bb_watchdog_config(ah);
  1234. ath9k_hw_apply_gpio_override(ah);
  1235. return 0;
  1236. }
  1237. EXPORT_SYMBOL(ath9k_hw_reset);
  1238. /******************************/
  1239. /* Power Management (Chipset) */
  1240. /******************************/
  1241. /*
  1242. * Notify Power Mgt is disabled in self-generated frames.
  1243. * If requested, force chip to sleep.
  1244. */
  1245. static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
  1246. {
  1247. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1248. if (setChip) {
  1249. /*
  1250. * Clear the RTC force wake bit to allow the
  1251. * mac to go to sleep.
  1252. */
  1253. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1254. AR_RTC_FORCE_WAKE_EN);
  1255. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1256. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1257. /* Shutdown chip. Active low */
  1258. if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
  1259. REG_CLR_BIT(ah, (AR_RTC_RESET),
  1260. AR_RTC_RESET_EN);
  1261. }
  1262. /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
  1263. if (AR_SREV_9300_20_OR_LATER(ah))
  1264. REG_WRITE(ah, AR_WA,
  1265. ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1266. }
  1267. /*
  1268. * Notify Power Management is enabled in self-generating
  1269. * frames. If request, set power mode of chip to
  1270. * auto/normal. Duration in units of 128us (1/8 TU).
  1271. */
  1272. static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
  1273. {
  1274. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1275. if (setChip) {
  1276. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1277. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  1278. /* Set WakeOnInterrupt bit; clear ForceWake bit */
  1279. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1280. AR_RTC_FORCE_WAKE_ON_INT);
  1281. } else {
  1282. /*
  1283. * Clear the RTC force wake bit to allow the
  1284. * mac to go to sleep.
  1285. */
  1286. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1287. AR_RTC_FORCE_WAKE_EN);
  1288. }
  1289. }
  1290. /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
  1291. if (AR_SREV_9300_20_OR_LATER(ah))
  1292. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1293. }
  1294. static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
  1295. {
  1296. u32 val;
  1297. int i;
  1298. /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
  1299. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1300. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1301. udelay(10);
  1302. }
  1303. if (setChip) {
  1304. if ((REG_READ(ah, AR_RTC_STATUS) &
  1305. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  1306. if (ath9k_hw_set_reset_reg(ah,
  1307. ATH9K_RESET_POWER_ON) != true) {
  1308. return false;
  1309. }
  1310. if (!AR_SREV_9300_20_OR_LATER(ah))
  1311. ath9k_hw_init_pll(ah, NULL);
  1312. }
  1313. if (AR_SREV_9100(ah))
  1314. REG_SET_BIT(ah, AR_RTC_RESET,
  1315. AR_RTC_RESET_EN);
  1316. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1317. AR_RTC_FORCE_WAKE_EN);
  1318. udelay(50);
  1319. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  1320. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  1321. if (val == AR_RTC_STATUS_ON)
  1322. break;
  1323. udelay(50);
  1324. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1325. AR_RTC_FORCE_WAKE_EN);
  1326. }
  1327. if (i == 0) {
  1328. ath_err(ath9k_hw_common(ah),
  1329. "Failed to wakeup in %uus\n",
  1330. POWER_UP_TIME / 20);
  1331. return false;
  1332. }
  1333. }
  1334. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1335. return true;
  1336. }
  1337. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  1338. {
  1339. struct ath_common *common = ath9k_hw_common(ah);
  1340. int status = true, setChip = true;
  1341. static const char *modes[] = {
  1342. "AWAKE",
  1343. "FULL-SLEEP",
  1344. "NETWORK SLEEP",
  1345. "UNDEFINED"
  1346. };
  1347. if (ah->power_mode == mode)
  1348. return status;
  1349. ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
  1350. modes[ah->power_mode], modes[mode]);
  1351. switch (mode) {
  1352. case ATH9K_PM_AWAKE:
  1353. status = ath9k_hw_set_power_awake(ah, setChip);
  1354. break;
  1355. case ATH9K_PM_FULL_SLEEP:
  1356. ath9k_set_power_sleep(ah, setChip);
  1357. ah->chip_fullsleep = true;
  1358. break;
  1359. case ATH9K_PM_NETWORK_SLEEP:
  1360. ath9k_set_power_network_sleep(ah, setChip);
  1361. break;
  1362. default:
  1363. ath_err(common, "Unknown power mode %u\n", mode);
  1364. return false;
  1365. }
  1366. ah->power_mode = mode;
  1367. /*
  1368. * XXX: If this warning never comes up after a while then
  1369. * simply keep the ATH_DBG_WARN_ON_ONCE() but make
  1370. * ath9k_hw_setpower() return type void.
