xfs_inode.c 133 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include <linux/log2.h>
  19. #include "xfs.h"
  20. #include "xfs_fs.h"
  21. #include "xfs_types.h"
  22. #include "xfs_bit.h"
  23. #include "xfs_log.h"
  24. #include "xfs_inum.h"
  25. #include "xfs_imap.h"
  26. #include "xfs_trans.h"
  27. #include "xfs_trans_priv.h"
  28. #include "xfs_sb.h"
  29. #include "xfs_ag.h"
  30. #include "xfs_dir2.h"
  31. #include "xfs_dmapi.h"
  32. #include "xfs_mount.h"
  33. #include "xfs_bmap_btree.h"
  34. #include "xfs_alloc_btree.h"
  35. #include "xfs_ialloc_btree.h"
  36. #include "xfs_dir2_sf.h"
  37. #include "xfs_attr_sf.h"
  38. #include "xfs_dinode.h"
  39. #include "xfs_inode.h"
  40. #include "xfs_buf_item.h"
  41. #include "xfs_inode_item.h"
  42. #include "xfs_btree.h"
  43. #include "xfs_alloc.h"
  44. #include "xfs_ialloc.h"
  45. #include "xfs_bmap.h"
  46. #include "xfs_rw.h"
  47. #include "xfs_error.h"
  48. #include "xfs_utils.h"
  49. #include "xfs_dir2_trace.h"
  50. #include "xfs_quota.h"
  51. #include "xfs_acl.h"
  52. #include "xfs_filestream.h"
  53. #include "xfs_vnodeops.h"
  54. kmem_zone_t *xfs_ifork_zone;
  55. kmem_zone_t *xfs_inode_zone;
  56. /*
  57. * Used in xfs_itruncate(). This is the maximum number of extents
  58. * freed from a file in a single transaction.
  59. */
  60. #define XFS_ITRUNC_MAX_EXTENTS 2
  61. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  62. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  63. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  64. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  65. #ifdef DEBUG
  66. /*
  67. * Make sure that the extents in the given memory buffer
  68. * are valid.
  69. */
  70. STATIC void
  71. xfs_validate_extents(
  72. xfs_ifork_t *ifp,
  73. int nrecs,
  74. xfs_exntfmt_t fmt)
  75. {
  76. xfs_bmbt_irec_t irec;
  77. xfs_bmbt_rec_host_t rec;
  78. int i;
  79. for (i = 0; i < nrecs; i++) {
  80. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  81. rec.l0 = get_unaligned(&ep->l0);
  82. rec.l1 = get_unaligned(&ep->l1);
  83. xfs_bmbt_get_all(&rec, &irec);
  84. if (fmt == XFS_EXTFMT_NOSTATE)
  85. ASSERT(irec.br_state == XFS_EXT_NORM);
  86. }
  87. }
  88. #else /* DEBUG */
  89. #define xfs_validate_extents(ifp, nrecs, fmt)
  90. #endif /* DEBUG */
  91. /*
  92. * Check that none of the inode's in the buffer have a next
  93. * unlinked field of 0.
  94. */
  95. #if defined(DEBUG)
  96. void
  97. xfs_inobp_check(
  98. xfs_mount_t *mp,
  99. xfs_buf_t *bp)
  100. {
  101. int i;
  102. int j;
  103. xfs_dinode_t *dip;
  104. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  105. for (i = 0; i < j; i++) {
  106. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  107. i * mp->m_sb.sb_inodesize);
  108. if (!dip->di_next_unlinked) {
  109. xfs_fs_cmn_err(CE_ALERT, mp,
  110. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  111. bp);
  112. ASSERT(dip->di_next_unlinked);
  113. }
  114. }
  115. }
  116. #endif
  117. /*
  118. * Find the buffer associated with the given inode map
  119. * We do basic validation checks on the buffer once it has been
  120. * retrieved from disk.
  121. */
  122. STATIC int
  123. xfs_imap_to_bp(
  124. xfs_mount_t *mp,
  125. xfs_trans_t *tp,
  126. xfs_imap_t *imap,
  127. xfs_buf_t **bpp,
  128. uint buf_flags,
  129. uint imap_flags)
  130. {
  131. int error;
  132. int i;
  133. int ni;
  134. xfs_buf_t *bp;
  135. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
  136. (int)imap->im_len, buf_flags, &bp);
  137. if (error) {
  138. if (error != EAGAIN) {
  139. cmn_err(CE_WARN,
  140. "xfs_imap_to_bp: xfs_trans_read_buf()returned "
  141. "an error %d on %s. Returning error.",
  142. error, mp->m_fsname);
  143. } else {
  144. ASSERT(buf_flags & XFS_BUF_TRYLOCK);
  145. }
  146. return error;
  147. }
  148. /*
  149. * Validate the magic number and version of every inode in the buffer
  150. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  151. */
  152. #ifdef DEBUG
  153. ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
  154. #else /* usual case */
  155. ni = 1;
  156. #endif
  157. for (i = 0; i < ni; i++) {
  158. int di_ok;
  159. xfs_dinode_t *dip;
  160. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  161. (i << mp->m_sb.sb_inodelog));
  162. di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
  163. XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
  164. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  165. XFS_ERRTAG_ITOBP_INOTOBP,
  166. XFS_RANDOM_ITOBP_INOTOBP))) {
  167. if (imap_flags & XFS_IMAP_BULKSTAT) {
  168. xfs_trans_brelse(tp, bp);
  169. return XFS_ERROR(EINVAL);
  170. }
  171. XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
  172. XFS_ERRLEVEL_HIGH, mp, dip);
  173. #ifdef DEBUG
  174. cmn_err(CE_PANIC,
  175. "Device %s - bad inode magic/vsn "
  176. "daddr %lld #%d (magic=%x)",
  177. XFS_BUFTARG_NAME(mp->m_ddev_targp),
  178. (unsigned long long)imap->im_blkno, i,
  179. be16_to_cpu(dip->di_core.di_magic));
  180. #endif
  181. xfs_trans_brelse(tp, bp);
  182. return XFS_ERROR(EFSCORRUPTED);
  183. }
  184. }
  185. xfs_inobp_check(mp, bp);
  186. /*
  187. * Mark the buffer as an inode buffer now that it looks good
  188. */
  189. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  190. *bpp = bp;
  191. return 0;
  192. }
  193. /*
  194. * This routine is called to map an inode number within a file
  195. * system to the buffer containing the on-disk version of the
  196. * inode. It returns a pointer to the buffer containing the
  197. * on-disk inode in the bpp parameter, and in the dip parameter
  198. * it returns a pointer to the on-disk inode within that buffer.
  199. *
  200. * If a non-zero error is returned, then the contents of bpp and
  201. * dipp are undefined.
  202. *
  203. * Use xfs_imap() to determine the size and location of the
  204. * buffer to read from disk.
  205. */
  206. STATIC int
  207. xfs_inotobp(
  208. xfs_mount_t *mp,
  209. xfs_trans_t *tp,
  210. xfs_ino_t ino,
  211. xfs_dinode_t **dipp,
  212. xfs_buf_t **bpp,
  213. int *offset)
  214. {
  215. xfs_imap_t imap;
  216. xfs_buf_t *bp;
  217. int error;
  218. imap.im_blkno = 0;
  219. error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
  220. if (error)
  221. return error;
  222. error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, 0);
  223. if (error)
  224. return error;
  225. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  226. *bpp = bp;
  227. *offset = imap.im_boffset;
  228. return 0;
  229. }
  230. /*
  231. * This routine is called to map an inode to the buffer containing
  232. * the on-disk version of the inode. It returns a pointer to the
  233. * buffer containing the on-disk inode in the bpp parameter, and in
  234. * the dip parameter it returns a pointer to the on-disk inode within
  235. * that buffer.
  236. *
  237. * If a non-zero error is returned, then the contents of bpp and
  238. * dipp are undefined.
  239. *
  240. * If the inode is new and has not yet been initialized, use xfs_imap()
  241. * to determine the size and location of the buffer to read from disk.
  242. * If the inode has already been mapped to its buffer and read in once,
  243. * then use the mapping information stored in the inode rather than
  244. * calling xfs_imap(). This allows us to avoid the overhead of looking
  245. * at the inode btree for small block file systems (see xfs_dilocate()).
  246. * We can tell whether the inode has been mapped in before by comparing
  247. * its disk block address to 0. Only uninitialized inodes will have
  248. * 0 for the disk block address.
  249. */
  250. int
  251. xfs_itobp(
  252. xfs_mount_t *mp,
  253. xfs_trans_t *tp,
  254. xfs_inode_t *ip,
  255. xfs_dinode_t **dipp,
  256. xfs_buf_t **bpp,
  257. xfs_daddr_t bno,
  258. uint imap_flags,
  259. uint buf_flags)
  260. {
  261. xfs_imap_t imap;
  262. xfs_buf_t *bp;
  263. int error;
  264. if (ip->i_blkno == (xfs_daddr_t)0) {
  265. imap.im_blkno = bno;
  266. error = xfs_imap(mp, tp, ip->i_ino, &imap,
  267. XFS_IMAP_LOOKUP | imap_flags);
  268. if (error)
  269. return error;
  270. /*
  271. * Fill in the fields in the inode that will be used to
  272. * map the inode to its buffer from now on.
  273. */
  274. ip->i_blkno = imap.im_blkno;
  275. ip->i_len = imap.im_len;
  276. ip->i_boffset = imap.im_boffset;
  277. } else {
  278. /*
  279. * We've already mapped the inode once, so just use the
  280. * mapping that we saved the first time.
  281. */
  282. imap.im_blkno = ip->i_blkno;
  283. imap.im_len = ip->i_len;
  284. imap.im_boffset = ip->i_boffset;
  285. }
  286. ASSERT(bno == 0 || bno == imap.im_blkno);
  287. error = xfs_imap_to_bp(mp, tp, &imap, &bp, buf_flags, imap_flags);
  288. if (error)
  289. return error;
  290. if (!bp) {
  291. ASSERT(buf_flags & XFS_BUF_TRYLOCK);
  292. ASSERT(tp == NULL);
  293. *bpp = NULL;
  294. return EAGAIN;
  295. }
  296. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  297. *bpp = bp;
  298. return 0;
  299. }
  300. /*
  301. * Move inode type and inode format specific information from the
  302. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  303. * this means set if_rdev to the proper value. For files, directories,
  304. * and symlinks this means to bring in the in-line data or extent
  305. * pointers. For a file in B-tree format, only the root is immediately
  306. * brought in-core. The rest will be in-lined in if_extents when it
  307. * is first referenced (see xfs_iread_extents()).
  308. */
  309. STATIC int
  310. xfs_iformat(
  311. xfs_inode_t *ip,
  312. xfs_dinode_t *dip)
  313. {
  314. xfs_attr_shortform_t *atp;
  315. int size;
  316. int error;
  317. xfs_fsize_t di_size;
  318. ip->i_df.if_ext_max =
  319. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  320. error = 0;
  321. if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
  322. be16_to_cpu(dip->di_core.di_anextents) >
  323. be64_to_cpu(dip->di_core.di_nblocks))) {
  324. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  325. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  326. (unsigned long long)ip->i_ino,
  327. (int)(be32_to_cpu(dip->di_core.di_nextents) +
  328. be16_to_cpu(dip->di_core.di_anextents)),
  329. (unsigned long long)
  330. be64_to_cpu(dip->di_core.di_nblocks));
  331. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  332. ip->i_mount, dip);
  333. return XFS_ERROR(EFSCORRUPTED);
  334. }
  335. if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  336. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  337. "corrupt dinode %Lu, forkoff = 0x%x.",
  338. (unsigned long long)ip->i_ino,
  339. dip->di_core.di_forkoff);
  340. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  341. ip->i_mount, dip);
  342. return XFS_ERROR(EFSCORRUPTED);
  343. }
  344. switch (ip->i_d.di_mode & S_IFMT) {
  345. case S_IFIFO:
  346. case S_IFCHR:
  347. case S_IFBLK:
  348. case S_IFSOCK:
  349. if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
  350. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  351. ip->i_mount, dip);
  352. return XFS_ERROR(EFSCORRUPTED);
  353. }
  354. ip->i_d.di_size = 0;
  355. ip->i_size = 0;
  356. ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
  357. break;
  358. case S_IFREG:
  359. case S_IFLNK:
  360. case S_IFDIR:
  361. switch (dip->di_core.di_format) {
  362. case XFS_DINODE_FMT_LOCAL:
  363. /*
  364. * no local regular files yet
  365. */
  366. if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
  367. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  368. "corrupt inode %Lu "
  369. "(local format for regular file).",
  370. (unsigned long long) ip->i_ino);
  371. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  372. XFS_ERRLEVEL_LOW,
  373. ip->i_mount, dip);
  374. return XFS_ERROR(EFSCORRUPTED);
  375. }
  376. di_size = be64_to_cpu(dip->di_core.di_size);
  377. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  378. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  379. "corrupt inode %Lu "
  380. "(bad size %Ld for local inode).",
  381. (unsigned long long) ip->i_ino,
  382. (long long) di_size);
  383. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  384. XFS_ERRLEVEL_LOW,
  385. ip->i_mount, dip);
  386. return XFS_ERROR(EFSCORRUPTED);
  387. }
  388. size = (int)di_size;
  389. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  390. break;
  391. case XFS_DINODE_FMT_EXTENTS:
  392. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  393. break;
  394. case XFS_DINODE_FMT_BTREE:
  395. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  396. break;
  397. default:
  398. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  399. ip->i_mount);
  400. return XFS_ERROR(EFSCORRUPTED);
  401. }
  402. break;
  403. default:
  404. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  405. return XFS_ERROR(EFSCORRUPTED);
  406. }
  407. if (error) {
  408. return error;
  409. }
  410. if (!XFS_DFORK_Q(dip))
  411. return 0;
  412. ASSERT(ip->i_afp == NULL);
  413. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
  414. ip->i_afp->if_ext_max =
  415. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  416. switch (dip->di_core.di_aformat) {
  417. case XFS_DINODE_FMT_LOCAL:
  418. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  419. size = be16_to_cpu(atp->hdr.totsize);
  420. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  421. break;
  422. case XFS_DINODE_FMT_EXTENTS:
  423. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  424. break;
  425. case XFS_DINODE_FMT_BTREE:
  426. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  427. break;
  428. default:
  429. error = XFS_ERROR(EFSCORRUPTED);
  430. break;
  431. }
  432. if (error) {
  433. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  434. ip->i_afp = NULL;
  435. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  436. }
  437. return error;
  438. }
  439. /*
  440. * The file is in-lined in the on-disk inode.
  441. * If it fits into if_inline_data, then copy
  442. * it there, otherwise allocate a buffer for it
  443. * and copy the data there. Either way, set
  444. * if_data to point at the data.
  445. * If we allocate a buffer for the data, make
  446. * sure that its size is a multiple of 4 and
  447. * record the real size in i_real_bytes.
  448. */
  449. STATIC int
  450. xfs_iformat_local(
  451. xfs_inode_t *ip,
  452. xfs_dinode_t *dip,
  453. int whichfork,
  454. int size)
  455. {
  456. xfs_ifork_t *ifp;
  457. int real_size;
  458. /*
  459. * If the size is unreasonable, then something
  460. * is wrong and we just bail out rather than crash in
  461. * kmem_alloc() or memcpy() below.
  462. */
  463. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  464. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  465. "corrupt inode %Lu "
  466. "(bad size %d for local fork, size = %d).",
  467. (unsigned long long) ip->i_ino, size,
  468. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  469. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  470. ip->i_mount, dip);
  471. return XFS_ERROR(EFSCORRUPTED);
  472. }
  473. ifp = XFS_IFORK_PTR(ip, whichfork);
  474. real_size = 0;
  475. if (size == 0)
  476. ifp->if_u1.if_data = NULL;
  477. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  478. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  479. else {
  480. real_size = roundup(size, 4);
  481. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  482. }
  483. ifp->if_bytes = size;
  484. ifp->if_real_bytes = real_size;
  485. if (size)
  486. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  487. ifp->if_flags &= ~XFS_IFEXTENTS;
  488. ifp->if_flags |= XFS_IFINLINE;
  489. return 0;
  490. }
  491. /*
  492. * The file consists of a set of extents all
  493. * of which fit into the on-disk inode.
  494. * If there are few enough extents to fit into
  495. * the if_inline_ext, then copy them there.
  496. * Otherwise allocate a buffer for them and copy
  497. * them into it. Either way, set if_extents
  498. * to point at the extents.
  499. */
  500. STATIC int
  501. xfs_iformat_extents(
  502. xfs_inode_t *ip,
  503. xfs_dinode_t *dip,
  504. int whichfork)
  505. {
  506. xfs_bmbt_rec_t *dp;
  507. xfs_ifork_t *ifp;
  508. int nex;
  509. int size;
  510. int i;
  511. ifp = XFS_IFORK_PTR(ip, whichfork);
  512. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  513. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  514. /*
  515. * If the number of extents is unreasonable, then something
  516. * is wrong and we just bail out rather than crash in
  517. * kmem_alloc() or memcpy() below.
  518. */
  519. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  520. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  521. "corrupt inode %Lu ((a)extents = %d).",
  522. (unsigned long long) ip->i_ino, nex);
  523. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  524. ip->i_mount, dip);
  525. return XFS_ERROR(EFSCORRUPTED);
  526. }
  527. ifp->if_real_bytes = 0;
  528. if (nex == 0)
  529. ifp->if_u1.if_extents = NULL;
  530. else if (nex <= XFS_INLINE_EXTS)
  531. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  532. else
  533. xfs_iext_add(ifp, 0, nex);
  534. ifp->if_bytes = size;
  535. if (size) {
  536. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  537. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  538. for (i = 0; i < nex; i++, dp++) {
  539. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  540. ep->l0 = get_unaligned_be64(&dp->l0);
  541. ep->l1 = get_unaligned_be64(&dp->l1);
  542. }
  543. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  544. if (whichfork != XFS_DATA_FORK ||
  545. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  546. if (unlikely(xfs_check_nostate_extents(
  547. ifp, 0, nex))) {
  548. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  549. XFS_ERRLEVEL_LOW,
  550. ip->i_mount);
  551. return XFS_ERROR(EFSCORRUPTED);
  552. }
  553. }
  554. ifp->if_flags |= XFS_IFEXTENTS;
  555. return 0;
  556. }
  557. /*
  558. * The file has too many extents to fit into
  559. * the inode, so they are in B-tree format.
  560. * Allocate a buffer for the root of the B-tree
  561. * and copy the root into it. The i_extents
  562. * field will remain NULL until all of the
  563. * extents are read in (when they are needed).
  564. */
  565. STATIC int
  566. xfs_iformat_btree(
  567. xfs_inode_t *ip,
  568. xfs_dinode_t *dip,
  569. int whichfork)
  570. {
  571. xfs_bmdr_block_t *dfp;
  572. xfs_ifork_t *ifp;
  573. /* REFERENCED */
  574. int nrecs;
  575. int size;
  576. ifp = XFS_IFORK_PTR(ip, whichfork);
  577. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  578. size = XFS_BMAP_BROOT_SPACE(dfp);
  579. nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
  580. /*
  581. * blow out if -- fork has less extents than can fit in
  582. * fork (fork shouldn't be a btree format), root btree
  583. * block has more records than can fit into the fork,
  584. * or the number of extents is greater than the number of
  585. * blocks.
