vmx.c 106 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include <linux/ftrace_event.h>
  27. #include "kvm_cache_regs.h"
  28. #include "x86.h"
  29. #include <asm/io.h>
  30. #include <asm/desc.h>
  31. #include <asm/vmx.h>
  32. #include <asm/virtext.h>
  33. #include <asm/mce.h>
  34. #include "trace.h"
  35. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  36. MODULE_AUTHOR("Qumranet");
  37. MODULE_LICENSE("GPL");
  38. static int __read_mostly bypass_guest_pf = 1;
  39. module_param(bypass_guest_pf, bool, S_IRUGO);
  40. static int __read_mostly enable_vpid = 1;
  41. module_param_named(vpid, enable_vpid, bool, 0444);
  42. static int __read_mostly flexpriority_enabled = 1;
  43. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  44. static int __read_mostly enable_ept = 1;
  45. module_param_named(ept, enable_ept, bool, S_IRUGO);
  46. static int __read_mostly enable_unrestricted_guest = 1;
  47. module_param_named(unrestricted_guest,
  48. enable_unrestricted_guest, bool, S_IRUGO);
  49. static int __read_mostly emulate_invalid_guest_state = 0;
  50. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  51. /*
  52. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  53. * ple_gap: upper bound on the amount of time between two successive
  54. * executions of PAUSE in a loop. Also indicate if ple enabled.
  55. * According to test, this time is usually small than 41 cycles.
  56. * ple_window: upper bound on the amount of time a guest is allowed to execute
  57. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  58. * less than 2^12 cycles
  59. * Time is measured based on a counter that runs at the same rate as the TSC,
  60. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  61. */
  62. #define KVM_VMX_DEFAULT_PLE_GAP 41
  63. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  64. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  65. module_param(ple_gap, int, S_IRUGO);
  66. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  67. module_param(ple_window, int, S_IRUGO);
  68. struct vmcs {
  69. u32 revision_id;
  70. u32 abort;
  71. char data[0];
  72. };
  73. struct shared_msr_entry {
  74. unsigned index;
  75. u64 data;
  76. u64 mask;
  77. };
  78. struct vcpu_vmx {
  79. struct kvm_vcpu vcpu;
  80. struct list_head local_vcpus_link;
  81. unsigned long host_rsp;
  82. int launched;
  83. u8 fail;
  84. u32 idt_vectoring_info;
  85. struct shared_msr_entry *guest_msrs;
  86. int nmsrs;
  87. int save_nmsrs;
  88. #ifdef CONFIG_X86_64
  89. u64 msr_host_kernel_gs_base;
  90. u64 msr_guest_kernel_gs_base;
  91. #endif
  92. struct vmcs *vmcs;
  93. struct {
  94. int loaded;
  95. u16 fs_sel, gs_sel, ldt_sel;
  96. int gs_ldt_reload_needed;
  97. int fs_reload_needed;
  98. } host_state;
  99. struct {
  100. int vm86_active;
  101. u8 save_iopl;
  102. struct kvm_save_segment {
  103. u16 selector;
  104. unsigned long base;
  105. u32 limit;
  106. u32 ar;
  107. } tr, es, ds, fs, gs;
  108. struct {
  109. bool pending;
  110. u8 vector;
  111. unsigned rip;
  112. } irq;
  113. } rmode;
  114. int vpid;
  115. bool emulation_required;
  116. /* Support for vnmi-less CPUs */
  117. int soft_vnmi_blocked;
  118. ktime_t entry_time;
  119. s64 vnmi_blocked_time;
  120. u32 exit_reason;
  121. };
  122. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  123. {
  124. return container_of(vcpu, struct vcpu_vmx, vcpu);
  125. }
  126. static int init_rmode(struct kvm *kvm);
  127. static u64 construct_eptp(unsigned long root_hpa);
  128. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  129. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  130. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  131. static unsigned long *vmx_io_bitmap_a;
  132. static unsigned long *vmx_io_bitmap_b;
  133. static unsigned long *vmx_msr_bitmap_legacy;
  134. static unsigned long *vmx_msr_bitmap_longmode;
  135. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  136. static DEFINE_SPINLOCK(vmx_vpid_lock);
  137. static struct vmcs_config {
  138. int size;
  139. int order;
  140. u32 revision_id;
  141. u32 pin_based_exec_ctrl;
  142. u32 cpu_based_exec_ctrl;
  143. u32 cpu_based_2nd_exec_ctrl;
  144. u32 vmexit_ctrl;
  145. u32 vmentry_ctrl;
  146. } vmcs_config;
  147. static struct vmx_capability {
  148. u32 ept;
  149. u32 vpid;
  150. } vmx_capability;
  151. #define VMX_SEGMENT_FIELD(seg) \
  152. [VCPU_SREG_##seg] = { \
  153. .selector = GUEST_##seg##_SELECTOR, \
  154. .base = GUEST_##seg##_BASE, \
  155. .limit = GUEST_##seg##_LIMIT, \
  156. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  157. }
  158. static struct kvm_vmx_segment_field {
  159. unsigned selector;
  160. unsigned base;
  161. unsigned limit;
  162. unsigned ar_bytes;
  163. } kvm_vmx_segment_fields[] = {
  164. VMX_SEGMENT_FIELD(CS),
  165. VMX_SEGMENT_FIELD(DS),
  166. VMX_SEGMENT_FIELD(ES),
  167. VMX_SEGMENT_FIELD(FS),
  168. VMX_SEGMENT_FIELD(GS),
  169. VMX_SEGMENT_FIELD(SS),
  170. VMX_SEGMENT_FIELD(TR),
  171. VMX_SEGMENT_FIELD(LDTR),
  172. };
  173. static u64 host_efer;
  174. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  175. /*
  176. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  177. * away by decrementing the array size.
  178. */
  179. static const u32 vmx_msr_index[] = {
  180. #ifdef CONFIG_X86_64
  181. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  182. #endif
  183. MSR_EFER, MSR_K6_STAR,
  184. };
  185. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  186. static inline int is_page_fault(u32 intr_info)
  187. {
  188. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  189. INTR_INFO_VALID_MASK)) ==
  190. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  191. }
  192. static inline int is_no_device(u32 intr_info)
  193. {
  194. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  195. INTR_INFO_VALID_MASK)) ==
  196. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  197. }
  198. static inline int is_invalid_opcode(u32 intr_info)
  199. {
  200. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  201. INTR_INFO_VALID_MASK)) ==
  202. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  203. }
  204. static inline int is_external_interrupt(u32 intr_info)
  205. {
  206. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  207. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  208. }
  209. static inline int is_machine_check(u32 intr_info)
  210. {
  211. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  212. INTR_INFO_VALID_MASK)) ==
  213. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  214. }
  215. static inline int cpu_has_vmx_msr_bitmap(void)
  216. {
  217. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  218. }
  219. static inline int cpu_has_vmx_tpr_shadow(void)
  220. {
  221. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  222. }
  223. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  224. {
  225. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  226. }
  227. static inline int cpu_has_secondary_exec_ctrls(void)
  228. {
  229. return vmcs_config.cpu_based_exec_ctrl &
  230. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  231. }
  232. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  233. {
  234. return vmcs_config.cpu_based_2nd_exec_ctrl &
  235. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  236. }
  237. static inline bool cpu_has_vmx_flexpriority(void)
  238. {
  239. return cpu_has_vmx_tpr_shadow() &&
  240. cpu_has_vmx_virtualize_apic_accesses();
  241. }
  242. static inline bool cpu_has_vmx_ept_execute_only(void)
  243. {
  244. return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
  245. }
  246. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  247. {
  248. return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
  249. }
  250. static inline bool cpu_has_vmx_eptp_writeback(void)
  251. {
  252. return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
  253. }
  254. static inline bool cpu_has_vmx_ept_2m_page(void)
  255. {
  256. return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
  257. }
  258. static inline int cpu_has_vmx_invept_individual_addr(void)
  259. {
  260. return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
  261. }
  262. static inline int cpu_has_vmx_invept_context(void)
  263. {
  264. return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
  265. }
  266. static inline int cpu_has_vmx_invept_global(void)
  267. {
  268. return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
  269. }
  270. static inline int cpu_has_vmx_ept(void)
  271. {
  272. return vmcs_config.cpu_based_2nd_exec_ctrl &
  273. SECONDARY_EXEC_ENABLE_EPT;
  274. }
  275. static inline int cpu_has_vmx_unrestricted_guest(void)
  276. {
  277. return vmcs_config.cpu_based_2nd_exec_ctrl &
  278. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  279. }
  280. static inline int cpu_has_vmx_ple(void)
  281. {
  282. return vmcs_config.cpu_based_2nd_exec_ctrl &
  283. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  284. }
  285. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  286. {
  287. return flexpriority_enabled &&
  288. (cpu_has_vmx_virtualize_apic_accesses()) &&
  289. (irqchip_in_kernel(kvm));
  290. }
  291. static inline int cpu_has_vmx_vpid(void)
  292. {
  293. return vmcs_config.cpu_based_2nd_exec_ctrl &
  294. SECONDARY_EXEC_ENABLE_VPID;
  295. }
  296. static inline int cpu_has_virtual_nmis(void)
  297. {
  298. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  299. }
  300. static inline bool report_flexpriority(void)
  301. {
  302. return flexpriority_enabled;
  303. }
  304. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  305. {
  306. int i;
  307. for (i = 0; i < vmx->nmsrs; ++i)
  308. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  309. return i;
  310. return -1;
  311. }
  312. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  313. {
  314. struct {
  315. u64 vpid : 16;
  316. u64 rsvd : 48;
  317. u64 gva;
  318. } operand = { vpid, 0, gva };
  319. asm volatile (__ex(ASM_VMX_INVVPID)
  320. /* CF==1 or ZF==1 --> rc = -1 */
  321. "; ja 1f ; ud2 ; 1:"
  322. : : "a"(&operand), "c"(ext) : "cc", "memory");
  323. }
  324. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  325. {
  326. struct {
  327. u64 eptp, gpa;
  328. } operand = {eptp, gpa};
  329. asm volatile (__ex(ASM_VMX_INVEPT)
  330. /* CF==1 or ZF==1 --> rc = -1 */
  331. "; ja 1f ; ud2 ; 1:\n"
  332. : : "a" (&operand), "c" (ext) : "cc", "memory");
  333. }
  334. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  335. {
  336. int i;
  337. i = __find_msr_index(vmx, msr);
  338. if (i >= 0)
  339. return &vmx->guest_msrs[i];
  340. return NULL;
  341. }
  342. static void vmcs_clear(struct vmcs *vmcs)
  343. {
  344. u64 phys_addr = __pa(vmcs);
  345. u8 error;
  346. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  347. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  348. : "cc", "memory");
  349. if (error)
  350. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  351. vmcs, phys_addr);
  352. }
  353. static void __vcpu_clear(void *arg)
  354. {
  355. struct vcpu_vmx *vmx = arg;
  356. int cpu = raw_smp_processor_id();
  357. if (vmx->vcpu.cpu == cpu)
  358. vmcs_clear(vmx->vmcs);
  359. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  360. per_cpu(current_vmcs, cpu) = NULL;
  361. rdtscll(vmx->vcpu.arch.host_tsc);
  362. list_del(&vmx->local_vcpus_link);
  363. vmx->vcpu.cpu = -1;
  364. vmx->launched = 0;
  365. }
  366. static void vcpu_clear(struct vcpu_vmx *vmx)
  367. {
  368. if (vmx->vcpu.cpu == -1)
  369. return;
  370. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  371. }
  372. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  373. {
  374. if (vmx->vpid == 0)
  375. return;
  376. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  377. }
  378. static inline void ept_sync_global(void)
  379. {
  380. if (cpu_has_vmx_invept_global())
  381. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  382. }
  383. static inline void ept_sync_context(u64 eptp)
  384. {
  385. if (enable_ept) {
  386. if (cpu_has_vmx_invept_context())
  387. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  388. else
  389. ept_sync_global();
  390. }
  391. }
  392. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  393. {
  394. if (enable_ept) {
  395. if (cpu_has_vmx_invept_individual_addr())
  396. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  397. eptp, gpa);
  398. else
  399. ept_sync_context(eptp);
  400. }
  401. }
  402. static unsigned long vmcs_readl(unsigned long field)
  403. {
  404. unsigned long value;
  405. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  406. : "=a"(value) : "d"(field) : "cc");
  407. return value;
  408. }
  409. static u16 vmcs_read16(unsigned long field)
  410. {
  411. return vmcs_readl(field);
  412. }
  413. static u32 vmcs_read32(unsigned long field)
  414. {
  415. return vmcs_readl(field);
  416. }
  417. static u64 vmcs_read64(unsigned long field)
  418. {
  419. #ifdef CONFIG_X86_64
  420. return vmcs_readl(field);
  421. #else
  422. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  423. #endif
  424. }
  425. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  426. {
  427. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  428. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  429. dump_stack();
  430. }
  431. static void vmcs_writel(unsigned long field, unsigned long value)
  432. {
  433. u8 error;
  434. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  435. : "=q"(error) : "a"(value), "d"(field) : "cc");
  436. if (unlikely(error))
  437. vmwrite_error(field, value);
  438. }
  439. static void vmcs_write16(unsigned long field, u16 value)
  440. {
  441. vmcs_writel(field, value);
  442. }
  443. static void vmcs_write32(unsigned long field, u32 value)
  444. {
  445. vmcs_writel(field, value);
  446. }
  447. static void vmcs_write64(unsigned long field, u64 value)
  448. {
  449. vmcs_writel(field, value);
  450. #ifndef CONFIG_X86_64
  451. asm volatile ("");
  452. vmcs_writel(field+1, value >> 32);
  453. #endif
  454. }
  455. static void vmcs_clear_bits(unsigned long field, u32 mask)
  456. {
  457. vmcs_writel(field, vmcs_readl(field) & ~mask);
  458. }
  459. static void vmcs_set_bits(unsigned long field, u32 mask)
  460. {
  461. vmcs_writel(field, vmcs_readl(field) | mask);
  462. }
  463. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  464. {
  465. u32 eb;
  466. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR);
  467. if (!vcpu->fpu_active)
  468. eb |= 1u << NM_VECTOR;
  469. /*
  470. * Unconditionally intercept #DB so we can maintain dr6 without
  471. * reading it every exit.