  1371. */
  1372. if (!(ah->ah_flags & AH_UNPLUGGED))
  1373. ATH_DBG_WARN_ON_ONCE(!status);
  1374. return status;
  1375. }
  1376. EXPORT_SYMBOL(ath9k_hw_setpower);
  1377. /*******************/
  1378. /* Beacon Handling */
  1379. /*******************/
  1380. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  1381. {
  1382. int flags = 0;
  1383. ENABLE_REGWRITE_BUFFER(ah);
  1384. switch (ah->opmode) {
  1385. case NL80211_IFTYPE_ADHOC:
  1386. case NL80211_IFTYPE_MESH_POINT:
  1387. REG_SET_BIT(ah, AR_TXCFG,
  1388. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  1389. REG_WRITE(ah, AR_NEXT_NDP_TIMER,
  1390. TU_TO_USEC(next_beacon +
  1391. (ah->atim_window ? ah->
  1392. atim_window : 1)));
  1393. flags |= AR_NDP_TIMER_EN;
  1394. case NL80211_IFTYPE_AP:
  1395. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
  1396. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
  1397. TU_TO_USEC(next_beacon -
  1398. ah->config.
  1399. dma_beacon_response_time));
  1400. REG_WRITE(ah, AR_NEXT_SWBA,
  1401. TU_TO_USEC(next_beacon -
  1402. ah->config.
  1403. sw_beacon_response_time));
  1404. flags |=
  1405. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  1406. break;
  1407. default:
  1408. ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
  1409. "%s: unsupported opmode: %d\n",
  1410. __func__, ah->opmode);
  1411. return;
  1412. break;
  1413. }
  1414. REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  1415. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  1416. REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
  1417. REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
  1418. REGWRITE_BUFFER_FLUSH(ah);
  1419. beacon_period &= ~ATH9K_BEACON_ENA;
  1420. if (beacon_period & ATH9K_BEACON_RESET_TSF) {
  1421. ath9k_hw_reset_tsf(ah);
  1422. }
  1423. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  1424. }
  1425. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  1426. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  1427. const struct ath9k_beacon_state *bs)
  1428. {
  1429. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  1430. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1431. struct ath_common *common = ath9k_hw_common(ah);
  1432. ENABLE_REGWRITE_BUFFER(ah);
  1433. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  1434. REG_WRITE(ah, AR_BEACON_PERIOD,
  1435. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  1436. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  1437. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  1438. REGWRITE_BUFFER_FLUSH(ah);
  1439. REG_RMW_FIELD(ah, AR_RSSI_THR,
  1440. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  1441. beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
  1442. if (bs->bs_sleepduration > beaconintval)
  1443. beaconintval = bs->bs_sleepduration;
  1444. dtimperiod = bs->bs_dtimperiod;
  1445. if (bs->bs_sleepduration > dtimperiod)
  1446. dtimperiod = bs->bs_sleepduration;
  1447. if (beaconintval == dtimperiod)
  1448. nextTbtt = bs->bs_nextdtim;
  1449. else
  1450. nextTbtt = bs->bs_nexttbtt;
  1451. ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  1452. ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
  1453. ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
  1454. ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
  1455. ENABLE_REGWRITE_BUFFER(ah);
  1456. REG_WRITE(ah, AR_NEXT_DTIM,
  1457. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  1458. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  1459. REG_WRITE(ah, AR_SLEEP1,
  1460. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  1461. | AR_SLEEP1_ASSUME_DTIM);
  1462. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  1463. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  1464. else
  1465. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  1466. REG_WRITE(ah, AR_SLEEP2,
  1467. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  1468. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  1469. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  1470. REGWRITE_BUFFER_FLUSH(ah);
  1471. REG_SET_BIT(ah, AR_TIMER_MODE,
  1472. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  1473. AR_DTIM_TIMER_EN);
  1474. /* TSF Out of Range Threshold */
  1475. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  1476. }
  1477. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  1478. /*******************/
  1479. /* HW Capabilities */
  1480. /*******************/