  586. */
  587. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  588. || XFS_BMDR_SPACE_CALC(nrecs) >
  589. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  590. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  591. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  592. "corrupt inode %Lu (btree).",
  593. (unsigned long long) ip->i_ino);
  594. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  595. ip->i_mount);
  596. return XFS_ERROR(EFSCORRUPTED);
  597. }
  598. ifp->if_broot_bytes = size;
  599. ifp->if_broot = kmem_alloc(size, KM_SLEEP);
  600. ASSERT(ifp->if_broot != NULL);
  601. /*
  602. * Copy and convert from the on-disk structure
  603. * to the in-memory structure.
  604. */
  605. xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  606. ifp->if_broot, size);
  607. ifp->if_flags &= ~XFS_IFEXTENTS;
  608. ifp->if_flags |= XFS_IFBROOT;
  609. return 0;
  610. }
  611. void
  612. xfs_dinode_from_disk(
  613. xfs_icdinode_t *to,
  614. xfs_dinode_core_t *from)
  615. {
  616. to->di_magic = be16_to_cpu(from->di_magic);
  617. to->di_mode = be16_to_cpu(from->di_mode);
  618. to->di_version = from ->di_version;
  619. to->di_format = from->di_format;
  620. to->di_onlink = be16_to_cpu(from->di_onlink);
  621. to->di_uid = be32_to_cpu(from->di_uid);
  622. to->di_gid = be32_to_cpu(from->di_gid);
  623. to->di_nlink = be32_to_cpu(from->di_nlink);
  624. to->di_projid = be16_to_cpu(from->di_projid);
  625. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  626. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  627. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  628. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  629. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  630. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  631. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  632. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  633. to->di_size = be64_to_cpu(from->di_size);
  634. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  635. to->di_extsize = be32_to_cpu(from->di_extsize);
  636. to->di_nextents = be32_to_cpu(from->di_nextents);
  637. to->di_anextents = be16_to_cpu(from->di_anextents);
  638. to->di_forkoff = from->di_forkoff;
  639. to->di_aformat = from->di_aformat;
  640. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  641. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  642. to->di_flags = be16_to_cpu(from->di_flags);
  643. to->di_gen = be32_to_cpu(from->di_gen);
  644. }
  645. void
  646. xfs_dinode_to_disk(
  647. xfs_dinode_core_t *to,
  648. xfs_icdinode_t *from)
  649. {
  650. to->di_magic = cpu_to_be16(from->di_magic);
  651. to->di_mode = cpu_to_be16(from->di_mode);
  652. to->di_version = from ->di_version;
  653. to->di_format = from->di_format;
  654. to->di_onlink = cpu_to_be16(from->di_onlink);
  655. to->di_uid = cpu_to_be32(from->di_uid);
  656. to->di_gid = cpu_to_be32(from->di_gid);
  657. to->di_nlink = cpu_to_be32(from->di_nlink);
  658. to->di_projid = cpu_to_be16(from->di_projid);
  659. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  660. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  661. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  662. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  663. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  664. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  665. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  666. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  667. to->di_size = cpu_to_be64(from->di_size);
  668. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  669. to->di_extsize = cpu_to_be32(from->di_extsize);
  670. to->di_nextents = cpu_to_be32(from->di_nextents);
  671. to->di_anextents = cpu_to_be16(from->di_anextents);
  672. to->di_forkoff = from->di_forkoff;
  673. to->di_aformat = from->di_aformat;
  674. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  675. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  676. to->di_flags = cpu_to_be16(from->di_flags);
  677. to->di_gen = cpu_to_be32(from->di_gen);
  678. }
  679. STATIC uint
  680. _xfs_dic2xflags(
  681. __uint16_t di_flags)
  682. {
  683. uint flags = 0;
  684. if (di_flags & XFS_DIFLAG_ANY) {
  685. if (di_flags & XFS_DIFLAG_REALTIME)
  686. flags |= XFS_XFLAG_REALTIME;
  687. if (di_flags & XFS_DIFLAG_PREALLOC)
  688. flags |= XFS_XFLAG_PREALLOC;
  689. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  690. flags |= XFS_XFLAG_IMMUTABLE;
  691. if (di_flags & XFS_DIFLAG_APPEND)
  692. flags |= XFS_XFLAG_APPEND;
  693. if (di_flags & XFS_DIFLAG_SYNC)
  694. flags |= XFS_XFLAG_SYNC;
  695. if (di_flags & XFS_DIFLAG_NOATIME)
  696. flags |= XFS_XFLAG_NOATIME;
  697. if (di_flags & XFS_DIFLAG_NODUMP)
  698. flags |= XFS_XFLAG_NODUMP;
  699. if (di_flags & XFS_DIFLAG_RTINHERIT)
  700. flags |= XFS_XFLAG_RTINHERIT;
  701. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  702. flags |= XFS_XFLAG_PROJINHERIT;
  703. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  704. flags |= XFS_XFLAG_NOSYMLINKS;
  705. if (di_flags & XFS_DIFLAG_EXTSIZE)
  706. flags |= XFS_XFLAG_EXTSIZE;
  707. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  708. flags |= XFS_XFLAG_EXTSZINHERIT;
  709. if (di_flags & XFS_DIFLAG_NODEFRAG)
  710. flags |= XFS_XFLAG_NODEFRAG;
  711. if (di_flags & XFS_DIFLAG_FILESTREAM)
  712. flags |= XFS_XFLAG_FILESTREAM;
  713. }
  714. return flags;
  715. }
  716. uint
  717. xfs_ip2xflags(
  718. xfs_inode_t *ip)
  719. {
  720. xfs_icdinode_t *dic = &ip->i_d;
  721. return _xfs_dic2xflags(dic->di_flags) |
  722. (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
  723. }
  724. uint
  725. xfs_dic2xflags(
  726. xfs_dinode_t *dip)
  727. {
  728. xfs_dinode_core_t *dic = &dip->di_core;
  729. return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
  730. (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
  731. }
  732. /*
  733. * Given a mount structure and an inode number, return a pointer
  734. * to a newly allocated in-core inode corresponding to the given
  735. * inode number.
  736. *
  737. * Initialize the inode's attributes and extent pointers if it
  738. * already has them (it will not if the inode has no links).
  739. */
  740. int
  741. xfs_iread(
  742. xfs_mount_t *mp,
  743. xfs_trans_t *tp,
  744. xfs_ino_t ino,
  745. xfs_inode_t **ipp,
  746. xfs_daddr_t bno,
  747. uint imap_flags)
  748. {
  749. xfs_buf_t *bp;
  750. xfs_dinode_t *dip;
  751. xfs_inode_t *ip;
  752. int error;
  753. ASSERT(xfs_inode_zone != NULL);
  754. ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
  755. ip->i_ino = ino;
  756. ip->i_mount = mp;
  757. atomic_set(&ip->i_iocount, 0);
  758. spin_lock_init(&ip->i_flags_lock);
  759. /*
  760. * Get pointer's to the on-disk inode and the buffer containing it.
  761. * If the inode number refers to a block outside the file system
  762. * then xfs_itobp() will return NULL. In this case we should
  763. * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
  764. * know that this is a new incore inode.
  765. */
  766. error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags, XFS_BUF_LOCK);
  767. if (error) {
  768. kmem_zone_free(xfs_inode_zone, ip);
  769. return error;
  770. }
  771. /*
  772. * Initialize inode's trace buffers.
  773. * Do this before xfs_iformat in case it adds entries.
  774. */
  775. #ifdef XFS_INODE_TRACE
  776. ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_SLEEP);
  777. #endif
  778. #ifdef XFS_BMAP_TRACE
  779. ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
  780. #endif
  781. #ifdef XFS_BMBT_TRACE
  782. ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
  783. #endif
  784. #ifdef XFS_RW_TRACE
  785. ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
  786. #endif
  787. #ifdef XFS_ILOCK_TRACE
  788. ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
  789. #endif
  790. #ifdef XFS_DIR2_TRACE
  791. ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
  792. #endif
  793. /*
  794. * If we got something that isn't an inode it means someone
  795. * (nfs or dmi) has a stale handle.
  796. */
  797. if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
  798. kmem_zone_free(xfs_inode_zone, ip);
  799. xfs_trans_brelse(tp, bp);
  800. #ifdef DEBUG
  801. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  802. "dip->di_core.di_magic (0x%x) != "
  803. "XFS_DINODE_MAGIC (0x%x)",
  804. be16_to_cpu(dip->di_core.di_magic),
  805. XFS_DINODE_MAGIC);
  806. #endif /* DEBUG */
  807. return XFS_ERROR(EINVAL);
  808. }
  809. /*
  810. * If the on-disk inode is already linked to a directory
  811. * entry, copy all of the inode into the in-core inode.
  812. * xfs_iformat() handles copying in the inode format
  813. * specific information.
  814. * Otherwise, just get the truly permanent information.
  815. */
  816. if (dip->di_core.di_mode) {
  817. xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
  818. error = xfs_iformat(ip, dip);
  819. if (error) {
  820. kmem_zone_free(xfs_inode_zone, ip);
  821. xfs_trans_brelse(tp, bp);
  822. #ifdef DEBUG
  823. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  824. "xfs_iformat() returned error %d",
  825. error);
  826. #endif /* DEBUG */
  827. return error;
  828. }
  829. } else {
  830. ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
  831. ip->i_d.di_version = dip->di_core.di_version;
  832. ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
  833. ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
  834. /*
  835. * Make sure to pull in the mode here as well in
  836. * case the inode is released without being used.
  837. * This ensures that xfs_inactive() will see that
  838. * the inode is already free and not try to mess
  839. * with the uninitialized part of it.
  840. */
  841. ip->i_d.di_mode = 0;
  842. /*
  843. * Initialize the per-fork minima and maxima for a new
  844. * inode here. xfs_iformat will do it for old inodes.
  845. */
  846. ip->i_df.if_ext_max =
  847. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  848. }
  849. INIT_LIST_HEAD(&ip->i_reclaim);
  850. /*
  851. * The inode format changed when we moved the link count and
  852. * made it 32 bits long. If this is an old format inode,
  853. * convert it in memory to look like a new one. If it gets
  854. * flushed to disk we will convert back before flushing or
  855. * logging it. We zero out the new projid field and the old link
  856. * count field. We'll handle clearing the pad field (the remains
  857. * of the old uuid field) when we actually convert the inode to
  858. * the new format. We don't change the version number so that we
  859. * can distinguish this from a real new format inode.
  860. */
  861. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  862. ip->i_d.di_nlink = ip->i_d.di_onlink;
  863. ip->i_d.di_onlink = 0;
  864. ip->i_d.di_projid = 0;
  865. }
  866. ip->i_delayed_blks = 0;
  867. ip->i_size = ip->i_d.di_size;
  868. /*
  869. * Mark the buffer containing the inode as something to keep
  870. * around for a while. This helps to keep recently accessed
  871. * meta-data in-core longer.
  872. */
  873. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  874. /*
  875. * Use xfs_trans_brelse() to release the buffer containing the
  876. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  877. * in xfs_itobp() above. If tp is NULL, this is just a normal
  878. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  879. * will only release the buffer if it is not dirty within the
  880. * transaction. It will be OK to release the buffer in this case,
  881. * because inodes on disk are never destroyed and we will be
  882. * locking the new in-core inode before putting it in the hash
  883. * table where other processes can find it. Thus we don't have
  884. * to worry about the inode being changed just because we released
  885. * the buffer.
  886. */
  887. xfs_trans_brelse(tp, bp);
  888. *ipp = ip;
  889. return 0;
  890. }
  891. /*
  892. * Read in extents from a btree-format inode.
  893. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  894. */
  895. int
  896. xfs_iread_extents(
  897. xfs_trans_t *tp,
  898. xfs_inode_t *ip,
  899. int whichfork)
  900. {
  901. int error;
  902. xfs_ifork_t *ifp;
  903. xfs_extnum_t nextents;
  904. size_t size;
  905. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  906. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  907. ip->i_mount);
  908. return XFS_ERROR(EFSCORRUPTED);
  909. }
  910. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  911. size = nextents * sizeof(xfs_bmbt_rec_t);
  912. ifp = XFS_IFORK_PTR(ip, whichfork);
  913. /*
  914. * We know that the size is valid (it's checked in iformat_btree)
  915. */
  916. ifp->if_lastex = NULLEXTNUM;
  917. ifp->if_bytes = ifp->if_real_bytes = 0;
  918. ifp->if_flags |= XFS_IFEXTENTS;
  919. xfs_iext_add(ifp, 0, nextents);
  920. error = xfs_bmap_read_extents(tp, ip, whichfork);
  921. if (error) {
  922. xfs_iext_destroy(ifp);
  923. ifp->if_flags &= ~XFS_IFEXTENTS;
  924. return error;
  925. }
  926. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  927. return 0;
  928. }
  929. /*
  930. * Allocate an inode on disk and return a copy of its in-core version.
  931. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  932. * appropriately within the inode. The uid and gid for the inode are
  933. * set according to the contents of the given cred structure.
  934. *
  935. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  936. * has a free inode available, call xfs_iget()
  937. * to obtain the in-core version of the allocated inode. Finally,
  938. * fill in the inode and log its initial contents. In this case,
  939. * ialloc_context would be set to NULL and call_again set to false.
  940. *
  941. * If xfs_dialloc() does not have an available inode,
  942. * it will replenish its supply by doing an allocation. Since we can
  943. * only do one allocation within a transaction without deadlocks, we
  944. * must commit the current transaction before returning the inode itself.
  945. * In this case, therefore, we will set call_again to true and return.
  946. * The caller should then commit the current transaction, start a new
  947. * transaction, and call xfs_ialloc() again to actually get the inode.
  948. *
  949. * To ensure that some other process does not grab the inode that
  950. * was allocated during the first call to xfs_ialloc(), this routine
  951. * also returns the [locked] bp pointing to the head of the freelist
  952. * as ialloc_context. The caller should hold this buffer across
  953. * the commit and pass it back into this routine on the second call.
  954. *
  955. * If we are allocating quota inodes, we do not have a parent inode
  956. * to attach to or associate with (i.e. pip == NULL) because they
  957. * are not linked into the directory structure - they are attached
  958. * directly to the superblock - and so have no parent.
  959. */
  960. int
  961. xfs_ialloc(
  962. xfs_trans_t *tp,
  963. xfs_inode_t *pip,
  964. mode_t mode,
  965. xfs_nlink_t nlink,
  966. xfs_dev_t rdev,
  967. cred_t *cr,
  968. xfs_prid_t prid,
  969. int okalloc,
  970. xfs_buf_t **ialloc_context,
  971. boolean_t *call_again,
  972. xfs_inode_t **ipp)
  973. {
  974. xfs_ino_t ino;
  975. xfs_inode_t *ip;
  976. uint flags;
  977. int error;
  978. /*
  979. * Call the space management code to pick
  980. * the on-disk inode to be allocated.
  981. */
  982. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  983. ialloc_context, call_again, &ino);
  984. if (error != 0) {
  985. return error;
  986. }
  987. if (*call_again || ino == NULLFSINO) {
  988. *ipp = NULL;
  989. return 0;
  990. }
  991. ASSERT(*ialloc_context == NULL);
  992. /*
  993. * Get the in-core inode with the lock held exclusively.
  994. * This is because we're setting fields here we need
  995. * to prevent others from looking at until we're done.
  996. */
  997. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  998. XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  999. if (error != 0) {
  1000. return error;
  1001. }
  1002. ASSERT(ip != NULL);
  1003. ip->i_d.di_mode = (__uint16_t)mode;
  1004. ip->i_d.di_onlink = 0;
  1005. ip->i_d.di_nlink = nlink;
  1006. ASSERT(ip->i_d.di_nlink == nlink);
  1007. ip->i_d.di_uid = current_fsuid(cr);
  1008. ip->i_d.di_gid = current_fsgid(cr);
  1009. ip->i_d.di_projid = prid;
  1010. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  1011. /*
  1012. * If the superblock version is up to where we support new format
  1013. * inodes and this is currently an old format inode, then change
  1014. * the inode version number now. This way we only do the conversion
  1015. * here rather than here and in the flush/logging code.
  1016. */
  1017. if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
  1018. ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  1019. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  1020. /*
  1021. * We've already zeroed the old link count, the projid field,
  1022. * and the pad field.
  1023. */
  1024. }
  1025. /*
  1026. * Project ids won't be stored on disk if we are using a version 1 inode.
  1027. */
  1028. if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
  1029. xfs_bump_ino_vers2(tp, ip);
  1030. if (pip && XFS_INHERIT_GID(pip)) {
  1031. ip->i_d.di_gid = pip->i_d.di_gid;
  1032. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  1033. ip->i_d.di_mode |= S_ISGID;
  1034. }
  1035. }
  1036. /*
  1037. * If the group ID of the new file does not match the effective group
  1038. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  1039. * (and only if the irix_sgid_inherit compatibility variable is set).
  1040. */
  1041. if ((irix_sgid_inherit) &&
  1042. (ip->i_d.di_mode & S_ISGID) &&
  1043. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  1044. ip->i_d.di_mode &= ~S_ISGID;
  1045. }
  1046. ip->i_d.di_size = 0;
  1047. ip->i_size = 0;
  1048. ip->i_d.di_nextents = 0;
  1049. ASSERT(ip->i_d.di_nblocks == 0);
  1050. xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
  1051. /*
  1052. * di_gen will have been taken care of in xfs_iread.
  1053. */
  1054. ip->i_d.di_extsize = 0;
  1055. ip->i_d.di_dmevmask = 0;
  1056. ip->i_d.di_dmstate = 0;
  1057. ip->i_d.di_flags = 0;
  1058. flags = XFS_ILOG_CORE;
  1059. switch (mode & S_IFMT) {
  1060. case S_IFIFO:
  1061. case S_IFCHR:
  1062. case S_IFBLK:
  1063. case S_IFSOCK:
  1064. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1065. ip->i_df.if_u2.if_rdev = rdev;
  1066. ip->i_df.if_flags = 0;
  1067. flags |= XFS_ILOG_DEV;
  1068. break;
  1069. case S_IFREG:
  1070. if (pip && xfs_inode_is_filestream(pip)) {
  1071. error = xfs_filestream_associate(pip, ip);
  1072. if (error < 0)
  1073. return -error;
  1074. if (!error)
  1075. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1076. }
  1077. /* fall through */
  1078. case S_IFDIR:
  1079. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1080. uint di_flags = 0;
  1081. if ((mode & S_IFMT) == S_IFDIR) {
  1082. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1083. di_flags |= XFS_DIFLAG_RTINHERIT;
  1084. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1085. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1086. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1087. }
  1088. } else if ((mode & S_IFMT) == S_IFREG) {
  1089. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1090. di_flags |= XFS_DIFLAG_REALTIME;
  1091. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1092. di_flags |= XFS_DIFLAG_EXTSIZE;
  1093. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1094. }
  1095. }
  1096. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1097. xfs_inherit_noatime)
  1098. di_flags |= XFS_DIFLAG_NOATIME;
  1099. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1100. xfs_inherit_nodump)
  1101. di_flags |= XFS_DIFLAG_NODUMP;
  1102. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1103. xfs_inherit_sync)
  1104. di_flags |= XFS_DIFLAG_SYNC;
  1105. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1106. xfs_inherit_nosymlinks)
  1107. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1108. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1109. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1110. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1111. xfs_inherit_nodefrag)
  1112. di_flags |= XFS_DIFLAG_NODEFRAG;
  1113. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1114. di_flags |= XFS_DIFLAG_FILESTREAM;
  1115. ip->i_d.di_flags |= di_flags;
  1116. }
  1117. /* FALLTHROUGH */
  1118. case S_IFLNK:
  1119. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1120. ip->i_df.if_flags = XFS_IFEXTENTS;
  1121. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1122. ip->i_df.if_u1.if_extents = NULL;
  1123. break;
  1124. default:
  1125. ASSERT(0);
  1126. }
  1127. /*
  1128. * Attribute fork settings for new inode.
