s2io.c 234 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266
  1. /************************************************************************
  2. * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
  3. * Copyright(c) 2002-2007 Neterion Inc.
  4. * This software may be used and distributed according to the terms of
  5. * the GNU General Public License (GPL), incorporated herein by reference.
  6. * Drivers based on or derived from this code fall under the GPL and must
  7. * retain the authorship, copyright and license notice. This file is not
  8. * a complete program and may only be used when the entire operating
  9. * system is licensed under the GPL.
  10. * See the file COPYING in this distribution for more information.
  11. *
  12. * Credits:
  13. * Jeff Garzik : For pointing out the improper error condition
  14. * check in the s2io_xmit routine and also some
  15. * issues in the Tx watch dog function. Also for
  16. * patiently answering all those innumerable
  17. * questions regaring the 2.6 porting issues.
  18. * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
  19. * macros available only in 2.6 Kernel.
  20. * Francois Romieu : For pointing out all code part that were
  21. * deprecated and also styling related comments.
  22. * Grant Grundler : For helping me get rid of some Architecture
  23. * dependent code.
  24. * Christopher Hellwig : Some more 2.6 specific issues in the driver.
  25. *
  26. * The module loadable parameters that are supported by the driver and a brief
  27. * explaination of all the variables.
  28. *
  29. * rx_ring_num : This can be used to program the number of receive rings used
  30. * in the driver.
  31. * rx_ring_sz: This defines the number of receive blocks each ring can have.
  32. * This is also an array of size 8.
  33. * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
  34. * values are 1, 2.
  35. * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
  36. * tx_fifo_len: This too is an array of 8. Each element defines the number of
  37. * Tx descriptors that can be associated with each corresponding FIFO.
  38. * intr_type: This defines the type of interrupt. The values can be 0(INTA),
  39. * 2(MSI_X). Default value is '2(MSI_X)'
  40. * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
  41. * Possible values '1' for enable '0' for disable. Default is '0'
  42. * lro_max_pkts: This parameter defines maximum number of packets can be
  43. * aggregated as a single large packet
  44. * napi: This parameter used to enable/disable NAPI (polling Rx)
  45. * Possible values '1' for enable and '0' for disable. Default is '1'
  46. * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
  47. * Possible values '1' for enable and '0' for disable. Default is '0'
  48. * vlan_tag_strip: This can be used to enable or disable vlan stripping.
  49. * Possible values '1' for enable , '0' for disable.
  50. * Default is '2' - which means disable in promisc mode
  51. * and enable in non-promiscuous mode.
  52. ************************************************************************/
  53. #include <linux/module.h>
  54. #include <linux/types.h>
  55. #include <linux/errno.h>
  56. #include <linux/ioport.h>
  57. #include <linux/pci.h>
  58. #include <linux/dma-mapping.h>
  59. #include <linux/kernel.h>
  60. #include <linux/netdevice.h>
  61. #include <linux/etherdevice.h>
  62. #include <linux/skbuff.h>
  63. #include <linux/init.h>
  64. #include <linux/delay.h>
  65. #include <linux/stddef.h>
  66. #include <linux/ioctl.h>
  67. #include <linux/timex.h>
  68. #include <linux/ethtool.h>
  69. #include <linux/workqueue.h>
  70. #include <linux/if_vlan.h>
  71. #include <linux/ip.h>
  72. #include <linux/tcp.h>
  73. #include <net/tcp.h>
  74. #include <asm/system.h>
  75. #include <asm/uaccess.h>
  76. #include <asm/io.h>
  77. #include <asm/div64.h>
  78. #include <asm/irq.h>
  79. /* local include */
  80. #include "s2io.h"
  81. #include "s2io-regs.h"
  82. #define DRV_VERSION "2.0.26.2"
  83. /* S2io Driver name & version. */
  84. static char s2io_driver_name[] = "Neterion";
  85. static char s2io_driver_version[] = DRV_VERSION;
  86. static int rxd_size[2] = {32,48};
  87. static int rxd_count[2] = {127,85};
  88. static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
  89. {
  90. int ret;
  91. ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
  92. (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
  93. return ret;
  94. }
  95. /*
  96. * Cards with following subsystem_id have a link state indication
  97. * problem, 600B, 600C, 600D, 640B, 640C and 640D.
  98. * macro below identifies these cards given the subsystem_id.
  99. */
  100. #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
  101. (dev_type == XFRAME_I_DEVICE) ? \
  102. ((((subid >= 0x600B) && (subid <= 0x600D)) || \
  103. ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
  104. #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
  105. ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
  106. #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
  107. #define PANIC 1
  108. #define LOW 2
  109. static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
  110. {
  111. struct mac_info *mac_control;
  112. mac_control = &sp->mac_control;
  113. if (rxb_size <= rxd_count[sp->rxd_mode])
  114. return PANIC;
  115. else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
  116. return LOW;
  117. return 0;
  118. }
  119. static inline int is_s2io_card_up(const struct s2io_nic * sp)
  120. {
  121. return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
  122. }
  123. /* Ethtool related variables and Macros. */
  124. static char s2io_gstrings[][ETH_GSTRING_LEN] = {
  125. "Register test\t(offline)",
  126. "Eeprom test\t(offline)",
  127. "Link test\t(online)",
  128. "RLDRAM test\t(offline)",
  129. "BIST Test\t(offline)"
  130. };
  131. static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
  132. {"tmac_frms"},
  133. {"tmac_data_octets"},
  134. {"tmac_drop_frms"},
  135. {"tmac_mcst_frms"},
  136. {"tmac_bcst_frms"},
  137. {"tmac_pause_ctrl_frms"},
  138. {"tmac_ttl_octets"},
  139. {"tmac_ucst_frms"},
  140. {"tmac_nucst_frms"},
  141. {"tmac_any_err_frms"},
  142. {"tmac_ttl_less_fb_octets"},
  143. {"tmac_vld_ip_octets"},
  144. {"tmac_vld_ip"},
  145. {"tmac_drop_ip"},
  146. {"tmac_icmp"},
  147. {"tmac_rst_tcp"},
  148. {"tmac_tcp"},
  149. {"tmac_udp"},
  150. {"rmac_vld_frms"},
  151. {"rmac_data_octets"},
  152. {"rmac_fcs_err_frms"},
  153. {"rmac_drop_frms"},
  154. {"rmac_vld_mcst_frms"},
  155. {"rmac_vld_bcst_frms"},
  156. {"rmac_in_rng_len_err_frms"},
  157. {"rmac_out_rng_len_err_frms"},
  158. {"rmac_long_frms"},
  159. {"rmac_pause_ctrl_frms"},
  160. {"rmac_unsup_ctrl_frms"},
  161. {"rmac_ttl_octets"},
  162. {"rmac_accepted_ucst_frms"},
  163. {"rmac_accepted_nucst_frms"},
  164. {"rmac_discarded_frms"},
  165. {"rmac_drop_events"},
  166. {"rmac_ttl_less_fb_octets"},
  167. {"rmac_ttl_frms"},
  168. {"rmac_usized_frms"},
  169. {"rmac_osized_frms"},
  170. {"rmac_frag_frms"},
  171. {"rmac_jabber_frms"},
  172. {"rmac_ttl_64_frms"},
  173. {"rmac_ttl_65_127_frms"},
  174. {"rmac_ttl_128_255_frms"},
  175. {"rmac_ttl_256_511_frms"},
  176. {"rmac_ttl_512_1023_frms"},
  177. {"rmac_ttl_1024_1518_frms"},
  178. {"rmac_ip"},
  179. {"rmac_ip_octets"},
  180. {"rmac_hdr_err_ip"},
  181. {"rmac_drop_ip"},
  182. {"rmac_icmp"},
  183. {"rmac_tcp"},
  184. {"rmac_udp"},
  185. {"rmac_err_drp_udp"},
  186. {"rmac_xgmii_err_sym"},
  187. {"rmac_frms_q0"},
  188. {"rmac_frms_q1"},
  189. {"rmac_frms_q2"},
  190. {"rmac_frms_q3"},
  191. {"rmac_frms_q4"},
  192. {"rmac_frms_q5"},
  193. {"rmac_frms_q6"},
  194. {"rmac_frms_q7"},
  195. {"rmac_full_q0"},
  196. {"rmac_full_q1"},
  197. {"rmac_full_q2"},
  198. {"rmac_full_q3"},
  199. {"rmac_full_q4"},
  200. {"rmac_full_q5"},
  201. {"rmac_full_q6"},
  202. {"rmac_full_q7"},
  203. {"rmac_pause_cnt"},
  204. {"rmac_xgmii_data_err_cnt"},
  205. {"rmac_xgmii_ctrl_err_cnt"},
  206. {"rmac_accepted_ip"},
  207. {"rmac_err_tcp"},
  208. {"rd_req_cnt"},
  209. {"new_rd_req_cnt"},
  210. {"new_rd_req_rtry_cnt"},
  211. {"rd_rtry_cnt"},
  212. {"wr_rtry_rd_ack_cnt"},
  213. {"wr_req_cnt"},
  214. {"new_wr_req_cnt"},
  215. {"new_wr_req_rtry_cnt"},
  216. {"wr_rtry_cnt"},
  217. {"wr_disc_cnt"},
  218. {"rd_rtry_wr_ack_cnt"},
  219. {"txp_wr_cnt"},
  220. {"txd_rd_cnt"},
  221. {"txd_wr_cnt"},
  222. {"rxd_rd_cnt"},
  223. {"rxd_wr_cnt"},
  224. {"txf_rd_cnt"},
  225. {"rxf_wr_cnt"}
  226. };
  227. static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
  228. {"rmac_ttl_1519_4095_frms"},
  229. {"rmac_ttl_4096_8191_frms"},
  230. {"rmac_ttl_8192_max_frms"},
  231. {"rmac_ttl_gt_max_frms"},
  232. {"rmac_osized_alt_frms"},
  233. {"rmac_jabber_alt_frms"},
  234. {"rmac_gt_max_alt_frms"},
  235. {"rmac_vlan_frms"},
  236. {"rmac_len_discard"},
  237. {"rmac_fcs_discard"},
  238. {"rmac_pf_discard"},
  239. {"rmac_da_discard"},
  240. {"rmac_red_discard"},
  241. {"rmac_rts_discard"},
  242. {"rmac_ingm_full_discard"},
  243. {"link_fault_cnt"}
  244. };
  245. static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
  246. {"\n DRIVER STATISTICS"},
  247. {"single_bit_ecc_errs"},
  248. {"double_bit_ecc_errs"},
  249. {"parity_err_cnt"},
  250. {"serious_err_cnt"},
  251. {"soft_reset_cnt"},
  252. {"fifo_full_cnt"},
  253. {"ring_0_full_cnt"},
  254. {"ring_1_full_cnt"},
  255. {"ring_2_full_cnt"},
  256. {"ring_3_full_cnt"},
  257. {"ring_4_full_cnt"},
  258. {"ring_5_full_cnt"},
  259. {"ring_6_full_cnt"},
  260. {"ring_7_full_cnt"},
  261. ("alarm_transceiver_temp_high"),
  262. ("alarm_transceiver_temp_low"),
  263. ("alarm_laser_bias_current_high"),
  264. ("alarm_laser_bias_current_low"),
  265. ("alarm_laser_output_power_high"),
  266. ("alarm_laser_output_power_low"),
  267. ("warn_transceiver_temp_high"),
  268. ("warn_transceiver_temp_low"),
  269. ("warn_laser_bias_current_high"),
  270. ("warn_laser_bias_current_low"),
  271. ("warn_laser_output_power_high"),
  272. ("warn_laser_output_power_low"),
  273. ("lro_aggregated_pkts"),
  274. ("lro_flush_both_count"),
  275. ("lro_out_of_sequence_pkts"),
  276. ("lro_flush_due_to_max_pkts"),
  277. ("lro_avg_aggr_pkts"),
  278. ("mem_alloc_fail_cnt"),
  279. ("pci_map_fail_cnt"),
  280. ("watchdog_timer_cnt"),
  281. ("mem_allocated"),
  282. ("mem_freed"),
  283. ("link_up_cnt"),
  284. ("link_down_cnt"),
  285. ("link_up_time"),
  286. ("link_down_time"),
  287. ("tx_tcode_buf_abort_cnt"),
  288. ("tx_tcode_desc_abort_cnt"),
  289. ("tx_tcode_parity_err_cnt"),
  290. ("tx_tcode_link_loss_cnt"),
  291. ("tx_tcode_list_proc_err_cnt"),
  292. ("rx_tcode_parity_err_cnt"),
  293. ("rx_tcode_abort_cnt"),
  294. ("rx_tcode_parity_abort_cnt"),
  295. ("rx_tcode_rda_fail_cnt"),
  296. ("rx_tcode_unkn_prot_cnt"),
  297. ("rx_tcode_fcs_err_cnt"),
  298. ("rx_tcode_buf_size_err_cnt"),
  299. ("rx_tcode_rxd_corrupt_cnt"),
  300. ("rx_tcode_unkn_err_cnt"),
  301. {"tda_err_cnt"},
  302. {"pfc_err_cnt"},
  303. {"pcc_err_cnt"},
  304. {"tti_err_cnt"},
  305. {"tpa_err_cnt"},
  306. {"sm_err_cnt"},
  307. {"lso_err_cnt"},
  308. {"mac_tmac_err_cnt"},
  309. {"mac_rmac_err_cnt"},
  310. {"xgxs_txgxs_err_cnt"},
  311. {"xgxs_rxgxs_err_cnt"},
  312. {"rc_err_cnt"},
  313. {"prc_pcix_err_cnt"},
  314. {"rpa_err_cnt"},
  315. {"rda_err_cnt"},
  316. {"rti_err_cnt"},
  317. {"mc_err_cnt"}
  318. };
  319. #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
  320. #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
  321. ETH_GSTRING_LEN
  322. #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
  323. #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
  324. #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
  325. #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
  326. #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
  327. #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
  328. #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
  329. #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
  330. init_timer(&timer); \
  331. timer.function = handle; \
  332. timer.data = (unsigned long) arg; \
  333. mod_timer(&timer, (jiffies + exp)) \
  334. /* Add the vlan */
  335. static void s2io_vlan_rx_register(struct net_device *dev,
  336. struct vlan_group *grp)
  337. {
  338. struct s2io_nic *nic = dev->priv;
  339. unsigned long flags;
  340. spin_lock_irqsave(&nic->tx_lock, flags);
  341. nic->vlgrp = grp;
  342. spin_unlock_irqrestore(&nic->tx_lock, flags);
  343. }
  344. /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
  345. static int vlan_strip_flag;
  346. /*
  347. * Constants to be programmed into the Xena's registers, to configure
  348. * the XAUI.
  349. */
  350. #define END_SIGN 0x0
  351. static const u64 herc_act_dtx_cfg[] = {
  352. /* Set address */
  353. 0x8000051536750000ULL, 0x80000515367500E0ULL,
  354. /* Write data */
  355. 0x8000051536750004ULL, 0x80000515367500E4ULL,
  356. /* Set address */
  357. 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
  358. /* Write data */
  359. 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
  360. /* Set address */
  361. 0x801205150D440000ULL, 0x801205150D4400E0ULL,
  362. /* Write data */
  363. 0x801205150D440004ULL, 0x801205150D4400E4ULL,
  364. /* Set address */
  365. 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
  366. /* Write data */
  367. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  368. /* Done */
  369. END_SIGN
  370. };
  371. static const u64 xena_dtx_cfg[] = {
  372. /* Set address */
  373. 0x8000051500000000ULL, 0x80000515000000E0ULL,
  374. /* Write data */
  375. 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
  376. /* Set address */
  377. 0x8001051500000000ULL, 0x80010515000000E0ULL,
  378. /* Write data */
  379. 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
  380. /* Set address */
  381. 0x8002051500000000ULL, 0x80020515000000E0ULL,
  382. /* Write data */
  383. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  384. END_SIGN
  385. };
  386. /*
  387. * Constants for Fixing the MacAddress problem seen mostly on
  388. * Alpha machines.