  472. */
  473. eb |= 1u << DB_VECTOR;
  474. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  475. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  476. eb |= 1u << BP_VECTOR;
  477. }
  478. if (to_vmx(vcpu)->rmode.vm86_active)
  479. eb = ~0;
  480. if (enable_ept)
  481. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  482. vmcs_write32(EXCEPTION_BITMAP, eb);
  483. }
  484. static void reload_tss(void)
  485. {
  486. /*
  487. * VT restores TR but not its size. Useless.
  488. */
  489. struct descriptor_table gdt;
  490. struct desc_struct *descs;
  491. kvm_get_gdt(&gdt);
  492. descs = (void *)gdt.base;
  493. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  494. load_TR_desc();
  495. }
  496. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  497. {
  498. u64 guest_efer;
  499. u64 ignore_bits;
  500. guest_efer = vmx->vcpu.arch.shadow_efer;
  501. /*
  502. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  503. * outside long mode
  504. */
  505. ignore_bits = EFER_NX | EFER_SCE;
  506. #ifdef CONFIG_X86_64
  507. ignore_bits |= EFER_LMA | EFER_LME;
  508. /* SCE is meaningful only in long mode on Intel */
  509. if (guest_efer & EFER_LMA)
  510. ignore_bits &= ~(u64)EFER_SCE;
  511. #endif
  512. guest_efer &= ~ignore_bits;
  513. guest_efer |= host_efer & ignore_bits;
  514. vmx->guest_msrs[efer_offset].data = guest_efer;
  515. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  516. return true;
  517. }
  518. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  519. {
  520. struct vcpu_vmx *vmx = to_vmx(vcpu);
  521. int i;
  522. if (vmx->host_state.loaded)
  523. return;
  524. vmx->host_state.loaded = 1;
  525. /*
  526. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  527. * allow segment selectors with cpl > 0 or ti == 1.
  528. */
  529. vmx->host_state.ldt_sel = kvm_read_ldt();
  530. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  531. vmx->host_state.fs_sel = kvm_read_fs();
  532. if (!(vmx->host_state.fs_sel & 7)) {
  533. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  534. vmx->host_state.fs_reload_needed = 0;
  535. } else {
  536. vmcs_write16(HOST_FS_SELECTOR, 0);
  537. vmx->host_state.fs_reload_needed = 1;
  538. }
  539. vmx->host_state.gs_sel = kvm_read_gs();
  540. if (!(vmx->host_state.gs_sel & 7))
  541. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  542. else {
  543. vmcs_write16(HOST_GS_SELECTOR, 0);
  544. vmx->host_state.gs_ldt_reload_needed = 1;
  545. }
  546. #ifdef CONFIG_X86_64
  547. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  548. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  549. #else
  550. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  551. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  552. #endif
  553. #ifdef CONFIG_X86_64
  554. if (is_long_mode(&vmx->vcpu)) {
  555. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  556. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  557. }
  558. #endif
  559. for (i = 0; i < vmx->save_nmsrs; ++i)
  560. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  561. vmx->guest_msrs[i].data,
  562. vmx->guest_msrs[i].mask);
  563. }
  564. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  565. {
  566. unsigned long flags;
  567. if (!vmx->host_state.loaded)
  568. return;
  569. ++vmx->vcpu.stat.host_state_reload;
  570. vmx->host_state.loaded = 0;
  571. if (vmx->host_state.fs_reload_needed)
  572. kvm_load_fs(vmx->host_state.fs_sel);
  573. if (vmx->host_state.gs_ldt_reload_needed) {
  574. kvm_load_ldt(vmx->host_state.ldt_sel);
  575. /*
  576. * If we have to reload gs, we must take care to
  577. * preserve our gs base.
  578. */
  579. local_irq_save(flags);
  580. kvm_load_gs(vmx->host_state.gs_sel);
  581. #ifdef CONFIG_X86_64
  582. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  583. #endif
  584. local_irq_restore(flags);
  585. }
  586. reload_tss();
  587. #ifdef CONFIG_X86_64
  588. if (is_long_mode(&vmx->vcpu)) {
  589. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  590. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  591. }
  592. #endif
  593. }
  594. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  595. {
  596. preempt_disable();
  597. __vmx_load_host_state(vmx);
  598. preempt_enable();
  599. }
  600. /*
  601. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  602. * vcpu mutex is already taken.
  603. */
  604. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  605. {
  606. struct vcpu_vmx *vmx = to_vmx(vcpu);
  607. u64 phys_addr = __pa(vmx->vmcs);
  608. u64 tsc_this, delta, new_offset;
  609. if (vcpu->cpu != cpu) {
  610. vcpu_clear(vmx);
  611. kvm_migrate_timers(vcpu);
  612. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  613. local_irq_disable();
  614. list_add(&vmx->local_vcpus_link,
  615. &per_cpu(vcpus_on_cpu, cpu));
  616. local_irq_enable();
  617. }
  618. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  619. u8 error;
  620. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  621. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  622. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  623. : "cc");
  624. if (error)
  625. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  626. vmx->vmcs, phys_addr);
  627. }
  628. if (vcpu->cpu != cpu) {
  629. struct descriptor_table dt;
  630. unsigned long sysenter_esp;
  631. vcpu->cpu = cpu;
  632. /*
  633. * Linux uses per-cpu TSS and GDT, so set these when switching
  634. * processors.
  635. */
  636. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  637. kvm_get_gdt(&dt);
  638. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  639. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  640. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  641. /*
  642. * Make sure the time stamp counter is monotonous.
  643. */
  644. rdtscll(tsc_this);
  645. if (tsc_this < vcpu->arch.host_tsc) {
  646. delta = vcpu->arch.host_tsc - tsc_this;
  647. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  648. vmcs_write64(TSC_OFFSET, new_offset);
  649. }
  650. }
  651. }
  652. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  653. {
  654. __vmx_load_host_state(to_vmx(vcpu));
  655. }
  656. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  657. {
  658. if (vcpu->fpu_active)
  659. return;
  660. vcpu->fpu_active = 1;
  661. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  662. if (vcpu->arch.cr0 & X86_CR0_TS)
  663. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  664. update_exception_bitmap(vcpu);
  665. }
  666. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  667. {
  668. if (!vcpu->fpu_active)
  669. return;
  670. vcpu->fpu_active = 0;
  671. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  672. update_exception_bitmap(vcpu);
  673. }
  674. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  675. {
  676. unsigned long rflags;
  677. rflags = vmcs_readl(GUEST_RFLAGS);
  678. if (to_vmx(vcpu)->rmode.vm86_active)
  679. rflags &= ~(unsigned long)(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  680. return rflags;
  681. }
  682. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  683. {
  684. if (to_vmx(vcpu)->rmode.vm86_active)
  685. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  686. vmcs_writel(GUEST_RFLAGS, rflags);
  687. }
  688. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  689. {
  690. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  691. int ret = 0;
  692. if (interruptibility & GUEST_INTR_STATE_STI)
  693. ret |= X86_SHADOW_INT_STI;
  694. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  695. ret |= X86_SHADOW_INT_MOV_SS;
  696. return ret & mask;
  697. }
  698. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  699. {
  700. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  701. u32 interruptibility = interruptibility_old;
  702. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  703. if (mask & X86_SHADOW_INT_MOV_SS)
  704. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  705. if (mask & X86_SHADOW_INT_STI)
  706. interruptibility |= GUEST_INTR_STATE_STI;
  707. if ((interruptibility != interruptibility_old))
  708. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  709. }
  710. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  711. {
  712. unsigned long rip;
  713. rip = kvm_rip_read(vcpu);
  714. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  715. kvm_rip_write(vcpu, rip);
  716. /* skipping an emulated instruction also counts */
  717. vmx_set_interrupt_shadow(vcpu, 0);
  718. }
  719. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  720. bool has_error_code, u32 error_code)
  721. {
  722. struct vcpu_vmx *vmx = to_vmx(vcpu);
  723. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  724. if (has_error_code) {
  725. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  726. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  727. }
  728. if (vmx->rmode.vm86_active) {
  729. vmx->rmode.irq.pending = true;
  730. vmx->rmode.irq.vector = nr;
  731. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  732. if (kvm_exception_is_soft(nr))
  733. vmx->rmode.irq.rip +=
  734. vmx->vcpu.arch.event_exit_inst_len;
  735. intr_info |= INTR_TYPE_SOFT_INTR;
  736. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  737. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  738. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  739. return;
  740. }
  741. if (kvm_exception_is_soft(nr)) {
  742. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  743. vmx->vcpu.arch.event_exit_inst_len);
  744. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  745. } else
  746. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  747. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  748. }
  749. /*
  750. * Swap MSR entry in host/guest MSR entry array.
  751. */
  752. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  753. {
  754. struct shared_msr_entry tmp;
  755. tmp = vmx->guest_msrs[to];
  756. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  757. vmx->guest_msrs[from] = tmp;
  758. }
  759. /*
  760. * Set up the vmcs to automatically save and restore system
  761. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  762. * mode, as fiddling with msrs is very expensive.
  763. */
  764. static void setup_msrs(struct vcpu_vmx *vmx)
  765. {
  766. int save_nmsrs, index;
  767. unsigned long *msr_bitmap;
  768. vmx_load_host_state(vmx);
  769. save_nmsrs = 0;
  770. #ifdef CONFIG_X86_64
  771. if (is_long_mode(&vmx->vcpu)) {
  772. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  773. if (index >= 0)
  774. move_msr_up(vmx, index, save_nmsrs++);
  775. index = __find_msr_index(vmx, MSR_LSTAR);
  776. if (index >= 0)
  777. move_msr_up(vmx, index, save_nmsrs++);
  778. index = __find_msr_index(vmx, MSR_CSTAR);
  779. if (index >= 0)
  780. move_msr_up(vmx, index, save_nmsrs++);
  781. /*
  782. * MSR_K6_STAR is only needed on long mode guests, and only
  783. * if efer.sce is enabled.
  784. */
  785. index = __find_msr_index(vmx, MSR_K6_STAR);
  786. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  787. move_msr_up(vmx, index, save_nmsrs++);
  788. }
  789. #endif
  790. index = __find_msr_index(vmx, MSR_EFER);
  791. if (index >= 0 && update_transition_efer(vmx, index))
  792. move_msr_up(vmx, index, save_nmsrs++);
  793. vmx->save_nmsrs = save_nmsrs;
  794. if (cpu_has_vmx_msr_bitmap()) {
  795. if (is_long_mode(&vmx->vcpu))
  796. msr_bitmap = vmx_msr_bitmap_longmode;
  797. else
  798. msr_bitmap = vmx_msr_bitmap_legacy;
  799. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  800. }
  801. }
  802. /*
  803. * reads and returns guest's timestamp counter "register"
  804. * guest_tsc = host_tsc + tsc_offset -- 21.3
  805. */
  806. static u64 guest_read_tsc(void)
  807. {
  808. u64 host_tsc, tsc_offset;
  809. rdtscll(host_tsc);
  810. tsc_offset = vmcs_read64(TSC_OFFSET);
  811. return host_tsc + tsc_offset;
  812. }
  813. /*
  814. * writes 'guest_tsc' into guest's timestamp counter "register"
  815. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  816. */
  817. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  818. {
  819. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  820. }
  821. /*
  822. * Reads an msr value (of 'msr_index') into 'pdata'.
  823. * Returns 0 on success, non-0 otherwise.
  824. * Assumes vcpu_load() was already called.
  825. */
  826. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  827. {
  828. u64 data;
  829. struct shared_msr_entry *msr;
  830. if (!pdata) {
  831. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  832. return -EINVAL;
  833. }
  834. switch (msr_index) {
  835. #ifdef CONFIG_X86_64
  836. case MSR_FS_BASE:
  837. data = vmcs_readl(GUEST_FS_BASE);
  838. break;
  839. case MSR_GS_BASE:
  840. data = vmcs_readl(GUEST_GS_BASE);
  841. break;
  842. case MSR_KERNEL_GS_BASE:
  843. vmx_load_host_state(to_vmx(vcpu));
  844. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  845. break;
  846. #endif
  847. case MSR_EFER:
  848. return kvm_get_msr_common(vcpu, msr_index, pdata);
  849. case MSR_IA32_TSC:
  850. data = guest_read_tsc();
  851. break;
  852. case MSR_IA32_SYSENTER_CS:
  853. data = vmcs_read32(GUEST_SYSENTER_CS);
  854. break;
  855. case MSR_IA32_SYSENTER_EIP:
  856. data = vmcs_readl(GUEST_SYSENTER_EIP);
  857. break;
  858. case MSR_IA32_SYSENTER_ESP:
  859. data = vmcs_readl(GUEST_SYSENTER_ESP);
  860. break;
  861. default:
  862. vmx_load_host_state(to_vmx(vcpu));
  863. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  864. if (msr) {
  865. vmx_load_host_state(to_vmx(vcpu));
  866. data = msr->data;
  867. break;
  868. }
  869. return kvm_get_msr_common(vcpu, msr_index, pdata);
  870. }
  871. *pdata = data;
  872. return 0;
  873. }
  874. /*
  875. * Writes msr value into into the appropriate "register".
  876. * Returns 0 on success, non-0 otherwise.
  877. * Assumes vcpu_load() was already called.