  1129. */
  1130. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1131. ip->i_d.di_anextents = 0;
  1132. /*
  1133. * Log the new values stuffed into the inode.
  1134. */
  1135. xfs_trans_log_inode(tp, ip, flags);
  1136. /* now that we have an i_mode we can setup inode ops and unlock */
  1137. xfs_setup_inode(ip);
  1138. *ipp = ip;
  1139. return 0;
  1140. }
  1141. /*
  1142. * Check to make sure that there are no blocks allocated to the
  1143. * file beyond the size of the file. We don't check this for
  1144. * files with fixed size extents or real time extents, but we
  1145. * at least do it for regular files.
  1146. */
  1147. #ifdef DEBUG
  1148. void
  1149. xfs_isize_check(
  1150. xfs_mount_t *mp,
  1151. xfs_inode_t *ip,
  1152. xfs_fsize_t isize)
  1153. {
  1154. xfs_fileoff_t map_first;
  1155. int nimaps;
  1156. xfs_bmbt_irec_t imaps[2];
  1157. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1158. return;
  1159. if (XFS_IS_REALTIME_INODE(ip))
  1160. return;
  1161. if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
  1162. return;
  1163. nimaps = 2;
  1164. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1165. /*
  1166. * The filesystem could be shutting down, so bmapi may return
  1167. * an error.
  1168. */
  1169. if (xfs_bmapi(NULL, ip, map_first,
  1170. (XFS_B_TO_FSB(mp,
  1171. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1172. map_first),
  1173. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1174. NULL, NULL))
  1175. return;
  1176. ASSERT(nimaps == 1);
  1177. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1178. }
  1179. #endif /* DEBUG */
  1180. /*
  1181. * Calculate the last possible buffered byte in a file. This must
  1182. * include data that was buffered beyond the EOF by the write code.
  1183. * This also needs to deal with overflowing the xfs_fsize_t type
  1184. * which can happen for sizes near the limit.
  1185. *
  1186. * We also need to take into account any blocks beyond the EOF. It
  1187. * may be the case that they were buffered by a write which failed.
  1188. * In that case the pages will still be in memory, but the inode size
  1189. * will never have been updated.
  1190. */
  1191. xfs_fsize_t
  1192. xfs_file_last_byte(
  1193. xfs_inode_t *ip)
  1194. {
  1195. xfs_mount_t *mp;
  1196. xfs_fsize_t last_byte;
  1197. xfs_fileoff_t last_block;
  1198. xfs_fileoff_t size_last_block;
  1199. int error;
  1200. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
  1201. mp = ip->i_mount;
  1202. /*
  1203. * Only check for blocks beyond the EOF if the extents have
  1204. * been read in. This eliminates the need for the inode lock,
  1205. * and it also saves us from looking when it really isn't
  1206. * necessary.
  1207. */
  1208. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1209. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1210. XFS_DATA_FORK);
  1211. if (error) {
  1212. last_block = 0;
  1213. }
  1214. } else {
  1215. last_block = 0;
  1216. }
  1217. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
  1218. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1219. last_byte = XFS_FSB_TO_B(mp, last_block);
  1220. if (last_byte < 0) {
  1221. return XFS_MAXIOFFSET(mp);
  1222. }
  1223. last_byte += (1 << mp->m_writeio_log);
  1224. if (last_byte < 0) {
  1225. return XFS_MAXIOFFSET(mp);
  1226. }
  1227. return last_byte;
  1228. }
  1229. #if defined(XFS_RW_TRACE)
  1230. STATIC void
  1231. xfs_itrunc_trace(
  1232. int tag,
  1233. xfs_inode_t *ip,
  1234. int flag,
  1235. xfs_fsize_t new_size,
  1236. xfs_off_t toss_start,
  1237. xfs_off_t toss_finish)
  1238. {
  1239. if (ip->i_rwtrace == NULL) {
  1240. return;
  1241. }
  1242. ktrace_enter(ip->i_rwtrace,
  1243. (void*)((long)tag),
  1244. (void*)ip,
  1245. (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
  1246. (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
  1247. (void*)((long)flag),
  1248. (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
  1249. (void*)(unsigned long)(new_size & 0xffffffff),
  1250. (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
  1251. (void*)(unsigned long)(toss_start & 0xffffffff),
  1252. (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
  1253. (void*)(unsigned long)(toss_finish & 0xffffffff),
  1254. (void*)(unsigned long)current_cpu(),
  1255. (void*)(unsigned long)current_pid(),
  1256. (void*)NULL,
  1257. (void*)NULL,
  1258. (void*)NULL);
  1259. }
  1260. #else
  1261. #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
  1262. #endif
  1263. /*
  1264. * Start the truncation of the file to new_size. The new size
  1265. * must be smaller than the current size. This routine will
  1266. * clear the buffer and page caches of file data in the removed
  1267. * range, and xfs_itruncate_finish() will remove the underlying
  1268. * disk blocks.
  1269. *
  1270. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1271. * must NOT have the inode lock held at all. This is because we're
  1272. * calling into the buffer/page cache code and we can't hold the
  1273. * inode lock when we do so.
  1274. *
  1275. * We need to wait for any direct I/Os in flight to complete before we
  1276. * proceed with the truncate. This is needed to prevent the extents
  1277. * being read or written by the direct I/Os from being removed while the
  1278. * I/O is in flight as there is no other method of synchronising
  1279. * direct I/O with the truncate operation. Also, because we hold
  1280. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1281. * started until the truncate completes and drops the lock. Essentially,
  1282. * the vn_iowait() call forms an I/O barrier that provides strict ordering
  1283. * between direct I/Os and the truncate operation.
  1284. *
  1285. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1286. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1287. * in the case that the caller is locking things out of order and
  1288. * may not be able to call xfs_itruncate_finish() with the inode lock
  1289. * held without dropping the I/O lock. If the caller must drop the
  1290. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1291. * must be called again with all the same restrictions as the initial
  1292. * call.
  1293. */
  1294. int
  1295. xfs_itruncate_start(
  1296. xfs_inode_t *ip,
  1297. uint flags,
  1298. xfs_fsize_t new_size)
  1299. {
  1300. xfs_fsize_t last_byte;
  1301. xfs_off_t toss_start;
  1302. xfs_mount_t *mp;
  1303. int error = 0;
  1304. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
  1305. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1306. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1307. (flags == XFS_ITRUNC_MAYBE));
  1308. mp = ip->i_mount;
  1309. /* wait for the completion of any pending DIOs */
  1310. if (new_size < ip->i_size)
  1311. vn_iowait(ip);
  1312. /*
  1313. * Call toss_pages or flushinval_pages to get rid of pages
  1314. * overlapping the region being removed. We have to use
  1315. * the less efficient flushinval_pages in the case that the
  1316. * caller may not be able to finish the truncate without
  1317. * dropping the inode's I/O lock. Make sure
  1318. * to catch any pages brought in by buffers overlapping
  1319. * the EOF by searching out beyond the isize by our
  1320. * block size. We round new_size up to a block boundary
  1321. * so that we don't toss things on the same block as
  1322. * new_size but before it.
  1323. *
  1324. * Before calling toss_page or flushinval_pages, make sure to
  1325. * call remapf() over the same region if the file is mapped.
  1326. * This frees up mapped file references to the pages in the
  1327. * given range and for the flushinval_pages case it ensures
  1328. * that we get the latest mapped changes flushed out.
  1329. */
  1330. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1331. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1332. if (toss_start < 0) {
  1333. /*
  1334. * The place to start tossing is beyond our maximum
  1335. * file size, so there is no way that the data extended
  1336. * out there.
  1337. */
  1338. return 0;
  1339. }
  1340. last_byte = xfs_file_last_byte(ip);
  1341. xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
  1342. last_byte);
  1343. if (last_byte > toss_start) {
  1344. if (flags & XFS_ITRUNC_DEFINITE) {
  1345. xfs_tosspages(ip, toss_start,
  1346. -1, FI_REMAPF_LOCKED);
  1347. } else {
  1348. error = xfs_flushinval_pages(ip, toss_start,
  1349. -1, FI_REMAPF_LOCKED);
  1350. }
  1351. }
  1352. #ifdef DEBUG
  1353. if (new_size == 0) {
  1354. ASSERT(VN_CACHED(VFS_I(ip)) == 0);
  1355. }
  1356. #endif
  1357. return error;
  1358. }
  1359. /*
  1360. * Shrink the file to the given new_size. The new size must be smaller than
  1361. * the current size. This will free up the underlying blocks in the removed
  1362. * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
  1363. *
  1364. * The transaction passed to this routine must have made a permanent log
  1365. * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
  1366. * given transaction and start new ones, so make sure everything involved in
  1367. * the transaction is tidy before calling here. Some transaction will be
  1368. * returned to the caller to be committed. The incoming transaction must
  1369. * already include the inode, and both inode locks must be held exclusively.
  1370. * The inode must also be "held" within the transaction. On return the inode
  1371. * will be "held" within the returned transaction. This routine does NOT
  1372. * require any disk space to be reserved for it within the transaction.
  1373. *
  1374. * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
  1375. * indicates the fork which is to be truncated. For the attribute fork we only
  1376. * support truncation to size 0.
  1377. *
  1378. * We use the sync parameter to indicate whether or not the first transaction
  1379. * we perform might have to be synchronous. For the attr fork, it needs to be
  1380. * so if the unlink of the inode is not yet known to be permanent in the log.
  1381. * This keeps us from freeing and reusing the blocks of the attribute fork
  1382. * before the unlink of the inode becomes permanent.
  1383. *
  1384. * For the data fork, we normally have to run synchronously if we're being
  1385. * called out of the inactive path or we're being called out of the create path
  1386. * where we're truncating an existing file. Either way, the truncate needs to
  1387. * be sync so blocks don't reappear in the file with altered data in case of a
  1388. * crash. wsync filesystems can run the first case async because anything that
  1389. * shrinks the inode has to run sync so by the time we're called here from
  1390. * inactive, the inode size is permanently set to 0.
  1391. *
  1392. * Calls from the truncate path always need to be sync unless we're in a wsync
  1393. * filesystem and the file has already been unlinked.
  1394. *
  1395. * The caller is responsible for correctly setting the sync parameter. It gets
  1396. * too hard for us to guess here which path we're being called out of just
  1397. * based on inode state.
  1398. *
  1399. * If we get an error, we must return with the inode locked and linked into the
  1400. * current transaction. This keeps things simple for the higher level code,
  1401. * because it always knows that the inode is locked and held in the transaction
  1402. * that returns to it whether errors occur or not. We don't mark the inode
  1403. * dirty on error so that transactions can be easily aborted if possible.
  1404. */
  1405. int
  1406. xfs_itruncate_finish(
  1407. xfs_trans_t **tp,
  1408. xfs_inode_t *ip,
  1409. xfs_fsize_t new_size,
  1410. int fork,
  1411. int sync)
  1412. {
  1413. xfs_fsblock_t first_block;
  1414. xfs_fileoff_t first_unmap_block;
  1415. xfs_fileoff_t last_block;
  1416. xfs_filblks_t unmap_len=0;
  1417. xfs_mount_t *mp;
  1418. xfs_trans_t *ntp;
  1419. int done;
  1420. int committed;
  1421. xfs_bmap_free_t free_list;
  1422. int error;
  1423. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
  1424. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1425. ASSERT(*tp != NULL);
  1426. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1427. ASSERT(ip->i_transp == *tp);
  1428. ASSERT(ip->i_itemp != NULL);
  1429. ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
  1430. ntp = *tp;
  1431. mp = (ntp)->t_mountp;
  1432. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1433. /*
  1434. * We only support truncating the entire attribute fork.
  1435. */
  1436. if (fork == XFS_ATTR_FORK) {
  1437. new_size = 0LL;
  1438. }
  1439. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1440. xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
  1441. /*
  1442. * The first thing we do is set the size to new_size permanently
  1443. * on disk. This way we don't have to worry about anyone ever
  1444. * being able to look at the data being freed even in the face
  1445. * of a crash. What we're getting around here is the case where
  1446. * we free a block, it is allocated to another file, it is written
  1447. * to, and then we crash. If the new data gets written to the
  1448. * file but the log buffers containing the free and reallocation
  1449. * don't, then we'd end up with garbage in the blocks being freed.
  1450. * As long as we make the new_size permanent before actually
  1451. * freeing any blocks it doesn't matter if they get writtten to.
  1452. *
  1453. * The callers must signal into us whether or not the size
  1454. * setting here must be synchronous. There are a few cases
  1455. * where it doesn't have to be synchronous. Those cases
  1456. * occur if the file is unlinked and we know the unlink is
  1457. * permanent or if the blocks being truncated are guaranteed
  1458. * to be beyond the inode eof (regardless of the link count)
  1459. * and the eof value is permanent. Both of these cases occur
  1460. * only on wsync-mounted filesystems. In those cases, we're
  1461. * guaranteed that no user will ever see the data in the blocks
  1462. * that are being truncated so the truncate can run async.
  1463. * In the free beyond eof case, the file may wind up with
  1464. * more blocks allocated to it than it needs if we crash
  1465. * and that won't get fixed until the next time the file
  1466. * is re-opened and closed but that's ok as that shouldn't
  1467. * be too many blocks.
  1468. *
  1469. * However, we can't just make all wsync xactions run async
  1470. * because there's one call out of the create path that needs
  1471. * to run sync where it's truncating an existing file to size
  1472. * 0 whose size is > 0.
  1473. *
  1474. * It's probably possible to come up with a test in this
  1475. * routine that would correctly distinguish all the above
  1476. * cases from the values of the function parameters and the
  1477. * inode state but for sanity's sake, I've decided to let the
  1478. * layers above just tell us. It's simpler to correctly figure
  1479. * out in the layer above exactly under what conditions we
  1480. * can run async and I think it's easier for others read and
  1481. * follow the logic in case something has to be changed.
  1482. * cscope is your friend -- rcc.
  1483. *
  1484. * The attribute fork is much simpler.
  1485. *
  1486. * For the attribute fork we allow the caller to tell us whether
  1487. * the unlink of the inode that led to this call is yet permanent
  1488. * in the on disk log. If it is not and we will be freeing extents
  1489. * in this inode then we make the first transaction synchronous
  1490. * to make sure that the unlink is permanent by the time we free
  1491. * the blocks.
  1492. */
  1493. if (fork == XFS_DATA_FORK) {
  1494. if (ip->i_d.di_nextents > 0) {
  1495. /*
  1496. * If we are not changing the file size then do
  1497. * not update the on-disk file size - we may be
  1498. * called from xfs_inactive_free_eofblocks(). If we
  1499. * update the on-disk file size and then the system
  1500. * crashes before the contents of the file are
  1501. * flushed to disk then the files may be full of
  1502. * holes (ie NULL files bug).
  1503. */
  1504. if (ip->i_size != new_size) {
  1505. ip->i_d.di_size = new_size;
  1506. ip->i_size = new_size;
  1507. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1508. }
  1509. }
  1510. } else if (sync) {
  1511. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1512. if (ip->i_d.di_anextents > 0)
  1513. xfs_trans_set_sync(ntp);
  1514. }
  1515. ASSERT(fork == XFS_DATA_FORK ||
  1516. (fork == XFS_ATTR_FORK &&
  1517. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1518. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1519. /*
  1520. * Since it is possible for space to become allocated beyond
  1521. * the end of the file (in a crash where the space is allocated
  1522. * but the inode size is not yet updated), simply remove any
  1523. * blocks which show up between the new EOF and the maximum
  1524. * possible file size. If the first block to be removed is
  1525. * beyond the maximum file size (ie it is the same as last_block),
  1526. * then there is nothing to do.
  1527. */
  1528. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1529. ASSERT(first_unmap_block <= last_block);
  1530. done = 0;
  1531. if (last_block == first_unmap_block) {
  1532. done = 1;
  1533. } else {
  1534. unmap_len = last_block - first_unmap_block + 1;
  1535. }
  1536. while (!done) {
  1537. /*
  1538. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1539. * will tell us whether it freed the entire range or
  1540. * not. If this is a synchronous mount (wsync),
  1541. * then we can tell bunmapi to keep all the
  1542. * transactions asynchronous since the unlink
  1543. * transaction that made this inode inactive has
  1544. * already hit the disk. There's no danger of
  1545. * the freed blocks being reused, there being a
  1546. * crash, and the reused blocks suddenly reappearing
  1547. * in this file with garbage in them once recovery
  1548. * runs.
  1549. */
  1550. XFS_BMAP_INIT(&free_list, &first_block);
  1551. error = xfs_bunmapi(ntp, ip,
  1552. first_unmap_block, unmap_len,
  1553. XFS_BMAPI_AFLAG(fork) |
  1554. (sync ? 0 : XFS_BMAPI_ASYNC),
  1555. XFS_ITRUNC_MAX_EXTENTS,
  1556. &first_block, &free_list,
  1557. NULL, &done);
  1558. if (error) {
  1559. /*
  1560. * If the bunmapi call encounters an error,
  1561. * return to the caller where the transaction
  1562. * can be properly aborted. We just need to
  1563. * make sure we're not holding any resources
  1564. * that we were not when we came in.
  1565. */
  1566. xfs_bmap_cancel(&free_list);
  1567. return error;
  1568. }
  1569. /*
  1570. * Duplicate the transaction that has the permanent
  1571. * reservation and commit the old transaction.
  1572. */
  1573. error = xfs_bmap_finish(tp, &free_list, &committed);
  1574. ntp = *tp;
  1575. if (committed) {
  1576. /* link the inode into the next xact in the chain */
  1577. xfs_trans_ijoin(ntp, ip,
  1578. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1579. xfs_trans_ihold(ntp, ip);
  1580. }
  1581. if (error) {
  1582. /*
  1583. * If the bmap finish call encounters an error, return
  1584. * to the caller where the transaction can be properly
  1585. * aborted. We just need to make sure we're not
  1586. * holding any resources that we were not when we came
  1587. * in.