  389. */
  390. static const u64 fix_mac[] = {
  391. 0x0060000000000000ULL, 0x0060600000000000ULL,
  392. 0x0040600000000000ULL, 0x0000600000000000ULL,
  393. 0x0020600000000000ULL, 0x0060600000000000ULL,
  394. 0x0020600000000000ULL, 0x0060600000000000ULL,
  395. 0x0020600000000000ULL, 0x0060600000000000ULL,
  396. 0x0020600000000000ULL, 0x0060600000000000ULL,
  397. 0x0020600000000000ULL, 0x0060600000000000ULL,
  398. 0x0020600000000000ULL, 0x0060600000000000ULL,
  399. 0x0020600000000000ULL, 0x0060600000000000ULL,
  400. 0x0020600000000000ULL, 0x0060600000000000ULL,
  401. 0x0020600000000000ULL, 0x0060600000000000ULL,
  402. 0x0020600000000000ULL, 0x0060600000000000ULL,
  403. 0x0020600000000000ULL, 0x0000600000000000ULL,
  404. 0x0040600000000000ULL, 0x0060600000000000ULL,
  405. END_SIGN
  406. };
  407. MODULE_LICENSE("GPL");
  408. MODULE_VERSION(DRV_VERSION);
  409. /* Module Loadable parameters. */
  410. S2IO_PARM_INT(tx_fifo_num, 1);
  411. S2IO_PARM_INT(rx_ring_num, 1);
  412. S2IO_PARM_INT(rx_ring_mode, 1);
  413. S2IO_PARM_INT(use_continuous_tx_intrs, 1);
  414. S2IO_PARM_INT(rmac_pause_time, 0x100);
  415. S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
  416. S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
  417. S2IO_PARM_INT(shared_splits, 0);
  418. S2IO_PARM_INT(tmac_util_period, 5);
  419. S2IO_PARM_INT(rmac_util_period, 5);
  420. S2IO_PARM_INT(bimodal, 0);
  421. S2IO_PARM_INT(l3l4hdr_size, 128);
  422. /* Frequency of Rx desc syncs expressed as power of 2 */
  423. S2IO_PARM_INT(rxsync_frequency, 3);
  424. /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
  425. S2IO_PARM_INT(intr_type, 2);
  426. /* Large receive offload feature */
  427. S2IO_PARM_INT(lro, 0);
  428. /* Max pkts to be aggregated by LRO at one time. If not specified,
  429. * aggregation happens until we hit max IP pkt size(64K)
  430. */
  431. S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
  432. S2IO_PARM_INT(indicate_max_pkts, 0);
  433. S2IO_PARM_INT(napi, 1);
  434. S2IO_PARM_INT(ufo, 0);
  435. S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
  436. static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
  437. {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
  438. static unsigned int rx_ring_sz[MAX_RX_RINGS] =
  439. {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
  440. static unsigned int rts_frm_len[MAX_RX_RINGS] =
  441. {[0 ...(MAX_RX_RINGS - 1)] = 0 };
  442. module_param_array(tx_fifo_len, uint, NULL, 0);
  443. module_param_array(rx_ring_sz, uint, NULL, 0);
  444. module_param_array(rts_frm_len, uint, NULL, 0);
  445. /*
  446. * S2IO device table.
  447. * This table lists all the devices that this driver supports.
  448. */
  449. static struct pci_device_id s2io_tbl[] __devinitdata = {
  450. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
  451. PCI_ANY_ID, PCI_ANY_ID},
  452. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
  453. PCI_ANY_ID, PCI_ANY_ID},
  454. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
  455. PCI_ANY_ID, PCI_ANY_ID},
  456. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
  457. PCI_ANY_ID, PCI_ANY_ID},
  458. {0,}
  459. };
  460. MODULE_DEVICE_TABLE(pci, s2io_tbl);
  461. static struct pci_error_handlers s2io_err_handler = {
  462. .error_detected = s2io_io_error_detected,
  463. .slot_reset = s2io_io_slot_reset,
  464. .resume = s2io_io_resume,
  465. };
  466. static struct pci_driver s2io_driver = {
  467. .name = "S2IO",
  468. .id_table = s2io_tbl,
  469. .probe = s2io_init_nic,
  470. .remove = __devexit_p(s2io_rem_nic),
  471. .err_handler = &s2io_err_handler,
  472. };
  473. /* A simplifier macro used both by init and free shared_mem Fns(). */
  474. #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
  475. /**
  476. * init_shared_mem - Allocation and Initialization of Memory
  477. * @nic: Device private variable.
  478. * Description: The function allocates all the memory areas shared
  479. * between the NIC and the driver. This includes Tx descriptors,
  480. * Rx descriptors and the statistics block.
  481. */
  482. static int init_shared_mem(struct s2io_nic *nic)
  483. {
  484. u32 size;
  485. void *tmp_v_addr, *tmp_v_addr_next;
  486. dma_addr_t tmp_p_addr, tmp_p_addr_next;
  487. struct RxD_block *pre_rxd_blk = NULL;
  488. int i, j, blk_cnt;
  489. int lst_size, lst_per_page;
  490. struct net_device *dev = nic->dev;
  491. unsigned long tmp;
  492. struct buffAdd *ba;
  493. struct mac_info *mac_control;
  494. struct config_param *config;
  495. unsigned long long mem_allocated = 0;
  496. mac_control = &nic->mac_control;
  497. config = &nic->config;
  498. /* Allocation and initialization of TXDLs in FIOFs */
  499. size = 0;
  500. for (i = 0; i < config->tx_fifo_num; i++) {
  501. size += config->tx_cfg[i].fifo_len;
  502. }
  503. if (size > MAX_AVAILABLE_TXDS) {
  504. DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
  505. DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
  506. return -EINVAL;
  507. }
  508. lst_size = (sizeof(struct TxD) * config->max_txds);
  509. lst_per_page = PAGE_SIZE / lst_size;
  510. for (i = 0; i < config->tx_fifo_num; i++) {
  511. int fifo_len = config->tx_cfg[i].fifo_len;
  512. int list_holder_size = fifo_len * sizeof(struct list_info_hold);
  513. mac_control->fifos[i].list_info = kmalloc(list_holder_size,
  514. GFP_KERNEL);
  515. if (!mac_control->fifos[i].list_info) {
  516. DBG_PRINT(INFO_DBG,
  517. "Malloc failed for list_info\n");
  518. return -ENOMEM;
  519. }
  520. mem_allocated += list_holder_size;
  521. memset(mac_control->fifos[i].list_info, 0, list_holder_size);
  522. }
  523. for (i = 0; i < config->tx_fifo_num; i++) {
  524. int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
  525. lst_per_page);
  526. mac_control->fifos[i].tx_curr_put_info.offset = 0;
  527. mac_control->fifos[i].tx_curr_put_info.fifo_len =
  528. config->tx_cfg[i].fifo_len - 1;
  529. mac_control->fifos[i].tx_curr_get_info.offset = 0;
  530. mac_control->fifos[i].tx_curr_get_info.fifo_len =
  531. config->tx_cfg[i].fifo_len - 1;
  532. mac_control->fifos[i].fifo_no = i;
  533. mac_control->fifos[i].nic = nic;
  534. mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
  535. for (j = 0; j < page_num; j++) {
  536. int k = 0;
  537. dma_addr_t tmp_p;
  538. void *tmp_v;
  539. tmp_v = pci_alloc_consistent(nic->pdev,
  540. PAGE_SIZE, &tmp_p);
  541. if (!tmp_v) {
  542. DBG_PRINT(INFO_DBG,
  543. "pci_alloc_consistent ");
  544. DBG_PRINT(INFO_DBG, "failed for TxDL\n");
  545. return -ENOMEM;
  546. }
  547. /* If we got a zero DMA address(can happen on
  548. * certain platforms like PPC), reallocate.
  549. * Store virtual address of page we don't want,
  550. * to be freed later.
  551. */
  552. if (!tmp_p) {
  553. mac_control->zerodma_virt_addr = tmp_v;
  554. DBG_PRINT(INIT_DBG,
  555. "%s: Zero DMA address for TxDL. ", dev->name);
  556. DBG_PRINT(INIT_DBG,
  557. "Virtual address %p\n", tmp_v);
  558. tmp_v = pci_alloc_consistent(nic->pdev,
  559. PAGE_SIZE, &tmp_p);
  560. if (!tmp_v) {
  561. DBG_PRINT(INFO_DBG,
  562. "pci_alloc_consistent ");
  563. DBG_PRINT(INFO_DBG, "failed for TxDL\n");
  564. return -ENOMEM;
  565. }
  566. mem_allocated += PAGE_SIZE;
  567. }
  568. while (k < lst_per_page) {
  569. int l = (j * lst_per_page) + k;
  570. if (l == config->tx_cfg[i].fifo_len)
  571. break;
  572. mac_control->fifos[i].list_info[l].list_virt_addr =
  573. tmp_v + (k * lst_size);
  574. mac_control->fifos[i].list_info[l].list_phy_addr =
  575. tmp_p + (k * lst_size);
  576. k++;
  577. }
  578. }
  579. }
  580. nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
  581. if (!nic->ufo_in_band_v)
  582. return -ENOMEM;
  583. mem_allocated += (size * sizeof(u64));
  584. /* Allocation and initialization of RXDs in Rings */
  585. size = 0;
  586. for (i = 0; i < config->rx_ring_num; i++) {
  587. if (config->rx_cfg[i].num_rxd %
  588. (rxd_count[nic->rxd_mode] + 1)) {
  589. DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
  590. DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
  591. i);
  592. DBG_PRINT(ERR_DBG, "RxDs per Block");
  593. return FAILURE;
  594. }
  595. size += config->rx_cfg[i].num_rxd;
  596. mac_control->rings[i].block_count =
  597. config->rx_cfg[i].num_rxd /
  598. (rxd_count[nic->rxd_mode] + 1 );
  599. mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
  600. mac_control->rings[i].block_count;
  601. }
  602. if (nic->rxd_mode == RXD_MODE_1)
  603. size = (size * (sizeof(struct RxD1)));
  604. else
  605. size = (size * (sizeof(struct RxD3)));
  606. for (i = 0; i < config->rx_ring_num; i++) {
  607. mac_control->rings[i].rx_curr_get_info.block_index = 0;
  608. mac_control->rings[i].rx_curr_get_info.offset = 0;
  609. mac_control->rings[i].rx_curr_get_info.ring_len =
  610. config->rx_cfg[i].num_rxd - 1;
  611. mac_control->rings[i].rx_curr_put_info.block_index = 0;
  612. mac_control->rings[i].rx_curr_put_info.offset = 0;
  613. mac_control->rings[i].rx_curr_put_info.ring_len =
  614. config->rx_cfg[i].num_rxd - 1;
  615. mac_control->rings[i].nic = nic;
  616. mac_control->rings[i].ring_no = i;
  617. blk_cnt = config->rx_cfg[i].num_rxd /
  618. (rxd_count[nic->rxd_mode] + 1);
  619. /* Allocating all the Rx blocks */
  620. for (j = 0; j < blk_cnt; j++) {
  621. struct rx_block_info *rx_blocks;
  622. int l;
  623. rx_blocks = &mac_control->rings[i].rx_blocks[j];
  624. size = SIZE_OF_BLOCK; //size is always page size
  625. tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
  626. &tmp_p_addr);
  627. if (tmp_v_addr == NULL) {
  628. /*
  629. * In case of failure, free_shared_mem()
  630. * is called, which should free any
  631. * memory that was alloced till the
  632. * failure happened.
  633. */
  634. rx_blocks->block_virt_addr = tmp_v_addr;
  635. return -ENOMEM;
  636. }
  637. mem_allocated += size;
  638. memset(tmp_v_addr, 0, size);
  639. rx_blocks->block_virt_addr = tmp_v_addr;
  640. rx_blocks->block_dma_addr = tmp_p_addr;
  641. rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
  642. rxd_count[nic->rxd_mode],
  643. GFP_KERNEL);
  644. if (!rx_blocks->rxds)
  645. return -ENOMEM;
  646. mem_allocated +=
  647. (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
  648. for (l=0; l<rxd_count[nic->rxd_mode];l++) {
  649. rx_blocks->rxds[l].virt_addr =
  650. rx_blocks->block_virt_addr +
  651. (rxd_size[nic->rxd_mode] * l);
  652. rx_blocks->rxds[l].dma_addr =
  653. rx_blocks->block_dma_addr +
  654. (rxd_size[nic->rxd_mode] * l);
  655. }
  656. }
  657. /* Interlinking all Rx Blocks */
  658. for (j = 0; j < blk_cnt; j++) {
  659. tmp_v_addr =
  660. mac_control->rings[i].rx_blocks[j].block_virt_addr;
  661. tmp_v_addr_next =
  662. mac_control->rings[i].rx_blocks[(j + 1) %
  663. blk_cnt].block_virt_addr;
  664. tmp_p_addr =
  665. mac_control->rings[i].rx_blocks[j].block_dma_addr;
  666. tmp_p_addr_next =
  667. mac_control->rings[i].rx_blocks[(j + 1) %
  668. blk_cnt].block_dma_addr;
  669. pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
  670. pre_rxd_blk->reserved_2_pNext_RxD_block =
  671. (unsigned long) tmp_v_addr_next;
  672. pre_rxd_blk->pNext_RxD_Blk_physical =
  673. (u64) tmp_p_addr_next;
  674. }
  675. }
  676. if (nic->rxd_mode == RXD_MODE_3B) {
  677. /*
  678. * Allocation of Storages for buffer addresses in 2BUFF mode
  679. * and the buffers as well.
  680. */
  681. for (i = 0; i < config->rx_ring_num; i++) {
  682. blk_cnt = config->rx_cfg[i].num_rxd /
  683. (rxd_count[nic->rxd_mode]+ 1);
  684. mac_control->rings[i].ba =
  685. kmalloc((sizeof(struct buffAdd *) * blk_cnt),
  686. GFP_KERNEL);
  687. if (!mac_control->rings[i].ba)
  688. return -ENOMEM;
  689. mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
  690. for (j = 0; j < blk_cnt; j++) {
  691. int k = 0;
  692. mac_control->rings[i].ba[j] =
  693. kmalloc((sizeof(struct buffAdd) *
  694. (rxd_count[nic->rxd_mode] + 1)),
  695. GFP_KERNEL);
  696. if (!mac_control->rings[i].ba[j])
  697. return -ENOMEM;
  698. mem_allocated += (sizeof(struct buffAdd) * \
  699. (rxd_count[nic->rxd_mode] + 1));
  700. while (k != rxd_count[nic->rxd_mode]) {
  701. ba = &mac_control->rings[i].ba[j][k];
  702. ba->ba_0_org = (void *) kmalloc
  703. (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
  704. if (!ba->ba_0_org)
  705. return -ENOMEM;
  706. mem_allocated +=
  707. (BUF0_LEN + ALIGN_SIZE);
  708. tmp = (unsigned long)ba->ba_0_org;
  709. tmp += ALIGN_SIZE;
  710. tmp &= ~((unsigned long) ALIGN_SIZE);
  711. ba->ba_0 = (void *) tmp;
  712. ba->ba_1_org = (void *) kmalloc
  713. (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
  714. if (!ba->ba_1_org)
  715. return -ENOMEM;
  716. mem_allocated
  717. += (BUF1_LEN + ALIGN_SIZE);
  718. tmp = (unsigned long) ba->ba_1_org;
  719. tmp += ALIGN_SIZE;
  720. tmp &= ~((unsigned long) ALIGN_SIZE);
  721. ba->ba_1 = (void *) tmp;
  722. k++;
  723. }
  724. }
  725. }
  726. }
  727. /* Allocation and initialization of Statistics block */
  728. size = sizeof(struct stat_block);
  729. mac_control->stats_mem = pci_alloc_consistent
  730. (nic->pdev, size, &mac_control->stats_mem_phy);
  731. if (!mac_control->stats_mem) {
  732. /*
  733. * In case of failure, free_shared_mem() is called, which
  734. * should free any memory that was alloced till the
  735. * failure happened.