  878. */
  879. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  880. {
  881. struct vcpu_vmx *vmx = to_vmx(vcpu);
  882. struct shared_msr_entry *msr;
  883. u64 host_tsc;
  884. int ret = 0;
  885. switch (msr_index) {
  886. case MSR_EFER:
  887. vmx_load_host_state(vmx);
  888. ret = kvm_set_msr_common(vcpu, msr_index, data);
  889. break;
  890. #ifdef CONFIG_X86_64
  891. case MSR_FS_BASE:
  892. vmcs_writel(GUEST_FS_BASE, data);
  893. break;
  894. case MSR_GS_BASE:
  895. vmcs_writel(GUEST_GS_BASE, data);
  896. break;
  897. case MSR_KERNEL_GS_BASE:
  898. vmx_load_host_state(vmx);
  899. vmx->msr_guest_kernel_gs_base = data;
  900. break;
  901. #endif
  902. case MSR_IA32_SYSENTER_CS:
  903. vmcs_write32(GUEST_SYSENTER_CS, data);
  904. break;
  905. case MSR_IA32_SYSENTER_EIP:
  906. vmcs_writel(GUEST_SYSENTER_EIP, data);
  907. break;
  908. case MSR_IA32_SYSENTER_ESP:
  909. vmcs_writel(GUEST_SYSENTER_ESP, data);
  910. break;
  911. case MSR_IA32_TSC:
  912. rdtscll(host_tsc);
  913. guest_write_tsc(data, host_tsc);
  914. break;
  915. case MSR_IA32_CR_PAT:
  916. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  917. vmcs_write64(GUEST_IA32_PAT, data);
  918. vcpu->arch.pat = data;
  919. break;
  920. }
  921. /* Otherwise falls through to kvm_set_msr_common */
  922. default:
  923. msr = find_msr_entry(vmx, msr_index);
  924. if (msr) {
  925. vmx_load_host_state(vmx);
  926. msr->data = data;
  927. break;
  928. }
  929. ret = kvm_set_msr_common(vcpu, msr_index, data);
  930. }
  931. return ret;
  932. }
  933. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  934. {
  935. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  936. switch (reg) {
  937. case VCPU_REGS_RSP:
  938. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  939. break;
  940. case VCPU_REGS_RIP:
  941. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  942. break;
  943. case VCPU_EXREG_PDPTR:
  944. if (enable_ept)
  945. ept_save_pdptrs(vcpu);
  946. break;
  947. default:
  948. break;
  949. }
  950. }
  951. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  952. {
  953. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  954. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  955. else
  956. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  957. update_exception_bitmap(vcpu);
  958. }
  959. static __init int cpu_has_kvm_support(void)
  960. {
  961. return cpu_has_vmx();
  962. }
  963. static __init int vmx_disabled_by_bios(void)
  964. {
  965. u64 msr;
  966. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  967. return (msr & (FEATURE_CONTROL_LOCKED |
  968. FEATURE_CONTROL_VMXON_ENABLED))
  969. == FEATURE_CONTROL_LOCKED;
  970. /* locked but not enabled */
  971. }
  972. static int hardware_enable(void *garbage)
  973. {
  974. int cpu = raw_smp_processor_id();
  975. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  976. u64 old;
  977. if (read_cr4() & X86_CR4_VMXE)
  978. return -EBUSY;
  979. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  980. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  981. if ((old & (FEATURE_CONTROL_LOCKED |
  982. FEATURE_CONTROL_VMXON_ENABLED))
  983. != (FEATURE_CONTROL_LOCKED |
  984. FEATURE_CONTROL_VMXON_ENABLED))
  985. /* enable and lock */
  986. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  987. FEATURE_CONTROL_LOCKED |
  988. FEATURE_CONTROL_VMXON_ENABLED);
  989. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  990. asm volatile (ASM_VMX_VMXON_RAX
  991. : : "a"(&phys_addr), "m"(phys_addr)
  992. : "memory", "cc");
  993. ept_sync_global();
  994. return 0;
  995. }
  996. static void vmclear_local_vcpus(void)
  997. {
  998. int cpu = raw_smp_processor_id();
  999. struct vcpu_vmx *vmx, *n;
  1000. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  1001. local_vcpus_link)
  1002. __vcpu_clear(vmx);
  1003. }
  1004. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  1005. * tricks.
  1006. */
  1007. static void kvm_cpu_vmxoff(void)
  1008. {
  1009. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  1010. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  1011. }
  1012. static void hardware_disable(void *garbage)
  1013. {
  1014. vmclear_local_vcpus();
  1015. kvm_cpu_vmxoff();
  1016. }
  1017. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  1018. u32 msr, u32 *result)
  1019. {
  1020. u32 vmx_msr_low, vmx_msr_high;
  1021. u32 ctl = ctl_min | ctl_opt;
  1022. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1023. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  1024. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  1025. /* Ensure minimum (required) set of control bits are supported. */
  1026. if (ctl_min & ~ctl)
  1027. return -EIO;
  1028. *result = ctl;
  1029. return 0;
  1030. }
  1031. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  1032. {
  1033. u32 vmx_msr_low, vmx_msr_high;
  1034. u32 min, opt, min2, opt2;
  1035. u32 _pin_based_exec_control = 0;
  1036. u32 _cpu_based_exec_control = 0;
  1037. u32 _cpu_based_2nd_exec_control = 0;
  1038. u32 _vmexit_control = 0;
  1039. u32 _vmentry_control = 0;
  1040. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1041. opt = PIN_BASED_VIRTUAL_NMIS;
  1042. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1043. &_pin_based_exec_control) < 0)
  1044. return -EIO;
  1045. min = CPU_BASED_HLT_EXITING |
  1046. #ifdef CONFIG_X86_64
  1047. CPU_BASED_CR8_LOAD_EXITING |
  1048. CPU_BASED_CR8_STORE_EXITING |
  1049. #endif
  1050. CPU_BASED_CR3_LOAD_EXITING |
  1051. CPU_BASED_CR3_STORE_EXITING |
  1052. CPU_BASED_USE_IO_BITMAPS |
  1053. CPU_BASED_MOV_DR_EXITING |
  1054. CPU_BASED_USE_TSC_OFFSETING |
  1055. CPU_BASED_MWAIT_EXITING |
  1056. CPU_BASED_MONITOR_EXITING |
  1057. CPU_BASED_INVLPG_EXITING;
  1058. opt = CPU_BASED_TPR_SHADOW |
  1059. CPU_BASED_USE_MSR_BITMAPS |
  1060. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1061. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1062. &_cpu_based_exec_control) < 0)
  1063. return -EIO;
  1064. #ifdef CONFIG_X86_64
  1065. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1066. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1067. ~CPU_BASED_CR8_STORE_EXITING;
  1068. #endif
  1069. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1070. min2 = 0;
  1071. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1072. SECONDARY_EXEC_WBINVD_EXITING |
  1073. SECONDARY_EXEC_ENABLE_VPID |
  1074. SECONDARY_EXEC_ENABLE_EPT |
  1075. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  1076. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  1077. if (adjust_vmx_controls(min2, opt2,
  1078. MSR_IA32_VMX_PROCBASED_CTLS2,
  1079. &_cpu_based_2nd_exec_control) < 0)
  1080. return -EIO;
  1081. }
  1082. #ifndef CONFIG_X86_64
  1083. if (!(_cpu_based_2nd_exec_control &
  1084. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1085. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1086. #endif
  1087. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1088. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1089. enabled */
  1090. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1091. CPU_BASED_CR3_STORE_EXITING |
  1092. CPU_BASED_INVLPG_EXITING);
  1093. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1094. vmx_capability.ept, vmx_capability.vpid);
  1095. }
  1096. min = 0;
  1097. #ifdef CONFIG_X86_64
  1098. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1099. #endif
  1100. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1101. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1102. &_vmexit_control) < 0)
  1103. return -EIO;
  1104. min = 0;
  1105. opt = VM_ENTRY_LOAD_IA32_PAT;
  1106. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1107. &_vmentry_control) < 0)
  1108. return -EIO;
  1109. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1110. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1111. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1112. return -EIO;
  1113. #ifdef CONFIG_X86_64
  1114. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1115. if (vmx_msr_high & (1u<<16))
  1116. return -EIO;
  1117. #endif
  1118. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1119. if (((vmx_msr_high >> 18) & 15) != 6)
  1120. return -EIO;
  1121. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1122. vmcs_conf->order = get_order(vmcs_config.size);
  1123. vmcs_conf->revision_id = vmx_msr_low;
  1124. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1125. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1126. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1127. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1128. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1129. return 0;
  1130. }
  1131. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1132. {
  1133. int node = cpu_to_node(cpu);
  1134. struct page *pages;
  1135. struct vmcs *vmcs;
  1136. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  1137. if (!pages)
  1138. return NULL;
  1139. vmcs = page_address(pages);
  1140. memset(vmcs, 0, vmcs_config.size);
  1141. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1142. return vmcs;
  1143. }
  1144. static struct vmcs *alloc_vmcs(void)
  1145. {
  1146. return alloc_vmcs_cpu(raw_smp_processor_id());
  1147. }
  1148. static void free_vmcs(struct vmcs *vmcs)
  1149. {
  1150. free_pages((unsigned long)vmcs, vmcs_config.order);
  1151. }
  1152. static void free_kvm_area(void)
  1153. {
  1154. int cpu;
  1155. for_each_possible_cpu(cpu) {
  1156. free_vmcs(per_cpu(vmxarea, cpu));
  1157. per_cpu(vmxarea, cpu) = NULL;
  1158. }
  1159. }
  1160. static __init int alloc_kvm_area(void)
  1161. {
  1162. int cpu;
  1163. for_each_possible_cpu(cpu) {
  1164. struct vmcs *vmcs;
  1165. vmcs = alloc_vmcs_cpu(cpu);
  1166. if (!vmcs) {
  1167. free_kvm_area();
  1168. return -ENOMEM;
  1169. }
  1170. per_cpu(vmxarea, cpu) = vmcs;
  1171. }
  1172. return 0;
  1173. }
  1174. static __init int hardware_setup(void)
  1175. {
  1176. if (setup_vmcs_config(&vmcs_config) < 0)
  1177. return -EIO;
  1178. if (boot_cpu_has(X86_FEATURE_NX))
  1179. kvm_enable_efer_bits(EFER_NX);
  1180. if (!cpu_has_vmx_vpid())
  1181. enable_vpid = 0;
  1182. if (!cpu_has_vmx_ept()) {
  1183. enable_ept = 0;
  1184. enable_unrestricted_guest = 0;
  1185. }
  1186. if (!cpu_has_vmx_unrestricted_guest())
  1187. enable_unrestricted_guest = 0;
  1188. if (!cpu_has_vmx_flexpriority())
  1189. flexpriority_enabled = 0;
  1190. if (!cpu_has_vmx_tpr_shadow())
  1191. kvm_x86_ops->update_cr8_intercept = NULL;
  1192. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  1193. kvm_disable_largepages();
  1194. if (!cpu_has_vmx_ple())
  1195. ple_gap = 0;
  1196. return alloc_kvm_area();
  1197. }
  1198. static __exit void hardware_unsetup(void)
  1199. {
  1200. free_kvm_area();
  1201. }
  1202. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1203. {
  1204. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1205. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1206. vmcs_write16(sf->selector, save->selector);
  1207. vmcs_writel(sf->base, save->base);
  1208. vmcs_write32(sf->limit, save->limit);
  1209. vmcs_write32(sf->ar_bytes, save->ar);
  1210. } else {
  1211. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1212. << AR_DPL_SHIFT;
  1213. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1214. }
  1215. }
  1216. static void enter_pmode(struct kvm_vcpu *vcpu)
  1217. {
  1218. unsigned long flags;
  1219. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1220. vmx->emulation_required = 1;
  1221. vmx->rmode.vm86_active = 0;
  1222. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  1223. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  1224. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  1225. flags = vmcs_readl(GUEST_RFLAGS);
  1226. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1227. flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
  1228. vmcs_writel(GUEST_RFLAGS, flags);
  1229. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1230. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1231. update_exception_bitmap(vcpu);
  1232. if (emulate_invalid_guest_state)
  1233. return;
  1234. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  1235. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  1236. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  1237. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  1238. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1239. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1240. vmcs_write16(GUEST_CS_SELECTOR,
  1241. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1242. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1243. }
  1244. static gva_t rmode_tss_base(struct kvm *kvm)
  1245. {
  1246. if (!kvm->arch.tss_addr) {
  1247. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1248. kvm->memslots[0].npages - 3;
  1249. return base_gfn << PAGE_SHIFT;
  1250. }
  1251. return kvm->arch.tss_addr;
  1252. }
  1253. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1254. {
  1255. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1256. save->selector = vmcs_read16(sf->selector);
  1257. save->base = vmcs_readl(sf->base);
  1258. save->limit = vmcs_read32(sf->limit);
  1259. save->ar = vmcs_read32(sf->ar_bytes);
  1260. vmcs_write16(sf->selector, save->base >> 4);
  1261. vmcs_write32(sf->base, save->base & 0xfffff);
  1262. vmcs_write32(sf->limit, 0xffff);
  1263. vmcs_write32(sf->ar_bytes, 0xf3);
  1264. }
  1265. static void enter_rmode(struct kvm_vcpu *vcpu)
  1266. {
  1267. unsigned long flags;
  1268. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1269. if (enable_unrestricted_guest)
  1270. return;
  1271. vmx->emulation_required = 1;
  1272. vmx->rmode.vm86_active = 1;
  1273. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1274. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1275. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1276. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1277. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1278. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1279. flags = vmcs_readl(GUEST_RFLAGS);
  1280. vmx->rmode.save_iopl
  1281. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1282. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1283. vmcs_writel(GUEST_RFLAGS, flags);
  1284. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1285. update_exception_bitmap(vcpu);
  1286. if (emulate_invalid_guest_state)
  1287. goto continue_rmode;
  1288. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1289. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1290. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1291. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1292. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1293. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1294. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1295. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1296. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  1297. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  1298. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  1299. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  1300. continue_rmode:
  1301. kvm_mmu_reset_context(vcpu);
  1302. init_rmode(vcpu->kvm);
  1303. }
  1304. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1305. {
  1306. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1307. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1308. if (!msr)
  1309. return;
  1310. /*
  1311. * Force kernel_gs_base reloading before EFER changes, as control
  1312. * of this msr depends on is_long_mode().