  1588. *
  1589. * Aborting from this point might lose some blocks in
  1590. * the file system, but oh well.
  1591. */
  1592. xfs_bmap_cancel(&free_list);
  1593. return error;
  1594. }
  1595. if (committed) {
  1596. /*
  1597. * Mark the inode dirty so it will be logged and
  1598. * moved forward in the log as part of every commit.
  1599. */
  1600. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1601. }
  1602. ntp = xfs_trans_dup(ntp);
  1603. error = xfs_trans_commit(*tp, 0);
  1604. *tp = ntp;
  1605. /* link the inode into the next transaction in the chain */
  1606. xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1607. xfs_trans_ihold(ntp, ip);
  1608. if (!error)
  1609. error = xfs_trans_reserve(ntp, 0,
  1610. XFS_ITRUNCATE_LOG_RES(mp), 0,
  1611. XFS_TRANS_PERM_LOG_RES,
  1612. XFS_ITRUNCATE_LOG_COUNT);
  1613. if (error)
  1614. return error;
  1615. }
  1616. /*
  1617. * Only update the size in the case of the data fork, but
  1618. * always re-log the inode so that our permanent transaction
  1619. * can keep on rolling it forward in the log.
  1620. */
  1621. if (fork == XFS_DATA_FORK) {
  1622. xfs_isize_check(mp, ip, new_size);
  1623. /*
  1624. * If we are not changing the file size then do
  1625. * not update the on-disk file size - we may be
  1626. * called from xfs_inactive_free_eofblocks(). If we
  1627. * update the on-disk file size and then the system
  1628. * crashes before the contents of the file are
  1629. * flushed to disk then the files may be full of
  1630. * holes (ie NULL files bug).
  1631. */
  1632. if (ip->i_size != new_size) {
  1633. ip->i_d.di_size = new_size;
  1634. ip->i_size = new_size;
  1635. }
  1636. }
  1637. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1638. ASSERT((new_size != 0) ||
  1639. (fork == XFS_ATTR_FORK) ||
  1640. (ip->i_delayed_blks == 0));
  1641. ASSERT((new_size != 0) ||
  1642. (fork == XFS_ATTR_FORK) ||
  1643. (ip->i_d.di_nextents == 0));
  1644. xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
  1645. return 0;
  1646. }
  1647. /*
  1648. * This is called when the inode's link count goes to 0.
  1649. * We place the on-disk inode on a list in the AGI. It
  1650. * will be pulled from this list when the inode is freed.
  1651. */
  1652. int
  1653. xfs_iunlink(
  1654. xfs_trans_t *tp,
  1655. xfs_inode_t *ip)
  1656. {
  1657. xfs_mount_t *mp;
  1658. xfs_agi_t *agi;
  1659. xfs_dinode_t *dip;
  1660. xfs_buf_t *agibp;
  1661. xfs_buf_t *ibp;
  1662. xfs_agnumber_t agno;
  1663. xfs_daddr_t agdaddr;
  1664. xfs_agino_t agino;
  1665. short bucket_index;
  1666. int offset;
  1667. int error;
  1668. int agi_ok;
  1669. ASSERT(ip->i_d.di_nlink == 0);
  1670. ASSERT(ip->i_d.di_mode != 0);
  1671. ASSERT(ip->i_transp == tp);
  1672. mp = tp->t_mountp;
  1673. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1674. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1675. /*
  1676. * Get the agi buffer first. It ensures lock ordering
  1677. * on the list.
  1678. */
  1679. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1680. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1681. if (error)
  1682. return error;
  1683. /*
  1684. * Validate the magic number of the agi block.
  1685. */
  1686. agi = XFS_BUF_TO_AGI(agibp);
  1687. agi_ok =
  1688. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1689. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1690. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
  1691. XFS_RANDOM_IUNLINK))) {
  1692. XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
  1693. xfs_trans_brelse(tp, agibp);
  1694. return XFS_ERROR(EFSCORRUPTED);
  1695. }
  1696. /*
  1697. * Get the index into the agi hash table for the
  1698. * list this inode will go on.
  1699. */
  1700. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1701. ASSERT(agino != 0);
  1702. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1703. ASSERT(agi->agi_unlinked[bucket_index]);
  1704. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1705. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1706. /*
  1707. * There is already another inode in the bucket we need
  1708. * to add ourselves to. Add us at the front of the list.
  1709. * Here we put the head pointer into our next pointer,
  1710. * and then we fall through to point the head at us.
  1711. */
  1712. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
  1713. if (error)
  1714. return error;
  1715. ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
  1716. /* both on-disk, don't endian flip twice */
  1717. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1718. offset = ip->i_boffset +
  1719. offsetof(xfs_dinode_t, di_next_unlinked);
  1720. xfs_trans_inode_buf(tp, ibp);
  1721. xfs_trans_log_buf(tp, ibp, offset,
  1722. (offset + sizeof(xfs_agino_t) - 1));
  1723. xfs_inobp_check(mp, ibp);
  1724. }
  1725. /*
  1726. * Point the bucket head pointer at the inode being inserted.
  1727. */
  1728. ASSERT(agino != 0);
  1729. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1730. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1731. (sizeof(xfs_agino_t) * bucket_index);
  1732. xfs_trans_log_buf(tp, agibp, offset,
  1733. (offset + sizeof(xfs_agino_t) - 1));
  1734. return 0;
  1735. }
  1736. /*
  1737. * Pull the on-disk inode from the AGI unlinked list.
  1738. */
  1739. STATIC int
  1740. xfs_iunlink_remove(
  1741. xfs_trans_t *tp,
  1742. xfs_inode_t *ip)
  1743. {
  1744. xfs_ino_t next_ino;
  1745. xfs_mount_t *mp;
  1746. xfs_agi_t *agi;
  1747. xfs_dinode_t *dip;
  1748. xfs_buf_t *agibp;
  1749. xfs_buf_t *ibp;
  1750. xfs_agnumber_t agno;
  1751. xfs_daddr_t agdaddr;
  1752. xfs_agino_t agino;
  1753. xfs_agino_t next_agino;
  1754. xfs_buf_t *last_ibp;
  1755. xfs_dinode_t *last_dip = NULL;
  1756. short bucket_index;
  1757. int offset, last_offset = 0;
  1758. int error;
  1759. int agi_ok;
  1760. /*
  1761. * First pull the on-disk inode from the AGI unlinked list.
  1762. */
  1763. mp = tp->t_mountp;
  1764. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1765. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1766. /*
  1767. * Get the agi buffer first. It ensures lock ordering
  1768. * on the list.
  1769. */
  1770. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1771. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1772. if (error) {
  1773. cmn_err(CE_WARN,
  1774. "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
  1775. error, mp->m_fsname);
  1776. return error;
  1777. }
  1778. /*
  1779. * Validate the magic number of the agi block.
  1780. */
  1781. agi = XFS_BUF_TO_AGI(agibp);
  1782. agi_ok =
  1783. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1784. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1785. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
  1786. XFS_RANDOM_IUNLINK_REMOVE))) {
  1787. XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
  1788. mp, agi);
  1789. xfs_trans_brelse(tp, agibp);
  1790. cmn_err(CE_WARN,
  1791. "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
  1792. mp->m_fsname);
  1793. return XFS_ERROR(EFSCORRUPTED);
  1794. }
  1795. /*
  1796. * Get the index into the agi hash table for the
  1797. * list this inode will go on.
  1798. */
  1799. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1800. ASSERT(agino != 0);
  1801. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1802. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1803. ASSERT(agi->agi_unlinked[bucket_index]);
  1804. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1805. /*
  1806. * We're at the head of the list. Get the inode's
  1807. * on-disk buffer to see if there is anyone after us
  1808. * on the list. Only modify our next pointer if it
  1809. * is not already NULLAGINO. This saves us the overhead
  1810. * of dealing with the buffer when there is no need to
  1811. * change it.
  1812. */
  1813. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
  1814. if (error) {
  1815. cmn_err(CE_WARN,
  1816. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1817. error, mp->m_fsname);
  1818. return error;
  1819. }
  1820. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1821. ASSERT(next_agino != 0);
  1822. if (next_agino != NULLAGINO) {
  1823. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1824. offset = ip->i_boffset +
  1825. offsetof(xfs_dinode_t, di_next_unlinked);
  1826. xfs_trans_inode_buf(tp, ibp);
  1827. xfs_trans_log_buf(tp, ibp, offset,
  1828. (offset + sizeof(xfs_agino_t) - 1));
  1829. xfs_inobp_check(mp, ibp);
  1830. } else {
  1831. xfs_trans_brelse(tp, ibp);
  1832. }
  1833. /*
  1834. * Point the bucket head pointer at the next inode.
  1835. */
  1836. ASSERT(next_agino != 0);
  1837. ASSERT(next_agino != agino);
  1838. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1839. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1840. (sizeof(xfs_agino_t) * bucket_index);
  1841. xfs_trans_log_buf(tp, agibp, offset,
  1842. (offset + sizeof(xfs_agino_t) - 1));
  1843. } else {
  1844. /*
  1845. * We need to search the list for the inode being freed.
  1846. */
  1847. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1848. last_ibp = NULL;
  1849. while (next_agino != agino) {
  1850. /*
  1851. * If the last inode wasn't the one pointing to
  1852. * us, then release its buffer since we're not
  1853. * going to do anything with it.
  1854. */
  1855. if (last_ibp != NULL) {
  1856. xfs_trans_brelse(tp, last_ibp);
  1857. }
  1858. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1859. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1860. &last_ibp, &last_offset);
  1861. if (error) {
  1862. cmn_err(CE_WARN,
  1863. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1864. error, mp->m_fsname);
  1865. return error;
  1866. }
  1867. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  1868. ASSERT(next_agino != NULLAGINO);
  1869. ASSERT(next_agino != 0);
  1870. }
  1871. /*
  1872. * Now last_ibp points to the buffer previous to us on
  1873. * the unlinked list. Pull us from the list.
  1874. */
  1875. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
  1876. if (error) {
  1877. cmn_err(CE_WARN,
  1878. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1879. error, mp->m_fsname);
  1880. return error;
  1881. }
  1882. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1883. ASSERT(next_agino != 0);
  1884. ASSERT(next_agino != agino);
  1885. if (next_agino != NULLAGINO) {
  1886. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1887. offset = ip->i_boffset +
  1888. offsetof(xfs_dinode_t, di_next_unlinked);
  1889. xfs_trans_inode_buf(tp, ibp);
  1890. xfs_trans_log_buf(tp, ibp, offset,
  1891. (offset + sizeof(xfs_agino_t) - 1));
  1892. xfs_inobp_check(mp, ibp);
  1893. } else {
  1894. xfs_trans_brelse(tp, ibp);
  1895. }
  1896. /*
  1897. * Point the previous inode on the list to the next inode.
  1898. */
  1899. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  1900. ASSERT(next_agino != 0);
  1901. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1902. xfs_trans_inode_buf(tp, last_ibp);
  1903. xfs_trans_log_buf(tp, last_ibp, offset,
  1904. (offset + sizeof(xfs_agino_t) - 1));
  1905. xfs_inobp_check(mp, last_ibp);
  1906. }
  1907. return 0;
  1908. }
  1909. STATIC void
  1910. xfs_ifree_cluster(
  1911. xfs_inode_t *free_ip,
  1912. xfs_trans_t *tp,
  1913. xfs_ino_t inum)
  1914. {
  1915. xfs_mount_t *mp = free_ip->i_mount;
  1916. int blks_per_cluster;
  1917. int nbufs;
  1918. int ninodes;
  1919. int i, j, found, pre_flushed;
  1920. xfs_daddr_t blkno;
  1921. xfs_buf_t *bp;
  1922. xfs_inode_t *ip, **ip_found;
  1923. xfs_inode_log_item_t *iip;
  1924. xfs_log_item_t *lip;
  1925. xfs_perag_t *pag = xfs_get_perag(mp, inum);
  1926. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  1927. blks_per_cluster = 1;
  1928. ninodes = mp->m_sb.sb_inopblock;
  1929. nbufs = XFS_IALLOC_BLOCKS(mp);
  1930. } else {
  1931. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  1932. mp->m_sb.sb_blocksize;
  1933. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  1934. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  1935. }
  1936. ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
  1937. for (j = 0; j < nbufs; j++, inum += ninodes) {
  1938. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  1939. XFS_INO_TO_AGBNO(mp, inum));
  1940. /*
  1941. * Look for each inode in memory and attempt to lock it,
  1942. * we can be racing with flush and tail pushing here.
  1943. * any inode we get the locks on, add to an array of
  1944. * inode items to process later.
  1945. *
  1946. * The get the buffer lock, we could beat a flush
  1947. * or tail pushing thread to the lock here, in which
  1948. * case they will go looking for the inode buffer
  1949. * and fail, we need some other form of interlock
  1950. * here.
  1951. */
  1952. found = 0;
  1953. for (i = 0; i < ninodes; i++) {
  1954. read_lock(&pag->pag_ici_lock);
  1955. ip = radix_tree_lookup(&pag->pag_ici_root,
  1956. XFS_INO_TO_AGINO(mp, (inum + i)));
  1957. /* Inode not in memory or we found it already,
  1958. * nothing to do
  1959. */
  1960. if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
  1961. read_unlock(&pag->pag_ici_lock);
  1962. continue;
  1963. }
  1964. if (xfs_inode_clean(ip)) {
  1965. read_unlock(&pag->pag_ici_lock);
  1966. continue;
  1967. }
  1968. /* If we can get the locks then add it to the
  1969. * list, otherwise by the time we get the bp lock
  1970. * below it will already be attached to the
  1971. * inode buffer.
  1972. */
  1973. /* This inode will already be locked - by us, lets
  1974. * keep it that way.
  1975. */
  1976. if (ip == free_ip) {
  1977. if (xfs_iflock_nowait(ip)) {
  1978. xfs_iflags_set(ip, XFS_ISTALE);
  1979. if (xfs_inode_clean(ip)) {
  1980. xfs_ifunlock(ip);
  1981. } else {
  1982. ip_found[found++] = ip;
  1983. }
  1984. }
  1985. read_unlock(&pag->pag_ici_lock);
  1986. continue;
  1987. }
  1988. if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  1989. if (xfs_iflock_nowait(ip)) {
  1990. xfs_iflags_set(ip, XFS_ISTALE);
  1991. if (xfs_inode_clean(ip)) {
  1992. xfs_ifunlock(ip);
  1993. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1994. } else {
  1995. ip_found[found++] = ip;
  1996. }
  1997. } else {
  1998. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1999. }
  2000. }
  2001. read_unlock(&pag->pag_ici_lock);
  2002. }
  2003. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  2004. mp->m_bsize * blks_per_cluster,
  2005. XFS_BUF_LOCK);
  2006. pre_flushed = 0;
  2007. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  2008. while (lip) {
  2009. if (lip->li_type == XFS_LI_INODE) {
  2010. iip = (xfs_inode_log_item_t *)lip;
  2011. ASSERT(iip->ili_logged == 1);
  2012. lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
  2013. spin_lock(&mp->m_ail_lock);
  2014. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2015. spin_unlock(&mp->m_ail_lock);
  2016. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  2017. pre_flushed++;
  2018. }
  2019. lip = lip->li_bio_list;
  2020. }
  2021. for (i = 0; i < found; i++) {
  2022. ip = ip_found[i];
  2023. iip = ip->i_itemp;
  2024. if (!iip) {
  2025. ip->i_update_core = 0;
  2026. xfs_ifunlock(ip);
  2027. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2028. continue;
  2029. }
  2030. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2031. iip->ili_format.ilf_fields = 0;
  2032. iip->ili_logged = 1;
  2033. spin_lock(&mp->m_ail_lock);
  2034. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2035. spin_unlock(&mp->m_ail_lock);
  2036. xfs_buf_attach_iodone(bp,
  2037. (void(*)(xfs_buf_t*,xfs_log_item_t*))
  2038. xfs_istale_done, (xfs_log_item_t *)iip);
  2039. if (ip != free_ip) {
  2040. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2041. }
  2042. }
  2043. if (found || pre_flushed)
  2044. xfs_trans_stale_inode_buf(tp, bp);
  2045. xfs_trans_binval(tp, bp);
  2046. }
  2047. kmem_free(ip_found);
  2048. xfs_put_perag(mp, pag);
  2049. }
  2050. /*
  2051. * This is called to return an inode to the inode free list.
  2052. * The inode should already be truncated to 0 length and have
  2053. * no pages associated with it. This routine also assumes that
  2054. * the inode is already a part of the transaction.
  2055. *
  2056. * The on-disk copy of the inode will have been added to the list
  2057. * of unlinked inodes in the AGI. We need to remove the inode from
  2058. * that list atomically with respect to freeing it here.
  2059. */
  2060. int
  2061. xfs_ifree(
  2062. xfs_trans_t *tp,
  2063. xfs_inode_t *ip,
  2064. xfs_bmap_free_t *flist)
  2065. {
  2066. int error;
  2067. int delete;
  2068. xfs_ino_t first_ino;
  2069. xfs_dinode_t *dip;
  2070. xfs_buf_t *ibp;
  2071. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  2072. ASSERT(ip->i_transp == tp);
  2073. ASSERT(ip->i_d.di_nlink == 0);
  2074. ASSERT(ip->i_d.di_nextents == 0);
  2075. ASSERT(ip->i_d.di_anextents == 0);
  2076. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  2077. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  2078. ASSERT(ip->i_d.di_nblocks == 0);
  2079. /*
  2080. * Pull the on-disk inode from the AGI unlinked list.
  2081. */
  2082. error = xfs_iunlink_remove(tp, ip);
  2083. if (error != 0) {
  2084. return error;
  2085. }
  2086. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  2087. if (error != 0) {
  2088. return error;
  2089. }
  2090. ip->i_d.di_mode = 0; /* mark incore inode as free */
  2091. ip->i_d.di_flags = 0;
  2092. ip->i_d.di_dmevmask = 0;
  2093. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  2094. ip->i_df.if_ext_max =
  2095. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  2096. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  2097. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  2098. /*
  2099. * Bump the generation count so no one will be confused
  2100. * by reincarnations of this inode.
  2101. */
  2102. ip->i_d.di_gen++;
  2103. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  2104. error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
  2105. if (error)
  2106. return error;
  2107. /*
  2108. * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
  2109. * from picking up this inode when it is reclaimed (its incore state
  2110. * initialzed but not flushed to disk yet). The in-core di_mode is
  2111. * already cleared and a corresponding transaction logged.
  2112. * The hack here just synchronizes the in-core to on-disk
  2113. * di_mode value in advance before the actual inode sync to disk.
  2114. * This is OK because the inode is already unlinked and would never
  2115. * change its di_mode again for this inode generation.
  2116. * This is a temporary hack that would require a proper fix
  2117. * in the future.
  2118. */
  2119. dip->di_core.di_mode = 0;
  2120. if (delete) {
  2121. xfs_ifree_cluster(ip, tp, first_ino);
  2122. }
  2123. return 0;
  2124. }
  2125. /*
  2126. * Reallocate the space for if_broot based on the number of records
  2127. * being added or deleted as indicated in rec_diff. Move the records
  2128. * and pointers in if_broot to fit the new size. When shrinking this
  2129. * will eliminate holes between the records and pointers created by
  2130. * the caller. When growing this will create holes to be filled in
  2131. * by the caller.