  1481. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  1482. {
  1483. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1484. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1485. struct ath_common *common = ath9k_hw_common(ah);
  1486. struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
  1487. u16 capField = 0, eeval;
  1488. u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
  1489. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  1490. regulatory->current_rd = eeval;
  1491. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
  1492. if (AR_SREV_9285_12_OR_LATER(ah))
  1493. eeval |= AR9285_RDEXT_DEFAULT;
  1494. regulatory->current_rd_ext = eeval;
  1495. capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
  1496. if (ah->opmode != NL80211_IFTYPE_AP &&
  1497. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  1498. if (regulatory->current_rd == 0x64 ||
  1499. regulatory->current_rd == 0x65)
  1500. regulatory->current_rd += 5;
  1501. else if (regulatory->current_rd == 0x41)
  1502. regulatory->current_rd = 0x43;
  1503. ath_dbg(common, ATH_DBG_REGULATORY,
  1504. "regdomain mapped to 0x%x\n", regulatory->current_rd);
  1505. }
  1506. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  1507. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  1508. ath_err(common,
  1509. "no band has been marked as supported in EEPROM\n");
  1510. return -EINVAL;
  1511. }
  1512. if (eeval & AR5416_OPFLAGS_11A)
  1513. pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
  1514. if (eeval & AR5416_OPFLAGS_11G)
  1515. pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
  1516. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  1517. /*
  1518. * For AR9271 we will temporarilly uses the rx chainmax as read from
  1519. * the EEPROM.
  1520. */
  1521. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  1522. !(eeval & AR5416_OPFLAGS_11A) &&
  1523. !(AR_SREV_9271(ah)))
  1524. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  1525. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  1526. else if (AR_SREV_9100(ah))
  1527. pCap->rx_chainmask = 0x7;
  1528. else
  1529. /* Use rx_chainmask from EEPROM. */
  1530. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  1531. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  1532. /* enable key search for every frame in an aggregate */
  1533. if (AR_SREV_9300_20_OR_LATER(ah))
  1534. ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
  1535. pCap->low_2ghz_chan = 2312;
  1536. pCap->high_2ghz_chan = 2732;
  1537. pCap->low_5ghz_chan = 4920;
  1538. pCap->high_5ghz_chan = 6100;
  1539. common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
  1540. if (ah->config.ht_enable)
  1541. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  1542. else
  1543. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  1544. if (capField & AR_EEPROM_EEPCAP_MAXQCU)
  1545. pCap->total_queues =
  1546. MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
  1547. else
  1548. pCap->total_queues = ATH9K_NUM_TX_QUEUES;
  1549. if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
  1550. pCap->keycache_size =
  1551. 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
  1552. else
  1553. pCap->keycache_size = AR_KEYTABLE_SIZE;
  1554. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  1555. pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
  1556. else
  1557. pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
  1558. if (AR_SREV_9271(ah))
  1559. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  1560. else if (AR_DEVID_7010(ah))
  1561. pCap->num_gpio_pins = AR7010_NUM_GPIO;
  1562. else if (AR_SREV_9285_12_OR_LATER(ah))
  1563. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  1564. else if (AR_SREV_9280_20_OR_LATER(ah))
  1565. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  1566. else
  1567. pCap->num_gpio_pins = AR_NUM_GPIO;
  1568. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
  1569. pCap->hw_caps |= ATH9K_HW_CAP_CST;
  1570. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  1571. } else {
  1572. pCap->rts_aggr_limit = (8 * 1024);
  1573. }
  1574. pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
  1575. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1576. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  1577. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  1578. ah->rfkill_gpio =
  1579. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  1580. ah->rfkill_polarity =