  1313. */
  1314. vmx_load_host_state(to_vmx(vcpu));
  1315. vcpu->arch.shadow_efer = efer;
  1316. if (!msr)
  1317. return;
  1318. if (efer & EFER_LMA) {
  1319. vmcs_write32(VM_ENTRY_CONTROLS,
  1320. vmcs_read32(VM_ENTRY_CONTROLS) |
  1321. VM_ENTRY_IA32E_MODE);
  1322. msr->data = efer;
  1323. } else {
  1324. vmcs_write32(VM_ENTRY_CONTROLS,
  1325. vmcs_read32(VM_ENTRY_CONTROLS) &
  1326. ~VM_ENTRY_IA32E_MODE);
  1327. msr->data = efer & ~EFER_LME;
  1328. }
  1329. setup_msrs(vmx);
  1330. }
  1331. #ifdef CONFIG_X86_64
  1332. static void enter_lmode(struct kvm_vcpu *vcpu)
  1333. {
  1334. u32 guest_tr_ar;
  1335. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1336. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1337. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1338. __func__);
  1339. vmcs_write32(GUEST_TR_AR_BYTES,
  1340. (guest_tr_ar & ~AR_TYPE_MASK)
  1341. | AR_TYPE_BUSY_64_TSS);
  1342. }
  1343. vcpu->arch.shadow_efer |= EFER_LMA;
  1344. vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
  1345. }
  1346. static void exit_lmode(struct kvm_vcpu *vcpu)
  1347. {
  1348. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1349. vmcs_write32(VM_ENTRY_CONTROLS,
  1350. vmcs_read32(VM_ENTRY_CONTROLS)
  1351. & ~VM_ENTRY_IA32E_MODE);
  1352. }
  1353. #endif
  1354. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1355. {
  1356. vpid_sync_vcpu_all(to_vmx(vcpu));
  1357. if (enable_ept)
  1358. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1359. }
  1360. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1361. {
  1362. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1363. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1364. }
  1365. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1366. {
  1367. if (!test_bit(VCPU_EXREG_PDPTR,
  1368. (unsigned long *)&vcpu->arch.regs_dirty))
  1369. return;
  1370. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1371. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1372. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1373. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1374. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1375. }
  1376. }
  1377. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  1378. {
  1379. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1380. vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  1381. vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  1382. vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  1383. vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  1384. }
  1385. __set_bit(VCPU_EXREG_PDPTR,
  1386. (unsigned long *)&vcpu->arch.regs_avail);
  1387. __set_bit(VCPU_EXREG_PDPTR,
  1388. (unsigned long *)&vcpu->arch.regs_dirty);
  1389. }
  1390. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1391. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1392. unsigned long cr0,
  1393. struct kvm_vcpu *vcpu)
  1394. {
  1395. if (!(cr0 & X86_CR0_PG)) {
  1396. /* From paging/starting to nonpaging */
  1397. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1398. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1399. (CPU_BASED_CR3_LOAD_EXITING |
  1400. CPU_BASED_CR3_STORE_EXITING));
  1401. vcpu->arch.cr0 = cr0;
  1402. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1403. } else if (!is_paging(vcpu)) {
  1404. /* From nonpaging to paging */
  1405. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1406. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1407. ~(CPU_BASED_CR3_LOAD_EXITING |
  1408. CPU_BASED_CR3_STORE_EXITING));
  1409. vcpu->arch.cr0 = cr0;
  1410. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1411. }
  1412. if (!(cr0 & X86_CR0_WP))
  1413. *hw_cr0 &= ~X86_CR0_WP;
  1414. }
  1415. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1416. struct kvm_vcpu *vcpu)
  1417. {
  1418. if (!is_paging(vcpu)) {
  1419. *hw_cr4 &= ~X86_CR4_PAE;
  1420. *hw_cr4 |= X86_CR4_PSE;
  1421. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1422. *hw_cr4 &= ~X86_CR4_PAE;
  1423. }
  1424. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1425. {
  1426. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1427. unsigned long hw_cr0;
  1428. if (enable_unrestricted_guest)
  1429. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  1430. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  1431. else
  1432. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  1433. vmx_fpu_deactivate(vcpu);
  1434. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  1435. enter_pmode(vcpu);
  1436. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  1437. enter_rmode(vcpu);
  1438. #ifdef CONFIG_X86_64
  1439. if (vcpu->arch.shadow_efer & EFER_LME) {
  1440. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1441. enter_lmode(vcpu);
  1442. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1443. exit_lmode(vcpu);
  1444. }
  1445. #endif
  1446. if (enable_ept)
  1447. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1448. vmcs_writel(CR0_READ_SHADOW, cr0);
  1449. vmcs_writel(GUEST_CR0, hw_cr0);
  1450. vcpu->arch.cr0 = cr0;
  1451. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1452. vmx_fpu_activate(vcpu);
  1453. }
  1454. static u64 construct_eptp(unsigned long root_hpa)
  1455. {
  1456. u64 eptp;
  1457. /* TODO write the value reading from MSR */
  1458. eptp = VMX_EPT_DEFAULT_MT |
  1459. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1460. eptp |= (root_hpa & PAGE_MASK);
  1461. return eptp;
  1462. }
  1463. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1464. {
  1465. unsigned long guest_cr3;
  1466. u64 eptp;
  1467. guest_cr3 = cr3;
  1468. if (enable_ept) {
  1469. eptp = construct_eptp(cr3);
  1470. vmcs_write64(EPT_POINTER, eptp);
  1471. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1472. vcpu->kvm->arch.ept_identity_map_addr;
  1473. ept_load_pdptrs(vcpu);
  1474. }
  1475. vmx_flush_tlb(vcpu);
  1476. vmcs_writel(GUEST_CR3, guest_cr3);
  1477. if (vcpu->arch.cr0 & X86_CR0_PE)
  1478. vmx_fpu_deactivate(vcpu);
  1479. }
  1480. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1481. {
  1482. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  1483. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1484. vcpu->arch.cr4 = cr4;
  1485. if (enable_ept)
  1486. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1487. vmcs_writel(CR4_READ_SHADOW, cr4);
  1488. vmcs_writel(GUEST_CR4, hw_cr4);
  1489. }
  1490. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1491. {
  1492. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1493. return vmcs_readl(sf->base);
  1494. }
  1495. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1496. struct kvm_segment *var, int seg)
  1497. {
  1498. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1499. u32 ar;
  1500. var->base = vmcs_readl(sf->base);
  1501. var->limit = vmcs_read32(sf->limit);
  1502. var->selector = vmcs_read16(sf->selector);
  1503. ar = vmcs_read32(sf->ar_bytes);
  1504. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1505. ar = 0;
  1506. var->type = ar & 15;
  1507. var->s = (ar >> 4) & 1;
  1508. var->dpl = (ar >> 5) & 3;
  1509. var->present = (ar >> 7) & 1;
  1510. var->avl = (ar >> 12) & 1;
  1511. var->l = (ar >> 13) & 1;
  1512. var->db = (ar >> 14) & 1;
  1513. var->g = (ar >> 15) & 1;
  1514. var->unusable = (ar >> 16) & 1;
  1515. }
  1516. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1517. {
  1518. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1519. return 0;
  1520. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1521. return 3;
  1522. return vmcs_read16(GUEST_CS_SELECTOR) & 3;
  1523. }
  1524. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1525. {
  1526. u32 ar;
  1527. if (var->unusable)
  1528. ar = 1 << 16;
  1529. else {
  1530. ar = var->type & 15;
  1531. ar |= (var->s & 1) << 4;
  1532. ar |= (var->dpl & 3) << 5;
  1533. ar |= (var->present & 1) << 7;
  1534. ar |= (var->avl & 1) << 12;
  1535. ar |= (var->l & 1) << 13;
  1536. ar |= (var->db & 1) << 14;
  1537. ar |= (var->g & 1) << 15;
  1538. }
  1539. if (ar == 0) /* a 0 value means unusable */
  1540. ar = AR_UNUSABLE_MASK;
  1541. return ar;
  1542. }
  1543. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1544. struct kvm_segment *var, int seg)
  1545. {
  1546. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1547. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1548. u32 ar;
  1549. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  1550. vmx->rmode.tr.selector = var->selector;
  1551. vmx->rmode.tr.base = var->base;
  1552. vmx->rmode.tr.limit = var->limit;
  1553. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  1554. return;
  1555. }
  1556. vmcs_writel(sf->base, var->base);
  1557. vmcs_write32(sf->limit, var->limit);
  1558. vmcs_write16(sf->selector, var->selector);
  1559. if (vmx->rmode.vm86_active && var->s) {
  1560. /*
  1561. * Hack real-mode segments into vm86 compatibility.
  1562. */
  1563. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1564. vmcs_writel(sf->base, 0xf0000);
  1565. ar = 0xf3;
  1566. } else
  1567. ar = vmx_segment_access_rights(var);
  1568. /*
  1569. * Fix the "Accessed" bit in AR field of segment registers for older
  1570. * qemu binaries.
  1571. * IA32 arch specifies that at the time of processor reset the
  1572. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  1573. * is setting it to 0 in the usedland code. This causes invalid guest
  1574. * state vmexit when "unrestricted guest" mode is turned on.
  1575. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  1576. * tree. Newer qemu binaries with that qemu fix would not need this
  1577. * kvm hack.
  1578. */
  1579. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  1580. ar |= 0x1; /* Accessed */
  1581. vmcs_write32(sf->ar_bytes, ar);
  1582. }
  1583. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1584. {
  1585. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1586. *db = (ar >> 14) & 1;
  1587. *l = (ar >> 13) & 1;
  1588. }
  1589. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1590. {
  1591. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1592. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1593. }
  1594. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1595. {
  1596. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1597. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1598. }
  1599. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1600. {
  1601. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1602. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1603. }
  1604. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1605. {
  1606. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1607. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1608. }
  1609. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1610. {
  1611. struct kvm_segment var;
  1612. u32 ar;
  1613. vmx_get_segment(vcpu, &var, seg);
  1614. ar = vmx_segment_access_rights(&var);
  1615. if (var.base != (var.selector << 4))
  1616. return false;
  1617. if (var.limit != 0xffff)
  1618. return false;
  1619. if (ar != 0xf3)
  1620. return false;
  1621. return true;
  1622. }
  1623. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1624. {
  1625. struct kvm_segment cs;
  1626. unsigned int cs_rpl;
  1627. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1628. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1629. if (cs.unusable)
  1630. return false;
  1631. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1632. return false;
  1633. if (!cs.s)
  1634. return false;
  1635. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1636. if (cs.dpl > cs_rpl)
  1637. return false;
  1638. } else {
  1639. if (cs.dpl != cs_rpl)
  1640. return false;
  1641. }
  1642. if (!cs.present)
  1643. return false;
  1644. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1645. return true;
  1646. }
  1647. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1648. {
  1649. struct kvm_segment ss;
  1650. unsigned int ss_rpl;
  1651. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1652. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1653. if (ss.unusable)
  1654. return true;
  1655. if (ss.type != 3 && ss.type != 7)
  1656. return false;
  1657. if (!ss.s)
  1658. return false;
  1659. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1660. return false;
  1661. if (!ss.present)
  1662. return false;
  1663. return true;
  1664. }
  1665. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1666. {
  1667. struct kvm_segment var;
  1668. unsigned int rpl;
  1669. vmx_get_segment(vcpu, &var, seg);
  1670. rpl = var.selector & SELECTOR_RPL_MASK;
  1671. if (var.unusable)
  1672. return true;
  1673. if (!var.s)
  1674. return false;
  1675. if (!var.present)
  1676. return false;
  1677. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1678. if (var.dpl < rpl) /* DPL < RPL */
  1679. return false;
  1680. }
  1681. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1682. * rights flags
  1683. */
  1684. return true;
  1685. }
  1686. static bool tr_valid(struct kvm_vcpu *vcpu)
  1687. {
  1688. struct kvm_segment tr;
  1689. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1690. if (tr.unusable)
  1691. return false;
  1692. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1693. return false;
  1694. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1695. return false;
  1696. if (!tr.present)
  1697. return false;
  1698. return true;
  1699. }
  1700. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1701. {
  1702. struct kvm_segment ldtr;
  1703. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1704. if (ldtr.unusable)
  1705. return true;
  1706. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1707. return false;
  1708. if (ldtr.type != 2)
  1709. return false;
  1710. if (!ldtr.present)
  1711. return false;
  1712. return true;
  1713. }
  1714. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1715. {
  1716. struct kvm_segment cs, ss;
  1717. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1718. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1719. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1720. (ss.selector & SELECTOR_RPL_MASK));
  1721. }
  1722. /*
  1723. * Check if guest state is valid. Returns true if valid, false if
  1724. * not.
  1725. * We assume that registers are always usable
  1726. */
  1727. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1728. {
  1729. /* real mode guest state checks */
  1730. if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
  1731. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1732. return false;
  1733. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1734. return false;
  1735. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1736. return false;
  1737. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1738. return false;
  1739. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1740. return false;
  1741. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1742. return false;
  1743. } else {
  1744. /* protected mode guest state checks */
  1745. if (!cs_ss_rpl_check(vcpu))
  1746. return false;
  1747. if (!code_segment_valid(vcpu))
  1748. return false;
  1749. if (!stack_segment_valid(vcpu))
  1750. return false;
  1751. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1752. return false;
  1753. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1754. return false;
  1755. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1756. return false;
  1757. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1758. return false;
  1759. if (!tr_valid(vcpu))
  1760. return false;
  1761. if (!ldtr_valid(vcpu))
  1762. return false;
  1763. }
  1764. /* TODO:
  1765. * - Add checks on RIP
  1766. * - Add checks on RFLAGS
  1767. */
  1768. return true;
  1769. }
  1770. static int init_rmode_tss(struct kvm *kvm)
  1771. {
  1772. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1773. u16 data = 0;
  1774. int ret = 0;
  1775. int r;
  1776. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1777. if (r < 0)
  1778. goto out;
  1779. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1780. r = kvm_write_guest_page(kvm, fn++, &data,
  1781. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1782. if (r < 0)
  1783. goto out;
  1784. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1785. if (r < 0)
  1786. goto out;
  1787. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1788. if (r < 0)
  1789. goto out;
  1790. data = ~0;
  1791. r = kvm_write_guest_page(kvm, fn, &data,
  1792. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1793. sizeof(u8));
  1794. if (r < 0)
  1795. goto out;
  1796. ret = 1;
  1797. out:
  1798. return ret;
  1799. }
  1800. static int init_rmode_identity_map(struct kvm *kvm)
  1801. {
  1802. int i, r, ret;
  1803. pfn_t identity_map_pfn;
  1804. u32 tmp;
  1805. if (!enable_ept)
  1806. return 1;
  1807. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1808. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1809. "haven't been allocated!\n");
  1810. return 0;
  1811. }
  1812. if (likely(kvm->arch.ept_identity_pagetable_done))
  1813. return 1;
  1814. ret = 0;
  1815. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  1816. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1817. if (r < 0)
  1818. goto out;
  1819. /* Set up identity-mapping pagetable for EPT in real mode */
  1820. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1821. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1822. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1823. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1824. &tmp, i * sizeof(tmp), sizeof(tmp));
  1825. if (r < 0)
  1826. goto out;
  1827. }
  1828. kvm->arch.ept_identity_pagetable_done = true;
  1829. ret = 1;
  1830. out:
  1831. return ret;
  1832. }
  1833. static void seg_setup(int seg)
  1834. {
  1835. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1836. unsigned int ar;
  1837. vmcs_write16(sf->selector, 0);
  1838. vmcs_writel(sf->base, 0);
  1839. vmcs_write32(sf->limit, 0xffff);
  1840. if (enable_unrestricted_guest) {
  1841. ar = 0x93;
  1842. if (seg == VCPU_SREG_CS)
  1843. ar |= 0x08; /* code segment */
  1844. } else
  1845. ar = 0xf3;
  1846. vmcs_write32(sf->ar_bytes, ar);
  1847. }
  1848. static int alloc_apic_access_page(struct kvm *kvm)
  1849. {
  1850. struct kvm_userspace_memory_region kvm_userspace_mem;
  1851. int r = 0;
  1852. down_write(&kvm->slots_lock);
  1853. if (kvm->arch.apic_access_page)
  1854. goto out;
  1855. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1856. kvm_userspace_mem.flags = 0;
  1857. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1858. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1859. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1860. if (r)
  1861. goto out;
  1862. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1863. out:
  1864. up_write(&kvm->slots_lock);
  1865. return r;
  1866. }
  1867. static int alloc_identity_pagetable(struct kvm *kvm)
  1868. {
  1869. struct kvm_userspace_memory_region kvm_userspace_mem;
  1870. int r = 0;
  1871. down_write(&kvm->slots_lock);
  1872. if (kvm->arch.ept_identity_pagetable)
  1873. goto out;
  1874. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1875. kvm_userspace_mem.flags = 0;
  1876. kvm_userspace_mem.guest_phys_addr =
  1877. kvm->arch.ept_identity_map_addr;
  1878. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1879. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1880. if (r)
  1881. goto out;
  1882. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1883. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  1884. out:
  1885. up_write(&kvm->slots_lock);
  1886. return r;
  1887. }
  1888. static void allocate_vpid(struct vcpu_vmx *vmx)
  1889. {
  1890. int vpid;
  1891. vmx->vpid = 0;
  1892. if (!enable_vpid)
  1893. return;
  1894. spin_lock(&vmx_vpid_lock);
  1895. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1896. if (vpid < VMX_NR_VPIDS) {
  1897. vmx->vpid = vpid;
  1898. __set_bit(vpid, vmx_vpid_bitmap);
  1899. }
  1900. spin_unlock(&vmx_vpid_lock);
  1901. }
  1902. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  1903. {
  1904. int f = sizeof(unsigned long);
  1905. if (!cpu_has_vmx_msr_bitmap())
  1906. return;
  1907. /*
  1908. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1909. * have the write-low and read-high bitmap offsets the wrong way round.