  2132. *
  2133. * The caller must not request to add more records than would fit in
  2134. * the on-disk inode root. If the if_broot is currently NULL, then
  2135. * if we adding records one will be allocated. The caller must also
  2136. * not request that the number of records go below zero, although
  2137. * it can go to zero.
  2138. *
  2139. * ip -- the inode whose if_broot area is changing
  2140. * ext_diff -- the change in the number of records, positive or negative,
  2141. * requested for the if_broot array.
  2142. */
  2143. void
  2144. xfs_iroot_realloc(
  2145. xfs_inode_t *ip,
  2146. int rec_diff,
  2147. int whichfork)
  2148. {
  2149. int cur_max;
  2150. xfs_ifork_t *ifp;
  2151. xfs_bmbt_block_t *new_broot;
  2152. int new_max;
  2153. size_t new_size;
  2154. char *np;
  2155. char *op;
  2156. /*
  2157. * Handle the degenerate case quietly.
  2158. */
  2159. if (rec_diff == 0) {
  2160. return;
  2161. }
  2162. ifp = XFS_IFORK_PTR(ip, whichfork);
  2163. if (rec_diff > 0) {
  2164. /*
  2165. * If there wasn't any memory allocated before, just
  2166. * allocate it now and get out.
  2167. */
  2168. if (ifp->if_broot_bytes == 0) {
  2169. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2170. ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
  2171. KM_SLEEP);
  2172. ifp->if_broot_bytes = (int)new_size;
  2173. return;
  2174. }
  2175. /*
  2176. * If there is already an existing if_broot, then we need
  2177. * to realloc() it and shift the pointers to their new
  2178. * location. The records don't change location because
  2179. * they are kept butted up against the btree block header.
  2180. */
  2181. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2182. new_max = cur_max + rec_diff;
  2183. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2184. ifp->if_broot = (xfs_bmbt_block_t *)
  2185. kmem_realloc(ifp->if_broot,
  2186. new_size,
  2187. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2188. KM_SLEEP);
  2189. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2190. ifp->if_broot_bytes);
  2191. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2192. (int)new_size);
  2193. ifp->if_broot_bytes = (int)new_size;
  2194. ASSERT(ifp->if_broot_bytes <=
  2195. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2196. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2197. return;
  2198. }
  2199. /*
  2200. * rec_diff is less than 0. In this case, we are shrinking the
  2201. * if_broot buffer. It must already exist. If we go to zero
  2202. * records, just get rid of the root and clear the status bit.
  2203. */
  2204. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2205. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2206. new_max = cur_max + rec_diff;
  2207. ASSERT(new_max >= 0);
  2208. if (new_max > 0)
  2209. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2210. else
  2211. new_size = 0;
  2212. if (new_size > 0) {
  2213. new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
  2214. /*
  2215. * First copy over the btree block header.
  2216. */
  2217. memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
  2218. } else {
  2219. new_broot = NULL;
  2220. ifp->if_flags &= ~XFS_IFBROOT;
  2221. }
  2222. /*
  2223. * Only copy the records and pointers if there are any.
  2224. */
  2225. if (new_max > 0) {
  2226. /*
  2227. * First copy the records.
  2228. */
  2229. op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
  2230. ifp->if_broot_bytes);
  2231. np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
  2232. (int)new_size);
  2233. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2234. /*
  2235. * Then copy the pointers.
  2236. */
  2237. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2238. ifp->if_broot_bytes);
  2239. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
  2240. (int)new_size);
  2241. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2242. }
  2243. kmem_free(ifp->if_broot);
  2244. ifp->if_broot = new_broot;
  2245. ifp->if_broot_bytes = (int)new_size;
  2246. ASSERT(ifp->if_broot_bytes <=
  2247. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2248. return;
  2249. }
  2250. /*
  2251. * This is called when the amount of space needed for if_data
  2252. * is increased or decreased. The change in size is indicated by
  2253. * the number of bytes that need to be added or deleted in the
  2254. * byte_diff parameter.
  2255. *
  2256. * If the amount of space needed has decreased below the size of the
  2257. * inline buffer, then switch to using the inline buffer. Otherwise,
  2258. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2259. * to what is needed.
  2260. *
  2261. * ip -- the inode whose if_data area is changing
  2262. * byte_diff -- the change in the number of bytes, positive or negative,
  2263. * requested for the if_data array.
  2264. */
  2265. void
  2266. xfs_idata_realloc(
  2267. xfs_inode_t *ip,
  2268. int byte_diff,
  2269. int whichfork)
  2270. {
  2271. xfs_ifork_t *ifp;
  2272. int new_size;
  2273. int real_size;
  2274. if (byte_diff == 0) {
  2275. return;
  2276. }
  2277. ifp = XFS_IFORK_PTR(ip, whichfork);
  2278. new_size = (int)ifp->if_bytes + byte_diff;
  2279. ASSERT(new_size >= 0);
  2280. if (new_size == 0) {
  2281. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2282. kmem_free(ifp->if_u1.if_data);
  2283. }
  2284. ifp->if_u1.if_data = NULL;
  2285. real_size = 0;
  2286. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2287. /*
  2288. * If the valid extents/data can fit in if_inline_ext/data,
  2289. * copy them from the malloc'd vector and free it.
  2290. */
  2291. if (ifp->if_u1.if_data == NULL) {
  2292. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2293. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2294. ASSERT(ifp->if_real_bytes != 0);
  2295. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2296. new_size);
  2297. kmem_free(ifp->if_u1.if_data);
  2298. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2299. }
  2300. real_size = 0;
  2301. } else {
  2302. /*
  2303. * Stuck with malloc/realloc.
  2304. * For inline data, the underlying buffer must be
  2305. * a multiple of 4 bytes in size so that it can be
  2306. * logged and stay on word boundaries. We enforce
  2307. * that here.
  2308. */
  2309. real_size = roundup(new_size, 4);
  2310. if (ifp->if_u1.if_data == NULL) {
  2311. ASSERT(ifp->if_real_bytes == 0);
  2312. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2313. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2314. /*
  2315. * Only do the realloc if the underlying size
  2316. * is really changing.
  2317. */
  2318. if (ifp->if_real_bytes != real_size) {
  2319. ifp->if_u1.if_data =
  2320. kmem_realloc(ifp->if_u1.if_data,
  2321. real_size,
  2322. ifp->if_real_bytes,
  2323. KM_SLEEP);
  2324. }
  2325. } else {
  2326. ASSERT(ifp->if_real_bytes == 0);
  2327. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2328. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2329. ifp->if_bytes);
  2330. }
  2331. }
  2332. ifp->if_real_bytes = real_size;
  2333. ifp->if_bytes = new_size;
  2334. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2335. }
  2336. /*
  2337. * Map inode to disk block and offset.
  2338. *
  2339. * mp -- the mount point structure for the current file system
  2340. * tp -- the current transaction
  2341. * ino -- the inode number of the inode to be located
  2342. * imap -- this structure is filled in with the information necessary
  2343. * to retrieve the given inode from disk
  2344. * flags -- flags to pass to xfs_dilocate indicating whether or not
  2345. * lookups in the inode btree were OK or not
  2346. */
  2347. int
  2348. xfs_imap(
  2349. xfs_mount_t *mp,
  2350. xfs_trans_t *tp,
  2351. xfs_ino_t ino,
  2352. xfs_imap_t *imap,
  2353. uint flags)
  2354. {
  2355. xfs_fsblock_t fsbno;
  2356. int len;
  2357. int off;
  2358. int error;
  2359. fsbno = imap->im_blkno ?
  2360. XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
  2361. error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
  2362. if (error)
  2363. return error;
  2364. imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
  2365. imap->im_len = XFS_FSB_TO_BB(mp, len);
  2366. imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
  2367. imap->im_ioffset = (ushort)off;
  2368. imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
  2369. /*
  2370. * If the inode number maps to a block outside the bounds
  2371. * of the file system then return NULL rather than calling
  2372. * read_buf and panicing when we get an error from the
  2373. * driver.
  2374. */
  2375. if ((imap->im_blkno + imap->im_len) >
  2376. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  2377. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_imap: "
  2378. "(imap->im_blkno (0x%llx) + imap->im_len (0x%llx)) > "
  2379. " XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) (0x%llx)",
  2380. (unsigned long long) imap->im_blkno,
  2381. (unsigned long long) imap->im_len,
  2382. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
  2383. return EINVAL;
  2384. }
  2385. return 0;
  2386. }
  2387. void
  2388. xfs_idestroy_fork(
  2389. xfs_inode_t *ip,
  2390. int whichfork)
  2391. {
  2392. xfs_ifork_t *ifp;
  2393. ifp = XFS_IFORK_PTR(ip, whichfork);
  2394. if (ifp->if_broot != NULL) {
  2395. kmem_free(ifp->if_broot);
  2396. ifp->if_broot = NULL;
  2397. }
  2398. /*
  2399. * If the format is local, then we can't have an extents
  2400. * array so just look for an inline data array. If we're
  2401. * not local then we may or may not have an extents list,
  2402. * so check and free it up if we do.
  2403. */
  2404. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2405. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2406. (ifp->if_u1.if_data != NULL)) {
  2407. ASSERT(ifp->if_real_bytes != 0);
  2408. kmem_free(ifp->if_u1.if_data);
  2409. ifp->if_u1.if_data = NULL;
  2410. ifp->if_real_bytes = 0;
  2411. }
  2412. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2413. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2414. ((ifp->if_u1.if_extents != NULL) &&
  2415. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2416. ASSERT(ifp->if_real_bytes != 0);
  2417. xfs_iext_destroy(ifp);
  2418. }
  2419. ASSERT(ifp->if_u1.if_extents == NULL ||
  2420. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2421. ASSERT(ifp->if_real_bytes == 0);
  2422. if (whichfork == XFS_ATTR_FORK) {
  2423. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2424. ip->i_afp = NULL;
  2425. }
  2426. }
  2427. /*
  2428. * This is called free all the memory associated with an inode.
  2429. * It must free the inode itself and any buffers allocated for
  2430. * if_extents/if_data and if_broot. It must also free the lock
  2431. * associated with the inode.
  2432. */
  2433. void
  2434. xfs_idestroy(
  2435. xfs_inode_t *ip)
  2436. {
  2437. switch (ip->i_d.di_mode & S_IFMT) {
  2438. case S_IFREG:
  2439. case S_IFDIR:
  2440. case S_IFLNK:
  2441. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  2442. break;
  2443. }
  2444. if (ip->i_afp)
  2445. xfs_idestroy_fork(ip, XFS_ATTR_FORK);
  2446. mrfree(&ip->i_lock);
  2447. mrfree(&ip->i_iolock);
  2448. freesema(&ip->i_flock);
  2449. #ifdef XFS_INODE_TRACE
  2450. ktrace_free(ip->i_trace);
  2451. #endif
  2452. #ifdef XFS_BMAP_TRACE
  2453. ktrace_free(ip->i_xtrace);
  2454. #endif
  2455. #ifdef XFS_BMBT_TRACE
  2456. ktrace_free(ip->i_btrace);
  2457. #endif
  2458. #ifdef XFS_RW_TRACE
  2459. ktrace_free(ip->i_rwtrace);
  2460. #endif
  2461. #ifdef XFS_ILOCK_TRACE
  2462. ktrace_free(ip->i_lock_trace);
  2463. #endif
  2464. #ifdef XFS_DIR2_TRACE
  2465. ktrace_free(ip->i_dir_trace);
  2466. #endif
  2467. if (ip->i_itemp) {
  2468. /*
  2469. * Only if we are shutting down the fs will we see an
  2470. * inode still in the AIL. If it is there, we should remove
  2471. * it to prevent a use-after-free from occurring.
  2472. */
  2473. xfs_mount_t *mp = ip->i_mount;
  2474. xfs_log_item_t *lip = &ip->i_itemp->ili_item;
  2475. ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
  2476. XFS_FORCED_SHUTDOWN(ip->i_mount));
  2477. if (lip->li_flags & XFS_LI_IN_AIL) {
  2478. spin_lock(&mp->m_ail_lock);
  2479. if (lip->li_flags & XFS_LI_IN_AIL)
  2480. xfs_trans_delete_ail(mp, lip);
  2481. else
  2482. spin_unlock(&mp->m_ail_lock);
  2483. }
  2484. xfs_inode_item_destroy(ip);
  2485. }
  2486. kmem_zone_free(xfs_inode_zone, ip);
  2487. }
  2488. /*
  2489. * Increment the pin count of the given buffer.
  2490. * This value is protected by ipinlock spinlock in the mount structure.
  2491. */
  2492. void
  2493. xfs_ipin(
  2494. xfs_inode_t *ip)
  2495. {
  2496. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  2497. atomic_inc(&ip->i_pincount);
  2498. }
  2499. /*
  2500. * Decrement the pin count of the given inode, and wake up
  2501. * anyone in xfs_iwait_unpin() if the count goes to 0. The
  2502. * inode must have been previously pinned with a call to xfs_ipin().
  2503. */
  2504. void
  2505. xfs_iunpin(
  2506. xfs_inode_t *ip)
  2507. {
  2508. ASSERT(atomic_read(&ip->i_pincount) > 0);
  2509. if (atomic_dec_and_test(&ip->i_pincount))
  2510. wake_up(&ip->i_ipin_wait);
  2511. }
  2512. /*
  2513. * This is called to unpin an inode. It can be directed to wait or to return
  2514. * immediately without waiting for the inode to be unpinned. The caller must
  2515. * have the inode locked in at least shared mode so that the buffer cannot be
  2516. * subsequently pinned once someone is waiting for it to be unpinned.
  2517. */
  2518. STATIC void
  2519. __xfs_iunpin_wait(
  2520. xfs_inode_t *ip,
  2521. int wait)
  2522. {
  2523. xfs_inode_log_item_t *iip = ip->i_itemp;
  2524. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2525. if (atomic_read(&ip->i_pincount) == 0)
  2526. return;
  2527. /* Give the log a push to start the unpinning I/O */
  2528. xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
  2529. iip->ili_last_lsn : 0, XFS_LOG_FORCE);
  2530. if (wait)
  2531. wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
  2532. }
  2533. static inline void
  2534. xfs_iunpin_wait(
  2535. xfs_inode_t *ip)
  2536. {
  2537. __xfs_iunpin_wait(ip, 1);
  2538. }
  2539. static inline void
  2540. xfs_iunpin_nowait(
  2541. xfs_inode_t *ip)
  2542. {
  2543. __xfs_iunpin_wait(ip, 0);
  2544. }
  2545. /*
  2546. * xfs_iextents_copy()
  2547. *
  2548. * This is called to copy the REAL extents (as opposed to the delayed
  2549. * allocation extents) from the inode into the given buffer. It
  2550. * returns the number of bytes copied into the buffer.
  2551. *
  2552. * If there are no delayed allocation extents, then we can just
  2553. * memcpy() the extents into the buffer. Otherwise, we need to
  2554. * examine each extent in turn and skip those which are delayed.
  2555. */
  2556. int
  2557. xfs_iextents_copy(
  2558. xfs_inode_t *ip,
  2559. xfs_bmbt_rec_t *dp,
  2560. int whichfork)
  2561. {
  2562. int copied;
  2563. int i;
  2564. xfs_ifork_t *ifp;
  2565. int nrecs;
  2566. xfs_fsblock_t start_block;
  2567. ifp = XFS_IFORK_PTR(ip, whichfork);
  2568. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2569. ASSERT(ifp->if_bytes > 0);
  2570. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2571. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2572. ASSERT(nrecs > 0);
  2573. /*
  2574. * There are some delayed allocation extents in the
  2575. * inode, so copy the extents one at a time and skip
  2576. * the delayed ones. There must be at least one
  2577. * non-delayed extent.
  2578. */
  2579. copied = 0;
  2580. for (i = 0; i < nrecs; i++) {
  2581. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  2582. start_block = xfs_bmbt_get_startblock(ep);
  2583. if (ISNULLSTARTBLOCK(start_block)) {
  2584. /*
  2585. * It's a delayed allocation extent, so skip it.
  2586. */
  2587. continue;
  2588. }
  2589. /* Translate to on disk format */
  2590. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  2591. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  2592. dp++;
  2593. copied++;
  2594. }
  2595. ASSERT(copied != 0);
  2596. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  2597. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2598. }
  2599. /*
  2600. * Each of the following cases stores data into the same region
  2601. * of the on-disk inode, so only one of them can be valid at
  2602. * any given time. While it is possible to have conflicting formats
  2603. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2604. * in EXTENTS format, this can only happen when the fork has
  2605. * changed formats after being modified but before being flushed.
  2606. * In these cases, the format always takes precedence, because the
  2607. * format indicates the current state of the fork.
  2608. */
  2609. /*ARGSUSED*/
  2610. STATIC void
  2611. xfs_iflush_fork(
  2612. xfs_inode_t *ip,
  2613. xfs_dinode_t *dip,
  2614. xfs_inode_log_item_t *iip,
  2615. int whichfork,
  2616. xfs_buf_t *bp)
  2617. {
  2618. char *cp;
  2619. xfs_ifork_t *ifp;
  2620. xfs_mount_t *mp;
  2621. #ifdef XFS_TRANS_DEBUG
  2622. int first;
  2623. #endif
  2624. static const short brootflag[2] =
  2625. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2626. static const short dataflag[2] =
  2627. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2628. static const short extflag[2] =
  2629. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2630. if (!iip)
  2631. return;
  2632. ifp = XFS_IFORK_PTR(ip, whichfork);
  2633. /*
  2634. * This can happen if we gave up in iformat in an error path,
  2635. * for the attribute fork.