  1581. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  1582. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  1583. }
  1584. #endif
  1585. if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
  1586. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  1587. else
  1588. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  1589. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  1590. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  1591. else
  1592. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  1593. if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
  1594. pCap->reg_cap =
  1595. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  1596. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
  1597. AR_EEPROM_EEREGCAP_EN_KK_U2 |
  1598. AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
  1599. } else {
  1600. pCap->reg_cap =
  1601. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  1602. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
  1603. }
  1604. /* Advertise midband for AR5416 with FCC midband set in eeprom */
  1605. if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
  1606. AR_SREV_5416(ah))
  1607. pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
  1608. if (AR_SREV_9280_20_OR_LATER(ah) && common->btcoex_enabled) {
  1609. btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
  1610. btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
  1611. if (AR_SREV_9285(ah)) {
  1612. btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
  1613. btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
  1614. } else {
  1615. btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
  1616. }
  1617. } else {
  1618. btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
  1619. }
  1620. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1621. pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
  1622. if (!AR_SREV_9485(ah))
  1623. pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
  1624. pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
  1625. pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
  1626. pCap->rx_status_len = sizeof(struct ar9003_rxs);
  1627. pCap->tx_desc_len = sizeof(struct ar9003_txc);
  1628. pCap->txs_len = sizeof(struct ar9003_txs);
  1629. if (!ah->config.paprd_disable &&
  1630. ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
  1631. pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
  1632. } else {
  1633. pCap->tx_desc_len = sizeof(struct ath_desc);
  1634. if (AR_SREV_9280_20(ah) &&
  1635. ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
  1636. AR5416_EEP_MINOR_VER_16) ||
  1637. ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
  1638. pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
  1639. }
  1640. if (AR_SREV_9300_20_OR_LATER(ah))
  1641. pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
  1642. if (AR_SREV_9300_20_OR_LATER(ah))
  1643. ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
  1644. if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
  1645. pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
  1646. if (AR_SREV_9285(ah))
  1647. if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
  1648. ant_div_ctl1 =
  1649. ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  1650. if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
  1651. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  1652. }
  1653. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1654. if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
  1655. pCap->hw_caps |= ATH9K_HW_CAP_APM;
  1656. }
  1657. if (AR_SREV_9485_10(ah)) {
  1658. pCap->pcie_lcr_extsync_en = true;
  1659. pCap->pcie_lcr_offset = 0x80;
  1660. }
  1661. tx_chainmask = pCap->tx_chainmask;
  1662. rx_chainmask = pCap->rx_chainmask;
  1663. while (tx_chainmask || rx_chainmask) {
  1664. if (tx_chainmask & BIT(0))
  1665. pCap->max_txchains++;
  1666. if (rx_chainmask & BIT(0))
  1667. pCap->max_rxchains++;
  1668. tx_chainmask >>= 1;
  1669. rx_chainmask >>= 1;
  1670. }
  1671. return 0;
  1672. }
  1673. /****************************/
  1674. /* GPIO / RFKILL / Antennae */
  1675. /****************************/
  1676. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  1677. u32 gpio, u32 type)
  1678. {
  1679. int addr;
  1680. u32 gpio_shift, tmp;
  1681. if (gpio > 11)
  1682. addr = AR_GPIO_OUTPUT_MUX3;
  1683. else if (gpio > 5)
  1684. addr = AR_GPIO_OUTPUT_MUX2;