  1910. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1911. */
  1912. if (msr <= 0x1fff) {
  1913. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  1914. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  1915. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1916. msr &= 0x1fff;
  1917. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  1918. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  1919. }
  1920. }
  1921. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  1922. {
  1923. if (!longmode_only)
  1924. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  1925. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  1926. }
  1927. /*
  1928. * Sets up the vmcs for emulated real mode.
  1929. */
  1930. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1931. {
  1932. u32 host_sysenter_cs, msr_low, msr_high;
  1933. u32 junk;
  1934. u64 host_pat, tsc_this, tsc_base;
  1935. unsigned long a;
  1936. struct descriptor_table dt;
  1937. int i;
  1938. unsigned long kvm_vmx_return;
  1939. u32 exec_control;
  1940. /* I/O */
  1941. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  1942. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  1943. if (cpu_has_vmx_msr_bitmap())
  1944. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  1945. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1946. /* Control */
  1947. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1948. vmcs_config.pin_based_exec_ctrl);
  1949. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1950. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1951. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1952. #ifdef CONFIG_X86_64
  1953. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1954. CPU_BASED_CR8_LOAD_EXITING;
  1955. #endif
  1956. }
  1957. if (!enable_ept)
  1958. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1959. CPU_BASED_CR3_LOAD_EXITING |
  1960. CPU_BASED_INVLPG_EXITING;
  1961. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1962. if (cpu_has_secondary_exec_ctrls()) {
  1963. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1964. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1965. exec_control &=
  1966. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1967. if (vmx->vpid == 0)
  1968. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1969. if (!enable_ept) {
  1970. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1971. enable_unrestricted_guest = 0;
  1972. }
  1973. if (!enable_unrestricted_guest)
  1974. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  1975. if (!ple_gap)
  1976. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  1977. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1978. }
  1979. if (ple_gap) {
  1980. vmcs_write32(PLE_GAP, ple_gap);
  1981. vmcs_write32(PLE_WINDOW, ple_window);
  1982. }
  1983. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1984. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1985. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1986. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1987. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1988. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1989. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1990. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1991. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1992. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  1993. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  1994. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1995. #ifdef CONFIG_X86_64
  1996. rdmsrl(MSR_FS_BASE, a);
  1997. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1998. rdmsrl(MSR_GS_BASE, a);
  1999. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  2000. #else
  2001. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  2002. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  2003. #endif
  2004. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  2005. kvm_get_idt(&dt);
  2006. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  2007. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  2008. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  2009. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  2010. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  2011. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  2012. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  2013. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  2014. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  2015. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  2016. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  2017. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  2018. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  2019. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2020. host_pat = msr_low | ((u64) msr_high << 32);
  2021. vmcs_write64(HOST_IA32_PAT, host_pat);
  2022. }
  2023. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2024. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2025. host_pat = msr_low | ((u64) msr_high << 32);
  2026. /* Write the default value follow host pat */
  2027. vmcs_write64(GUEST_IA32_PAT, host_pat);
  2028. /* Keep arch.pat sync with GUEST_IA32_PAT */
  2029. vmx->vcpu.arch.pat = host_pat;
  2030. }
  2031. for (i = 0; i < NR_VMX_MSR; ++i) {
  2032. u32 index = vmx_msr_index[i];
  2033. u32 data_low, data_high;
  2034. u64 data;
  2035. int j = vmx->nmsrs;
  2036. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  2037. continue;
  2038. if (wrmsr_safe(index, data_low, data_high) < 0)
  2039. continue;
  2040. data = data_low | ((u64)data_high << 32);
  2041. vmx->guest_msrs[j].index = i;
  2042. vmx->guest_msrs[j].data = 0;
  2043. vmx->guest_msrs[j].mask = -1ull;
  2044. ++vmx->nmsrs;
  2045. }
  2046. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  2047. /* 22.2.1, 20.8.1 */
  2048. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  2049. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  2050. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  2051. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  2052. rdtscll(tsc_this);
  2053. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  2054. tsc_base = tsc_this;
  2055. guest_write_tsc(0, tsc_base);
  2056. return 0;
  2057. }
  2058. static int init_rmode(struct kvm *kvm)
  2059. {
  2060. if (!init_rmode_tss(kvm))
  2061. return 0;
  2062. if (!init_rmode_identity_map(kvm))
  2063. return 0;
  2064. return 1;
  2065. }
  2066. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  2067. {
  2068. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2069. u64 msr;
  2070. int ret;
  2071. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2072. down_read(&vcpu->kvm->slots_lock);
  2073. if (!init_rmode(vmx->vcpu.kvm)) {
  2074. ret = -ENOMEM;
  2075. goto out;
  2076. }
  2077. vmx->rmode.vm86_active = 0;
  2078. vmx->soft_vnmi_blocked = 0;
  2079. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  2080. kvm_set_cr8(&vmx->vcpu, 0);
  2081. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  2082. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2083. msr |= MSR_IA32_APICBASE_BSP;
  2084. kvm_set_apic_base(&vmx->vcpu, msr);
  2085. fx_init(&vmx->vcpu);
  2086. seg_setup(VCPU_SREG_CS);
  2087. /*
  2088. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  2089. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  2090. */
  2091. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  2092. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  2093. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  2094. } else {
  2095. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  2096. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  2097. }
  2098. seg_setup(VCPU_SREG_DS);
  2099. seg_setup(VCPU_SREG_ES);
  2100. seg_setup(VCPU_SREG_FS);
  2101. seg_setup(VCPU_SREG_GS);
  2102. seg_setup(VCPU_SREG_SS);
  2103. vmcs_write16(GUEST_TR_SELECTOR, 0);
  2104. vmcs_writel(GUEST_TR_BASE, 0);
  2105. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  2106. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2107. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  2108. vmcs_writel(GUEST_LDTR_BASE, 0);
  2109. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  2110. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  2111. vmcs_write32(GUEST_SYSENTER_CS, 0);
  2112. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  2113. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2114. vmcs_writel(GUEST_RFLAGS, 0x02);
  2115. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2116. kvm_rip_write(vcpu, 0xfff0);
  2117. else
  2118. kvm_rip_write(vcpu, 0);
  2119. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2120. vmcs_writel(GUEST_DR7, 0x400);
  2121. vmcs_writel(GUEST_GDTR_BASE, 0);
  2122. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2123. vmcs_writel(GUEST_IDTR_BASE, 0);
  2124. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2125. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2126. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2127. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2128. /* Special registers */
  2129. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2130. setup_msrs(vmx);
  2131. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2132. if (cpu_has_vmx_tpr_shadow()) {
  2133. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2134. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2135. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2136. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2137. vmcs_write32(TPR_THRESHOLD, 0);
  2138. }
  2139. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2140. vmcs_write64(APIC_ACCESS_ADDR,
  2141. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2142. if (vmx->vpid != 0)
  2143. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2144. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  2145. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  2146. vmx_set_cr4(&vmx->vcpu, 0);
  2147. vmx_set_efer(&vmx->vcpu, 0);
  2148. vmx_fpu_activate(&vmx->vcpu);
  2149. update_exception_bitmap(&vmx->vcpu);
  2150. vpid_sync_vcpu_all(vmx);
  2151. ret = 0;
  2152. /* HACK: Don't enable emulation on guest boot/reset */
  2153. vmx->emulation_required = 0;
  2154. out:
  2155. up_read(&vcpu->kvm->slots_lock);
  2156. return ret;
  2157. }
  2158. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2159. {
  2160. u32 cpu_based_vm_exec_control;
  2161. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2162. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2163. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2164. }
  2165. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2166. {
  2167. u32 cpu_based_vm_exec_control;
  2168. if (!cpu_has_virtual_nmis()) {
  2169. enable_irq_window(vcpu);
  2170. return;
  2171. }
  2172. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2173. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2174. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2175. }
  2176. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  2177. {
  2178. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2179. uint32_t intr;
  2180. int irq = vcpu->arch.interrupt.nr;
  2181. trace_kvm_inj_virq(irq);
  2182. ++vcpu->stat.irq_injections;
  2183. if (vmx->rmode.vm86_active) {
  2184. vmx->rmode.irq.pending = true;
  2185. vmx->rmode.irq.vector = irq;
  2186. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2187. if (vcpu->arch.interrupt.soft)
  2188. vmx->rmode.irq.rip +=
  2189. vmx->vcpu.arch.event_exit_inst_len;
  2190. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2191. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2192. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2193. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2194. return;
  2195. }
  2196. intr = irq | INTR_INFO_VALID_MASK;
  2197. if (vcpu->arch.interrupt.soft) {
  2198. intr |= INTR_TYPE_SOFT_INTR;
  2199. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2200. vmx->vcpu.arch.event_exit_inst_len);
  2201. } else
  2202. intr |= INTR_TYPE_EXT_INTR;
  2203. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  2204. }
  2205. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2206. {
  2207. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2208. if (!cpu_has_virtual_nmis()) {
  2209. /*
  2210. * Tracking the NMI-blocked state in software is built upon
  2211. * finding the next open IRQ window. This, in turn, depends on
  2212. * well-behaving guests: They have to keep IRQs disabled at
  2213. * least as long as the NMI handler runs. Otherwise we may
  2214. * cause NMI nesting, maybe breaking the guest. But as this is
  2215. * highly unlikely, we can live with the residual risk.
  2216. */
  2217. vmx->soft_vnmi_blocked = 1;
  2218. vmx->vnmi_blocked_time = 0;
  2219. }
  2220. ++vcpu->stat.nmi_injections;
  2221. if (vmx->rmode.vm86_active) {
  2222. vmx->rmode.irq.pending = true;
  2223. vmx->rmode.irq.vector = NMI_VECTOR;
  2224. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2225. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2226. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2227. INTR_INFO_VALID_MASK);
  2228. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2229. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2230. return;
  2231. }
  2232. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2233. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2234. }
  2235. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2236. {
  2237. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2238. return 0;
  2239. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2240. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
  2241. GUEST_INTR_STATE_NMI));
  2242. }
  2243. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  2244. {
  2245. if (!cpu_has_virtual_nmis())
  2246. return to_vmx(vcpu)->soft_vnmi_blocked;
  2247. else
  2248. return !!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2249. GUEST_INTR_STATE_NMI);
  2250. }
  2251. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  2252. {
  2253. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2254. if (!cpu_has_virtual_nmis()) {
  2255. if (vmx->soft_vnmi_blocked != masked) {
  2256. vmx->soft_vnmi_blocked = masked;
  2257. vmx->vnmi_blocked_time = 0;
  2258. }
  2259. } else {
  2260. if (masked)
  2261. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2262. GUEST_INTR_STATE_NMI);
  2263. else
  2264. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2265. GUEST_INTR_STATE_NMI);
  2266. }
  2267. }
  2268. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2269. {
  2270. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2271. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2272. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2273. }
  2274. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2275. {
  2276. int ret;
  2277. struct kvm_userspace_memory_region tss_mem = {
  2278. .slot = TSS_PRIVATE_MEMSLOT,
  2279. .guest_phys_addr = addr,
  2280. .memory_size = PAGE_SIZE * 3,
  2281. .flags = 0,
  2282. };
  2283. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2284. if (ret)
  2285. return ret;
  2286. kvm->arch.tss_addr = addr;
  2287. return 0;
  2288. }
  2289. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2290. int vec, u32 err_code)
  2291. {
  2292. /*
  2293. * Instruction with address size override prefix opcode 0x67
  2294. * Cause the #SS fault with 0 error code in VM86 mode.
  2295. */
  2296. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2297. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
  2298. return 1;
  2299. /*
  2300. * Forward all other exceptions that are valid in real mode.
  2301. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2302. * the required debugging infrastructure rework.
  2303. */
  2304. switch (vec) {
  2305. case DB_VECTOR:
  2306. if (vcpu->guest_debug &
  2307. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2308. return 0;
  2309. kvm_queue_exception(vcpu, vec);
  2310. return 1;
  2311. case BP_VECTOR:
  2312. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2313. return 0;
  2314. /* fall through */
  2315. case DE_VECTOR:
  2316. case OF_VECTOR:
  2317. case BR_VECTOR:
  2318. case UD_VECTOR:
  2319. case DF_VECTOR:
  2320. case SS_VECTOR:
  2321. case GP_VECTOR:
  2322. case MF_VECTOR:
  2323. kvm_queue_exception(vcpu, vec);
  2324. return 1;
  2325. }
  2326. return 0;
  2327. }
  2328. /*
  2329. * Trigger machine check on the host. We assume all the MSRs are already set up
  2330. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  2331. * We pass a fake environment to the machine check handler because we want
  2332. * the guest to be always treated like user space, no matter what context
  2333. * it used internally.