  2636. */
  2637. if (!ifp) {
  2638. ASSERT(whichfork == XFS_ATTR_FORK);
  2639. return;
  2640. }
  2641. cp = XFS_DFORK_PTR(dip, whichfork);
  2642. mp = ip->i_mount;
  2643. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2644. case XFS_DINODE_FMT_LOCAL:
  2645. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2646. (ifp->if_bytes > 0)) {
  2647. ASSERT(ifp->if_u1.if_data != NULL);
  2648. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2649. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2650. }
  2651. break;
  2652. case XFS_DINODE_FMT_EXTENTS:
  2653. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2654. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2655. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2656. (ifp->if_bytes == 0));
  2657. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2658. (ifp->if_bytes > 0));
  2659. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2660. (ifp->if_bytes > 0)) {
  2661. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2662. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2663. whichfork);
  2664. }
  2665. break;
  2666. case XFS_DINODE_FMT_BTREE:
  2667. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2668. (ifp->if_broot_bytes > 0)) {
  2669. ASSERT(ifp->if_broot != NULL);
  2670. ASSERT(ifp->if_broot_bytes <=
  2671. (XFS_IFORK_SIZE(ip, whichfork) +
  2672. XFS_BROOT_SIZE_ADJ));
  2673. xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
  2674. (xfs_bmdr_block_t *)cp,
  2675. XFS_DFORK_SIZE(dip, mp, whichfork));
  2676. }
  2677. break;
  2678. case XFS_DINODE_FMT_DEV:
  2679. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2680. ASSERT(whichfork == XFS_DATA_FORK);
  2681. dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
  2682. }
  2683. break;
  2684. case XFS_DINODE_FMT_UUID:
  2685. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2686. ASSERT(whichfork == XFS_DATA_FORK);
  2687. memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
  2688. sizeof(uuid_t));
  2689. }
  2690. break;
  2691. default:
  2692. ASSERT(0);
  2693. break;
  2694. }
  2695. }
  2696. STATIC int
  2697. xfs_iflush_cluster(
  2698. xfs_inode_t *ip,
  2699. xfs_buf_t *bp)
  2700. {
  2701. xfs_mount_t *mp = ip->i_mount;
  2702. xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
  2703. unsigned long first_index, mask;
  2704. unsigned long inodes_per_cluster;
  2705. int ilist_size;
  2706. xfs_inode_t **ilist;
  2707. xfs_inode_t *iq;
  2708. int nr_found;
  2709. int clcount = 0;
  2710. int bufwasdelwri;
  2711. int i;
  2712. ASSERT(pag->pagi_inodeok);
  2713. ASSERT(pag->pag_ici_init);
  2714. inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
  2715. ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
  2716. ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
  2717. if (!ilist)
  2718. return 0;
  2719. mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
  2720. first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
  2721. read_lock(&pag->pag_ici_lock);
  2722. /* really need a gang lookup range call here */
  2723. nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
  2724. first_index, inodes_per_cluster);
  2725. if (nr_found == 0)
  2726. goto out_free;
  2727. for (i = 0; i < nr_found; i++) {
  2728. iq = ilist[i];
  2729. if (iq == ip)
  2730. continue;
  2731. /* if the inode lies outside this cluster, we're done. */
  2732. if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
  2733. break;
  2734. /*
  2735. * Do an un-protected check to see if the inode is dirty and
  2736. * is a candidate for flushing. These checks will be repeated
  2737. * later after the appropriate locks are acquired.
  2738. */
  2739. if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
  2740. continue;
  2741. /*
  2742. * Try to get locks. If any are unavailable or it is pinned,
  2743. * then this inode cannot be flushed and is skipped.
  2744. */
  2745. if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
  2746. continue;
  2747. if (!xfs_iflock_nowait(iq)) {
  2748. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2749. continue;
  2750. }
  2751. if (xfs_ipincount(iq)) {
  2752. xfs_ifunlock(iq);
  2753. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2754. continue;
  2755. }
  2756. /*
  2757. * arriving here means that this inode can be flushed. First
  2758. * re-check that it's dirty before flushing.
  2759. */
  2760. if (!xfs_inode_clean(iq)) {
  2761. int error;
  2762. error = xfs_iflush_int(iq, bp);
  2763. if (error) {
  2764. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2765. goto cluster_corrupt_out;
  2766. }
  2767. clcount++;
  2768. } else {
  2769. xfs_ifunlock(iq);
  2770. }
  2771. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2772. }
  2773. if (clcount) {
  2774. XFS_STATS_INC(xs_icluster_flushcnt);
  2775. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2776. }
  2777. out_free:
  2778. read_unlock(&pag->pag_ici_lock);
  2779. kmem_free(ilist);
  2780. return 0;
  2781. cluster_corrupt_out:
  2782. /*
  2783. * Corruption detected in the clustering loop. Invalidate the
  2784. * inode buffer and shut down the filesystem.
  2785. */
  2786. read_unlock(&pag->pag_ici_lock);
  2787. /*
  2788. * Clean up the buffer. If it was B_DELWRI, just release it --
  2789. * brelse can handle it with no problems. If not, shut down the
  2790. * filesystem before releasing the buffer.
  2791. */
  2792. bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
  2793. if (bufwasdelwri)
  2794. xfs_buf_relse(bp);
  2795. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2796. if (!bufwasdelwri) {
  2797. /*
  2798. * Just like incore_relse: if we have b_iodone functions,
  2799. * mark the buffer as an error and call them. Otherwise
  2800. * mark it as stale and brelse.
  2801. */
  2802. if (XFS_BUF_IODONE_FUNC(bp)) {
  2803. XFS_BUF_CLR_BDSTRAT_FUNC(bp);
  2804. XFS_BUF_UNDONE(bp);
  2805. XFS_BUF_STALE(bp);
  2806. XFS_BUF_SHUT(bp);
  2807. XFS_BUF_ERROR(bp,EIO);
  2808. xfs_biodone(bp);
  2809. } else {
  2810. XFS_BUF_STALE(bp);
  2811. xfs_buf_relse(bp);
  2812. }
  2813. }
  2814. /*
  2815. * Unlocks the flush lock
  2816. */
  2817. xfs_iflush_abort(iq);
  2818. kmem_free(ilist);
  2819. return XFS_ERROR(EFSCORRUPTED);
  2820. }
  2821. /*
  2822. * xfs_iflush() will write a modified inode's changes out to the
  2823. * inode's on disk home. The caller must have the inode lock held
  2824. * in at least shared mode and the inode flush semaphore must be
  2825. * held as well. The inode lock will still be held upon return from
  2826. * the call and the caller is free to unlock it.
  2827. * The inode flush lock will be unlocked when the inode reaches the disk.
  2828. * The flags indicate how the inode's buffer should be written out.
  2829. */
  2830. int
  2831. xfs_iflush(
  2832. xfs_inode_t *ip,
  2833. uint flags)
  2834. {
  2835. xfs_inode_log_item_t *iip;
  2836. xfs_buf_t *bp;
  2837. xfs_dinode_t *dip;
  2838. xfs_mount_t *mp;
  2839. int error;
  2840. int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
  2841. enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
  2842. XFS_STATS_INC(xs_iflush_count);
  2843. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2844. ASSERT(issemalocked(&(ip->i_flock)));
  2845. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2846. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2847. iip = ip->i_itemp;
  2848. mp = ip->i_mount;
  2849. /*
  2850. * If the inode isn't dirty, then just release the inode
  2851. * flush lock and do nothing.
  2852. */
  2853. if (xfs_inode_clean(ip)) {
  2854. xfs_ifunlock(ip);
  2855. return 0;
  2856. }
  2857. /*
  2858. * We can't flush the inode until it is unpinned, so wait for it if we
  2859. * are allowed to block. We know noone new can pin it, because we are
  2860. * holding the inode lock shared and you need to hold it exclusively to
  2861. * pin the inode.
  2862. *
  2863. * If we are not allowed to block, force the log out asynchronously so
  2864. * that when we come back the inode will be unpinned. If other inodes
  2865. * in the same cluster are dirty, they will probably write the inode
  2866. * out for us if they occur after the log force completes.
  2867. */
  2868. if (noblock && xfs_ipincount(ip)) {
  2869. xfs_iunpin_nowait(ip);
  2870. xfs_ifunlock(ip);
  2871. return EAGAIN;
  2872. }
  2873. xfs_iunpin_wait(ip);
  2874. /*
  2875. * This may have been unpinned because the filesystem is shutting
  2876. * down forcibly. If that's the case we must not write this inode
  2877. * to disk, because the log record didn't make it to disk!
  2878. */
  2879. if (XFS_FORCED_SHUTDOWN(mp)) {
  2880. ip->i_update_core = 0;
  2881. if (iip)
  2882. iip->ili_format.ilf_fields = 0;
  2883. xfs_ifunlock(ip);
  2884. return XFS_ERROR(EIO);
  2885. }
  2886. /*
  2887. * Decide how buffer will be flushed out. This is done before
  2888. * the call to xfs_iflush_int because this field is zeroed by it.
  2889. */
  2890. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2891. /*
  2892. * Flush out the inode buffer according to the directions
  2893. * of the caller. In the cases where the caller has given
  2894. * us a choice choose the non-delwri case. This is because
  2895. * the inode is in the AIL and we need to get it out soon.
  2896. */
  2897. switch (flags) {
  2898. case XFS_IFLUSH_SYNC:
  2899. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2900. flags = 0;
  2901. break;
  2902. case XFS_IFLUSH_ASYNC_NOBLOCK:
  2903. case XFS_IFLUSH_ASYNC:
  2904. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2905. flags = INT_ASYNC;
  2906. break;
  2907. case XFS_IFLUSH_DELWRI:
  2908. flags = INT_DELWRI;
  2909. break;
  2910. default:
  2911. ASSERT(0);
  2912. flags = 0;
  2913. break;
  2914. }
  2915. } else {
  2916. switch (flags) {
  2917. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2918. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2919. case XFS_IFLUSH_DELWRI:
  2920. flags = INT_DELWRI;
  2921. break;
  2922. case XFS_IFLUSH_ASYNC_NOBLOCK:
  2923. case XFS_IFLUSH_ASYNC:
  2924. flags = INT_ASYNC;
  2925. break;
  2926. case XFS_IFLUSH_SYNC:
  2927. flags = 0;
  2928. break;
  2929. default:
  2930. ASSERT(0);
  2931. flags = 0;
  2932. break;
  2933. }
  2934. }
  2935. /*
  2936. * Get the buffer containing the on-disk inode.
  2937. */
  2938. error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0,
  2939. noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
  2940. if (error || !bp) {
  2941. xfs_ifunlock(ip);
  2942. return error;
  2943. }
  2944. /*
  2945. * First flush out the inode that xfs_iflush was called with.
  2946. */
  2947. error = xfs_iflush_int(ip, bp);
  2948. if (error)
  2949. goto corrupt_out;
  2950. /*
  2951. * If the buffer is pinned then push on the log now so we won't
  2952. * get stuck waiting in the write for too long.
  2953. */
  2954. if (XFS_BUF_ISPINNED(bp))
  2955. xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
  2956. /*
  2957. * inode clustering:
  2958. * see if other inodes can be gathered into this write
  2959. */
  2960. error = xfs_iflush_cluster(ip, bp);
  2961. if (error)
  2962. goto cluster_corrupt_out;
  2963. if (flags & INT_DELWRI) {
  2964. xfs_bdwrite(mp, bp);
  2965. } else if (flags & INT_ASYNC) {
  2966. error = xfs_bawrite(mp, bp);
  2967. } else {
  2968. error = xfs_bwrite(mp, bp);
  2969. }
  2970. return error;
  2971. corrupt_out:
  2972. xfs_buf_relse(bp);
  2973. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2974. cluster_corrupt_out:
  2975. /*
  2976. * Unlocks the flush lock
  2977. */
  2978. xfs_iflush_abort(ip);
  2979. return XFS_ERROR(EFSCORRUPTED);
  2980. }
  2981. STATIC int
  2982. xfs_iflush_int(
  2983. xfs_inode_t *ip,
  2984. xfs_buf_t *bp)
  2985. {
  2986. xfs_inode_log_item_t *iip;
  2987. xfs_dinode_t *dip;
  2988. xfs_mount_t *mp;
  2989. #ifdef XFS_TRANS_DEBUG
  2990. int first;
  2991. #endif
  2992. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2993. ASSERT(issemalocked(&(ip->i_flock)));
  2994. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2995. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2996. iip = ip->i_itemp;
  2997. mp = ip->i_mount;
  2998. /*
  2999. * If the inode isn't dirty, then just release the inode
  3000. * flush lock and do nothing.
  3001. */
  3002. if (xfs_inode_clean(ip)) {
  3003. xfs_ifunlock(ip);
  3004. return 0;
  3005. }
  3006. /* set *dip = inode's place in the buffer */
  3007. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
  3008. /*
  3009. * Clear i_update_core before copying out the data.
  3010. * This is for coordination with our timestamp updates
  3011. * that don't hold the inode lock. They will always
  3012. * update the timestamps BEFORE setting i_update_core,
  3013. * so if we clear i_update_core after they set it we
  3014. * are guaranteed to see their updates to the timestamps.
  3015. * I believe that this depends on strongly ordered memory
  3016. * semantics, but we have that. We use the SYNCHRONIZE
  3017. * macro to make sure that the compiler does not reorder
  3018. * the i_update_core access below the data copy below.
  3019. */
  3020. ip->i_update_core = 0;
  3021. SYNCHRONIZE();
  3022. /*
  3023. * Make sure to get the latest atime from the Linux inode.
  3024. */
  3025. xfs_synchronize_atime(ip);
  3026. if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
  3027. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  3028. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3029. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  3030. ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
  3031. goto corrupt_out;
  3032. }
  3033. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  3034. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  3035. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3036. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  3037. ip->i_ino, ip, ip->i_d.di_magic);
  3038. goto corrupt_out;
  3039. }
  3040. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  3041. if (XFS_TEST_ERROR(
  3042. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3043. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  3044. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  3045. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3046. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  3047. ip->i_ino, ip);
  3048. goto corrupt_out;
  3049. }
  3050. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  3051. if (XFS_TEST_ERROR(
  3052. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3053. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  3054. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  3055. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  3056. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3057. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  3058. ip->i_ino, ip);
  3059. goto corrupt_out;
  3060. }
  3061. }
  3062. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  3063. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  3064. XFS_RANDOM_IFLUSH_5)) {
  3065. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3066. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  3067. ip->i_ino,
  3068. ip->i_d.di_nextents + ip->i_d.di_anextents,
  3069. ip->i_d.di_nblocks,
  3070. ip);
  3071. goto corrupt_out;
  3072. }
  3073. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  3074. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  3075. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3076. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  3077. ip->i_ino, ip->i_d.di_forkoff, ip);
  3078. goto corrupt_out;
  3079. }
  3080. /*
  3081. * bump the flush iteration count, used to detect flushes which
  3082. * postdate a log record during recovery.
  3083. */
  3084. ip->i_d.di_flushiter++;
  3085. /*
  3086. * Copy the dirty parts of the inode into the on-disk
  3087. * inode. We always copy out the core of the inode,
  3088. * because if the inode is dirty at all the core must
  3089. * be.
  3090. */
  3091. xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
  3092. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  3093. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  3094. ip->i_d.di_flushiter = 0;
  3095. /*
  3096. * If this is really an old format inode and the superblock version
  3097. * has not been updated to support only new format inodes, then
  3098. * convert back to the old inode format. If the superblock version
  3099. * has been updated, then make the conversion permanent.
  3100. */
  3101. ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
  3102. xfs_sb_version_hasnlink(&mp->m_sb));
  3103. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  3104. if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
  3105. /*
  3106. * Convert it back.
  3107. */
  3108. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  3109. dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  3110. } else {
  3111. /*
  3112. * The superblock version has already been bumped,
  3113. * so just make the conversion to the new inode
  3114. * format permanent.
  3115. */
  3116. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  3117. dip->di_core.di_version = XFS_DINODE_VERSION_2;
  3118. ip->i_d.di_onlink = 0;
  3119. dip->di_core.di_onlink = 0;
  3120. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  3121. memset(&(dip->di_core.di_pad[0]), 0,
  3122. sizeof(dip->di_core.di_pad));
  3123. ASSERT(ip->i_d.di_projid == 0);
  3124. }
  3125. }
  3126. xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
  3127. if (XFS_IFORK_Q(ip))
  3128. xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  3129. xfs_inobp_check(mp, bp);
  3130. /*
  3131. * We've recorded everything logged in the inode, so we'd
  3132. * like to clear the ilf_fields bits so we don't log and
  3133. * flush things unnecessarily. However, we can't stop
  3134. * logging all this information until the data we've copied
  3135. * into the disk buffer is written to disk. If we did we might
  3136. * overwrite the copy of the inode in the log with all the
  3137. * data after re-logging only part of it, and in the face of
  3138. * a crash we wouldn't have all the data we need to recover.
  3139. *
  3140. * What we do is move the bits to the ili_last_fields field.
  3141. * When logging the inode, these bits are moved back to the
  3142. * ilf_fields field. In the xfs_iflush_done() routine we
  3143. * clear ili_last_fields, since we know that the information
  3144. * those bits represent is permanently on disk. As long as
  3145. * the flush completes before the inode is logged again, then
  3146. * both ilf_fields and ili_last_fields will be cleared.
  3147. *
  3148. * We can play with the ilf_fields bits here, because the inode
  3149. * lock must be held exclusively in order to set bits there
  3150. * and the flush lock protects the ili_last_fields bits.
  3151. * Set ili_logged so the flush done
  3152. * routine can tell whether or not to look in the AIL.
  3153. * Also, store the current LSN of the inode so that we can tell
  3154. * whether the item has moved in the AIL from xfs_iflush_done().
  3155. * In order to read the lsn we need the AIL lock, because
  3156. * it is a 64 bit value that cannot be read atomically.
  3157. */
  3158. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  3159. iip->ili_last_fields = iip->ili_format.ilf_fields;
  3160. iip->ili_format.ilf_fields = 0;
  3161. iip->ili_logged = 1;
  3162. ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
  3163. spin_lock(&mp->m_ail_lock);
  3164. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  3165. spin_unlock(&mp->m_ail_lock);
  3166. /*
  3167. * Attach the function xfs_iflush_done to the inode's
  3168. * buffer. This will remove the inode from the AIL
  3169. * and unlock the inode's flush lock when the inode is
  3170. * completely written to disk.
  3171. */
  3172. xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
  3173. xfs_iflush_done, (xfs_log_item_t *)iip);
  3174. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  3175. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  3176. } else {
  3177. /*
  3178. * We're flushing an inode which is not in the AIL and has
  3179. * not been logged but has i_update_core set. For this
  3180. * case we can use a B_DELWRI flush and immediately drop
  3181. * the inode flush lock because we can avoid the whole
  3182. * AIL state thing. It's OK to drop the flush lock now,
  3183. * because we've already locked the buffer and to do anything
  3184. * you really need both.
  3185. */
  3186. if (iip != NULL) {
  3187. ASSERT(iip->ili_logged == 0);
  3188. ASSERT(iip->ili_last_fields == 0);
  3189. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  3190. }
  3191. xfs_ifunlock(ip);
  3192. }
  3193. return 0;
  3194. corrupt_out:
  3195. return XFS_ERROR(EFSCORRUPTED);
  3196. }
  3197. /*
  3198. * Flush all inactive inodes in mp.
  3199. */
  3200. void
  3201. xfs_iflush_all(
  3202. xfs_mount_t *mp)
  3203. {
  3204. xfs_inode_t *ip;
  3205. again:
  3206. XFS_MOUNT_ILOCK(mp);
  3207. ip = mp->m_inodes;
  3208. if (ip == NULL)
  3209. goto out;
  3210. do {
  3211. /* Make sure we skip markers inserted by sync */
  3212. if (ip->i_mount == NULL) {
  3213. ip = ip->i_mnext;
  3214. continue;
  3215. }
  3216. if (!VFS_I(ip)) {
  3217. XFS_MOUNT_IUNLOCK(mp);
  3218. xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
  3219. goto again;
  3220. }
  3221. ASSERT(vn_count(VFS_I(ip)) == 0);
  3222. ip = ip->i_mnext;
  3223. } while (ip != mp->m_inodes);
  3224. out:
  3225. XFS_MOUNT_IUNLOCK(mp);
  3226. }
  3227. #ifdef XFS_ILOCK_TRACE
  3228. ktrace_t *xfs_ilock_trace_buf;
  3229. void
  3230. xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
  3231. {
  3232. ktrace_enter(ip->i_lock_trace,
  3233. (void *)ip,
  3234. (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
  3235. (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
  3236. (void *)ra, /* caller of ilock */
  3237. (void *)(unsigned long)current_cpu(),
  3238. (void *)(unsigned long)current_pid(),
  3239. NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
  3240. }
  3241. #endif
  3242. /*
  3243. * Return a pointer to the extent record at file index idx.