  1685. else
  1686. addr = AR_GPIO_OUTPUT_MUX1;
  1687. gpio_shift = (gpio % 6) * 5;
  1688. if (AR_SREV_9280_20_OR_LATER(ah)
  1689. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  1690. REG_RMW(ah, addr, (type << gpio_shift),
  1691. (0x1f << gpio_shift));
  1692. } else {
  1693. tmp = REG_READ(ah, addr);
  1694. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  1695. tmp &= ~(0x1f << gpio_shift);
  1696. tmp |= (type << gpio_shift);
  1697. REG_WRITE(ah, addr, tmp);
  1698. }
  1699. }
  1700. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  1701. {
  1702. u32 gpio_shift;
  1703. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  1704. if (AR_DEVID_7010(ah)) {
  1705. gpio_shift = gpio;
  1706. REG_RMW(ah, AR7010_GPIO_OE,
  1707. (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
  1708. (AR7010_GPIO_OE_MASK << gpio_shift));
  1709. return;
  1710. }
  1711. gpio_shift = gpio << 1;
  1712. REG_RMW(ah,
  1713. AR_GPIO_OE_OUT,
  1714. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  1715. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  1716. }
  1717. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  1718. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  1719. {
  1720. #define MS_REG_READ(x, y) \
  1721. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  1722. if (gpio >= ah->caps.num_gpio_pins)
  1723. return 0xffffffff;
  1724. if (AR_DEVID_7010(ah)) {
  1725. u32 val;
  1726. val = REG_READ(ah, AR7010_GPIO_IN);
  1727. return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
  1728. } else if (AR_SREV_9300_20_OR_LATER(ah))
  1729. return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
  1730. AR_GPIO_BIT(gpio)) != 0;
  1731. else if (AR_SREV_9271(ah))
  1732. return MS_REG_READ(AR9271, gpio) != 0;
  1733. else if (AR_SREV_9287_11_OR_LATER(ah))
  1734. return MS_REG_READ(AR9287, gpio) != 0;
  1735. else if (AR_SREV_9285_12_OR_LATER(ah))
  1736. return MS_REG_READ(AR9285, gpio) != 0;
  1737. else if (AR_SREV_9280_20_OR_LATER(ah))
  1738. return MS_REG_READ(AR928X, gpio) != 0;
  1739. else
  1740. return MS_REG_READ(AR, gpio) != 0;
  1741. }
  1742. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  1743. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  1744. u32 ah_signal_type)
  1745. {
  1746. u32 gpio_shift;
  1747. if (AR_DEVID_7010(ah)) {
  1748. gpio_shift = gpio;
  1749. REG_RMW(ah, AR7010_GPIO_OE,
  1750. (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
  1751. (AR7010_GPIO_OE_MASK << gpio_shift));
  1752. return;
  1753. }
  1754. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  1755. gpio_shift = 2 * gpio;
  1756. REG_RMW(ah,
  1757. AR_GPIO_OE_OUT,
  1758. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  1759. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  1760. }
  1761. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  1762. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  1763. {
  1764. if (AR_DEVID_7010(ah)) {
  1765. val = val ? 0 : 1;
  1766. REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
  1767. AR_GPIO_BIT(gpio));
  1768. return;
  1769. }
  1770. if (AR_SREV_9271(ah))
  1771. val = ~val;
  1772. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  1773. AR_GPIO_BIT(gpio));
  1774. }
  1775. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  1776. u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
  1777. {
  1778. return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
  1779. }
  1780. EXPORT_SYMBOL(ath9k_hw_getdefantenna);
  1781. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  1782. {
  1783. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  1784. }
  1785. EXPORT_SYMBOL(ath9k_hw_setantenna);
  1786. /*********************/
  1787. /* General Operation */
  1788. /*********************/
  1789. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  1790. {
  1791. u32 bits = REG_READ(ah, AR_RX_FILTER);
  1792. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  1793. if (phybits & AR_PHY_ERR_RADAR)
  1794. bits |= ATH9K_RX_FILTER_PHYRADAR;
  1795. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  1796. bits |= ATH9K_RX_FILTER_PHYERR;
  1797. return bits;
  1798. }
  1799. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  1800. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  1801. {
  1802. u32 phybits;
  1803. ENABLE_REGWRITE_BUFFER(ah);
  1804. REG_WRITE(ah, AR_RX_FILTER, bits);
  1805. phybits = 0;
  1806. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  1807. phybits |= AR_PHY_ERR_RADAR;