  2334. */
  2335. static void kvm_machine_check(void)
  2336. {
  2337. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  2338. struct pt_regs regs = {
  2339. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  2340. .flags = X86_EFLAGS_IF,
  2341. };
  2342. do_machine_check(&regs, 0);
  2343. #endif
  2344. }
  2345. static int handle_machine_check(struct kvm_vcpu *vcpu)
  2346. {
  2347. /* already handled by vcpu_run */
  2348. return 1;
  2349. }
  2350. static int handle_exception(struct kvm_vcpu *vcpu)
  2351. {
  2352. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2353. struct kvm_run *kvm_run = vcpu->run;
  2354. u32 intr_info, ex_no, error_code;
  2355. unsigned long cr2, rip, dr6;
  2356. u32 vect_info;
  2357. enum emulation_result er;
  2358. vect_info = vmx->idt_vectoring_info;
  2359. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2360. if (is_machine_check(intr_info))
  2361. return handle_machine_check(vcpu);
  2362. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2363. !is_page_fault(intr_info)) {
  2364. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2365. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  2366. vcpu->run->internal.ndata = 2;
  2367. vcpu->run->internal.data[0] = vect_info;
  2368. vcpu->run->internal.data[1] = intr_info;
  2369. return 0;
  2370. }
  2371. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2372. return 1; /* already handled by vmx_vcpu_run() */
  2373. if (is_no_device(intr_info)) {
  2374. vmx_fpu_activate(vcpu);
  2375. return 1;
  2376. }
  2377. if (is_invalid_opcode(intr_info)) {
  2378. er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
  2379. if (er != EMULATE_DONE)
  2380. kvm_queue_exception(vcpu, UD_VECTOR);
  2381. return 1;
  2382. }
  2383. error_code = 0;
  2384. rip = kvm_rip_read(vcpu);
  2385. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2386. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2387. if (is_page_fault(intr_info)) {
  2388. /* EPT won't cause page fault directly */
  2389. if (enable_ept)
  2390. BUG();
  2391. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2392. trace_kvm_page_fault(cr2, error_code);
  2393. if (kvm_event_needs_reinjection(vcpu))
  2394. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2395. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2396. }
  2397. if (vmx->rmode.vm86_active &&
  2398. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2399. error_code)) {
  2400. if (vcpu->arch.halt_request) {
  2401. vcpu->arch.halt_request = 0;
  2402. return kvm_emulate_halt(vcpu);
  2403. }
  2404. return 1;
  2405. }
  2406. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2407. switch (ex_no) {
  2408. case DB_VECTOR:
  2409. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2410. if (!(vcpu->guest_debug &
  2411. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2412. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2413. kvm_queue_exception(vcpu, DB_VECTOR);
  2414. return 1;
  2415. }
  2416. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2417. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2418. /* fall through */
  2419. case BP_VECTOR:
  2420. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2421. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2422. kvm_run->debug.arch.exception = ex_no;
  2423. break;
  2424. default:
  2425. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2426. kvm_run->ex.exception = ex_no;
  2427. kvm_run->ex.error_code = error_code;
  2428. break;
  2429. }
  2430. return 0;
  2431. }
  2432. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  2433. {
  2434. ++vcpu->stat.irq_exits;
  2435. return 1;
  2436. }
  2437. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  2438. {
  2439. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  2440. return 0;
  2441. }
  2442. static int handle_io(struct kvm_vcpu *vcpu)
  2443. {
  2444. unsigned long exit_qualification;
  2445. int size, in, string;
  2446. unsigned port;
  2447. ++vcpu->stat.io_exits;
  2448. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2449. string = (exit_qualification & 16) != 0;
  2450. if (string) {
  2451. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DO_MMIO)
  2452. return 0;
  2453. return 1;
  2454. }
  2455. size = (exit_qualification & 7) + 1;
  2456. in = (exit_qualification & 8) != 0;
  2457. port = exit_qualification >> 16;
  2458. skip_emulated_instruction(vcpu);
  2459. return kvm_emulate_pio(vcpu, in, size, port);
  2460. }
  2461. static void
  2462. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2463. {
  2464. /*
  2465. * Patch in the VMCALL instruction:
  2466. */
  2467. hypercall[0] = 0x0f;
  2468. hypercall[1] = 0x01;
  2469. hypercall[2] = 0xc1;
  2470. }
  2471. static int handle_cr(struct kvm_vcpu *vcpu)
  2472. {
  2473. unsigned long exit_qualification, val;
  2474. int cr;
  2475. int reg;
  2476. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2477. cr = exit_qualification & 15;
  2478. reg = (exit_qualification >> 8) & 15;
  2479. switch ((exit_qualification >> 4) & 3) {
  2480. case 0: /* mov to cr */
  2481. val = kvm_register_read(vcpu, reg);
  2482. trace_kvm_cr_write(cr, val);
  2483. switch (cr) {
  2484. case 0:
  2485. kvm_set_cr0(vcpu, val);
  2486. skip_emulated_instruction(vcpu);
  2487. return 1;
  2488. case 3:
  2489. kvm_set_cr3(vcpu, val);
  2490. skip_emulated_instruction(vcpu);
  2491. return 1;
  2492. case 4:
  2493. kvm_set_cr4(vcpu, val);
  2494. skip_emulated_instruction(vcpu);
  2495. return 1;
  2496. case 8: {
  2497. u8 cr8_prev = kvm_get_cr8(vcpu);
  2498. u8 cr8 = kvm_register_read(vcpu, reg);
  2499. kvm_set_cr8(vcpu, cr8);
  2500. skip_emulated_instruction(vcpu);
  2501. if (irqchip_in_kernel(vcpu->kvm))
  2502. return 1;
  2503. if (cr8_prev <= cr8)
  2504. return 1;
  2505. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  2506. return 0;
  2507. }
  2508. };
  2509. break;
  2510. case 2: /* clts */
  2511. vmx_fpu_deactivate(vcpu);
  2512. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2513. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2514. vmx_fpu_activate(vcpu);
  2515. skip_emulated_instruction(vcpu);
  2516. return 1;
  2517. case 1: /*mov from cr*/
  2518. switch (cr) {
  2519. case 3:
  2520. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2521. trace_kvm_cr_read(cr, vcpu->arch.cr3);
  2522. skip_emulated_instruction(vcpu);
  2523. return 1;
  2524. case 8:
  2525. val = kvm_get_cr8(vcpu);
  2526. kvm_register_write(vcpu, reg, val);
  2527. trace_kvm_cr_read(cr, val);
  2528. skip_emulated_instruction(vcpu);
  2529. return 1;
  2530. }
  2531. break;
  2532. case 3: /* lmsw */
  2533. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2534. skip_emulated_instruction(vcpu);
  2535. return 1;
  2536. default:
  2537. break;
  2538. }
  2539. vcpu->run->exit_reason = 0;
  2540. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2541. (int)(exit_qualification >> 4) & 3, cr);
  2542. return 0;
  2543. }
  2544. static int handle_dr(struct kvm_vcpu *vcpu)
  2545. {
  2546. unsigned long exit_qualification;
  2547. unsigned long val;
  2548. int dr, reg;
  2549. if (!kvm_require_cpl(vcpu, 0))
  2550. return 1;
  2551. dr = vmcs_readl(GUEST_DR7);
  2552. if (dr & DR7_GD) {
  2553. /*
  2554. * As the vm-exit takes precedence over the debug trap, we
  2555. * need to emulate the latter, either for the host or the
  2556. * guest debugging itself.
  2557. */
  2558. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2559. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  2560. vcpu->run->debug.arch.dr7 = dr;
  2561. vcpu->run->debug.arch.pc =
  2562. vmcs_readl(GUEST_CS_BASE) +
  2563. vmcs_readl(GUEST_RIP);
  2564. vcpu->run->debug.arch.exception = DB_VECTOR;
  2565. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  2566. return 0;
  2567. } else {
  2568. vcpu->arch.dr7 &= ~DR7_GD;
  2569. vcpu->arch.dr6 |= DR6_BD;
  2570. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2571. kvm_queue_exception(vcpu, DB_VECTOR);
  2572. return 1;
  2573. }
  2574. }
  2575. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2576. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2577. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2578. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2579. switch (dr) {
  2580. case 0 ... 3:
  2581. val = vcpu->arch.db[dr];
  2582. break;
  2583. case 6:
  2584. val = vcpu->arch.dr6;
  2585. break;
  2586. case 7:
  2587. val = vcpu->arch.dr7;
  2588. break;
  2589. default:
  2590. val = 0;
  2591. }
  2592. kvm_register_write(vcpu, reg, val);
  2593. } else {
  2594. val = vcpu->arch.regs[reg];
  2595. switch (dr) {
  2596. case 0 ... 3:
  2597. vcpu->arch.db[dr] = val;
  2598. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  2599. vcpu->arch.eff_db[dr] = val;
  2600. break;
  2601. case 4 ... 5:
  2602. if (vcpu->arch.cr4 & X86_CR4_DE)
  2603. kvm_queue_exception(vcpu, UD_VECTOR);
  2604. break;
  2605. case 6:
  2606. if (val & 0xffffffff00000000ULL) {
  2607. kvm_queue_exception(vcpu, GP_VECTOR);
  2608. break;
  2609. }
  2610. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  2611. break;
  2612. case 7:
  2613. if (val & 0xffffffff00000000ULL) {
  2614. kvm_queue_exception(vcpu, GP_VECTOR);
  2615. break;
  2616. }
  2617. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  2618. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  2619. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2620. vcpu->arch.switch_db_regs =
  2621. (val & DR7_BP_EN_MASK);
  2622. }
  2623. break;
  2624. }
  2625. }
  2626. skip_emulated_instruction(vcpu);
  2627. return 1;
  2628. }
  2629. static int handle_cpuid(struct kvm_vcpu *vcpu)
  2630. {
  2631. kvm_emulate_cpuid(vcpu);
  2632. return 1;
  2633. }
  2634. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  2635. {
  2636. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2637. u64 data;
  2638. if (vmx_get_msr(vcpu, ecx, &data)) {
  2639. kvm_inject_gp(vcpu, 0);
  2640. return 1;
  2641. }
  2642. trace_kvm_msr_read(ecx, data);
  2643. /* FIXME: handling of bits 32:63 of rax, rdx */
  2644. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2645. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2646. skip_emulated_instruction(vcpu);
  2647. return 1;
  2648. }
  2649. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  2650. {
  2651. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2652. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2653. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2654. trace_kvm_msr_write(ecx, data);
  2655. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2656. kvm_inject_gp(vcpu, 0);
  2657. return 1;
  2658. }
  2659. skip_emulated_instruction(vcpu);
  2660. return 1;
  2661. }
  2662. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  2663. {
  2664. return 1;
  2665. }
  2666. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  2667. {
  2668. u32 cpu_based_vm_exec_control;
  2669. /* clear pending irq */
  2670. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2671. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2672. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2673. ++vcpu->stat.irq_window_exits;
  2674. /*
  2675. * If the user space waits to inject interrupts, exit as soon as
  2676. * possible
  2677. */
  2678. if (!irqchip_in_kernel(vcpu->kvm) &&
  2679. vcpu->run->request_interrupt_window &&
  2680. !kvm_cpu_has_interrupt(vcpu)) {
  2681. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2682. return 0;
  2683. }
  2684. return 1;
  2685. }
  2686. static int handle_halt(struct kvm_vcpu *vcpu)
  2687. {
  2688. skip_emulated_instruction(vcpu);
  2689. return kvm_emulate_halt(vcpu);
  2690. }
  2691. static int handle_vmcall(struct kvm_vcpu *vcpu)
  2692. {
  2693. skip_emulated_instruction(vcpu);
  2694. kvm_emulate_hypercall(vcpu);
  2695. return 1;
  2696. }
  2697. static int handle_vmx_insn(struct kvm_vcpu *vcpu)
  2698. {
  2699. kvm_queue_exception(vcpu, UD_VECTOR);
  2700. return 1;
  2701. }
  2702. static int handle_invlpg(struct kvm_vcpu *vcpu)
  2703. {
  2704. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2705. kvm_mmu_invlpg(vcpu, exit_qualification);
  2706. skip_emulated_instruction(vcpu);
  2707. return 1;
  2708. }
  2709. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  2710. {
  2711. skip_emulated_instruction(vcpu);
  2712. /* TODO: Add support for VT-d/pass-through device */
  2713. return 1;
  2714. }
  2715. static int handle_apic_access(struct kvm_vcpu *vcpu)
  2716. {
  2717. unsigned long exit_qualification;
  2718. enum emulation_result er;
  2719. unsigned long offset;
  2720. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2721. offset = exit_qualification & 0xffful;
  2722. er = emulate_instruction(vcpu, 0, 0, 0);
  2723. if (er != EMULATE_DONE) {
  2724. printk(KERN_ERR
  2725. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2726. offset);
  2727. return -ENOEXEC;
  2728. }
  2729. return 1;
  2730. }
  2731. static int handle_task_switch(struct kvm_vcpu *vcpu)
  2732. {
  2733. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2734. unsigned long exit_qualification;
  2735. u16 tss_selector;
  2736. int reason, type, idt_v;
  2737. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  2738. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  2739. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2740. reason = (u32)exit_qualification >> 30;
  2741. if (reason == TASK_SWITCH_GATE && idt_v) {
  2742. switch (type) {
  2743. case INTR_TYPE_NMI_INTR:
  2744. vcpu->arch.nmi_injected = false;
  2745. if (cpu_has_virtual_nmis())
  2746. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2747. GUEST_INTR_STATE_NMI);
  2748. break;
  2749. case INTR_TYPE_EXT_INTR:
  2750. case INTR_TYPE_SOFT_INTR:
  2751. kvm_clear_interrupt_queue(vcpu);
  2752. break;
  2753. case INTR_TYPE_HARD_EXCEPTION:
  2754. case INTR_TYPE_SOFT_EXCEPTION:
  2755. kvm_clear_exception_queue(vcpu);
  2756. break;
  2757. default:
  2758. break;
  2759. }
  2760. }
  2761. tss_selector = exit_qualification;
  2762. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  2763. type != INTR_TYPE_EXT_INTR &&
  2764. type != INTR_TYPE_NMI_INTR))
  2765. skip_emulated_instruction(vcpu);
  2766. if (!kvm_task_switch(vcpu, tss_selector, reason))
  2767. return 0;
  2768. /* clear all local breakpoint enable flags */
  2769. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2770. /*
  2771. * TODO: What about debug traps on tss switch?