  736. */
  737. return -ENOMEM;
  738. }
  739. mem_allocated += size;
  740. mac_control->stats_mem_sz = size;
  741. tmp_v_addr = mac_control->stats_mem;
  742. mac_control->stats_info = (struct stat_block *) tmp_v_addr;
  743. memset(tmp_v_addr, 0, size);
  744. DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
  745. (unsigned long long) tmp_p_addr);
  746. mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
  747. return SUCCESS;
  748. }
  749. /**
  750. * free_shared_mem - Free the allocated Memory
  751. * @nic: Device private variable.
  752. * Description: This function is to free all memory locations allocated by
  753. * the init_shared_mem() function and return it to the kernel.
  754. */
  755. static void free_shared_mem(struct s2io_nic *nic)
  756. {
  757. int i, j, blk_cnt, size;
  758. u32 ufo_size = 0;
  759. void *tmp_v_addr;
  760. dma_addr_t tmp_p_addr;
  761. struct mac_info *mac_control;
  762. struct config_param *config;
  763. int lst_size, lst_per_page;
  764. struct net_device *dev;
  765. int page_num = 0;
  766. if (!nic)
  767. return;
  768. dev = nic->dev;
  769. mac_control = &nic->mac_control;
  770. config = &nic->config;
  771. lst_size = (sizeof(struct TxD) * config->max_txds);
  772. lst_per_page = PAGE_SIZE / lst_size;
  773. for (i = 0; i < config->tx_fifo_num; i++) {
  774. ufo_size += config->tx_cfg[i].fifo_len;
  775. page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
  776. lst_per_page);
  777. for (j = 0; j < page_num; j++) {
  778. int mem_blks = (j * lst_per_page);
  779. if (!mac_control->fifos[i].list_info)
  780. return;
  781. if (!mac_control->fifos[i].list_info[mem_blks].
  782. list_virt_addr)
  783. break;
  784. pci_free_consistent(nic->pdev, PAGE_SIZE,
  785. mac_control->fifos[i].
  786. list_info[mem_blks].
  787. list_virt_addr,
  788. mac_control->fifos[i].
  789. list_info[mem_blks].
  790. list_phy_addr);
  791. nic->mac_control.stats_info->sw_stat.mem_freed
  792. += PAGE_SIZE;
  793. }
  794. /* If we got a zero DMA address during allocation,
  795. * free the page now
  796. */
  797. if (mac_control->zerodma_virt_addr) {
  798. pci_free_consistent(nic->pdev, PAGE_SIZE,
  799. mac_control->zerodma_virt_addr,
  800. (dma_addr_t)0);
  801. DBG_PRINT(INIT_DBG,
  802. "%s: Freeing TxDL with zero DMA addr. ",
  803. dev->name);
  804. DBG_PRINT(INIT_DBG, "Virtual address %p\n",
  805. mac_control->zerodma_virt_addr);
  806. nic->mac_control.stats_info->sw_stat.mem_freed
  807. += PAGE_SIZE;
  808. }
  809. kfree(mac_control->fifos[i].list_info);
  810. nic->mac_control.stats_info->sw_stat.mem_freed +=
  811. (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
  812. }
  813. size = SIZE_OF_BLOCK;
  814. for (i = 0; i < config->rx_ring_num; i++) {
  815. blk_cnt = mac_control->rings[i].block_count;
  816. for (j = 0; j < blk_cnt; j++) {
  817. tmp_v_addr = mac_control->rings[i].rx_blocks[j].
  818. block_virt_addr;
  819. tmp_p_addr = mac_control->rings[i].rx_blocks[j].
  820. block_dma_addr;
  821. if (tmp_v_addr == NULL)
  822. break;
  823. pci_free_consistent(nic->pdev, size,
  824. tmp_v_addr, tmp_p_addr);
  825. nic->mac_control.stats_info->sw_stat.mem_freed += size;
  826. kfree(mac_control->rings[i].rx_blocks[j].rxds);
  827. nic->mac_control.stats_info->sw_stat.mem_freed +=
  828. ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
  829. }
  830. }
  831. if (nic->rxd_mode == RXD_MODE_3B) {
  832. /* Freeing buffer storage addresses in 2BUFF mode. */
  833. for (i = 0; i < config->rx_ring_num; i++) {
  834. blk_cnt = config->rx_cfg[i].num_rxd /
  835. (rxd_count[nic->rxd_mode] + 1);
  836. for (j = 0; j < blk_cnt; j++) {
  837. int k = 0;
  838. if (!mac_control->rings[i].ba[j])
  839. continue;
  840. while (k != rxd_count[nic->rxd_mode]) {
  841. struct buffAdd *ba =
  842. &mac_control->rings[i].ba[j][k];
  843. kfree(ba->ba_0_org);
  844. nic->mac_control.stats_info->sw_stat.\
  845. mem_freed += (BUF0_LEN + ALIGN_SIZE);
  846. kfree(ba->ba_1_org);
  847. nic->mac_control.stats_info->sw_stat.\
  848. mem_freed += (BUF1_LEN + ALIGN_SIZE);
  849. k++;
  850. }
  851. kfree(mac_control->rings[i].ba[j]);
  852. nic->mac_control.stats_info->sw_stat.mem_freed +=
  853. (sizeof(struct buffAdd) *
  854. (rxd_count[nic->rxd_mode] + 1));
  855. }
  856. kfree(mac_control->rings[i].ba);
  857. nic->mac_control.stats_info->sw_stat.mem_freed +=
  858. (sizeof(struct buffAdd *) * blk_cnt);
  859. }
  860. }
  861. if (mac_control->stats_mem) {
  862. pci_free_consistent(nic->pdev,
  863. mac_control->stats_mem_sz,
  864. mac_control->stats_mem,
  865. mac_control->stats_mem_phy);
  866. nic->mac_control.stats_info->sw_stat.mem_freed +=
  867. mac_control->stats_mem_sz;
  868. }
  869. if (nic->ufo_in_band_v) {
  870. kfree(nic->ufo_in_band_v);
  871. nic->mac_control.stats_info->sw_stat.mem_freed
  872. += (ufo_size * sizeof(u64));
  873. }
  874. }
  875. /**
  876. * s2io_verify_pci_mode -
  877. */
  878. static int s2io_verify_pci_mode(struct s2io_nic *nic)
  879. {
  880. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  881. register u64 val64 = 0;
  882. int mode;
  883. val64 = readq(&bar0->pci_mode);
  884. mode = (u8)GET_PCI_MODE(val64);
  885. if ( val64 & PCI_MODE_UNKNOWN_MODE)
  886. return -1; /* Unknown PCI mode */
  887. return mode;
  888. }
  889. #define NEC_VENID 0x1033
  890. #define NEC_DEVID 0x0125
  891. static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
  892. {
  893. struct pci_dev *tdev = NULL;
  894. while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
  895. if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
  896. if (tdev->bus == s2io_pdev->bus->parent)
  897. pci_dev_put(tdev);
  898. return 1;
  899. }
  900. }
  901. return 0;
  902. }
  903. static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
  904. /**
  905. * s2io_print_pci_mode -
  906. */
  907. static int s2io_print_pci_mode(struct s2io_nic *nic)
  908. {
  909. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  910. register u64 val64 = 0;
  911. int mode;
  912. struct config_param *config = &nic->config;
  913. val64 = readq(&bar0->pci_mode);
  914. mode = (u8)GET_PCI_MODE(val64);
  915. if ( val64 & PCI_MODE_UNKNOWN_MODE)
  916. return -1; /* Unknown PCI mode */
  917. config->bus_speed = bus_speed[mode];
  918. if (s2io_on_nec_bridge(nic->pdev)) {
  919. DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
  920. nic->dev->name);
  921. return mode;
  922. }
  923. if (val64 & PCI_MODE_32_BITS) {
  924. DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
  925. } else {
  926. DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
  927. }
  928. switch(mode) {
  929. case PCI_MODE_PCI_33:
  930. DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
  931. break;
  932. case PCI_MODE_PCI_66:
  933. DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
  934. break;
  935. case PCI_MODE_PCIX_M1_66:
  936. DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
  937. break;
  938. case PCI_MODE_PCIX_M1_100:
  939. DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
  940. break;
  941. case PCI_MODE_PCIX_M1_133:
  942. DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
  943. break;
  944. case PCI_MODE_PCIX_M2_66:
  945. DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
  946. break;
  947. case PCI_MODE_PCIX_M2_100:
  948. DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
  949. break;
  950. case PCI_MODE_PCIX_M2_133:
  951. DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
  952. break;
  953. default:
  954. return -1; /* Unsupported bus speed */
  955. }
  956. return mode;
  957. }
  958. /**
  959. * init_nic - Initialization of hardware
  960. * @nic: device peivate variable
  961. * Description: The function sequentially configures every block
  962. * of the H/W from their reset values.
  963. * Return Value: SUCCESS on success and
  964. * '-1' on failure (endian settings incorrect).
  965. */
  966. static int init_nic(struct s2io_nic *nic)
  967. {
  968. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  969. struct net_device *dev = nic->dev;
  970. register u64 val64 = 0;
  971. void __iomem *add;
  972. u32 time;
  973. int i, j;
  974. struct mac_info *mac_control;
  975. struct config_param *config;
  976. int dtx_cnt = 0;
  977. unsigned long long mem_share;
  978. int mem_size;
  979. mac_control = &nic->mac_control;
  980. config = &nic->config;
  981. /* to set the swapper controle on the card */
  982. if(s2io_set_swapper(nic)) {
  983. DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
  984. return -1;
  985. }
  986. /*
  987. * Herc requires EOI to be removed from reset before XGXS, so..
  988. */
  989. if (nic->device_type & XFRAME_II_DEVICE) {
  990. val64 = 0xA500000000ULL;
  991. writeq(val64, &bar0->sw_reset);
  992. msleep(500);
  993. val64 = readq(&bar0->sw_reset);
  994. }
  995. /* Remove XGXS from reset state */
  996. val64 = 0;
  997. writeq(val64, &bar0->sw_reset);
  998. msleep(500);
  999. val64 = readq(&bar0->sw_reset);
  1000. /* Enable Receiving broadcasts */
  1001. add = &bar0->mac_cfg;
  1002. val64 = readq(&bar0->mac_cfg);
  1003. val64 |= MAC_RMAC_BCAST_ENABLE;
  1004. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1005. writel((u32) val64, add);
  1006. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1007. writel((u32) (val64 >> 32), (add + 4));
  1008. /* Read registers in all blocks */
  1009. val64 = readq(&bar0->mac_int_mask);
  1010. val64 = readq(&bar0->mc_int_mask);
  1011. val64 = readq(&bar0->xgxs_int_mask);
  1012. /* Set MTU */
  1013. val64 = dev->mtu;
  1014. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  1015. if (nic->device_type & XFRAME_II_DEVICE) {
  1016. while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
  1017. SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
  1018. &bar0->dtx_control, UF);
  1019. if (dtx_cnt & 0x1)
  1020. msleep(1); /* Necessary!! */
  1021. dtx_cnt++;
  1022. }
  1023. } else {
  1024. while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
  1025. SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
  1026. &bar0->dtx_control, UF);
  1027. val64 = readq(&bar0->dtx_control);
  1028. dtx_cnt++;
  1029. }
  1030. }
  1031. /* Tx DMA Initialization */
  1032. val64 = 0;
  1033. writeq(val64, &bar0->tx_fifo_partition_0);
  1034. writeq(val64, &bar0->tx_fifo_partition_1);
  1035. writeq(val64, &bar0->tx_fifo_partition_2);
  1036. writeq(val64, &bar0->tx_fifo_partition_3);
  1037. for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
  1038. val64 |=
  1039. vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
  1040. 13) | vBIT(config->tx_cfg[i].fifo_priority,
  1041. ((i * 32) + 5), 3);
  1042. if (i == (config->tx_fifo_num - 1)) {
  1043. if (i % 2 == 0)
  1044. i++;
  1045. }
  1046. switch (i) {
  1047. case 1:
  1048. writeq(val64, &bar0->tx_fifo_partition_0);
  1049. val64 = 0;
  1050. break;
  1051. case 3:
  1052. writeq(val64, &bar0->tx_fifo_partition_1);
  1053. val64 = 0;
  1054. break;
  1055. case 5:
  1056. writeq(val64, &bar0->tx_fifo_partition_2);
  1057. val64 = 0;
  1058. break;
  1059. case 7:
  1060. writeq(val64, &bar0->tx_fifo_partition_3);
  1061. break;
  1062. }
  1063. }
  1064. /*
  1065. * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
  1066. * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
  1067. */
  1068. if ((nic->device_type == XFRAME_I_DEVICE) &&
  1069. (nic->pdev->revision < 4))
  1070. writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
  1071. val64 = readq(&bar0->tx_fifo_partition_0);
  1072. DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
  1073. &bar0->tx_fifo_partition_0, (unsigned long long) val64);
  1074. /*
  1075. * Initialization of Tx_PA_CONFIG register to ignore packet
  1076. * integrity checking.
  1077. */
  1078. val64 = readq(&bar0->tx_pa_cfg);
  1079. val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
  1080. TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
  1081. writeq(val64, &bar0->tx_pa_cfg);
  1082. /* Rx DMA intialization. */
  1083. val64 = 0;
  1084. for (i = 0; i < config->rx_ring_num; i++) {
  1085. val64 |=
  1086. vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
  1087. 3);
  1088. }
  1089. writeq(val64, &bar0->rx_queue_priority);
  1090. /*
  1091. * Allocating equal share of memory to all the
  1092. * configured Rings.