  3244. */
  3245. xfs_bmbt_rec_host_t *
  3246. xfs_iext_get_ext(
  3247. xfs_ifork_t *ifp, /* inode fork pointer */
  3248. xfs_extnum_t idx) /* index of target extent */
  3249. {
  3250. ASSERT(idx >= 0);
  3251. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  3252. return ifp->if_u1.if_ext_irec->er_extbuf;
  3253. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3254. xfs_ext_irec_t *erp; /* irec pointer */
  3255. int erp_idx = 0; /* irec index */
  3256. xfs_extnum_t page_idx = idx; /* ext index in target list */
  3257. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3258. return &erp->er_extbuf[page_idx];
  3259. } else if (ifp->if_bytes) {
  3260. return &ifp->if_u1.if_extents[idx];
  3261. } else {
  3262. return NULL;
  3263. }
  3264. }
  3265. /*
  3266. * Insert new item(s) into the extent records for incore inode
  3267. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  3268. */
  3269. void
  3270. xfs_iext_insert(
  3271. xfs_ifork_t *ifp, /* inode fork pointer */
  3272. xfs_extnum_t idx, /* starting index of new items */
  3273. xfs_extnum_t count, /* number of inserted items */
  3274. xfs_bmbt_irec_t *new) /* items to insert */
  3275. {
  3276. xfs_extnum_t i; /* extent record index */
  3277. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3278. xfs_iext_add(ifp, idx, count);
  3279. for (i = idx; i < idx + count; i++, new++)
  3280. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  3281. }
  3282. /*
  3283. * This is called when the amount of space required for incore file
  3284. * extents needs to be increased. The ext_diff parameter stores the
  3285. * number of new extents being added and the idx parameter contains
  3286. * the extent index where the new extents will be added. If the new
  3287. * extents are being appended, then we just need to (re)allocate and
  3288. * initialize the space. Otherwise, if the new extents are being
  3289. * inserted into the middle of the existing entries, a bit more work
  3290. * is required to make room for the new extents to be inserted. The
  3291. * caller is responsible for filling in the new extent entries upon
  3292. * return.
  3293. */
  3294. void
  3295. xfs_iext_add(
  3296. xfs_ifork_t *ifp, /* inode fork pointer */
  3297. xfs_extnum_t idx, /* index to begin adding exts */
  3298. int ext_diff) /* number of extents to add */
  3299. {
  3300. int byte_diff; /* new bytes being added */
  3301. int new_size; /* size of extents after adding */
  3302. xfs_extnum_t nextents; /* number of extents in file */
  3303. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3304. ASSERT((idx >= 0) && (idx <= nextents));
  3305. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  3306. new_size = ifp->if_bytes + byte_diff;
  3307. /*
  3308. * If the new number of extents (nextents + ext_diff)
  3309. * fits inside the inode, then continue to use the inline
  3310. * extent buffer.
  3311. */
  3312. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  3313. if (idx < nextents) {
  3314. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  3315. &ifp->if_u2.if_inline_ext[idx],
  3316. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3317. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  3318. }
  3319. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3320. ifp->if_real_bytes = 0;
  3321. ifp->if_lastex = nextents + ext_diff;
  3322. }
  3323. /*
  3324. * Otherwise use a linear (direct) extent list.
  3325. * If the extents are currently inside the inode,
  3326. * xfs_iext_realloc_direct will switch us from
  3327. * inline to direct extent allocation mode.
  3328. */
  3329. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  3330. xfs_iext_realloc_direct(ifp, new_size);
  3331. if (idx < nextents) {
  3332. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  3333. &ifp->if_u1.if_extents[idx],
  3334. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3335. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  3336. }
  3337. }
  3338. /* Indirection array */
  3339. else {
  3340. xfs_ext_irec_t *erp;
  3341. int erp_idx = 0;
  3342. int page_idx = idx;
  3343. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  3344. if (ifp->if_flags & XFS_IFEXTIREC) {
  3345. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  3346. } else {
  3347. xfs_iext_irec_init(ifp);
  3348. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3349. erp = ifp->if_u1.if_ext_irec;
  3350. }
  3351. /* Extents fit in target extent page */
  3352. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  3353. if (page_idx < erp->er_extcount) {
  3354. memmove(&erp->er_extbuf[page_idx + ext_diff],
  3355. &erp->er_extbuf[page_idx],
  3356. (erp->er_extcount - page_idx) *
  3357. sizeof(xfs_bmbt_rec_t));
  3358. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  3359. }
  3360. erp->er_extcount += ext_diff;
  3361. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3362. }
  3363. /* Insert a new extent page */
  3364. else if (erp) {
  3365. xfs_iext_add_indirect_multi(ifp,
  3366. erp_idx, page_idx, ext_diff);
  3367. }
  3368. /*
  3369. * If extent(s) are being appended to the last page in
  3370. * the indirection array and the new extent(s) don't fit
  3371. * in the page, then erp is NULL and erp_idx is set to
  3372. * the next index needed in the indirection array.
  3373. */
  3374. else {
  3375. int count = ext_diff;
  3376. while (count) {
  3377. erp = xfs_iext_irec_new(ifp, erp_idx);
  3378. erp->er_extcount = count;
  3379. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3380. if (count) {
  3381. erp_idx++;
  3382. }
  3383. }
  3384. }
  3385. }
  3386. ifp->if_bytes = new_size;
  3387. }
  3388. /*
  3389. * This is called when incore extents are being added to the indirection
  3390. * array and the new extents do not fit in the target extent list. The
  3391. * erp_idx parameter contains the irec index for the target extent list
  3392. * in the indirection array, and the idx parameter contains the extent
  3393. * index within the list. The number of extents being added is stored
  3394. * in the count parameter.
  3395. *
  3396. * |-------| |-------|
  3397. * | | | | idx - number of extents before idx
  3398. * | idx | | count |
  3399. * | | | | count - number of extents being inserted at idx
  3400. * |-------| |-------|
  3401. * | count | | nex2 | nex2 - number of extents after idx + count
  3402. * |-------| |-------|
  3403. */
  3404. void
  3405. xfs_iext_add_indirect_multi(
  3406. xfs_ifork_t *ifp, /* inode fork pointer */
  3407. int erp_idx, /* target extent irec index */
  3408. xfs_extnum_t idx, /* index within target list */
  3409. int count) /* new extents being added */
  3410. {
  3411. int byte_diff; /* new bytes being added */
  3412. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3413. xfs_extnum_t ext_diff; /* number of extents to add */
  3414. xfs_extnum_t ext_cnt; /* new extents still needed */
  3415. xfs_extnum_t nex2; /* extents after idx + count */
  3416. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3417. int nlists; /* number of irec's (lists) */
  3418. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3419. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3420. nex2 = erp->er_extcount - idx;
  3421. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3422. /*
  3423. * Save second part of target extent list
  3424. * (all extents past */
  3425. if (nex2) {
  3426. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3427. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
  3428. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3429. erp->er_extcount -= nex2;
  3430. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3431. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3432. }
  3433. /*
  3434. * Add the new extents to the end of the target
  3435. * list, then allocate new irec record(s) and
  3436. * extent buffer(s) as needed to store the rest
  3437. * of the new extents.
  3438. */
  3439. ext_cnt = count;
  3440. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3441. if (ext_diff) {
  3442. erp->er_extcount += ext_diff;
  3443. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3444. ext_cnt -= ext_diff;
  3445. }
  3446. while (ext_cnt) {
  3447. erp_idx++;
  3448. erp = xfs_iext_irec_new(ifp, erp_idx);
  3449. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3450. erp->er_extcount = ext_diff;
  3451. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3452. ext_cnt -= ext_diff;
  3453. }
  3454. /* Add nex2 extents back to indirection array */
  3455. if (nex2) {
  3456. xfs_extnum_t ext_avail;
  3457. int i;
  3458. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3459. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3460. i = 0;
  3461. /*
  3462. * If nex2 extents fit in the current page, append
  3463. * nex2_ep after the new extents.
  3464. */
  3465. if (nex2 <= ext_avail) {
  3466. i = erp->er_extcount;
  3467. }
  3468. /*
  3469. * Otherwise, check if space is available in the
  3470. * next page.
  3471. */
  3472. else if ((erp_idx < nlists - 1) &&
  3473. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3474. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3475. erp_idx++;
  3476. erp++;
  3477. /* Create a hole for nex2 extents */
  3478. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3479. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3480. }
  3481. /*
  3482. * Final choice, create a new extent page for
  3483. * nex2 extents.
  3484. */
  3485. else {
  3486. erp_idx++;
  3487. erp = xfs_iext_irec_new(ifp, erp_idx);
  3488. }
  3489. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3490. kmem_free(nex2_ep);
  3491. erp->er_extcount += nex2;
  3492. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3493. }
  3494. }
  3495. /*
  3496. * This is called when the amount of space required for incore file
  3497. * extents needs to be decreased. The ext_diff parameter stores the
  3498. * number of extents to be removed and the idx parameter contains
  3499. * the extent index where the extents will be removed from.
  3500. *
  3501. * If the amount of space needed has decreased below the linear
  3502. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3503. * extent array. Otherwise, use kmem_realloc() to adjust the
  3504. * size to what is needed.
  3505. */
  3506. void
  3507. xfs_iext_remove(
  3508. xfs_ifork_t *ifp, /* inode fork pointer */
  3509. xfs_extnum_t idx, /* index to begin removing exts */
  3510. int ext_diff) /* number of extents to remove */
  3511. {
  3512. xfs_extnum_t nextents; /* number of extents in file */
  3513. int new_size; /* size of extents after removal */
  3514. ASSERT(ext_diff > 0);
  3515. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3516. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3517. if (new_size == 0) {
  3518. xfs_iext_destroy(ifp);
  3519. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3520. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3521. } else if (ifp->if_real_bytes) {
  3522. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3523. } else {
  3524. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3525. }
  3526. ifp->if_bytes = new_size;
  3527. }
  3528. /*
  3529. * This removes ext_diff extents from the inline buffer, beginning
  3530. * at extent index idx.
  3531. */
  3532. void
  3533. xfs_iext_remove_inline(
  3534. xfs_ifork_t *ifp, /* inode fork pointer */
  3535. xfs_extnum_t idx, /* index to begin removing exts */
  3536. int ext_diff) /* number of extents to remove */
  3537. {
  3538. int nextents; /* number of extents in file */
  3539. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3540. ASSERT(idx < XFS_INLINE_EXTS);
  3541. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3542. ASSERT(((nextents - ext_diff) > 0) &&
  3543. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3544. if (idx + ext_diff < nextents) {
  3545. memmove(&ifp->if_u2.if_inline_ext[idx],
  3546. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3547. (nextents - (idx + ext_diff)) *
  3548. sizeof(xfs_bmbt_rec_t));
  3549. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3550. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3551. } else {
  3552. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3553. ext_diff * sizeof(xfs_bmbt_rec_t));
  3554. }
  3555. }
  3556. /*
  3557. * This removes ext_diff extents from a linear (direct) extent list,
  3558. * beginning at extent index idx. If the extents are being removed
  3559. * from the end of the list (ie. truncate) then we just need to re-
  3560. * allocate the list to remove the extra space. Otherwise, if the
  3561. * extents are being removed from the middle of the existing extent
  3562. * entries, then we first need to move the extent records beginning
  3563. * at idx + ext_diff up in the list to overwrite the records being
  3564. * removed, then remove the extra space via kmem_realloc.
  3565. */
  3566. void
  3567. xfs_iext_remove_direct(
  3568. xfs_ifork_t *ifp, /* inode fork pointer */
  3569. xfs_extnum_t idx, /* index to begin removing exts */
  3570. int ext_diff) /* number of extents to remove */
  3571. {
  3572. xfs_extnum_t nextents; /* number of extents in file */
  3573. int new_size; /* size of extents after removal */
  3574. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3575. new_size = ifp->if_bytes -
  3576. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3577. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3578. if (new_size == 0) {
  3579. xfs_iext_destroy(ifp);
  3580. return;
  3581. }
  3582. /* Move extents up in the list (if needed) */
  3583. if (idx + ext_diff < nextents) {
  3584. memmove(&ifp->if_u1.if_extents[idx],
  3585. &ifp->if_u1.if_extents[idx + ext_diff],
  3586. (nextents - (idx + ext_diff)) *
  3587. sizeof(xfs_bmbt_rec_t));
  3588. }
  3589. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3590. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3591. /*
  3592. * Reallocate the direct extent list. If the extents
  3593. * will fit inside the inode then xfs_iext_realloc_direct
  3594. * will switch from direct to inline extent allocation
  3595. * mode for us.
  3596. */
  3597. xfs_iext_realloc_direct(ifp, new_size);
  3598. ifp->if_bytes = new_size;
  3599. }
  3600. /*
  3601. * This is called when incore extents are being removed from the
  3602. * indirection array and the extents being removed span multiple extent
  3603. * buffers. The idx parameter contains the file extent index where we
  3604. * want to begin removing extents, and the count parameter contains
  3605. * how many extents need to be removed.
  3606. *
  3607. * |-------| |-------|
  3608. * | nex1 | | | nex1 - number of extents before idx
  3609. * |-------| | count |
  3610. * | | | | count - number of extents being removed at idx
  3611. * | count | |-------|
  3612. * | | | nex2 | nex2 - number of extents after idx + count
  3613. * |-------| |-------|
  3614. */
  3615. void
  3616. xfs_iext_remove_indirect(
  3617. xfs_ifork_t *ifp, /* inode fork pointer */
  3618. xfs_extnum_t idx, /* index to begin removing extents */
  3619. int count) /* number of extents to remove */
  3620. {
  3621. xfs_ext_irec_t *erp; /* indirection array pointer */
  3622. int erp_idx = 0; /* indirection array index */
  3623. xfs_extnum_t ext_cnt; /* extents left to remove */
  3624. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3625. xfs_extnum_t nex1; /* number of extents before idx */
  3626. xfs_extnum_t nex2; /* extents after idx + count */
  3627. int nlists; /* entries in indirection array */
  3628. int page_idx = idx; /* index in target extent list */
  3629. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3630. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3631. ASSERT(erp != NULL);
  3632. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3633. nex1 = page_idx;
  3634. ext_cnt = count;
  3635. while (ext_cnt) {
  3636. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3637. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3638. /*
  3639. * Check for deletion of entire list;
  3640. * xfs_iext_irec_remove() updates extent offsets.
  3641. */
  3642. if (ext_diff == erp->er_extcount) {
  3643. xfs_iext_irec_remove(ifp, erp_idx);
  3644. ext_cnt -= ext_diff;
  3645. nex1 = 0;
  3646. if (ext_cnt) {
  3647. ASSERT(erp_idx < ifp->if_real_bytes /
  3648. XFS_IEXT_BUFSZ);
  3649. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3650. nex1 = 0;
  3651. continue;
  3652. } else {
  3653. break;
  3654. }
  3655. }
  3656. /* Move extents up (if needed) */
  3657. if (nex2) {
  3658. memmove(&erp->er_extbuf[nex1],
  3659. &erp->er_extbuf[nex1 + ext_diff],
  3660. nex2 * sizeof(xfs_bmbt_rec_t));
  3661. }
  3662. /* Zero out rest of page */
  3663. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3664. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3665. /* Update remaining counters */
  3666. erp->er_extcount -= ext_diff;
  3667. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3668. ext_cnt -= ext_diff;
  3669. nex1 = 0;
  3670. erp_idx++;
  3671. erp++;
  3672. }
  3673. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3674. xfs_iext_irec_compact(ifp);
  3675. }
  3676. /*
  3677. * Create, destroy, or resize a linear (direct) block of extents.
  3678. */
  3679. void
  3680. xfs_iext_realloc_direct(
  3681. xfs_ifork_t *ifp, /* inode fork pointer */
  3682. int new_size) /* new size of extents */
  3683. {
  3684. int rnew_size; /* real new size of extents */
  3685. rnew_size = new_size;
  3686. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3687. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3688. (new_size != ifp->if_real_bytes)));
  3689. /* Free extent records */
  3690. if (new_size == 0) {
  3691. xfs_iext_destroy(ifp);
  3692. }
  3693. /* Resize direct extent list and zero any new bytes */
  3694. else if (ifp->if_real_bytes) {
  3695. /* Check if extents will fit inside the inode */
  3696. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3697. xfs_iext_direct_to_inline(ifp, new_size /
  3698. (uint)sizeof(xfs_bmbt_rec_t));
  3699. ifp->if_bytes = new_size;
  3700. return;
  3701. }
  3702. if (!is_power_of_2(new_size)){
  3703. rnew_size = roundup_pow_of_two(new_size);
  3704. }
  3705. if (rnew_size != ifp->if_real_bytes) {
  3706. ifp->if_u1.if_extents =
  3707. kmem_realloc(ifp->if_u1.if_extents,
  3708. rnew_size,
  3709. ifp->if_real_bytes, KM_NOFS);
  3710. }
  3711. if (rnew_size > ifp->if_real_bytes) {
  3712. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3713. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3714. rnew_size - ifp->if_real_bytes);
  3715. }
  3716. }
  3717. /*
  3718. * Switch from the inline extent buffer to a direct
  3719. * extent list. Be sure to include the inline extent
  3720. * bytes in new_size.
  3721. */
  3722. else {
  3723. new_size += ifp->if_bytes;
  3724. if (!is_power_of_2(new_size)) {
  3725. rnew_size = roundup_pow_of_two(new_size);
  3726. }
  3727. xfs_iext_inline_to_direct(ifp, rnew_size);
  3728. }
  3729. ifp->if_real_bytes = rnew_size;
  3730. ifp->if_bytes = new_size;
  3731. }
  3732. /*
  3733. * Switch from linear (direct) extent records to inline buffer.
  3734. */
  3735. void
  3736. xfs_iext_direct_to_inline(
  3737. xfs_ifork_t *ifp, /* inode fork pointer */
  3738. xfs_extnum_t nextents) /* number of extents in file */
  3739. {
  3740. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3741. ASSERT(nextents <= XFS_INLINE_EXTS);
  3742. /*
  3743. * The inline buffer was zeroed when we switched
  3744. * from inline to direct extent allocation mode,
  3745. * so we don't need to clear it here.
  3746. */
  3747. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3748. nextents * sizeof(xfs_bmbt_rec_t));
  3749. kmem_free(ifp->if_u1.if_extents);
  3750. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3751. ifp->if_real_bytes = 0;
  3752. }
  3753. /*
  3754. * Switch from inline buffer to linear (direct) extent records.