  2772. * Are we supposed to inject them and update dr6?
  2773. */
  2774. return 1;
  2775. }
  2776. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  2777. {
  2778. unsigned long exit_qualification;
  2779. gpa_t gpa;
  2780. int gla_validity;
  2781. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2782. if (exit_qualification & (1 << 6)) {
  2783. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2784. return -EINVAL;
  2785. }
  2786. gla_validity = (exit_qualification >> 7) & 0x3;
  2787. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2788. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2789. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2790. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2791. vmcs_readl(GUEST_LINEAR_ADDRESS));
  2792. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2793. (long unsigned int)exit_qualification);
  2794. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2795. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  2796. return 0;
  2797. }
  2798. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2799. trace_kvm_page_fault(gpa, exit_qualification);
  2800. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2801. }
  2802. static u64 ept_rsvd_mask(u64 spte, int level)
  2803. {
  2804. int i;
  2805. u64 mask = 0;
  2806. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  2807. mask |= (1ULL << i);
  2808. if (level > 2)
  2809. /* bits 7:3 reserved */
  2810. mask |= 0xf8;
  2811. else if (level == 2) {
  2812. if (spte & (1ULL << 7))
  2813. /* 2MB ref, bits 20:12 reserved */
  2814. mask |= 0x1ff000;
  2815. else
  2816. /* bits 6:3 reserved */
  2817. mask |= 0x78;
  2818. }
  2819. return mask;
  2820. }
  2821. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  2822. int level)
  2823. {
  2824. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  2825. /* 010b (write-only) */
  2826. WARN_ON((spte & 0x7) == 0x2);
  2827. /* 110b (write/execute) */
  2828. WARN_ON((spte & 0x7) == 0x6);
  2829. /* 100b (execute-only) and value not supported by logical processor */
  2830. if (!cpu_has_vmx_ept_execute_only())
  2831. WARN_ON((spte & 0x7) == 0x4);
  2832. /* not 000b */
  2833. if ((spte & 0x7)) {
  2834. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  2835. if (rsvd_bits != 0) {
  2836. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  2837. __func__, rsvd_bits);
  2838. WARN_ON(1);
  2839. }
  2840. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  2841. u64 ept_mem_type = (spte & 0x38) >> 3;
  2842. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  2843. ept_mem_type == 7) {
  2844. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  2845. __func__, ept_mem_type);
  2846. WARN_ON(1);
  2847. }
  2848. }
  2849. }
  2850. }
  2851. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  2852. {
  2853. u64 sptes[4];
  2854. int nr_sptes, i;
  2855. gpa_t gpa;
  2856. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2857. printk(KERN_ERR "EPT: Misconfiguration.\n");
  2858. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  2859. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  2860. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  2861. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  2862. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2863. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  2864. return 0;
  2865. }
  2866. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  2867. {
  2868. u32 cpu_based_vm_exec_control;
  2869. /* clear pending NMI */
  2870. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2871. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2872. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2873. ++vcpu->stat.nmi_window_exits;
  2874. return 1;
  2875. }
  2876. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  2877. {
  2878. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2879. enum emulation_result err = EMULATE_DONE;
  2880. int ret = 1;
  2881. while (!guest_state_valid(vcpu)) {
  2882. err = emulate_instruction(vcpu, 0, 0, 0);
  2883. if (err == EMULATE_DO_MMIO) {
  2884. ret = 0;
  2885. goto out;
  2886. }
  2887. if (err != EMULATE_DONE) {
  2888. kvm_report_emulation_failure(vcpu, "emulation failure");
  2889. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2890. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2891. vcpu->run->internal.ndata = 0;
  2892. ret = 0;
  2893. goto out;
  2894. }
  2895. if (signal_pending(current))
  2896. goto out;
  2897. if (need_resched())
  2898. schedule();
  2899. }
  2900. vmx->emulation_required = 0;
  2901. out:
  2902. return ret;
  2903. }
  2904. /*
  2905. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  2906. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  2907. */
  2908. static int handle_pause(struct kvm_vcpu *vcpu)
  2909. {
  2910. skip_emulated_instruction(vcpu);
  2911. kvm_vcpu_on_spin(vcpu);
  2912. return 1;
  2913. }
  2914. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  2915. {
  2916. kvm_queue_exception(vcpu, UD_VECTOR);
  2917. return 1;
  2918. }
  2919. /*
  2920. * The exit handlers return 1 if the exit was handled fully and guest execution
  2921. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2922. * to be done to userspace and return 0.
  2923. */
  2924. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  2925. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2926. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2927. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2928. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2929. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2930. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2931. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2932. [EXIT_REASON_CPUID] = handle_cpuid,
  2933. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2934. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2935. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2936. [EXIT_REASON_HLT] = handle_halt,
  2937. [EXIT_REASON_INVLPG] = handle_invlpg,
  2938. [EXIT_REASON_VMCALL] = handle_vmcall,
  2939. [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
  2940. [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
  2941. [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
  2942. [EXIT_REASON_VMPTRST] = handle_vmx_insn,
  2943. [EXIT_REASON_VMREAD] = handle_vmx_insn,
  2944. [EXIT_REASON_VMRESUME] = handle_vmx_insn,
  2945. [EXIT_REASON_VMWRITE] = handle_vmx_insn,
  2946. [EXIT_REASON_VMOFF] = handle_vmx_insn,
  2947. [EXIT_REASON_VMON] = handle_vmx_insn,
  2948. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2949. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2950. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2951. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2952. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  2953. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2954. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  2955. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  2956. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  2957. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  2958. };
  2959. static const int kvm_vmx_max_exit_handlers =
  2960. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2961. /*
  2962. * The guest has exited. See if we can fix it or if we need userspace
  2963. * assistance.
  2964. */
  2965. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  2966. {
  2967. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2968. u32 exit_reason = vmx->exit_reason;
  2969. u32 vectoring_info = vmx->idt_vectoring_info;
  2970. trace_kvm_exit(exit_reason, kvm_rip_read(vcpu));
  2971. /* If guest state is invalid, start emulating */
  2972. if (vmx->emulation_required && emulate_invalid_guest_state)
  2973. return handle_invalid_guest_state(vcpu);
  2974. /* Access CR3 don't cause VMExit in paging mode, so we need
  2975. * to sync with guest real CR3. */
  2976. if (enable_ept && is_paging(vcpu))
  2977. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2978. if (unlikely(vmx->fail)) {
  2979. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2980. vcpu->run->fail_entry.hardware_entry_failure_reason
  2981. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2982. return 0;
  2983. }
  2984. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2985. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2986. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  2987. exit_reason != EXIT_REASON_TASK_SWITCH))
  2988. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  2989. "(0x%x) and exit reason is 0x%x\n",
  2990. __func__, vectoring_info, exit_reason);
  2991. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  2992. if (vmx_interrupt_allowed(vcpu)) {
  2993. vmx->soft_vnmi_blocked = 0;
  2994. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  2995. vcpu->arch.nmi_pending) {
  2996. /*
  2997. * This CPU don't support us in finding the end of an
  2998. * NMI-blocked window if the guest runs with IRQs
  2999. * disabled. So we pull the trigger after 1 s of
  3000. * futile waiting, but inform the user about this.
  3001. */
  3002. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  3003. "state on VCPU %d after 1 s timeout\n",
  3004. __func__, vcpu->vcpu_id);
  3005. vmx->soft_vnmi_blocked = 0;
  3006. }
  3007. }
  3008. if (exit_reason < kvm_vmx_max_exit_handlers
  3009. && kvm_vmx_exit_handlers[exit_reason])
  3010. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  3011. else {
  3012. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3013. vcpu->run->hw.hardware_exit_reason = exit_reason;
  3014. }
  3015. return 0;
  3016. }
  3017. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  3018. {
  3019. if (irr == -1 || tpr < irr) {
  3020. vmcs_write32(TPR_THRESHOLD, 0);
  3021. return;
  3022. }
  3023. vmcs_write32(TPR_THRESHOLD, irr);
  3024. }
  3025. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  3026. {
  3027. u32 exit_intr_info;
  3028. u32 idt_vectoring_info = vmx->idt_vectoring_info;
  3029. bool unblock_nmi;
  3030. u8 vector;
  3031. int type;
  3032. bool idtv_info_valid;
  3033. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  3034. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  3035. /* Handle machine checks before interrupts are enabled */
  3036. if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
  3037. || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
  3038. && is_machine_check(exit_intr_info)))
  3039. kvm_machine_check();
  3040. /* We need to handle NMIs before interrupts are enabled */
  3041. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  3042. (exit_intr_info & INTR_INFO_VALID_MASK))
  3043. asm("int $2");
  3044. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  3045. if (cpu_has_virtual_nmis()) {
  3046. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  3047. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  3048. /*
  3049. * SDM 3: 27.7.1.2 (September 2008)
  3050. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  3051. * a guest IRET fault.
  3052. * SDM 3: 23.2.2 (September 2008)
  3053. * Bit 12 is undefined in any of the following cases:
  3054. * If the VM exit sets the valid bit in the IDT-vectoring
  3055. * information field.
  3056. * If the VM exit is due to a double fault.
  3057. */
  3058. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  3059. vector != DF_VECTOR && !idtv_info_valid)
  3060. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3061. GUEST_INTR_STATE_NMI);
  3062. } else if (unlikely(vmx->soft_vnmi_blocked))
  3063. vmx->vnmi_blocked_time +=
  3064. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  3065. vmx->vcpu.arch.nmi_injected = false;
  3066. kvm_clear_exception_queue(&vmx->vcpu);
  3067. kvm_clear_interrupt_queue(&vmx->vcpu);
  3068. if (!idtv_info_valid)
  3069. return;
  3070. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  3071. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  3072. switch (type) {
  3073. case INTR_TYPE_NMI_INTR:
  3074. vmx->vcpu.arch.nmi_injected = true;
  3075. /*
  3076. * SDM 3: 27.7.1.2 (September 2008)
  3077. * Clear bit "block by NMI" before VM entry if a NMI
  3078. * delivery faulted.
  3079. */
  3080. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3081. GUEST_INTR_STATE_NMI);
  3082. break;
  3083. case INTR_TYPE_SOFT_EXCEPTION:
  3084. vmx->vcpu.arch.event_exit_inst_len =
  3085. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3086. /* fall through */
  3087. case INTR_TYPE_HARD_EXCEPTION:
  3088. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  3089. u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  3090. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  3091. } else
  3092. kvm_queue_exception(&vmx->vcpu, vector);
  3093. break;
  3094. case INTR_TYPE_SOFT_INTR:
  3095. vmx->vcpu.arch.event_exit_inst_len =
  3096. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3097. /* fall through */
  3098. case INTR_TYPE_EXT_INTR:
  3099. kvm_queue_interrupt(&vmx->vcpu, vector,
  3100. type == INTR_TYPE_SOFT_INTR);
  3101. break;
  3102. default:
  3103. break;
  3104. }
  3105. }
  3106. /*
  3107. * Failure to inject an interrupt should give us the information
  3108. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  3109. * when fetching the interrupt redirection bitmap in the real-mode
  3110. * tss, this doesn't happen. So we do it ourselves.