  1808. if (bits & ATH9K_RX_FILTER_PHYERR)
  1809. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  1810. REG_WRITE(ah, AR_PHY_ERR, phybits);
  1811. if (phybits)
  1812. REG_WRITE(ah, AR_RXCFG,
  1813. REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
  1814. else
  1815. REG_WRITE(ah, AR_RXCFG,
  1816. REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
  1817. REGWRITE_BUFFER_FLUSH(ah);
  1818. }
  1819. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  1820. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  1821. {
  1822. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  1823. return false;
  1824. ath9k_hw_init_pll(ah, NULL);
  1825. return true;
  1826. }
  1827. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  1828. bool ath9k_hw_disable(struct ath_hw *ah)
  1829. {
  1830. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1831. return false;
  1832. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  1833. return false;
  1834. ath9k_hw_init_pll(ah, NULL);
  1835. return true;
  1836. }
  1837. EXPORT_SYMBOL(ath9k_hw_disable);
  1838. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
  1839. {
  1840. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1841. struct ath9k_channel *chan = ah->curchan;
  1842. struct ieee80211_channel *channel = chan->chan;
  1843. regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
  1844. ah->eep_ops->set_txpower(ah, chan,
  1845. ath9k_regd_get_ctl(regulatory, chan),
  1846. channel->max_antenna_gain * 2,
  1847. channel->max_power * 2,
  1848. min((u32) MAX_RATE_POWER,
  1849. (u32) regulatory->power_limit), test);
  1850. }
  1851. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  1852. void ath9k_hw_setopmode(struct ath_hw *ah)
  1853. {
  1854. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1855. }
  1856. EXPORT_SYMBOL(ath9k_hw_setopmode);
  1857. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  1858. {
  1859. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  1860. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  1861. }
  1862. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  1863. void ath9k_hw_write_associd(struct ath_hw *ah)
  1864. {
  1865. struct ath_common *common = ath9k_hw_common(ah);
  1866. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  1867. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  1868. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  1869. }
  1870. EXPORT_SYMBOL(ath9k_hw_write_associd);
  1871. #define ATH9K_MAX_TSF_READ 10
  1872. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  1873. {
  1874. u32 tsf_lower, tsf_upper1, tsf_upper2;
  1875. int i;
  1876. tsf_upper1 = REG_READ(ah, AR_TSF_U32);
  1877. for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
  1878. tsf_lower = REG_READ(ah, AR_TSF_L32);
  1879. tsf_upper2 = REG_READ(ah, AR_TSF_U32);
  1880. if (tsf_upper2 == tsf_upper1)
  1881. break;
  1882. tsf_upper1 = tsf_upper2;
  1883. }
  1884. WARN_ON( i == ATH9K_MAX_TSF_READ );
  1885. return (((u64)tsf_upper1 << 32) | tsf_lower);
  1886. }
  1887. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  1888. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  1889. {
  1890. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  1891. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  1892. }
  1893. EXPORT_SYMBOL(ath9k_hw_settsf64);
  1894. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  1895. {
  1896. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  1897. AH_TSF_WRITE_TIMEOUT))
  1898. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  1899. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  1900. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  1901. }
  1902. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  1903. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
  1904. {
  1905. if (setting)
  1906. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  1907. else
  1908. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  1909. }
  1910. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  1911. void ath9k_hw_set11nmac2040(struct ath_hw *ah)
  1912. {
  1913. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  1914. u32 macmode;
  1915. if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
  1916. macmode = AR_2040_JOINED_RX_CLEAR;
  1917. else
  1918. macmode = 0;
  1919. REG_WRITE(ah, AR_2040_MODE, macmode);
  1920. }
  1921. /* HW Generic timers configuration */