  1093. */
  1094. val64 = 0;
  1095. if (nic->device_type & XFRAME_II_DEVICE)
  1096. mem_size = 32;
  1097. else
  1098. mem_size = 64;
  1099. for (i = 0; i < config->rx_ring_num; i++) {
  1100. switch (i) {
  1101. case 0:
  1102. mem_share = (mem_size / config->rx_ring_num +
  1103. mem_size % config->rx_ring_num);
  1104. val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
  1105. continue;
  1106. case 1:
  1107. mem_share = (mem_size / config->rx_ring_num);
  1108. val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
  1109. continue;
  1110. case 2:
  1111. mem_share = (mem_size / config->rx_ring_num);
  1112. val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
  1113. continue;
  1114. case 3:
  1115. mem_share = (mem_size / config->rx_ring_num);
  1116. val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
  1117. continue;
  1118. case 4:
  1119. mem_share = (mem_size / config->rx_ring_num);
  1120. val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
  1121. continue;
  1122. case 5:
  1123. mem_share = (mem_size / config->rx_ring_num);
  1124. val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
  1125. continue;
  1126. case 6:
  1127. mem_share = (mem_size / config->rx_ring_num);
  1128. val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
  1129. continue;
  1130. case 7:
  1131. mem_share = (mem_size / config->rx_ring_num);
  1132. val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
  1133. continue;
  1134. }
  1135. }
  1136. writeq(val64, &bar0->rx_queue_cfg);
  1137. /*
  1138. * Filling Tx round robin registers
  1139. * as per the number of FIFOs
  1140. */
  1141. switch (config->tx_fifo_num) {
  1142. case 1:
  1143. val64 = 0x0000000000000000ULL;
  1144. writeq(val64, &bar0->tx_w_round_robin_0);
  1145. writeq(val64, &bar0->tx_w_round_robin_1);
  1146. writeq(val64, &bar0->tx_w_round_robin_2);
  1147. writeq(val64, &bar0->tx_w_round_robin_3);
  1148. writeq(val64, &bar0->tx_w_round_robin_4);
  1149. break;
  1150. case 2:
  1151. val64 = 0x0000010000010000ULL;
  1152. writeq(val64, &bar0->tx_w_round_robin_0);
  1153. val64 = 0x0100000100000100ULL;
  1154. writeq(val64, &bar0->tx_w_round_robin_1);
  1155. val64 = 0x0001000001000001ULL;
  1156. writeq(val64, &bar0->tx_w_round_robin_2);
  1157. val64 = 0x0000010000010000ULL;
  1158. writeq(val64, &bar0->tx_w_round_robin_3);
  1159. val64 = 0x0100000000000000ULL;
  1160. writeq(val64, &bar0->tx_w_round_robin_4);
  1161. break;
  1162. case 3:
  1163. val64 = 0x0001000102000001ULL;
  1164. writeq(val64, &bar0->tx_w_round_robin_0);
  1165. val64 = 0x0001020000010001ULL;
  1166. writeq(val64, &bar0->tx_w_round_robin_1);
  1167. val64 = 0x0200000100010200ULL;
  1168. writeq(val64, &bar0->tx_w_round_robin_2);
  1169. val64 = 0x0001000102000001ULL;
  1170. writeq(val64, &bar0->tx_w_round_robin_3);
  1171. val64 = 0x0001020000000000ULL;
  1172. writeq(val64, &bar0->tx_w_round_robin_4);
  1173. break;
  1174. case 4:
  1175. val64 = 0x0001020300010200ULL;
  1176. writeq(val64, &bar0->tx_w_round_robin_0);
  1177. val64 = 0x0100000102030001ULL;
  1178. writeq(val64, &bar0->tx_w_round_robin_1);
  1179. val64 = 0x0200010000010203ULL;
  1180. writeq(val64, &bar0->tx_w_round_robin_2);
  1181. val64 = 0x0001020001000001ULL;
  1182. writeq(val64, &bar0->tx_w_round_robin_3);
  1183. val64 = 0x0203000100000000ULL;
  1184. writeq(val64, &bar0->tx_w_round_robin_4);
  1185. break;
  1186. case 5:
  1187. val64 = 0x0001000203000102ULL;
  1188. writeq(val64, &bar0->tx_w_round_robin_0);
  1189. val64 = 0x0001020001030004ULL;
  1190. writeq(val64, &bar0->tx_w_round_robin_1);
  1191. val64 = 0x0001000203000102ULL;
  1192. writeq(val64, &bar0->tx_w_round_robin_2);
  1193. val64 = 0x0001020001030004ULL;
  1194. writeq(val64, &bar0->tx_w_round_robin_3);
  1195. val64 = 0x0001000000000000ULL;
  1196. writeq(val64, &bar0->tx_w_round_robin_4);
  1197. break;
  1198. case 6:
  1199. val64 = 0x0001020304000102ULL;
  1200. writeq(val64, &bar0->tx_w_round_robin_0);
  1201. val64 = 0x0304050001020001ULL;
  1202. writeq(val64, &bar0->tx_w_round_robin_1);
  1203. val64 = 0x0203000100000102ULL;
  1204. writeq(val64, &bar0->tx_w_round_robin_2);
  1205. val64 = 0x0304000102030405ULL;
  1206. writeq(val64, &bar0->tx_w_round_robin_3);
  1207. val64 = 0x0001000200000000ULL;
  1208. writeq(val64, &bar0->tx_w_round_robin_4);
  1209. break;
  1210. case 7:
  1211. val64 = 0x0001020001020300ULL;
  1212. writeq(val64, &bar0->tx_w_round_robin_0);
  1213. val64 = 0x0102030400010203ULL;
  1214. writeq(val64, &bar0->tx_w_round_robin_1);
  1215. val64 = 0x0405060001020001ULL;
  1216. writeq(val64, &bar0->tx_w_round_robin_2);
  1217. val64 = 0x0304050000010200ULL;
  1218. writeq(val64, &bar0->tx_w_round_robin_3);
  1219. val64 = 0x0102030000000000ULL;
  1220. writeq(val64, &bar0->tx_w_round_robin_4);
  1221. break;
  1222. case 8:
  1223. val64 = 0x0001020300040105ULL;
  1224. writeq(val64, &bar0->tx_w_round_robin_0);
  1225. val64 = 0x0200030106000204ULL;
  1226. writeq(val64, &bar0->tx_w_round_robin_1);
  1227. val64 = 0x0103000502010007ULL;
  1228. writeq(val64, &bar0->tx_w_round_robin_2);
  1229. val64 = 0x0304010002060500ULL;
  1230. writeq(val64, &bar0->tx_w_round_robin_3);
  1231. val64 = 0x0103020400000000ULL;
  1232. writeq(val64, &bar0->tx_w_round_robin_4);
  1233. break;
  1234. }
  1235. /* Enable all configured Tx FIFO partitions */
  1236. val64 = readq(&bar0->tx_fifo_partition_0);
  1237. val64 |= (TX_FIFO_PARTITION_EN);
  1238. writeq(val64, &bar0->tx_fifo_partition_0);
  1239. /* Filling the Rx round robin registers as per the
  1240. * number of Rings and steering based on QoS.
  1241. */
  1242. switch (config->rx_ring_num) {
  1243. case 1:
  1244. val64 = 0x8080808080808080ULL;
  1245. writeq(val64, &bar0->rts_qos_steering);
  1246. break;
  1247. case 2:
  1248. val64 = 0x0000010000010000ULL;
  1249. writeq(val64, &bar0->rx_w_round_robin_0);
  1250. val64 = 0x0100000100000100ULL;
  1251. writeq(val64, &bar0->rx_w_round_robin_1);
  1252. val64 = 0x0001000001000001ULL;
  1253. writeq(val64, &bar0->rx_w_round_robin_2);
  1254. val64 = 0x0000010000010000ULL;
  1255. writeq(val64, &bar0->rx_w_round_robin_3);
  1256. val64 = 0x0100000000000000ULL;
  1257. writeq(val64, &bar0->rx_w_round_robin_4);
  1258. val64 = 0x8080808040404040ULL;
  1259. writeq(val64, &bar0->rts_qos_steering);
  1260. break;
  1261. case 3:
  1262. val64 = 0x0001000102000001ULL;
  1263. writeq(val64, &bar0->rx_w_round_robin_0);
  1264. val64 = 0x0001020000010001ULL;
  1265. writeq(val64, &bar0->rx_w_round_robin_1);
  1266. val64 = 0x0200000100010200ULL;
  1267. writeq(val64, &bar0->rx_w_round_robin_2);
  1268. val64 = 0x0001000102000001ULL;
  1269. writeq(val64, &bar0->rx_w_round_robin_3);
  1270. val64 = 0x0001020000000000ULL;
  1271. writeq(val64, &bar0->rx_w_round_robin_4);
  1272. val64 = 0x8080804040402020ULL;
  1273. writeq(val64, &bar0->rts_qos_steering);
  1274. break;
  1275. case 4:
  1276. val64 = 0x0001020300010200ULL;
  1277. writeq(val64, &bar0->rx_w_round_robin_0);
  1278. val64 = 0x0100000102030001ULL;
  1279. writeq(val64, &bar0->rx_w_round_robin_1);
  1280. val64 = 0x0200010000010203ULL;
  1281. writeq(val64, &bar0->rx_w_round_robin_2);
  1282. val64 = 0x0001020001000001ULL;
  1283. writeq(val64, &bar0->rx_w_round_robin_3);
  1284. val64 = 0x0203000100000000ULL;
  1285. writeq(val64, &bar0->rx_w_round_robin_4);
  1286. val64 = 0x8080404020201010ULL;
  1287. writeq(val64, &bar0->rts_qos_steering);
  1288. break;
  1289. case 5:
  1290. val64 = 0x0001000203000102ULL;
  1291. writeq(val64, &bar0->rx_w_round_robin_0);
  1292. val64 = 0x0001020001030004ULL;
  1293. writeq(val64, &bar0->rx_w_round_robin_1);
  1294. val64 = 0x0001000203000102ULL;
  1295. writeq(val64, &bar0->rx_w_round_robin_2);
  1296. val64 = 0x0001020001030004ULL;
  1297. writeq(val64, &bar0->rx_w_round_robin_3);
  1298. val64 = 0x0001000000000000ULL;
  1299. writeq(val64, &bar0->rx_w_round_robin_4);
  1300. val64 = 0x8080404020201008ULL;
  1301. writeq(val64, &bar0->rts_qos_steering);
  1302. break;
  1303. case 6:
  1304. val64 = 0x0001020304000102ULL;
  1305. writeq(val64, &bar0->rx_w_round_robin_0);
  1306. val64 = 0x0304050001020001ULL;
  1307. writeq(val64, &bar0->rx_w_round_robin_1);
  1308. val64 = 0x0203000100000102ULL;
  1309. writeq(val64, &bar0->rx_w_round_robin_2);
  1310. val64 = 0x0304000102030405ULL;
  1311. writeq(val64, &bar0->rx_w_round_robin_3);
  1312. val64 = 0x0001000200000000ULL;
  1313. writeq(val64, &bar0->rx_w_round_robin_4);
  1314. val64 = 0x8080404020100804ULL;
  1315. writeq(val64, &bar0->rts_qos_steering);
  1316. break;
  1317. case 7:
  1318. val64 = 0x0001020001020300ULL;
  1319. writeq(val64, &bar0->rx_w_round_robin_0);
  1320. val64 = 0x0102030400010203ULL;
  1321. writeq(val64, &bar0->rx_w_round_robin_1);
  1322. val64 = 0x0405060001020001ULL;
  1323. writeq(val64, &bar0->rx_w_round_robin_2);
  1324. val64 = 0x0304050000010200ULL;
  1325. writeq(val64, &bar0->rx_w_round_robin_3);
  1326. val64 = 0x0102030000000000ULL;
  1327. writeq(val64, &bar0->rx_w_round_robin_4);
  1328. val64 = 0x8080402010080402ULL;
  1329. writeq(val64, &bar0->rts_qos_steering);
  1330. break;
  1331. case 8:
  1332. val64 = 0x0001020300040105ULL;
  1333. writeq(val64, &bar0->rx_w_round_robin_0);
  1334. val64 = 0x0200030106000204ULL;
  1335. writeq(val64, &bar0->rx_w_round_robin_1);
  1336. val64 = 0x0103000502010007ULL;
  1337. writeq(val64, &bar0->rx_w_round_robin_2);
  1338. val64 = 0x0304010002060500ULL;
  1339. writeq(val64, &bar0->rx_w_round_robin_3);
  1340. val64 = 0x0103020400000000ULL;
  1341. writeq(val64, &bar0->rx_w_round_robin_4);
  1342. val64 = 0x8040201008040201ULL;
  1343. writeq(val64, &bar0->rts_qos_steering);
  1344. break;
  1345. }
  1346. /* UDP Fix */
  1347. val64 = 0;
  1348. for (i = 0; i < 8; i++)
  1349. writeq(val64, &bar0->rts_frm_len_n[i]);
  1350. /* Set the default rts frame length for the rings configured */
  1351. val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
  1352. for (i = 0 ; i < config->rx_ring_num ; i++)
  1353. writeq(val64, &bar0->rts_frm_len_n[i]);
  1354. /* Set the frame length for the configured rings
  1355. * desired by the user
  1356. */
  1357. for (i = 0; i < config->rx_ring_num; i++) {
  1358. /* If rts_frm_len[i] == 0 then it is assumed that user not
  1359. * specified frame length steering.
  1360. * If the user provides the frame length then program
  1361. * the rts_frm_len register for those values or else
  1362. * leave it as it is.
  1363. */
  1364. if (rts_frm_len[i] != 0) {
  1365. writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
  1366. &bar0->rts_frm_len_n[i]);
  1367. }
  1368. }
  1369. /* Disable differentiated services steering logic */
  1370. for (i = 0; i < 64; i++) {
  1371. if (rts_ds_steer(nic, i, 0) == FAILURE) {
  1372. DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
  1373. dev->name);
  1374. DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
  1375. return FAILURE;
  1376. }
  1377. }
  1378. /* Program statistics memory */
  1379. writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
  1380. if (nic->device_type == XFRAME_II_DEVICE) {
  1381. val64 = STAT_BC(0x320);
  1382. writeq(val64, &bar0->stat_byte_cnt);
  1383. }
  1384. /*
  1385. * Initializing the sampling rate for the device to calculate the
  1386. * bandwidth utilization.
  1387. */
  1388. val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
  1389. MAC_RX_LINK_UTIL_VAL(rmac_util_period);
  1390. writeq(val64, &bar0->mac_link_util);
  1391. /*
  1392. * Initializing the Transmit and Receive Traffic Interrupt
  1393. * Scheme.
  1394. */
  1395. /*
  1396. * TTI Initialization. Default Tx timer gets us about
  1397. * 250 interrupts per sec. Continuous interrupts are enabled
  1398. * by default.
  1399. */
  1400. if (nic->device_type == XFRAME_II_DEVICE) {
  1401. int count = (nic->config.bus_speed * 125)/2;
  1402. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
  1403. } else {
  1404. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
  1405. }
  1406. val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
  1407. TTI_DATA1_MEM_TX_URNG_B(0x10) |
  1408. TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
  1409. if (use_continuous_tx_intrs)
  1410. val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
  1411. writeq(val64, &bar0->tti_data1_mem);
  1412. val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
  1413. TTI_DATA2_MEM_TX_UFC_B(0x20) |
  1414. TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
  1415. writeq(val64, &bar0->tti_data2_mem);
  1416. val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
  1417. writeq(val64, &bar0->tti_command_mem);
  1418. /*
  1419. * Once the operation completes, the Strobe bit of the command
  1420. * register will be reset. We poll for this particular condition
  1421. * We wait for a maximum of 500ms for the operation to complete,
  1422. * if it's not complete by then we return error.