  3111. */
  3112. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  3113. {
  3114. vmx->rmode.irq.pending = 0;
  3115. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  3116. return;
  3117. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  3118. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  3119. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  3120. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  3121. return;
  3122. }
  3123. vmx->idt_vectoring_info =
  3124. VECTORING_INFO_VALID_MASK
  3125. | INTR_TYPE_EXT_INTR
  3126. | vmx->rmode.irq.vector;
  3127. }
  3128. #ifdef CONFIG_X86_64
  3129. #define R "r"
  3130. #define Q "q"
  3131. #else
  3132. #define R "e"
  3133. #define Q "l"
  3134. #endif
  3135. static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
  3136. {
  3137. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3138. /* Record the guest's net vcpu time for enforced NMI injections. */
  3139. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  3140. vmx->entry_time = ktime_get();
  3141. /* Don't enter VMX if guest state is invalid, let the exit handler
  3142. start emulation until we arrive back to a valid state */
  3143. if (vmx->emulation_required && emulate_invalid_guest_state)
  3144. return;
  3145. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  3146. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  3147. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  3148. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  3149. /* When single-stepping over STI and MOV SS, we must clear the
  3150. * corresponding interruptibility bits in the guest state. Otherwise
  3151. * vmentry fails as it then expects bit 14 (BS) in pending debug
  3152. * exceptions being set, but that's not correct for the guest debugging
  3153. * case. */
  3154. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3155. vmx_set_interrupt_shadow(vcpu, 0);
  3156. /*
  3157. * Loading guest fpu may have cleared host cr0.ts
  3158. */
  3159. vmcs_writel(HOST_CR0, read_cr0());
  3160. if (vcpu->arch.switch_db_regs)
  3161. set_debugreg(vcpu->arch.dr6, 6);
  3162. asm(
  3163. /* Store host registers */
  3164. "push %%"R"dx; push %%"R"bp;"
  3165. "push %%"R"cx \n\t"
  3166. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  3167. "je 1f \n\t"
  3168. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  3169. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  3170. "1: \n\t"
  3171. /* Reload cr2 if changed */
  3172. "mov %c[cr2](%0), %%"R"ax \n\t"
  3173. "mov %%cr2, %%"R"dx \n\t"
  3174. "cmp %%"R"ax, %%"R"dx \n\t"
  3175. "je 2f \n\t"
  3176. "mov %%"R"ax, %%cr2 \n\t"
  3177. "2: \n\t"
  3178. /* Check if vmlaunch of vmresume is needed */
  3179. "cmpl $0, %c[launched](%0) \n\t"
  3180. /* Load guest registers. Don't clobber flags. */
  3181. "mov %c[rax](%0), %%"R"ax \n\t"
  3182. "mov %c[rbx](%0), %%"R"bx \n\t"
  3183. "mov %c[rdx](%0), %%"R"dx \n\t"
  3184. "mov %c[rsi](%0), %%"R"si \n\t"
  3185. "mov %c[rdi](%0), %%"R"di \n\t"
  3186. "mov %c[rbp](%0), %%"R"bp \n\t"
  3187. #ifdef CONFIG_X86_64
  3188. "mov %c[r8](%0), %%r8 \n\t"
  3189. "mov %c[r9](%0), %%r9 \n\t"
  3190. "mov %c[r10](%0), %%r10 \n\t"
  3191. "mov %c[r11](%0), %%r11 \n\t"
  3192. "mov %c[r12](%0), %%r12 \n\t"
  3193. "mov %c[r13](%0), %%r13 \n\t"
  3194. "mov %c[r14](%0), %%r14 \n\t"
  3195. "mov %c[r15](%0), %%r15 \n\t"
  3196. #endif
  3197. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  3198. /* Enter guest mode */
  3199. "jne .Llaunched \n\t"
  3200. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  3201. "jmp .Lkvm_vmx_return \n\t"
  3202. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  3203. ".Lkvm_vmx_return: "
  3204. /* Save guest registers, load host registers, keep flags */
  3205. "xchg %0, (%%"R"sp) \n\t"
  3206. "mov %%"R"ax, %c[rax](%0) \n\t"
  3207. "mov %%"R"bx, %c[rbx](%0) \n\t"
  3208. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  3209. "mov %%"R"dx, %c[rdx](%0) \n\t"
  3210. "mov %%"R"si, %c[rsi](%0) \n\t"
  3211. "mov %%"R"di, %c[rdi](%0) \n\t"
  3212. "mov %%"R"bp, %c[rbp](%0) \n\t"
  3213. #ifdef CONFIG_X86_64
  3214. "mov %%r8, %c[r8](%0) \n\t"
  3215. "mov %%r9, %c[r9](%0) \n\t"
  3216. "mov %%r10, %c[r10](%0) \n\t"
  3217. "mov %%r11, %c[r11](%0) \n\t"
  3218. "mov %%r12, %c[r12](%0) \n\t"
  3219. "mov %%r13, %c[r13](%0) \n\t"
  3220. "mov %%r14, %c[r14](%0) \n\t"
  3221. "mov %%r15, %c[r15](%0) \n\t"
  3222. #endif
  3223. "mov %%cr2, %%"R"ax \n\t"
  3224. "mov %%"R"ax, %c[cr2](%0) \n\t"
  3225. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  3226. "setbe %c[fail](%0) \n\t"
  3227. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  3228. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  3229. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  3230. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  3231. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  3232. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  3233. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3234. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3235. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3236. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3237. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3238. #ifdef CONFIG_X86_64
  3239. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3240. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3241. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3242. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3243. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3244. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3245. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3246. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3247. #endif
  3248. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  3249. : "cc", "memory"
  3250. , R"bx", R"di", R"si"
  3251. #ifdef CONFIG_X86_64
  3252. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3253. #endif
  3254. );
  3255. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  3256. | (1 << VCPU_EXREG_PDPTR));
  3257. vcpu->arch.regs_dirty = 0;
  3258. if (vcpu->arch.switch_db_regs)
  3259. get_debugreg(vcpu->arch.dr6, 6);
  3260. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3261. if (vmx->rmode.irq.pending)
  3262. fixup_rmode_irq(vmx);
  3263. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3264. vmx->launched = 1;
  3265. vmx_complete_interrupts(vmx);
  3266. }
  3267. #undef R
  3268. #undef Q
  3269. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3270. {
  3271. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3272. if (vmx->vmcs) {
  3273. vcpu_clear(vmx);
  3274. free_vmcs(vmx->vmcs);
  3275. vmx->vmcs = NULL;
  3276. }
  3277. }
  3278. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3279. {
  3280. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3281. spin_lock(&vmx_vpid_lock);
  3282. if (vmx->vpid != 0)
  3283. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3284. spin_unlock(&vmx_vpid_lock);
  3285. vmx_free_vmcs(vcpu);
  3286. kfree(vmx->guest_msrs);
  3287. kvm_vcpu_uninit(vcpu);
  3288. kmem_cache_free(kvm_vcpu_cache, vmx);
  3289. }
  3290. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3291. {
  3292. int err;
  3293. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3294. int cpu;
  3295. if (!vmx)
  3296. return ERR_PTR(-ENOMEM);
  3297. allocate_vpid(vmx);
  3298. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3299. if (err)
  3300. goto free_vcpu;
  3301. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3302. if (!vmx->guest_msrs) {
  3303. err = -ENOMEM;
  3304. goto uninit_vcpu;
  3305. }
  3306. vmx->vmcs = alloc_vmcs();
  3307. if (!vmx->vmcs)
  3308. goto free_msrs;
  3309. vmcs_clear(vmx->vmcs);
  3310. cpu = get_cpu();
  3311. vmx_vcpu_load(&vmx->vcpu, cpu);
  3312. err = vmx_vcpu_setup(vmx);
  3313. vmx_vcpu_put(&vmx->vcpu);
  3314. put_cpu();
  3315. if (err)
  3316. goto free_vmcs;
  3317. if (vm_need_virtualize_apic_accesses(kvm))
  3318. if (alloc_apic_access_page(kvm) != 0)
  3319. goto free_vmcs;
  3320. if (enable_ept) {
  3321. if (!kvm->arch.ept_identity_map_addr)
  3322. kvm->arch.ept_identity_map_addr =
  3323. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  3324. if (alloc_identity_pagetable(kvm) != 0)
  3325. goto free_vmcs;
  3326. }
  3327. return &vmx->vcpu;
  3328. free_vmcs:
  3329. free_vmcs(vmx->vmcs);
  3330. free_msrs:
  3331. kfree(vmx->guest_msrs);
  3332. uninit_vcpu:
  3333. kvm_vcpu_uninit(&vmx->vcpu);
  3334. free_vcpu:
  3335. kmem_cache_free(kvm_vcpu_cache, vmx);
  3336. return ERR_PTR(err);
  3337. }
  3338. static void __init vmx_check_processor_compat(void *rtn)
  3339. {
  3340. struct vmcs_config vmcs_conf;
  3341. *(int *)rtn = 0;
  3342. if (setup_vmcs_config(&vmcs_conf) < 0)
  3343. *(int *)rtn = -EIO;
  3344. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3345. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3346. smp_processor_id());
  3347. *(int *)rtn = -EIO;
  3348. }
  3349. }
  3350. static int get_ept_level(void)
  3351. {
  3352. return VMX_EPT_DEFAULT_GAW + 1;
  3353. }
  3354. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3355. {
  3356. u64 ret;
  3357. /* For VT-d and EPT combination
  3358. * 1. MMIO: always map as UC
  3359. * 2. EPT with VT-d:
  3360. * a. VT-d without snooping control feature: can't guarantee the
  3361. * result, try to trust guest.
  3362. * b. VT-d with snooping control feature: snooping control feature of
  3363. * VT-d engine can guarantee the cache correctness. Just set it
  3364. * to WB to keep consistent with host. So the same as item 3.
  3365. * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
  3366. * consistent with host MTRR
  3367. */
  3368. if (is_mmio)
  3369. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3370. else if (vcpu->kvm->arch.iommu_domain &&
  3371. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3372. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3373. VMX_EPT_MT_EPTE_SHIFT;
  3374. else
  3375. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3376. | VMX_EPT_IGMT_BIT;
  3377. return ret;
  3378. }
  3379. static const struct trace_print_flags vmx_exit_reasons_str[] = {
  3380. { EXIT_REASON_EXCEPTION_NMI, "exception" },
  3381. { EXIT_REASON_EXTERNAL_INTERRUPT, "ext_irq" },
  3382. { EXIT_REASON_TRIPLE_FAULT, "triple_fault" },
  3383. { EXIT_REASON_NMI_WINDOW, "nmi_window" },
  3384. { EXIT_REASON_IO_INSTRUCTION, "io_instruction" },
  3385. { EXIT_REASON_CR_ACCESS, "cr_access" },
  3386. { EXIT_REASON_DR_ACCESS, "dr_access" },
  3387. { EXIT_REASON_CPUID, "cpuid" },
  3388. { EXIT_REASON_MSR_READ, "rdmsr" },
  3389. { EXIT_REASON_MSR_WRITE, "wrmsr" },
  3390. { EXIT_REASON_PENDING_INTERRUPT, "interrupt_window" },
  3391. { EXIT_REASON_HLT, "halt" },
  3392. { EXIT_REASON_INVLPG, "invlpg" },
  3393. { EXIT_REASON_VMCALL, "hypercall" },
  3394. { EXIT_REASON_TPR_BELOW_THRESHOLD, "tpr_below_thres" },
  3395. { EXIT_REASON_APIC_ACCESS, "apic_access" },
  3396. { EXIT_REASON_WBINVD, "wbinvd" },
  3397. { EXIT_REASON_TASK_SWITCH, "task_switch" },
  3398. { EXIT_REASON_EPT_VIOLATION, "ept_violation" },
  3399. { -1, NULL }
  3400. };
  3401. static bool vmx_gb_page_enable(void)
  3402. {
  3403. return false;
  3404. }
  3405. static struct kvm_x86_ops vmx_x86_ops = {
  3406. .cpu_has_kvm_support = cpu_has_kvm_support,
  3407. .disabled_by_bios = vmx_disabled_by_bios,
  3408. .hardware_setup = hardware_setup,
  3409. .hardware_unsetup = hardware_unsetup,
  3410. .check_processor_compatibility = vmx_check_processor_compat,
  3411. .hardware_enable = hardware_enable,
  3412. .hardware_disable = hardware_disable,
  3413. .cpu_has_accelerated_tpr = report_flexpriority,
  3414. .vcpu_create = vmx_create_vcpu,
  3415. .vcpu_free = vmx_free_vcpu,
  3416. .vcpu_reset = vmx_vcpu_reset,
  3417. .prepare_guest_switch = vmx_save_host_state,
  3418. .vcpu_load = vmx_vcpu_load,
  3419. .vcpu_put = vmx_vcpu_put,
  3420. .set_guest_debug = set_guest_debug,
  3421. .get_msr = vmx_get_msr,
  3422. .set_msr = vmx_set_msr,
  3423. .get_segment_base = vmx_get_segment_base,
  3424. .get_segment = vmx_get_segment,
  3425. .set_segment = vmx_set_segment,
  3426. .get_cpl = vmx_get_cpl,
  3427. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3428. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3429. .set_cr0 = vmx_set_cr0,
  3430. .set_cr3 = vmx_set_cr3,
  3431. .set_cr4 = vmx_set_cr4,
  3432. .set_efer = vmx_set_efer,
  3433. .get_idt = vmx_get_idt,
  3434. .set_idt = vmx_set_idt,
  3435. .get_gdt = vmx_get_gdt,
  3436. .set_gdt = vmx_set_gdt,
  3437. .cache_reg = vmx_cache_reg,
  3438. .get_rflags = vmx_get_rflags,
  3439. .set_rflags = vmx_set_rflags,
  3440. .tlb_flush = vmx_flush_tlb,
  3441. .run = vmx_vcpu_run,
  3442. .handle_exit = vmx_handle_exit,
  3443. .skip_emulated_instruction = skip_emulated_instruction,
  3444. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  3445. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  3446. .patch_hypercall = vmx_patch_hypercall,
  3447. .set_irq = vmx_inject_irq,
  3448. .set_nmi = vmx_inject_nmi,
  3449. .queue_exception = vmx_queue_exception,
  3450. .interrupt_allowed = vmx_interrupt_allowed,
  3451. .nmi_allowed = vmx_nmi_allowed,
  3452. .get_nmi_mask = vmx_get_nmi_mask,
  3453. .set_nmi_mask = vmx_set_nmi_mask,
  3454. .enable_nmi_window = enable_nmi_window,
  3455. .enable_irq_window = enable_irq_window,
  3456. .update_cr8_intercept = update_cr8_intercept,
  3457. .set_tss_addr = vmx_set_tss_addr,
  3458. .get_tdp_level = get_ept_level,
  3459. .get_mt_mask = vmx_get_mt_mask,
  3460. .exit_reasons_str = vmx_exit_reasons_str,
  3461. .gb_page_enable = vmx_gb_page_enable,
  3462. };
  3463. static int __init vmx_init(void)
  3464. {
  3465. int r, i;
  3466. rdmsrl_safe(MSR_EFER, &host_efer);
  3467. for (i = 0; i < NR_VMX_MSR; ++i)
  3468. kvm_define_shared_msr(i, vmx_msr_index[i]);
  3469. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3470. if (!vmx_io_bitmap_a)
  3471. return -ENOMEM;
  3472. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3473. if (!vmx_io_bitmap_b) {
  3474. r = -ENOMEM;
  3475. goto out;
  3476. }
  3477. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3478. if (!vmx_msr_bitmap_legacy) {
  3479. r = -ENOMEM;
  3480. goto out1;
  3481. }
  3482. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3483. if (!vmx_msr_bitmap_longmode) {
  3484. r = -ENOMEM;
  3485. goto out2;
  3486. }
  3487. /*
  3488. * Allow direct access to the PC debug port (it is often used for I/O
  3489. * delays, but the vmexits simply slow things down).
  3490. */
  3491. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3492. clear_bit(0x80, vmx_io_bitmap_a);
  3493. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3494. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3495. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3496. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3497. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3498. if (r)
  3499. goto out3;
  3500. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3501. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3502. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3503. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3504. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3505. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3506. if (enable_ept) {
  3507. bypass_guest_pf = 0;
  3508. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3509. VMX_EPT_WRITABLE_MASK);
  3510. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3511. VMX_EPT_EXECUTABLE_MASK);
  3512. kvm_enable_tdp();
  3513. } else
  3514. kvm_disable_tdp();
  3515. if (bypass_guest_pf)
  3516. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3517. return 0;
  3518. out3:
  3519. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3520. out2:
  3521. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3522. out1:
  3523. free_page((unsigned long)vmx_io_bitmap_b);
  3524. out:
  3525. free_page((unsigned long)vmx_io_bitmap_a);
  3526. return r;
  3527. }
  3528. static void __exit vmx_exit(void)
  3529. {
  3530. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3531. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3532. free_page((unsigned long)vmx_io_bitmap_b);
  3533. free_page((unsigned long)vmx_io_bitmap_a);
  3534. kvm_exit();
  3535. }
  3536. module_init(vmx_init)
  3537. module_exit(vmx_exit)