  3755. * new_size should already be rounded up to the next power of 2
  3756. * by the caller (when appropriate), so use new_size as it is.
  3757. * However, since new_size may be rounded up, we can't update
  3758. * if_bytes here. It is the caller's responsibility to update
  3759. * if_bytes upon return.
  3760. */
  3761. void
  3762. xfs_iext_inline_to_direct(
  3763. xfs_ifork_t *ifp, /* inode fork pointer */
  3764. int new_size) /* number of extents in file */
  3765. {
  3766. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
  3767. memset(ifp->if_u1.if_extents, 0, new_size);
  3768. if (ifp->if_bytes) {
  3769. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3770. ifp->if_bytes);
  3771. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3772. sizeof(xfs_bmbt_rec_t));
  3773. }
  3774. ifp->if_real_bytes = new_size;
  3775. }
  3776. /*
  3777. * Resize an extent indirection array to new_size bytes.
  3778. */
  3779. void
  3780. xfs_iext_realloc_indirect(
  3781. xfs_ifork_t *ifp, /* inode fork pointer */
  3782. int new_size) /* new indirection array size */
  3783. {
  3784. int nlists; /* number of irec's (ex lists) */
  3785. int size; /* current indirection array size */
  3786. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3787. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3788. size = nlists * sizeof(xfs_ext_irec_t);
  3789. ASSERT(ifp->if_real_bytes);
  3790. ASSERT((new_size >= 0) && (new_size != size));
  3791. if (new_size == 0) {
  3792. xfs_iext_destroy(ifp);
  3793. } else {
  3794. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3795. kmem_realloc(ifp->if_u1.if_ext_irec,
  3796. new_size, size, KM_NOFS);
  3797. }
  3798. }
  3799. /*
  3800. * Switch from indirection array to linear (direct) extent allocations.
  3801. */
  3802. void
  3803. xfs_iext_indirect_to_direct(
  3804. xfs_ifork_t *ifp) /* inode fork pointer */
  3805. {
  3806. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  3807. xfs_extnum_t nextents; /* number of extents in file */
  3808. int size; /* size of file extents */
  3809. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3810. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3811. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3812. size = nextents * sizeof(xfs_bmbt_rec_t);
  3813. xfs_iext_irec_compact_full(ifp);
  3814. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3815. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3816. kmem_free(ifp->if_u1.if_ext_irec);
  3817. ifp->if_flags &= ~XFS_IFEXTIREC;
  3818. ifp->if_u1.if_extents = ep;
  3819. ifp->if_bytes = size;
  3820. if (nextents < XFS_LINEAR_EXTS) {
  3821. xfs_iext_realloc_direct(ifp, size);
  3822. }
  3823. }
  3824. /*
  3825. * Free incore file extents.
  3826. */
  3827. void
  3828. xfs_iext_destroy(
  3829. xfs_ifork_t *ifp) /* inode fork pointer */
  3830. {
  3831. if (ifp->if_flags & XFS_IFEXTIREC) {
  3832. int erp_idx;
  3833. int nlists;
  3834. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3835. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3836. xfs_iext_irec_remove(ifp, erp_idx);
  3837. }
  3838. ifp->if_flags &= ~XFS_IFEXTIREC;
  3839. } else if (ifp->if_real_bytes) {
  3840. kmem_free(ifp->if_u1.if_extents);
  3841. } else if (ifp->if_bytes) {
  3842. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3843. sizeof(xfs_bmbt_rec_t));
  3844. }
  3845. ifp->if_u1.if_extents = NULL;
  3846. ifp->if_real_bytes = 0;
  3847. ifp->if_bytes = 0;
  3848. }
  3849. /*
  3850. * Return a pointer to the extent record for file system block bno.
  3851. */
  3852. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  3853. xfs_iext_bno_to_ext(
  3854. xfs_ifork_t *ifp, /* inode fork pointer */
  3855. xfs_fileoff_t bno, /* block number to search for */
  3856. xfs_extnum_t *idxp) /* index of target extent */
  3857. {
  3858. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  3859. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3860. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  3861. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3862. int high; /* upper boundary in search */
  3863. xfs_extnum_t idx = 0; /* index of target extent */
  3864. int low; /* lower boundary in search */
  3865. xfs_extnum_t nextents; /* number of file extents */
  3866. xfs_fileoff_t startoff = 0; /* start offset of extent */
  3867. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3868. if (nextents == 0) {
  3869. *idxp = 0;
  3870. return NULL;
  3871. }
  3872. low = 0;
  3873. if (ifp->if_flags & XFS_IFEXTIREC) {
  3874. /* Find target extent list */
  3875. int erp_idx = 0;
  3876. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  3877. base = erp->er_extbuf;
  3878. high = erp->er_extcount - 1;
  3879. } else {
  3880. base = ifp->if_u1.if_extents;
  3881. high = nextents - 1;
  3882. }
  3883. /* Binary search extent records */
  3884. while (low <= high) {
  3885. idx = (low + high) >> 1;
  3886. ep = base + idx;
  3887. startoff = xfs_bmbt_get_startoff(ep);
  3888. blockcount = xfs_bmbt_get_blockcount(ep);
  3889. if (bno < startoff) {
  3890. high = idx - 1;
  3891. } else if (bno >= startoff + blockcount) {
  3892. low = idx + 1;
  3893. } else {
  3894. /* Convert back to file-based extent index */
  3895. if (ifp->if_flags & XFS_IFEXTIREC) {
  3896. idx += erp->er_extoff;
  3897. }
  3898. *idxp = idx;
  3899. return ep;
  3900. }
  3901. }
  3902. /* Convert back to file-based extent index */
  3903. if (ifp->if_flags & XFS_IFEXTIREC) {
  3904. idx += erp->er_extoff;
  3905. }
  3906. if (bno >= startoff + blockcount) {
  3907. if (++idx == nextents) {
  3908. ep = NULL;
  3909. } else {
  3910. ep = xfs_iext_get_ext(ifp, idx);
  3911. }
  3912. }
  3913. *idxp = idx;
  3914. return ep;
  3915. }
  3916. /*
  3917. * Return a pointer to the indirection array entry containing the
  3918. * extent record for filesystem block bno. Store the index of the
  3919. * target irec in *erp_idxp.
  3920. */
  3921. xfs_ext_irec_t * /* pointer to found extent record */
  3922. xfs_iext_bno_to_irec(
  3923. xfs_ifork_t *ifp, /* inode fork pointer */
  3924. xfs_fileoff_t bno, /* block number to search for */
  3925. int *erp_idxp) /* irec index of target ext list */
  3926. {
  3927. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3928. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  3929. int erp_idx; /* indirection array index */
  3930. int nlists; /* number of extent irec's (lists) */
  3931. int high; /* binary search upper limit */
  3932. int low; /* binary search lower limit */
  3933. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3934. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3935. erp_idx = 0;
  3936. low = 0;
  3937. high = nlists - 1;
  3938. while (low <= high) {
  3939. erp_idx = (low + high) >> 1;
  3940. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3941. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  3942. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  3943. high = erp_idx - 1;
  3944. } else if (erp_next && bno >=
  3945. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  3946. low = erp_idx + 1;
  3947. } else {
  3948. break;
  3949. }
  3950. }
  3951. *erp_idxp = erp_idx;
  3952. return erp;
  3953. }
  3954. /*
  3955. * Return a pointer to the indirection array entry containing the
  3956. * extent record at file extent index *idxp. Store the index of the
  3957. * target irec in *erp_idxp and store the page index of the target
  3958. * extent record in *idxp.
  3959. */
  3960. xfs_ext_irec_t *
  3961. xfs_iext_idx_to_irec(
  3962. xfs_ifork_t *ifp, /* inode fork pointer */
  3963. xfs_extnum_t *idxp, /* extent index (file -> page) */
  3964. int *erp_idxp, /* pointer to target irec */
  3965. int realloc) /* new bytes were just added */
  3966. {
  3967. xfs_ext_irec_t *prev; /* pointer to previous irec */
  3968. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  3969. int erp_idx; /* indirection array index */
  3970. int nlists; /* number of irec's (ex lists) */
  3971. int high; /* binary search upper limit */
  3972. int low; /* binary search lower limit */
  3973. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  3974. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3975. ASSERT(page_idx >= 0 && page_idx <=
  3976. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  3977. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3978. erp_idx = 0;
  3979. low = 0;
  3980. high = nlists - 1;
  3981. /* Binary search extent irec's */
  3982. while (low <= high) {
  3983. erp_idx = (low + high) >> 1;
  3984. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3985. prev = erp_idx > 0 ? erp - 1 : NULL;
  3986. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  3987. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  3988. high = erp_idx - 1;
  3989. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  3990. (page_idx == erp->er_extoff + erp->er_extcount &&
  3991. !realloc)) {
  3992. low = erp_idx + 1;
  3993. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  3994. erp->er_extcount == XFS_LINEAR_EXTS) {
  3995. ASSERT(realloc);
  3996. page_idx = 0;
  3997. erp_idx++;
  3998. erp = erp_idx < nlists ? erp + 1 : NULL;
  3999. break;
  4000. } else {
  4001. page_idx -= erp->er_extoff;
  4002. break;
  4003. }
  4004. }
  4005. *idxp = page_idx;
  4006. *erp_idxp = erp_idx;
  4007. return(erp);
  4008. }
  4009. /*
  4010. * Allocate and initialize an indirection array once the space needed
  4011. * for incore extents increases above XFS_IEXT_BUFSZ.
  4012. */
  4013. void
  4014. xfs_iext_irec_init(
  4015. xfs_ifork_t *ifp) /* inode fork pointer */
  4016. {
  4017. xfs_ext_irec_t *erp; /* indirection array pointer */
  4018. xfs_extnum_t nextents; /* number of extents in file */
  4019. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  4020. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4021. ASSERT(nextents <= XFS_LINEAR_EXTS);
  4022. erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
  4023. if (nextents == 0) {
  4024. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  4025. } else if (!ifp->if_real_bytes) {
  4026. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  4027. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  4028. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  4029. }
  4030. erp->er_extbuf = ifp->if_u1.if_extents;
  4031. erp->er_extcount = nextents;
  4032. erp->er_extoff = 0;
  4033. ifp->if_flags |= XFS_IFEXTIREC;
  4034. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  4035. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  4036. ifp->if_u1.if_ext_irec = erp;
  4037. return;
  4038. }
  4039. /*
  4040. * Allocate and initialize a new entry in the indirection array.
  4041. */
  4042. xfs_ext_irec_t *
  4043. xfs_iext_irec_new(
  4044. xfs_ifork_t *ifp, /* inode fork pointer */
  4045. int erp_idx) /* index for new irec */
  4046. {
  4047. xfs_ext_irec_t *erp; /* indirection array pointer */
  4048. int i; /* loop counter */
  4049. int nlists; /* number of irec's (ex lists) */
  4050. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4051. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4052. /* Resize indirection array */
  4053. xfs_iext_realloc_indirect(ifp, ++nlists *
  4054. sizeof(xfs_ext_irec_t));
  4055. /*
  4056. * Move records down in the array so the
  4057. * new page can use erp_idx.
  4058. */
  4059. erp = ifp->if_u1.if_ext_irec;
  4060. for (i = nlists - 1; i > erp_idx; i--) {
  4061. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  4062. }
  4063. ASSERT(i == erp_idx);
  4064. /* Initialize new extent record */
  4065. erp = ifp->if_u1.if_ext_irec;
  4066. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  4067. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4068. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  4069. erp[erp_idx].er_extcount = 0;
  4070. erp[erp_idx].er_extoff = erp_idx > 0 ?
  4071. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  4072. return (&erp[erp_idx]);
  4073. }
  4074. /*
  4075. * Remove a record from the indirection array.
  4076. */
  4077. void
  4078. xfs_iext_irec_remove(
  4079. xfs_ifork_t *ifp, /* inode fork pointer */
  4080. int erp_idx) /* irec index to remove */
  4081. {
  4082. xfs_ext_irec_t *erp; /* indirection array pointer */
  4083. int i; /* loop counter */
  4084. int nlists; /* number of irec's (ex lists) */
  4085. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4086. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4087. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4088. if (erp->er_extbuf) {
  4089. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  4090. -erp->er_extcount);
  4091. kmem_free(erp->er_extbuf);
  4092. }
  4093. /* Compact extent records */
  4094. erp = ifp->if_u1.if_ext_irec;
  4095. for (i = erp_idx; i < nlists - 1; i++) {
  4096. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  4097. }
  4098. /*
  4099. * Manually free the last extent record from the indirection
  4100. * array. A call to xfs_iext_realloc_indirect() with a size
  4101. * of zero would result in a call to xfs_iext_destroy() which
  4102. * would in turn call this function again, creating a nasty
  4103. * infinite loop.
  4104. */
  4105. if (--nlists) {
  4106. xfs_iext_realloc_indirect(ifp,
  4107. nlists * sizeof(xfs_ext_irec_t));
  4108. } else {
  4109. kmem_free(ifp->if_u1.if_ext_irec);
  4110. }
  4111. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4112. }
  4113. /*
  4114. * This is called to clean up large amounts of unused memory allocated
  4115. * by the indirection array. Before compacting anything though, verify
  4116. * that the indirection array is still needed and switch back to the
  4117. * linear extent list (or even the inline buffer) if possible. The
  4118. * compaction policy is as follows:
  4119. *
  4120. * Full Compaction: Extents fit into a single page (or inline buffer)
  4121. * Full Compaction: Extents occupy less than 10% of allocated space
  4122. * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
  4123. * No Compaction: Extents occupy at least 50% of allocated space
  4124. */
  4125. void
  4126. xfs_iext_irec_compact(
  4127. xfs_ifork_t *ifp) /* inode fork pointer */
  4128. {
  4129. xfs_extnum_t nextents; /* number of extents in file */
  4130. int nlists; /* number of irec's (ex lists) */
  4131. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4132. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4133. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4134. if (nextents == 0) {
  4135. xfs_iext_destroy(ifp);
  4136. } else if (nextents <= XFS_INLINE_EXTS) {
  4137. xfs_iext_indirect_to_direct(ifp);
  4138. xfs_iext_direct_to_inline(ifp, nextents);
  4139. } else if (nextents <= XFS_LINEAR_EXTS) {
  4140. xfs_iext_indirect_to_direct(ifp);
  4141. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
  4142. xfs_iext_irec_compact_full(ifp);
  4143. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  4144. xfs_iext_irec_compact_pages(ifp);
  4145. }
  4146. }
  4147. /*
  4148. * Combine extents from neighboring extent pages.
  4149. */
  4150. void
  4151. xfs_iext_irec_compact_pages(
  4152. xfs_ifork_t *ifp) /* inode fork pointer */
  4153. {
  4154. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  4155. int erp_idx = 0; /* indirection array index */
  4156. int nlists; /* number of irec's (ex lists) */
  4157. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4158. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4159. while (erp_idx < nlists - 1) {
  4160. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4161. erp_next = erp + 1;
  4162. if (erp_next->er_extcount <=
  4163. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  4164. memmove(&erp->er_extbuf[erp->er_extcount],
  4165. erp_next->er_extbuf, erp_next->er_extcount *
  4166. sizeof(xfs_bmbt_rec_t));
  4167. erp->er_extcount += erp_next->er_extcount;
  4168. /*
  4169. * Free page before removing extent record
  4170. * so er_extoffs don't get modified in
  4171. * xfs_iext_irec_remove.
  4172. */
  4173. kmem_free(erp_next->er_extbuf);
  4174. erp_next->er_extbuf = NULL;
  4175. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4176. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4177. } else {
  4178. erp_idx++;
  4179. }
  4180. }
  4181. }
  4182. /*
  4183. * Fully compact the extent records managed by the indirection array.
  4184. */
  4185. void
  4186. xfs_iext_irec_compact_full(
  4187. xfs_ifork_t *ifp) /* inode fork pointer */
  4188. {
  4189. xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */
  4190. xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
  4191. int erp_idx = 0; /* extent irec index */
  4192. int ext_avail; /* empty entries in ex list */
  4193. int ext_diff; /* number of exts to add */
  4194. int nlists; /* number of irec's (ex lists) */
  4195. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4196. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4197. erp = ifp->if_u1.if_ext_irec;
  4198. ep = &erp->er_extbuf[erp->er_extcount];
  4199. erp_next = erp + 1;
  4200. ep_next = erp_next->er_extbuf;
  4201. while (erp_idx < nlists - 1) {
  4202. /*
  4203. * Check how many extent records are available in this irec.
  4204. * If there is none skip the whole exercise.
  4205. */
  4206. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  4207. if (ext_avail) {
  4208. /*
  4209. * Copy over as many as possible extent records into
  4210. * the previous page.
  4211. */
  4212. ext_diff = MIN(ext_avail, erp_next->er_extcount);
  4213. memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
  4214. erp->er_extcount += ext_diff;
  4215. erp_next->er_extcount -= ext_diff;
  4216. /*
  4217. * If the next irec is empty now we can simply
  4218. * remove it.
  4219. */
  4220. if (erp_next->er_extcount == 0) {
  4221. /*
  4222. * Free page before removing extent record
  4223. * so er_extoffs don't get modified in
  4224. * xfs_iext_irec_remove.
  4225. */
  4226. kmem_free(erp_next->er_extbuf);
  4227. erp_next->er_extbuf = NULL;
  4228. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4229. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4230. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4231. /*
  4232. * If the next irec is not empty move up the content
  4233. * that has not been copied to the previous page to
  4234. * the beggining of this one.
  4235. */
  4236. } else {
  4237. memmove(erp_next->er_extbuf, &ep_next[ext_diff],
  4238. erp_next->er_extcount *
  4239. sizeof(xfs_bmbt_rec_t));
  4240. ep_next = erp_next->er_extbuf;
  4241. memset(&ep_next[erp_next->er_extcount], 0,
  4242. (XFS_LINEAR_EXTS -
  4243. erp_next->er_extcount) *
  4244. sizeof(xfs_bmbt_rec_t));
  4245. }
  4246. }
  4247. if (erp->er_extcount == XFS_LINEAR_EXTS) {
  4248. erp_idx++;
  4249. if (erp_idx < nlists)
  4250. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4251. else
  4252. break;
  4253. }
  4254. ep = &erp->er_extbuf[erp->er_extcount];
  4255. erp_next = erp + 1;
  4256. ep_next = erp_next->er_extbuf;
  4257. }
  4258. }
  4259. /*
  4260. * This is called to update the er_extoff field in the indirection
  4261. * array when extents have been added or removed from one of the
  4262. * extent lists. erp_idx contains the irec index to begin updating
  4263. * at and ext_diff contains the number of extents that were added
  4264. * or removed.
  4265. */
  4266. void
  4267. xfs_iext_irec_update_extoffs(
  4268. xfs_ifork_t *ifp, /* inode fork pointer */
  4269. int erp_idx, /* irec index to update */
  4270. int ext_diff) /* number of new extents */
  4271. {
  4272. int i; /* loop counter */
  4273. int nlists; /* number of irec's (ex lists */
  4274. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4275. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4276. for (i = erp_idx; i < nlists; i++) {
  4277. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  4278. }
  4279. }