  1423. */
  1424. time = 0;
  1425. while (TRUE) {
  1426. val64 = readq(&bar0->tti_command_mem);
  1427. if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
  1428. break;
  1429. }
  1430. if (time > 10) {
  1431. DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
  1432. dev->name);
  1433. return -1;
  1434. }
  1435. msleep(50);
  1436. time++;
  1437. }
  1438. if (nic->config.bimodal) {
  1439. int k = 0;
  1440. for (k = 0; k < config->rx_ring_num; k++) {
  1441. val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
  1442. val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
  1443. writeq(val64, &bar0->tti_command_mem);
  1444. /*
  1445. * Once the operation completes, the Strobe bit of the command
  1446. * register will be reset. We poll for this particular condition
  1447. * We wait for a maximum of 500ms for the operation to complete,
  1448. * if it's not complete by then we return error.
  1449. */
  1450. time = 0;
  1451. while (TRUE) {
  1452. val64 = readq(&bar0->tti_command_mem);
  1453. if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
  1454. break;
  1455. }
  1456. if (time > 10) {
  1457. DBG_PRINT(ERR_DBG,
  1458. "%s: TTI init Failed\n",
  1459. dev->name);
  1460. return -1;
  1461. }
  1462. time++;
  1463. msleep(50);
  1464. }
  1465. }
  1466. } else {
  1467. /* RTI Initialization */
  1468. if (nic->device_type == XFRAME_II_DEVICE) {
  1469. /*
  1470. * Programmed to generate Apprx 500 Intrs per
  1471. * second
  1472. */
  1473. int count = (nic->config.bus_speed * 125)/4;
  1474. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
  1475. } else {
  1476. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
  1477. }
  1478. val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
  1479. RTI_DATA1_MEM_RX_URNG_B(0x10) |
  1480. RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
  1481. writeq(val64, &bar0->rti_data1_mem);
  1482. val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
  1483. RTI_DATA2_MEM_RX_UFC_B(0x2) ;
  1484. if (nic->config.intr_type == MSI_X)
  1485. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
  1486. RTI_DATA2_MEM_RX_UFC_D(0x40));
  1487. else
  1488. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
  1489. RTI_DATA2_MEM_RX_UFC_D(0x80));
  1490. writeq(val64, &bar0->rti_data2_mem);
  1491. for (i = 0; i < config->rx_ring_num; i++) {
  1492. val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
  1493. | RTI_CMD_MEM_OFFSET(i);
  1494. writeq(val64, &bar0->rti_command_mem);
  1495. /*
  1496. * Once the operation completes, the Strobe bit of the
  1497. * command register will be reset. We poll for this
  1498. * particular condition. We wait for a maximum of 500ms
  1499. * for the operation to complete, if it's not complete
  1500. * by then we return error.
  1501. */
  1502. time = 0;
  1503. while (TRUE) {
  1504. val64 = readq(&bar0->rti_command_mem);
  1505. if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
  1506. break;
  1507. }
  1508. if (time > 10) {
  1509. DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
  1510. dev->name);
  1511. return -1;
  1512. }
  1513. time++;
  1514. msleep(50);
  1515. }
  1516. }
  1517. }
  1518. /*
  1519. * Initializing proper values as Pause threshold into all
  1520. * the 8 Queues on Rx side.
  1521. */
  1522. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
  1523. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
  1524. /* Disable RMAC PAD STRIPPING */
  1525. add = &bar0->mac_cfg;
  1526. val64 = readq(&bar0->mac_cfg);
  1527. val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
  1528. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1529. writel((u32) (val64), add);
  1530. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1531. writel((u32) (val64 >> 32), (add + 4));
  1532. val64 = readq(&bar0->mac_cfg);
  1533. /* Enable FCS stripping by adapter */
  1534. add = &bar0->mac_cfg;
  1535. val64 = readq(&bar0->mac_cfg);
  1536. val64 |= MAC_CFG_RMAC_STRIP_FCS;
  1537. if (nic->device_type == XFRAME_II_DEVICE)
  1538. writeq(val64, &bar0->mac_cfg);
  1539. else {
  1540. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1541. writel((u32) (val64), add);
  1542. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1543. writel((u32) (val64 >> 32), (add + 4));
  1544. }
  1545. /*
  1546. * Set the time value to be inserted in the pause frame
  1547. * generated by xena.
  1548. */
  1549. val64 = readq(&bar0->rmac_pause_cfg);
  1550. val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
  1551. val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
  1552. writeq(val64, &bar0->rmac_pause_cfg);
  1553. /*
  1554. * Set the Threshold Limit for Generating the pause frame
  1555. * If the amount of data in any Queue exceeds ratio of
  1556. * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
  1557. * pause frame is generated
  1558. */
  1559. val64 = 0;
  1560. for (i = 0; i < 4; i++) {
  1561. val64 |=
  1562. (((u64) 0xFF00 | nic->mac_control.
  1563. mc_pause_threshold_q0q3)
  1564. << (i * 2 * 8));
  1565. }
  1566. writeq(val64, &bar0->mc_pause_thresh_q0q3);
  1567. val64 = 0;
  1568. for (i = 0; i < 4; i++) {
  1569. val64 |=
  1570. (((u64) 0xFF00 | nic->mac_control.
  1571. mc_pause_threshold_q4q7)
  1572. << (i * 2 * 8));
  1573. }
  1574. writeq(val64, &bar0->mc_pause_thresh_q4q7);
  1575. /*
  1576. * TxDMA will stop Read request if the number of read split has
  1577. * exceeded the limit pointed by shared_splits
  1578. */
  1579. val64 = readq(&bar0->pic_control);
  1580. val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
  1581. writeq(val64, &bar0->pic_control);
  1582. if (nic->config.bus_speed == 266) {
  1583. writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
  1584. writeq(0x0, &bar0->read_retry_delay);
  1585. writeq(0x0, &bar0->write_retry_delay);
  1586. }
  1587. /*
  1588. * Programming the Herc to split every write transaction
  1589. * that does not start on an ADB to reduce disconnects.
  1590. */
  1591. if (nic->device_type == XFRAME_II_DEVICE) {
  1592. val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
  1593. MISC_LINK_STABILITY_PRD(3);
  1594. writeq(val64, &bar0->misc_control);
  1595. val64 = readq(&bar0->pic_control2);
  1596. val64 &= ~(BIT(13)|BIT(14)|BIT(15));
  1597. writeq(val64, &bar0->pic_control2);
  1598. }
  1599. if (strstr(nic->product_name, "CX4")) {
  1600. val64 = TMAC_AVG_IPG(0x17);
  1601. writeq(val64, &bar0->tmac_avg_ipg);
  1602. }
  1603. return SUCCESS;
  1604. }
  1605. #define LINK_UP_DOWN_INTERRUPT 1
  1606. #define MAC_RMAC_ERR_TIMER 2
  1607. static int s2io_link_fault_indication(struct s2io_nic *nic)
  1608. {
  1609. if (nic->config.intr_type != INTA)
  1610. return MAC_RMAC_ERR_TIMER;
  1611. if (nic->device_type == XFRAME_II_DEVICE)
  1612. return LINK_UP_DOWN_INTERRUPT;
  1613. else
  1614. return MAC_RMAC_ERR_TIMER;
  1615. }
  1616. /**
  1617. * do_s2io_write_bits - update alarm bits in alarm register
  1618. * @value: alarm bits
  1619. * @flag: interrupt status
  1620. * @addr: address value
  1621. * Description: update alarm bits in alarm register
  1622. * Return Value:
  1623. * NONE.
  1624. */
  1625. static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
  1626. {
  1627. u64 temp64;
  1628. temp64 = readq(addr);
  1629. if(flag == ENABLE_INTRS)
  1630. temp64 &= ~((u64) value);
  1631. else
  1632. temp64 |= ((u64) value);
  1633. writeq(temp64, addr);
  1634. }
  1635. void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
  1636. {
  1637. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1638. register u64 gen_int_mask = 0;
  1639. if (mask & TX_DMA_INTR) {
  1640. gen_int_mask |= TXDMA_INT_M;
  1641. do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
  1642. TXDMA_PCC_INT | TXDMA_TTI_INT |
  1643. TXDMA_LSO_INT | TXDMA_TPA_INT |
  1644. TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
  1645. do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
  1646. PFC_MISC_0_ERR | PFC_MISC_1_ERR |
  1647. PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
  1648. &bar0->pfc_err_mask);
  1649. do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
  1650. TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
  1651. TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
  1652. do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
  1653. PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
  1654. PCC_N_SERR | PCC_6_COF_OV_ERR |
  1655. PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
  1656. PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
  1657. PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
  1658. do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
  1659. TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
  1660. do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
  1661. LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
  1662. LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
  1663. flag, &bar0->lso_err_mask);
  1664. do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
  1665. flag, &bar0->tpa_err_mask);
  1666. do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
  1667. }
  1668. if (mask & TX_MAC_INTR) {
  1669. gen_int_mask |= TXMAC_INT_M;
  1670. do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
  1671. &bar0->mac_int_mask);
  1672. do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
  1673. TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
  1674. TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
  1675. flag, &bar0->mac_tmac_err_mask);
  1676. }
  1677. if (mask & TX_XGXS_INTR) {
  1678. gen_int_mask |= TXXGXS_INT_M;
  1679. do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
  1680. &bar0->xgxs_int_mask);
  1681. do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
  1682. TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
  1683. flag, &bar0->xgxs_txgxs_err_mask);
  1684. }
  1685. if (mask & RX_DMA_INTR) {
  1686. gen_int_mask |= RXDMA_INT_M;
  1687. do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
  1688. RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
  1689. flag, &bar0->rxdma_int_mask);
  1690. do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
  1691. RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
  1692. RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
  1693. RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
  1694. do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
  1695. PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
  1696. PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
  1697. &bar0->prc_pcix_err_mask);
  1698. do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
  1699. RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
  1700. &bar0->rpa_err_mask);
  1701. do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
  1702. RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
  1703. RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
  1704. RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
  1705. flag, &bar0->rda_err_mask);
  1706. do_s2io_write_bits(RTI_SM_ERR_ALARM |
  1707. RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
  1708. flag, &bar0->rti_err_mask);
  1709. }
  1710. if (mask & RX_MAC_INTR) {
  1711. gen_int_mask |= RXMAC_INT_M;
  1712. do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
  1713. &bar0->mac_int_mask);
  1714. do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
  1715. RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
  1716. RMAC_DOUBLE_ECC_ERR |
  1717. RMAC_LINK_STATE_CHANGE_INT,
  1718. flag, &bar0->mac_rmac_err_mask);
  1719. }
  1720. if (mask & RX_XGXS_INTR)
  1721. {
  1722. gen_int_mask |= RXXGXS_INT_M;
  1723. do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
  1724. &bar0->xgxs_int_mask);
  1725. do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
  1726. &bar0->xgxs_rxgxs_err_mask);
  1727. }
  1728. if (mask & MC_INTR) {
  1729. gen_int_mask |= MC_INT_M;
  1730. do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
  1731. do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
  1732. MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
  1733. &bar0->mc_err_mask);
  1734. }
  1735. nic->general_int_mask = gen_int_mask;
  1736. /* Remove this line when alarm interrupts are enabled */
  1737. nic->general_int_mask = 0;
  1738. }
  1739. /**
  1740. * en_dis_able_nic_intrs - Enable or Disable the interrupts
  1741. * @nic: device private variable,
  1742. * @mask: A mask indicating which Intr block must be modified and,
  1743. * @flag: A flag indicating whether to enable or disable the Intrs.
  1744. * Description: This function will either disable or enable the interrupts
  1745. * depending on the flag argument. The mask argument can be used to
  1746. * enable/disable any Intr block.
  1747. * Return Value: NONE.
  1748. */
  1749. static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
  1750. {
  1751. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1752. register u64 temp64 = 0, intr_mask = 0;
  1753. intr_mask = nic->general_int_mask;
  1754. /* Top level interrupt classification */
  1755. /* PIC Interrupts */
  1756. if (mask & TX_PIC_INTR) {
  1757. /* Enable PIC Intrs in the general intr mask register */
  1758. intr_mask |= TXPIC_INT_M;
  1759. if (flag == ENABLE_INTRS) {
  1760. /*
  1761. * If Hercules adapter enable GPIO otherwise
  1762. * disable all PCIX, Flash, MDIO, IIC and GPIO
  1763. * interrupts for now.
  1764. * TODO
  1765. */
  1766. if (s2io_link_fault_indication(nic) ==
  1767. LINK_UP_DOWN_INTERRUPT ) {
  1768. do_s2io_write_bits(PIC_INT_GPIO, flag,
  1769. &bar0->pic_int_mask);
  1770. do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
  1771. &bar0->gpio_int_mask);
  1772. } else
  1773. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1774. } else if (flag == DISABLE_INTRS) {
  1775. /*
  1776. * Disable PIC Intrs in the general
  1777. * intr mask register
  1778. */
  1779. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1780. }
  1781. }
  1782. /* Tx traffic interrupts */
  1783. if (mask & TX_TRAFFIC_INTR) {
  1784. intr_mask |= TXTRAFFIC_INT_M;
  1785. if (flag == ENABLE_INTRS) {
  1786. /*
  1787. * Enable all the Tx side interrupts
  1788. * writing 0 Enables all 64 TX interrupt levels
  1789. */
  1790. writeq(0x0, &bar0->tx_traffic_mask);
  1791. } else if (flag == DISABLE_INTRS) {
  1792. /*
  1793. * Disable Tx Traffic Intrs in the general intr mask
  1794. * register.
  1795. */
  1796. writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
  1797. }
  1798. }
  1799. /* Rx traffic interrupts */
  1800. if (mask & RX_TRAFFIC_INTR) {
  1801. intr_mask |= RXTRAFFIC_INT_M;
  1802. if (flag == ENABLE_INTRS) {
  1803. /* writing 0 Enables all 8 RX interrupt levels */
  1804. writeq(0x0, &bar0->rx_traffic_mask);
  1805. } else if (flag == DISABLE_INTRS) {
  1806. /*
  1807. * Disable Rx Traffic Intrs in the general intr mask
  1808. * register.
  1809. */
  1810. writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
  1811. }
  1812. }
  1813. temp64 = readq(&bar0->general_int_mask);
  1814. if (flag == ENABLE_INTRS)
  1815. temp64 &= ~((u64) intr_mask);
  1816. else
  1817. temp64 = DISABLE_ALL_INTRS;
  1818. writeq(temp64, &bar0->general_int_mask);
  1819. nic->general_int_mask = readq(&bar0->general_int_mask);
  1820. }
  1821. /**
  1822. * verify_pcc_quiescent- Checks for PCC quiescent state
  1823. * Return: 1 If PCC is quiescence
  1824. * 0 If PCC is not quiescence
  1825. */
  1826. static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
  1827. {
  1828. int ret = 0, herc;
  1829. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1830. u64 val64 = readq(&bar0->adapter_status);
  1831. herc = (sp->device_type == XFRAME_II_DEVICE);
  1832. if (flag == FALSE) {
  1833. if ((!herc && (sp->pdev->revision >= 4)) || herc) {
  1834. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
  1835. ret = 1;
  1836. } else {
  1837. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
  1838. ret = 1;
  1839. }
  1840. } else {
  1841. if ((!herc && (sp->pdev->revision >= 4)) || herc) {
  1842. if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
  1843. ADAPTER_STATUS_RMAC_PCC_IDLE))
  1844. ret = 1;
  1845. } else {
  1846. if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
  1847. ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
  1848. ret = 1;
  1849. }
  1850. }
  1851. return ret;
  1852. }
  1853. /**
  1854. * verify_xena_quiescence - Checks whether the H/W is ready
  1855. * Description: Returns whether the H/W is ready to go or not. Depending
  1856. * on whether adapter enable bit was written or not the comparison
  1857. * differs and the calling function passes the input argument flag to
  1858. * indicate this.