  1922. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  1923. {
  1924. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1925. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1926. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1927. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1928. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1929. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1930. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1931. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1932. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  1933. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  1934. AR_NDP2_TIMER_MODE, 0x0002},
  1935. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  1936. AR_NDP2_TIMER_MODE, 0x0004},
  1937. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  1938. AR_NDP2_TIMER_MODE, 0x0008},
  1939. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  1940. AR_NDP2_TIMER_MODE, 0x0010},
  1941. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  1942. AR_NDP2_TIMER_MODE, 0x0020},
  1943. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  1944. AR_NDP2_TIMER_MODE, 0x0040},
  1945. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  1946. AR_NDP2_TIMER_MODE, 0x0080}
  1947. };
  1948. /* HW generic timer primitives */
  1949. /* compute and clear index of rightmost 1 */
  1950. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  1951. {
  1952. u32 b;
  1953. b = *mask;
  1954. b &= (0-b);
  1955. *mask &= ~b;
  1956. b *= debruijn32;
  1957. b >>= 27;
  1958. return timer_table->gen_timer_index[b];
  1959. }
  1960. static u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  1961. {
  1962. return REG_READ(ah, AR_TSF_L32);
  1963. }
  1964. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  1965. void (*trigger)(void *),
  1966. void (*overflow)(void *),
  1967. void *arg,
  1968. u8 timer_index)
  1969. {
  1970. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  1971. struct ath_gen_timer *timer;
  1972. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  1973. if (timer == NULL) {
  1974. ath_err(ath9k_hw_common(ah),
  1975. "Failed to allocate memory for hw timer[%d]\n",
  1976. timer_index);
  1977. return NULL;
  1978. }
  1979. /* allocate a hardware generic timer slot */
  1980. timer_table->timers[timer_index] = timer;
  1981. timer->index = timer_index;
  1982. timer->trigger = trigger;
  1983. timer->overflow = overflow;
  1984. timer->arg = arg;
  1985. return timer;
  1986. }
  1987. EXPORT_SYMBOL(ath_gen_timer_alloc);
  1988. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  1989. struct ath_gen_timer *timer,
  1990. u32 timer_next,
  1991. u32 timer_period)
  1992. {
  1993. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  1994. u32 tsf;
  1995. BUG_ON(!timer_period);
  1996. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  1997. tsf = ath9k_hw_gettsf32(ah);
  1998. ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
  1999. "current tsf %x period %x timer_next %x\n",
  2000. tsf, timer_period, timer_next);
  2001. /*
  2002. * Pull timer_next forward if the current TSF already passed it
  2003. * because of software latency
  2004. */
  2005. if (timer_next < tsf)
  2006. timer_next = tsf + timer_period;
  2007. /*
  2008. * Program generic timer registers
  2009. */
  2010. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  2011. timer_next);
  2012. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  2013. timer_period);
  2014. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2015. gen_tmr_configuration[timer->index].mode_mask);
  2016. /* Enable both trigger and thresh interrupt masks */
  2017. REG_SET_BIT(ah, AR_IMR_S5,
  2018. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2019. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2020. }
  2021. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  2022. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  2023. {
  2024. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2025. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  2026. (timer->index >= ATH_MAX_GEN_TIMER)) {
  2027. return;
  2028. }
  2029. /* Clear generic timer enable bits. */
  2030. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2031. gen_tmr_configuration[timer->index].mode_mask);
  2032. /* Disable both trigger and thresh interrupt masks */
  2033. REG_CLR_BIT(ah, AR_IMR_S5,