  1859. * Return: 1 If xena is quiescence
  1860. * 0 If Xena is not quiescence
  1861. */
  1862. static int verify_xena_quiescence(struct s2io_nic *sp)
  1863. {
  1864. int mode;
  1865. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1866. u64 val64 = readq(&bar0->adapter_status);
  1867. mode = s2io_verify_pci_mode(sp);
  1868. if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
  1869. DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
  1870. return 0;
  1871. }
  1872. if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
  1873. DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
  1874. return 0;
  1875. }
  1876. if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
  1877. DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
  1878. return 0;
  1879. }
  1880. if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
  1881. DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
  1882. return 0;
  1883. }
  1884. if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
  1885. DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
  1886. return 0;
  1887. }
  1888. if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
  1889. DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
  1890. return 0;
  1891. }
  1892. if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
  1893. DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
  1894. return 0;
  1895. }
  1896. if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
  1897. DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
  1898. return 0;
  1899. }
  1900. /*
  1901. * In PCI 33 mode, the P_PLL is not used, and therefore,
  1902. * the the P_PLL_LOCK bit in the adapter_status register will
  1903. * not be asserted.
  1904. */
  1905. if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
  1906. sp->device_type == XFRAME_II_DEVICE && mode !=
  1907. PCI_MODE_PCI_33) {
  1908. DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
  1909. return 0;
  1910. }
  1911. if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
  1912. ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
  1913. DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
  1914. return 0;
  1915. }
  1916. return 1;
  1917. }
  1918. /**
  1919. * fix_mac_address - Fix for Mac addr problem on Alpha platforms
  1920. * @sp: Pointer to device specifc structure
  1921. * Description :
  1922. * New procedure to clear mac address reading problems on Alpha platforms
  1923. *
  1924. */
  1925. static void fix_mac_address(struct s2io_nic * sp)
  1926. {
  1927. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1928. u64 val64;
  1929. int i = 0;
  1930. while (fix_mac[i] != END_SIGN) {
  1931. writeq(fix_mac[i++], &bar0->gpio_control);
  1932. udelay(10);
  1933. val64 = readq(&bar0->gpio_control);
  1934. }
  1935. }
  1936. /**
  1937. * start_nic - Turns the device on
  1938. * @nic : device private variable.
  1939. * Description:
  1940. * This function actually turns the device on. Before this function is
  1941. * called,all Registers are configured from their reset states
  1942. * and shared memory is allocated but the NIC is still quiescent. On
  1943. * calling this function, the device interrupts are cleared and the NIC is
  1944. * literally switched on by writing into the adapter control register.
  1945. * Return Value:
  1946. * SUCCESS on success and -1 on failure.
  1947. */
  1948. static int start_nic(struct s2io_nic *nic)
  1949. {
  1950. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1951. struct net_device *dev = nic->dev;
  1952. register u64 val64 = 0;
  1953. u16 subid, i;
  1954. struct mac_info *mac_control;
  1955. struct config_param *config;
  1956. mac_control = &nic->mac_control;
  1957. config = &nic->config;
  1958. /* PRC Initialization and configuration */
  1959. for (i = 0; i < config->rx_ring_num; i++) {
  1960. writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
  1961. &bar0->prc_rxd0_n[i]);
  1962. val64 = readq(&bar0->prc_ctrl_n[i]);
  1963. if (nic->config.bimodal)
  1964. val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
  1965. if (nic->rxd_mode == RXD_MODE_1)
  1966. val64 |= PRC_CTRL_RC_ENABLED;
  1967. else
  1968. val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
  1969. if (nic->device_type == XFRAME_II_DEVICE)
  1970. val64 |= PRC_CTRL_GROUP_READS;
  1971. val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
  1972. val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
  1973. writeq(val64, &bar0->prc_ctrl_n[i]);
  1974. }
  1975. if (nic->rxd_mode == RXD_MODE_3B) {
  1976. /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
  1977. val64 = readq(&bar0->rx_pa_cfg);
  1978. val64 |= RX_PA_CFG_IGNORE_L2_ERR;
  1979. writeq(val64, &bar0->rx_pa_cfg);
  1980. }
  1981. if (vlan_tag_strip == 0) {
  1982. val64 = readq(&bar0->rx_pa_cfg);
  1983. val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
  1984. writeq(val64, &bar0->rx_pa_cfg);
  1985. vlan_strip_flag = 0;
  1986. }
  1987. /*
  1988. * Enabling MC-RLDRAM. After enabling the device, we timeout
  1989. * for around 100ms, which is approximately the time required
  1990. * for the device to be ready for operation.
  1991. */
  1992. val64 = readq(&bar0->mc_rldram_mrs);
  1993. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
  1994. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  1995. val64 = readq(&bar0->mc_rldram_mrs);
  1996. msleep(100); /* Delay by around 100 ms. */
  1997. /* Enabling ECC Protection. */
  1998. val64 = readq(&bar0->adapter_control);
  1999. val64 &= ~ADAPTER_ECC_EN;
  2000. writeq(val64, &bar0->adapter_control);
  2001. /*
  2002. * Verify if the device is ready to be enabled, if so enable
  2003. * it.
  2004. */
  2005. val64 = readq(&bar0->adapter_status);
  2006. if (!verify_xena_quiescence(nic)) {
  2007. DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
  2008. DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
  2009. (unsigned long long) val64);
  2010. return FAILURE;
  2011. }
  2012. /*
  2013. * With some switches, link might be already up at this point.
  2014. * Because of this weird behavior, when we enable laser,
  2015. * we may not get link. We need to handle this. We cannot
  2016. * figure out which switch is misbehaving. So we are forced to
  2017. * make a global change.
  2018. */
  2019. /* Enabling Laser. */
  2020. val64 = readq(&bar0->adapter_control);
  2021. val64 |= ADAPTER_EOI_TX_ON;
  2022. writeq(val64, &bar0->adapter_control);
  2023. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  2024. /*
  2025. * Dont see link state interrupts initally on some switches,
  2026. * so directly scheduling the link state task here.
  2027. */
  2028. schedule_work(&nic->set_link_task);
  2029. }
  2030. /* SXE-002: Initialize link and activity LED */
  2031. subid = nic->pdev->subsystem_device;
  2032. if (((subid & 0xFF) >= 0x07) &&
  2033. (nic->device_type == XFRAME_I_DEVICE)) {
  2034. val64 = readq(&bar0->gpio_control);
  2035. val64 |= 0x0000800000000000ULL;
  2036. writeq(val64, &bar0->gpio_control);
  2037. val64 = 0x0411040400000000ULL;
  2038. writeq(val64, (void __iomem *)bar0 + 0x2700);
  2039. }
  2040. return SUCCESS;
  2041. }
  2042. /**
  2043. * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
  2044. */
  2045. static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
  2046. TxD *txdlp, int get_off)
  2047. {
  2048. struct s2io_nic *nic = fifo_data->nic;
  2049. struct sk_buff *skb;
  2050. struct TxD *txds;
  2051. u16 j, frg_cnt;
  2052. txds = txdlp;
  2053. if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
  2054. pci_unmap_single(nic->pdev, (dma_addr_t)
  2055. txds->Buffer_Pointer, sizeof(u64),
  2056. PCI_DMA_TODEVICE);
  2057. txds++;
  2058. }
  2059. skb = (struct sk_buff *) ((unsigned long)
  2060. txds->Host_Control);
  2061. if (!skb) {
  2062. memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
  2063. return NULL;
  2064. }
  2065. pci_unmap_single(nic->pdev, (dma_addr_t)
  2066. txds->Buffer_Pointer,
  2067. skb->len - skb->data_len,
  2068. PCI_DMA_TODEVICE);
  2069. frg_cnt = skb_shinfo(skb)->nr_frags;
  2070. if (frg_cnt) {
  2071. txds++;
  2072. for (j = 0; j < frg_cnt; j++, txds++) {
  2073. skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
  2074. if (!txds->Buffer_Pointer)
  2075. break;
  2076. pci_unmap_page(nic->pdev, (dma_addr_t)
  2077. txds->Buffer_Pointer,
  2078. frag->size, PCI_DMA_TODEVICE);
  2079. }
  2080. }
  2081. memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
  2082. return(skb);
  2083. }
  2084. /**
  2085. * free_tx_buffers - Free all queued Tx buffers
  2086. * @nic : device private variable.
  2087. * Description:
  2088. * Free all queued Tx buffers.
  2089. * Return Value: void
  2090. */
  2091. static void free_tx_buffers(struct s2io_nic *nic)
  2092. {
  2093. struct net_device *dev = nic->dev;
  2094. struct sk_buff *skb;
  2095. struct TxD *txdp;
  2096. int i, j;
  2097. struct mac_info *mac_control;
  2098. struct config_param *config;
  2099. int cnt = 0;
  2100. mac_control = &nic->mac_control;
  2101. config = &nic->config;
  2102. for (i = 0; i < config->tx_fifo_num; i++) {
  2103. for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
  2104. txdp = (struct TxD *) \
  2105. mac_control->fifos[i].list_info[j].list_virt_addr;
  2106. skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
  2107. if (skb) {
  2108. nic->mac_control.stats_info->sw_stat.mem_freed
  2109. += skb->truesize;
  2110. dev_kfree_skb(skb);
  2111. cnt++;
  2112. }
  2113. }
  2114. DBG_PRINT(INTR_DBG,
  2115. "%s:forcibly freeing %d skbs on FIFO%d\n",
  2116. dev->name, cnt, i);
  2117. mac_control->fifos[i].tx_curr_get_info.offset = 0;
  2118. mac_control->fifos[i].tx_curr_put_info.offset = 0;
  2119. }
  2120. }
  2121. /**
  2122. * stop_nic - To stop the nic
  2123. * @nic ; device private variable.
  2124. * Description:
  2125. * This function does exactly the opposite of what the start_nic()
  2126. * function does. This function is called to stop the device.
  2127. * Return Value:
  2128. * void.
  2129. */
  2130. static void stop_nic(struct s2io_nic *nic)
  2131. {
  2132. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2133. register u64 val64 = 0;
  2134. u16 interruptible;
  2135. struct mac_info *mac_control;
  2136. struct config_param *config;
  2137. mac_control = &nic->mac_control;
  2138. config = &nic->config;
  2139. /* Disable all interrupts */
  2140. en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
  2141. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  2142. interruptible |= TX_PIC_INTR;
  2143. en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
  2144. /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
  2145. val64 = readq(&bar0->adapter_control);
  2146. val64 &= ~(ADAPTER_CNTL_EN);
  2147. writeq(val64, &bar0->adapter_control);
  2148. }
  2149. /**
  2150. * fill_rx_buffers - Allocates the Rx side skbs
  2151. * @nic: device private variable
  2152. * @ring_no: ring number
  2153. * Description:
  2154. * The function allocates Rx side skbs and puts the physical
  2155. * address of these buffers into the RxD buffer pointers, so that the NIC
  2156. * can DMA the received frame into these locations.
  2157. * The NIC supports 3 receive modes, viz
  2158. * 1. single buffer,
  2159. * 2. three buffer and
  2160. * 3. Five buffer modes.
  2161. * Each mode defines how many fragments the received frame will be split
  2162. * up into by the NIC. The frame is split into L3 header, L4 Header,
  2163. * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
  2164. * is split into 3 fragments. As of now only single buffer mode is
  2165. * supported.
  2166. * Return Value:
  2167. * SUCCESS on success or an appropriate -ve value on failure.
  2168. */
  2169. static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
  2170. {
  2171. struct net_device *dev = nic->dev;
  2172. struct sk_buff *skb;
  2173. struct RxD_t *rxdp;
  2174. int off, off1, size, block_no, block_no1;
  2175. u32 alloc_tab = 0;
  2176. u32 alloc_cnt;
  2177. struct mac_info *mac_control;
  2178. struct config_param *config;
  2179. u64 tmp;
  2180. struct buffAdd *ba;
  2181. unsigned long flags;
  2182. struct RxD_t *first_rxdp = NULL;
  2183. u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
  2184. struct RxD1 *rxdp1;
  2185. struct RxD3 *rxdp3;
  2186. struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
  2187. mac_control = &nic->mac_control;
  2188. config = &nic->config;
  2189. alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
  2190. atomic_read(&nic->rx_bufs_left[ring_no]);
  2191. block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
  2192. off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
  2193. while (alloc_tab < alloc_cnt) {
  2194. block_no = mac_control->rings[ring_no].rx_curr_put_info.
  2195. block_index;
  2196. off = mac_control->rings[ring_no].rx_curr_put_info.offset;
  2197. rxdp = mac_control->rings[ring_no].
  2198. rx_blocks[block_no].rxds[off].virt_addr;
  2199. if ((block_no == block_no1) && (off == off1) &&
  2200. (rxdp->Host_Control)) {
  2201. DBG_PRINT(INTR_DBG, "%s: Get and Put",
  2202. dev->name);
  2203. DBG_PRINT(INTR_DBG, " info equated\n");
  2204. goto end;
  2205. }
  2206. if (off && (off == rxd_count[nic->rxd_mode])) {
  2207. mac_control->rings[ring_no].rx_curr_put_info.
  2208. block_index++;
  2209. if (mac_control->rings[ring_no].rx_curr_put_info.
  2210. block_index == mac_control->rings[ring_no].
  2211. block_count)
  2212. mac_control->rings[ring_no].rx_curr_put_info.
  2213. block_index = 0;
  2214. block_no = mac_control->rings[ring_no].
  2215. rx_curr_put_info.block_index;
  2216. if (off == rxd_count[nic->rxd_mode])
  2217. off = 0;
  2218. mac_control->rings[ring_no].rx_curr_put_info.
  2219. offset = off;
  2220. rxdp = mac_control->rings[ring_no].
  2221. rx_blocks[block_no].block_virt_addr;
  2222. DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
  2223. dev->name, rxdp);
  2224. }
  2225. if(!napi) {
  2226. spin_lock_irqsave(&nic->put_lock, flags);
  2227. mac_control->rings[ring_no].put_pos =
  2228. (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
  2229. spin_unlock_irqrestore(&nic->put_lock, flags);
  2230. } else {
  2231. mac_control->rings[ring_no].put_pos =
  2232. (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
  2233. }
  2234. if ((rxdp->Control_1 & RXD_OWN_XENA) &&
  2235. ((nic->rxd_mode == RXD_MODE_3B) &&
  2236. (rxdp->Control_2 & BIT(0)))) {
  2237. mac_control->rings[ring_no].rx_curr_put_info.
  2238. offset = off;
  2239. goto end;
  2240. }
  2241. /* calculate size of skb based on ring mode */
  2242. size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
  2243. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  2244. if (nic->rxd_mode == RXD_MODE_1)
  2245. size += NET_IP_ALIGN;
  2246. else
  2247. size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  2248. /* allocate skb */
  2249. skb = dev_alloc_skb(size);
  2250. if(!skb) {
  2251. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  2252. DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
  2253. if (first_rxdp) {
  2254. wmb();
  2255. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2256. }
  2257. nic->mac_control.stats_info->sw_stat. \
  2258. mem_alloc_fail_cnt++;
  2259. return -ENOMEM ;
  2260. }
  2261. nic->mac_control.stats_info->sw_stat.mem_allocated
  2262. += skb->truesize;
  2263. if (nic->rxd_mode == RXD_MODE_1) {
  2264. /* 1 buffer mode - normal operation mode */
  2265. rxdp1 = (struct RxD1*)rxdp;
  2266. memset(rxdp, 0, sizeof(struct RxD1));
  2267. skb_reserve(skb, NET_IP_ALIGN);
  2268. rxdp1->Buffer0_ptr = pci_map_single
  2269. (nic->pdev, skb->data, size - NET_IP_ALIGN,
  2270. PCI_DMA_FROMDEVICE);
  2271. if( (rxdp1->Buffer0_ptr == 0) ||
  2272. (rxdp1->Buffer0_ptr ==
  2273. DMA_ERROR_CODE))
  2274. goto pci_map_failed;
  2275. rxdp->Control_2 =
  2276. SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
  2277. } else if (nic->rxd_mode == RXD_MODE_3B) {
  2278. /*
  2279. * 2 buffer mode -
  2280. * 2 buffer mode provides 128
  2281. * byte aligned receive buffers.
  2282. */
  2283. rxdp3 = (struct RxD3*)rxdp;
  2284. /* save buffer pointers to avoid frequent dma mapping */
  2285. Buffer0_ptr = rxdp3->Buffer0_ptr;
  2286. Buffer1_ptr = rxdp3->Buffer1_ptr;
  2287. memset(rxdp, 0, sizeof(struct RxD3));
  2288. /* restore the buffer pointers for dma sync*/
  2289. rxdp3->Buffer0_ptr = Buffer0_ptr;
  2290. rxdp3->Buffer1_ptr = Buffer1_ptr;
  2291. ba = &mac_control->rings[ring_no].ba[block_no][off];
  2292. skb_reserve(skb, BUF0_LEN);
  2293. tmp = (u64)(unsigned long) skb->data;
  2294. tmp += ALIGN_SIZE;
  2295. tmp &= ~ALIGN_SIZE;
  2296. skb->data = (void *) (unsigned long)tmp;
  2297. skb_reset_tail_pointer(skb);
  2298. if (!(rxdp3->Buffer0_ptr))
  2299. rxdp3->Buffer0_ptr =
  2300. pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
  2301. PCI_DMA_FROMDEVICE);
  2302. else
  2303. pci_dma_sync_single_for_device(nic->pdev,
  2304. (dma_addr_t) rxdp3->Buffer0_ptr,
  2305. BUF0_LEN, PCI_DMA_FROMDEVICE);
  2306. if( (rxdp3->Buffer0_ptr == 0) ||
  2307. (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
  2308. goto pci_map_failed;
  2309. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  2310. if (nic->rxd_mode == RXD_MODE_3B) {
  2311. /* Two buffer mode */
  2312. /*
  2313. * Buffer2 will have L3/L4 header plus
  2314. * L4 payload
  2315. */
  2316. rxdp3->Buffer2_ptr = pci_map_single
  2317. (nic->pdev, skb->data, dev->mtu + 4,
  2318. PCI_DMA_FROMDEVICE);
  2319. if( (rxdp3->Buffer2_ptr == 0) ||
  2320. (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
  2321. goto pci_map_failed;
  2322. rxdp3->Buffer1_ptr =
  2323. pci_map_single(nic->pdev,
  2324. ba->ba_1, BUF1_LEN,
  2325. PCI_DMA_FROMDEVICE);
  2326. if( (rxdp3->Buffer1_ptr == 0) ||
  2327. (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
  2328. pci_unmap_single
  2329. (nic->pdev,
  2330. (dma_addr_t)rxdp3->Buffer2_ptr,
  2331. dev->mtu + 4,
  2332. PCI_DMA_FROMDEVICE);
  2333. goto pci_map_failed;
  2334. }
  2335. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  2336. rxdp->Control_2 |= SET_BUFFER2_SIZE_3
  2337. (dev->mtu + 4);
  2338. }
  2339. rxdp->Control_2 |= BIT(0);
  2340. }
  2341. rxdp->Host_Control = (unsigned long) (skb);
  2342. if (alloc_tab & ((1 << rxsync_frequency) - 1))
  2343. rxdp->Control_1 |= RXD_OWN_XENA;
  2344. off++;
  2345. if (off == (rxd_count[nic->rxd_mode] + 1))
  2346. off = 0;
  2347. mac_control->rings[ring_no].rx_curr_put_info.offset = off;
  2348. rxdp->Control_2 |= SET_RXD_MARKER;
  2349. if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
  2350. if (first_rxdp) {
  2351. wmb();
  2352. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2353. }
  2354. first_rxdp = rxdp;
  2355. }
  2356. atomic_inc(&nic->rx_bufs_left[ring_no]);
  2357. alloc_tab++;
  2358. }
  2359. end:
  2360. /* Transfer ownership of first descriptor to adapter just before
  2361. * exiting. Before that, use memory barrier so that ownership
  2362. * and other fields are seen by adapter correctly.
  2363. */
  2364. if (first_rxdp) {
  2365. wmb();
  2366. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2367. }
  2368. return SUCCESS;
  2369. pci_map_failed:
  2370. stats->pci_map_fail_cnt++;
  2371. stats->mem_freed += skb->truesize;
  2372. dev_kfree_skb_irq(skb);
  2373. return -ENOMEM;
  2374. }
  2375. static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
  2376. {
  2377. struct net_device *dev = sp->dev;
  2378. int j;
  2379. struct sk_buff *skb;
  2380. struct RxD_t *rxdp;
  2381. struct mac_info *mac_control;
  2382. struct buffAdd *ba;
  2383. struct RxD1 *rxdp1;
  2384. struct RxD3 *rxdp3;
  2385. mac_control = &sp->mac_control;
  2386. for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
  2387. rxdp = mac_control->rings[ring_no].
  2388. rx_blocks[blk].rxds[j].virt_addr;
  2389. skb = (struct sk_buff *)
  2390. ((unsigned long) rxdp->Host_Control);
  2391. if (!skb) {
  2392. continue;
  2393. }
  2394. if (sp->rxd_mode == RXD_MODE_1) {
  2395. rxdp1 = (struct RxD1*)rxdp;
  2396. pci_unmap_single(sp->pdev, (dma_addr_t)
  2397. rxdp1->Buffer0_ptr,
  2398. dev->mtu +
  2399. HEADER_ETHERNET_II_802_3_SIZE
  2400. + HEADER_802_2_SIZE +
  2401. HEADER_SNAP_SIZE,
  2402. PCI_DMA_FROMDEVICE);
  2403. memset(rxdp, 0, sizeof(struct RxD1));
  2404. } else if(sp->rxd_mode == RXD_MODE_3B) {
  2405. rxdp3 = (struct RxD3*)rxdp;
  2406. ba = &mac_control->rings[ring_no].
  2407. ba[blk][j];
  2408. pci_unmap_single(sp->pdev, (dma_addr_t)
  2409. rxdp3->Buffer0_ptr,
  2410. BUF0_LEN,
  2411. PCI_DMA_FROMDEVICE);
  2412. pci_unmap_single(sp->pdev, (dma_addr_t)
  2413. rxdp3->Buffer1_ptr,
  2414. BUF1_LEN,
  2415. PCI_DMA_FROMDEVICE);
  2416. pci_unmap_single(sp->pdev, (dma_addr_t)
  2417. rxdp3->Buffer2_ptr,
  2418. dev->mtu + 4,
  2419. PCI_DMA_FROMDEVICE);
  2420. memset(rxdp, 0, sizeof(struct RxD3));
  2421. }
  2422. sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  2423. dev_kfree_skb(skb);
  2424. atomic_dec(&sp->rx_bufs_left[ring_no]);
  2425. }
  2426. }
  2427. /**
  2428. * free_rx_buffers - Frees all Rx buffers
  2429. * @sp: device private variable.
  2430. * Description:
  2431. * This function will free all Rx buffers allocated by host.
  2432. * Return Value:
  2433. * NONE.
  2434. */
  2435. static void free_rx_buffers(struct s2io_nic *sp)
  2436. {
  2437. struct net_device *dev = sp->dev;
  2438. int i, blk = 0, buf_cnt = 0;
  2439. struct mac_info *mac_control;
  2440. struct config_param *config;
  2441. mac_control = &sp->mac_control;
  2442. config = &sp->config;
  2443. for (i = 0; i < config->rx_ring_num; i++) {
  2444. for (blk = 0; blk < rx_ring_sz[i]; blk++)
  2445. free_rxd_blk(sp,i,blk);
  2446. mac_control->rings[i].rx_curr_put_info.block_index = 0;
  2447. mac_control->rings[i].rx_curr_get_info.block_index = 0;
  2448. mac_control->rings[i].rx_curr_put_info.offset = 0;
  2449. mac_control->rings[i].rx_curr_get_info.offset = 0;
  2450. atomic_set(&sp->rx_bufs_left[i], 0);
  2451. DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
  2452. dev->name, buf_cnt, i);
  2453. }
  2454. }
  2455. /**
  2456. * s2io_poll - Rx interrupt handler for NAPI support
  2457. * @napi : pointer to the napi structure.
  2458. * @budget : The number of packets that were budgeted to be processed
  2459. * during one pass through the 'Poll" function.
  2460. * Description:
  2461. * Comes into picture only if NAPI support has been incorporated. It does
  2462. * the same thing that rx_intr_handler does, but not in a interrupt context
  2463. * also It will process only a given number of packets.
  2464. * Return value:
  2465. * 0 on success and 1 if there are No Rx packets to be processed.
  2466. */
  2467. static int s2io_poll(struct napi_struct *napi, int budget)
  2468. {
  2469. struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
  2470. struct net_device *dev = nic->dev;
  2471. int pkt_cnt = 0, org_pkts_to_process;
  2472. struct mac_info *mac_control;
  2473. struct config_param *config;
  2474. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2475. int i;
  2476. if (!is_s2io_card_up(nic))
  2477. return 0;
  2478. mac_control = &nic->mac_control;
  2479. config = &nic->config;
  2480. nic->pkts_to_process = budget;
  2481. org_pkts_to_process = nic->pkts_to_process;
  2482. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  2483. readl(&bar0->rx_traffic_int);
  2484. for (i = 0; i < config->rx_ring_num; i++) {
  2485. rx_intr_handler(&mac_control->rings[i]);
  2486. pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
  2487. if (!nic->pkts_to_process) {
  2488. /* Quota for the current iteration has been met */
  2489. goto no_rx;
  2490. }
  2491. }
  2492. netif_rx_complete(dev, napi);
  2493. for (i = 0; i < config->rx_ring_num; i++) {
  2494. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2495. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2496. DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
  2497. break;
  2498. }
  2499. }
  2500. /* Re enable the Rx interrupts. */
  2501. writeq(0x0, &bar0->rx_traffic_mask);
  2502. readl(&bar0->rx_traffic_mask);
  2503. return pkt_cnt;
  2504. no_rx:
  2505. for (i = 0; i < config->rx_ring_num; i++) {
  2506. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2507. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2508. DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
  2509. break;
  2510. }
  2511. }
  2512. return pkt_cnt;
  2513. }
  2514. #ifdef CONFIG_NET_POLL_CONTROLLER
  2515. /**
  2516. * s2io_netpoll - netpoll event handler entry point
  2517. * @dev : pointer to the device structure.
  2518. * Description:
  2519. * This function will be called by upper layer to check for events on the
  2520. * interface in situations where interrupts are disabled. It is used for
  2521. * specific in-kernel networking tasks, such as remote consoles and kernel
  2522. * debugging over the network (example netdump in RedHat).
  2523. */
  2524. static void s2io_netpoll(struct net_device *dev)
  2525. {
  2526. struct s2io_nic *nic = dev->priv;
  2527. struct mac_info *mac_control;
  2528. struct config_param *config;
  2529. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2530. u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
  2531. int i;
  2532. if (pci_channel_offline(nic->pdev))
  2533. return;
  2534. disable_irq(dev->irq);
  2535. mac_control = &nic->mac_control;
  2536. config = &nic->config;
  2537. writeq(val64, &bar0->rx_traffic_int);
  2538. writeq(val64, &bar0->tx_traffic_int);
  2539. /* we need to free up the transmitted skbufs or else netpoll will
  2540. * run out of skbs and will fail and eventually netpoll application such
  2541. * as netdump will fail.
  2542. */
  2543. for (i = 0; i < config->tx_fifo_num; i++)
  2544. tx_intr_handler(&mac_control->fifos[i]);
  2545. /* check for received packet and indicate up to network */
  2546. for (i = 0; i < config->rx_ring_num; i++)
  2547. rx_intr_handler(&mac_control->rings[i]);
  2548. for (i = 0; i < config->rx_ring_num; i++) {
  2549. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2550. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2551. DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
  2552. break;
  2553. }
  2554. }
  2555. enable_irq(dev->irq);
  2556. return;
  2557. }
  2558. #endif
  2559. /**
  2560. * rx_intr_handler - Rx interrupt handler
  2561. * @nic: device private variable.
  2562. * Description:
  2563. * If the interrupt is because of a received frame or if the
  2564. * receive ring contains fresh as yet un-processed frames,this function is
  2565. * called. It picks out the RxD at which place the last Rx processing had
  2566. * stopped and sends the skb to the OSM's Rx handler and then increments
  2567. * the offset.
  2568. * Return Value:
  2569. * NONE.
  2570. */
  2571. static void rx_intr_handler(struct ring_info *ring_data)
  2572. {
  2573. struct s2io_nic *nic = ring_data->nic;
  2574. struct net_device *dev = (struct net_device *) nic->dev;
  2575. int get_block, put_block, put_offset;
  2576. struct rx_curr_get_info get_info, put_info;
  2577. struct RxD_t *rxdp;
  2578. struct sk_buff *skb;
  2579. int pkt_cnt = 0;
  2580. int i;
  2581. struct RxD1* rxdp1;
  2582. struct RxD3* rxdp3;
  2583. spin_lock(&nic->rx_lock);
  2584. get_info = ring_data->rx_curr_get_info;
  2585. get_block = get_info.block_index;
  2586. memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
  2587. put_block = put_info.block_index;
  2588. rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
  2589. if (!napi) {
  2590. spin_lock(&nic->put_lock);
  2591. put_offset = ring_data->put_pos;
  2592. spin_unlock(&nic->put_lock);
  2593. } else
  2594. put_offset = ring_data->put_pos;
  2595. while (RXD_IS_UP2DT(rxdp)) {
  2596. /*
  2597. * If your are next to put index then it's
  2598. * FIFO full condition
  2599. */
  2600. if ((get_block == put_block) &&
  2601. (get_info.offset + 1) == put_info.offset) {
  2602. DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
  2603. break;
  2604. }
  2605. skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
  2606. if (skb == NULL) {
  2607. DBG_PRINT(ERR_DBG, "%s: The skb is ",
  2608. dev->name);
  2609. DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
  2610. spin_unlock(&nic->rx_lock);
  2611. return;
  2612. }
  2613. if (nic->rxd_mode == RXD_MODE_1) {
  2614. rxdp1 = (struct RxD1*)rxdp;
  2615. pci_unmap_single(nic->pdev, (dma_addr_t)
  2616. rxdp1->Buffer0_ptr,
  2617. dev->mtu +
  2618. HEADER_ETHERNET_II_802_3_SIZE +
  2619. HEADER_802_2_SIZE +
  2620. HEADER_SNAP_SIZE,
  2621. PCI_DMA_FROMDEVICE);
  2622. } else if (nic->rxd_mode == RXD_MODE_3B) {
  2623. rxdp3 = (struct RxD3*)rxdp;
  2624. pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
  2625. rxdp3->Buffer0_ptr,
  2626. BUF0_LEN, PCI_DMA_FROMDEVICE);
  2627. pci_unmap_single(nic->pdev, (dma_addr_t)
  2628. rxdp3->Buffer2_ptr,
  2629. dev->mtu + 4,
  2630. PCI_DMA_FROMDEVICE);
  2631. }
  2632. prefetch(skb->data);
  2633. rx_osm_handler(ring_data, rxdp);
  2634. get_info.offset++;
  2635. ring_data->rx_curr_get_info.offset = get_info.offset;
  2636. rxdp = ring_data->rx_blocks[get_block].