  2034. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2035. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2036. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2037. }
  2038. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  2039. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  2040. {
  2041. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2042. /* free the hardware generic timer slot */
  2043. timer_table->timers[timer->index] = NULL;
  2044. kfree(timer);
  2045. }
  2046. EXPORT_SYMBOL(ath_gen_timer_free);
  2047. /*
  2048. * Generic Timer Interrupts handling
  2049. */
  2050. void ath_gen_timer_isr(struct ath_hw *ah)
  2051. {
  2052. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2053. struct ath_gen_timer *timer;
  2054. struct ath_common *common = ath9k_hw_common(ah);
  2055. u32 trigger_mask, thresh_mask, index;
  2056. /* get hardware generic timer interrupt status */
  2057. trigger_mask = ah->intr_gen_timer_trigger;
  2058. thresh_mask = ah->intr_gen_timer_thresh;
  2059. trigger_mask &= timer_table->timer_mask.val;
  2060. thresh_mask &= timer_table->timer_mask.val;
  2061. trigger_mask &= ~thresh_mask;
  2062. while (thresh_mask) {
  2063. index = rightmost_index(timer_table, &thresh_mask);
  2064. timer = timer_table->timers[index];
  2065. BUG_ON(!timer);
  2066. ath_dbg(common, ATH_DBG_HWTIMER,
  2067. "TSF overflow for Gen timer %d\n", index);
  2068. timer->overflow(timer->arg);
  2069. }
  2070. while (trigger_mask) {
  2071. index = rightmost_index(timer_table, &trigger_mask);
  2072. timer = timer_table->timers[index];
  2073. BUG_ON(!timer);
  2074. ath_dbg(common, ATH_DBG_HWTIMER,
  2075. "Gen timer[%d] trigger\n", index);
  2076. timer->trigger(timer->arg);
  2077. }
  2078. }
  2079. EXPORT_SYMBOL(ath_gen_timer_isr);
  2080. /********/
  2081. /* HTC */
  2082. /********/
  2083. void ath9k_hw_htc_resetinit(struct ath_hw *ah)
  2084. {
  2085. ah->htc_reset_init = true;
  2086. }
  2087. EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
  2088. static struct {
  2089. u32 version;
  2090. const char * name;
  2091. } ath_mac_bb_names[] = {
  2092. /* Devices with external radios */
  2093. { AR_SREV_VERSION_5416_PCI, "5416" },
  2094. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2095. { AR_SREV_VERSION_9100, "9100" },
  2096. { AR_SREV_VERSION_9160, "9160" },
  2097. /* Single-chip solutions */
  2098. { AR_SREV_VERSION_9280, "9280" },
  2099. { AR_SREV_VERSION_9285, "9285" },
  2100. { AR_SREV_VERSION_9287, "9287" },
  2101. { AR_SREV_VERSION_9271, "9271" },
  2102. { AR_SREV_VERSION_9300, "9300" },
  2103. };
  2104. /* For devices with external radios */
  2105. static struct {
  2106. u16 version;
  2107. const char * name;
  2108. } ath_rf_names[] = {
  2109. { 0, "5133" },
  2110. { AR_RAD5133_SREV_MAJOR, "5133" },
  2111. { AR_RAD5122_SREV_MAJOR, "5122" },
  2112. { AR_RAD2133_SREV_MAJOR, "2133" },
  2113. { AR_RAD2122_SREV_MAJOR, "2122" }
  2114. };
  2115. /*
  2116. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2117. */
  2118. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  2119. {
  2120. int i;
  2121. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2122. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2123. return ath_mac_bb_names[i].name;
  2124. }
  2125. }
  2126. return "????";
  2127. }
  2128. /*
  2129. * Return the RF name. "????" is returned if the RF is unknown.
  2130. * Used for devices with external radios.
  2131. */
  2132. static const char *ath9k_hw_rf_name(u16 rf_version)
  2133. {
  2134. int i;
  2135. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2136. if (ath_rf_names[i].version == rf_version) {
  2137. return ath_rf_names[i].name;
  2138. }
  2139. }
  2140. return "????";
  2141. }
  2142. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  2143. {
  2144. int used;
  2145. /* chipsets >= AR9280 are single-chip */
  2146. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2147. used = snprintf(hw_name, len,
  2148. "Atheros AR%s Rev:%x",
  2149. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2150. ah->hw_version.macRev);
  2151. }
  2152. else {
  2153. used = snprintf(hw_name, len,
  2154. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  2155. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2156. ah->hw_version.macRev,
  2157. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
  2158. AR_RADIO_SREV_MAJOR)),
  2159. ah->hw_version.phyRev);
  2160. }
  2161. hw_name[used] = '\0';
  2162. }
  2163. EXPORT_SYMBOL(ath9k_hw_name);