  2637. rxds[get_info.offset].virt_addr;
  2638. if (get_info.offset == rxd_count[nic->rxd_mode]) {
  2639. get_info.offset = 0;
  2640. ring_data->rx_curr_get_info.offset = get_info.offset;
  2641. get_block++;
  2642. if (get_block == ring_data->block_count)
  2643. get_block = 0;
  2644. ring_data->rx_curr_get_info.block_index = get_block;
  2645. rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
  2646. }
  2647. nic->pkts_to_process -= 1;
  2648. if ((napi) && (!nic->pkts_to_process))
  2649. break;
  2650. pkt_cnt++;
  2651. if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
  2652. break;
  2653. }
  2654. if (nic->lro) {
  2655. /* Clear all LRO sessions before exiting */
  2656. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  2657. struct lro *lro = &nic->lro0_n[i];
  2658. if (lro->in_use) {
  2659. update_L3L4_header(nic, lro);
  2660. queue_rx_frame(lro->parent);
  2661. clear_lro_session(lro);
  2662. }
  2663. }
  2664. }
  2665. spin_unlock(&nic->rx_lock);
  2666. }
  2667. /**
  2668. * tx_intr_handler - Transmit interrupt handler
  2669. * @nic : device private variable
  2670. * Description:
  2671. * If an interrupt was raised to indicate DMA complete of the
  2672. * Tx packet, this function is called. It identifies the last TxD
  2673. * whose buffer was freed and frees all skbs whose data have already
  2674. * DMA'ed into the NICs internal memory.
  2675. * Return Value:
  2676. * NONE
  2677. */
  2678. static void tx_intr_handler(struct fifo_info *fifo_data)
  2679. {
  2680. struct s2io_nic *nic = fifo_data->nic;
  2681. struct net_device *dev = (struct net_device *) nic->dev;
  2682. struct tx_curr_get_info get_info, put_info;
  2683. struct sk_buff *skb;
  2684. struct TxD *txdlp;
  2685. u8 err_mask;
  2686. get_info = fifo_data->tx_curr_get_info;
  2687. memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
  2688. txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
  2689. list_virt_addr;
  2690. while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
  2691. (get_info.offset != put_info.offset) &&
  2692. (txdlp->Host_Control)) {
  2693. /* Check for TxD errors */
  2694. if (txdlp->Control_1 & TXD_T_CODE) {
  2695. unsigned long long err;
  2696. err = txdlp->Control_1 & TXD_T_CODE;
  2697. if (err & 0x1) {
  2698. nic->mac_control.stats_info->sw_stat.
  2699. parity_err_cnt++;
  2700. }
  2701. /* update t_code statistics */
  2702. err_mask = err >> 48;
  2703. switch(err_mask) {
  2704. case 2:
  2705. nic->mac_control.stats_info->sw_stat.
  2706. tx_buf_abort_cnt++;
  2707. break;
  2708. case 3:
  2709. nic->mac_control.stats_info->sw_stat.
  2710. tx_desc_abort_cnt++;
  2711. break;
  2712. case 7:
  2713. nic->mac_control.stats_info->sw_stat.
  2714. tx_parity_err_cnt++;
  2715. break;
  2716. case 10:
  2717. nic->mac_control.stats_info->sw_stat.
  2718. tx_link_loss_cnt++;
  2719. break;
  2720. case 15:
  2721. nic->mac_control.stats_info->sw_stat.
  2722. tx_list_proc_err_cnt++;
  2723. break;
  2724. }
  2725. }
  2726. skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
  2727. if (skb == NULL) {
  2728. DBG_PRINT(ERR_DBG, "%s: Null skb ",
  2729. __FUNCTION__);
  2730. DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
  2731. return;
  2732. }
  2733. /* Updating the statistics block */
  2734. nic->stats.tx_bytes += skb->len;
  2735. nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  2736. dev_kfree_skb_irq(skb);
  2737. get_info.offset++;
  2738. if (get_info.offset == get_info.fifo_len + 1)
  2739. get_info.offset = 0;
  2740. txdlp = (struct TxD *) fifo_data->list_info
  2741. [get_info.offset].list_virt_addr;
  2742. fifo_data->tx_curr_get_info.offset =
  2743. get_info.offset;
  2744. }
  2745. spin_lock(&nic->tx_lock);
  2746. if (netif_queue_stopped(dev))
  2747. netif_wake_queue(dev);
  2748. spin_unlock(&nic->tx_lock);
  2749. }
  2750. /**
  2751. * s2io_mdio_write - Function to write in to MDIO registers
  2752. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2753. * @addr : address value
  2754. * @value : data value
  2755. * @dev : pointer to net_device structure
  2756. * Description:
  2757. * This function is used to write values to the MDIO registers
  2758. * NONE
  2759. */
  2760. static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
  2761. {
  2762. u64 val64 = 0x0;
  2763. struct s2io_nic *sp = dev->priv;
  2764. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2765. //address transaction
  2766. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2767. | MDIO_MMD_DEV_ADDR(mmd_type)
  2768. | MDIO_MMS_PRT_ADDR(0x0);
  2769. writeq(val64, &bar0->mdio_control);
  2770. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2771. writeq(val64, &bar0->mdio_control);
  2772. udelay(100);
  2773. //Data transaction
  2774. val64 = 0x0;
  2775. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2776. | MDIO_MMD_DEV_ADDR(mmd_type)
  2777. | MDIO_MMS_PRT_ADDR(0x0)
  2778. | MDIO_MDIO_DATA(value)
  2779. | MDIO_OP(MDIO_OP_WRITE_TRANS);
  2780. writeq(val64, &bar0->mdio_control);
  2781. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2782. writeq(val64, &bar0->mdio_control);
  2783. udelay(100);
  2784. val64 = 0x0;
  2785. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2786. | MDIO_MMD_DEV_ADDR(mmd_type)
  2787. | MDIO_MMS_PRT_ADDR(0x0)
  2788. | MDIO_OP(MDIO_OP_READ_TRANS);
  2789. writeq(val64, &bar0->mdio_control);
  2790. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2791. writeq(val64, &bar0->mdio_control);
  2792. udelay(100);
  2793. }
  2794. /**
  2795. * s2io_mdio_read - Function to write in to MDIO registers
  2796. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2797. * @addr : address value
  2798. * @dev : pointer to net_device structure
  2799. * Description:
  2800. * This function is used to read values to the MDIO registers
  2801. * NONE
  2802. */
  2803. static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
  2804. {
  2805. u64 val64 = 0x0;
  2806. u64 rval64 = 0x0;
  2807. struct s2io_nic *sp = dev->priv;
  2808. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2809. /* address transaction */
  2810. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2811. | MDIO_MMD_DEV_ADDR(mmd_type)
  2812. | MDIO_MMS_PRT_ADDR(0x0);
  2813. writeq(val64, &bar0->mdio_control);
  2814. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2815. writeq(val64, &bar0->mdio_control);
  2816. udelay(100);
  2817. /* Data transaction */
  2818. val64 = 0x0;
  2819. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2820. | MDIO_MMD_DEV_ADDR(mmd_type)
  2821. | MDIO_MMS_PRT_ADDR(0x0)
  2822. | MDIO_OP(MDIO_OP_READ_TRANS);
  2823. writeq(val64, &bar0->mdio_control);
  2824. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2825. writeq(val64, &bar0->mdio_control);
  2826. udelay(100);
  2827. /* Read the value from regs */
  2828. rval64 = readq(&bar0->mdio_control);
  2829. rval64 = rval64 & 0xFFFF0000;
  2830. rval64 = rval64 >> 16;
  2831. return rval64;
  2832. }
  2833. /**
  2834. * s2io_chk_xpak_counter - Function to check the status of the xpak counters
  2835. * @counter : couter value to be updated
  2836. * @flag : flag to indicate the status
  2837. * @type : counter type
  2838. * Description:
  2839. * This function is to check the status of the xpak counters value
  2840. * NONE
  2841. */
  2842. static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
  2843. {
  2844. u64 mask = 0x3;
  2845. u64 val64;
  2846. int i;
  2847. for(i = 0; i <index; i++)
  2848. mask = mask << 0x2;
  2849. if(flag > 0)
  2850. {
  2851. *counter = *counter + 1;
  2852. val64 = *regs_stat & mask;
  2853. val64 = val64 >> (index * 0x2);
  2854. val64 = val64 + 1;
  2855. if(val64 == 3)
  2856. {
  2857. switch(type)
  2858. {
  2859. case 1:
  2860. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2861. "service. Excessive temperatures may "
  2862. "result in premature transceiver "
  2863. "failure \n");
  2864. break;
  2865. case 2:
  2866. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2867. "service Excessive bias currents may "
  2868. "indicate imminent laser diode "
  2869. "failure \n");
  2870. break;
  2871. case 3:
  2872. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2873. "service Excessive laser output "
  2874. "power may saturate far-end "
  2875. "receiver\n");
  2876. break;
  2877. default:
  2878. DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
  2879. "type \n");
  2880. }
  2881. val64 = 0x0;
  2882. }
  2883. val64 = val64 << (index * 0x2);
  2884. *regs_stat = (*regs_stat & (~mask)) | (val64);
  2885. } else {
  2886. *regs_stat = *regs_stat & (~mask);
  2887. }
  2888. }
  2889. /**
  2890. * s2io_updt_xpak_counter - Function to update the xpak counters
  2891. * @dev : pointer to net_device struct
  2892. * Description:
  2893. * This function is to upate the status of the xpak counters value
  2894. * NONE
  2895. */
  2896. static void s2io_updt_xpak_counter(struct net_device *dev)
  2897. {
  2898. u16 flag = 0x0;
  2899. u16 type = 0x0;
  2900. u16 val16 = 0x0;
  2901. u64 val64 = 0x0;
  2902. u64 addr = 0x0;
  2903. struct s2io_nic *sp = dev->priv;
  2904. struct stat_block *stat_info = sp->mac_control.stats_info;
  2905. /* Check the communication with the MDIO slave */
  2906. addr = 0x0000;
  2907. val64 = 0x0;
  2908. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2909. if((val64 == 0xFFFF) || (val64 == 0x0000))
  2910. {
  2911. DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
  2912. "Returned %llx\n", (unsigned long long)val64);
  2913. return;
  2914. }
  2915. /* Check for the expecte value of 2040 at PMA address 0x0000 */
  2916. if(val64 != 0x2040)
  2917. {
  2918. DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
  2919. DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
  2920. (unsigned long long)val64);
  2921. return;
  2922. }
  2923. /* Loading the DOM register to MDIO register */
  2924. addr = 0xA100;
  2925. s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
  2926. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2927. /* Reading the Alarm flags */
  2928. addr = 0xA070;
  2929. val64 = 0x0;
  2930. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2931. flag = CHECKBIT(val64, 0x7);
  2932. type = 1;
  2933. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
  2934. &stat_info->xpak_stat.xpak_regs_stat,
  2935. 0x0, flag, type);
  2936. if(CHECKBIT(val64, 0x6))
  2937. stat_info->xpak_stat.alarm_transceiver_temp_low++;
  2938. flag = CHECKBIT(val64, 0x3);
  2939. type = 2;
  2940. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
  2941. &stat_info->xpak_stat.xpak_regs_stat,
  2942. 0x2, flag, type);
  2943. if(CHECKBIT(val64, 0x2))
  2944. stat_info->xpak_stat.alarm_laser_bias_current_low++;
  2945. flag = CHECKBIT(val64, 0x1);
  2946. type = 3;
  2947. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
  2948. &stat_info->xpak_stat.xpak_regs_stat,
  2949. 0x4, flag, type);
  2950. if(CHECKBIT(val64, 0x0))
  2951. stat_info->xpak_stat.alarm_laser_output_power_low++;
  2952. /* Reading the Warning flags */
  2953. addr = 0xA074;
  2954. val64 = 0x0;
  2955. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2956. if(CHECKBIT(val64, 0x7))
  2957. stat_info->xpak_stat.warn_transceiver_temp_high++;
  2958. if(CHECKBIT(val64, 0x6))
  2959. stat_info->xpak_stat.warn_transceiver_temp_low++;
  2960. if(CHECKBIT(val64, 0x3))
  2961. stat_info->xpak_stat.warn_laser_bias_current_high++;
  2962. if(CHECKBIT(val64, 0x2))
  2963. stat_info->xpak_stat.warn_laser_bias_current_low++;
  2964. if(CHECKBIT(val64, 0x1))
  2965. stat_info->xpak_stat.warn_laser_output_power_high++;
  2966. if(CHECKBIT(val64, 0x0))
  2967. stat_info->xpak_stat.warn_laser_output_power_low++;
  2968. }
  2969. /**
  2970. * wait_for_cmd_complete - waits for a command to complete.
  2971. * @sp : private member of the device structure, which is a pointer to the
  2972. * s2io_nic structure.
  2973. * Description: Function that waits for a command to Write into RMAC
  2974. * ADDR DATA registers to be completed and returns either success or
  2975. * error depending on whether the command was complete or not.
  2976. * Return value:
  2977. * SUCCESS on success and FAILURE on failure.
  2978. */
  2979. static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
  2980. int bit_state)
  2981. {
  2982. int ret = FAILURE, cnt = 0, delay = 1;
  2983. u64 val64;
  2984. if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
  2985. return FAILURE;
  2986. do {
  2987. val64 = readq(addr);
  2988. if (bit_state == S2IO_BIT_RESET) {
  2989. if (!(val64 & busy_bit)) {
  2990. ret = SUCCESS;
  2991. break;
  2992. }
  2993. } else {
  2994. if (!(val64 & busy_bit)) {
  2995. ret = SUCCESS;
  2996. break;
  2997. }
  2998. }
  2999. if(in_interrupt())
  3000. mdelay(delay);
  3001. else
  3002. msleep(delay);
  3003. if (++cnt >= 10)
  3004. delay = 50;
  3005. } while (cnt < 20);
  3006. return ret;
  3007. }
  3008. /*
  3009. * check_pci_device_id - Checks if the device id is supported
  3010. * @id : device id
  3011. * Description: Function to check if the pci device id is supported by driver.
  3012. * Return value: Actual device id if supported else PCI_ANY_ID
  3013. */
  3014. static u16 check_pci_device_id(u16 id)
  3015. {
  3016. switch (id) {
  3017. case PCI_DEVICE_ID_HERC_WIN:
  3018. case PCI_DEVICE_ID_HERC_UNI:
  3019. return XFRAME_II_DEVICE;
  3020. case PCI_DEVICE_ID_S2IO_UNI:
  3021. case PCI_DEVICE_ID_S2IO_WIN:
  3022. return XFRAME_I_DEVICE;
  3023. default:
  3024. return PCI_ANY_ID;
  3025. }
  3026. }
  3027. /**
  3028. * s2io_reset - Resets the card.
  3029. * @sp : private member of the device structure.
  3030. * Description: Function to Reset the card. This function then also
  3031. * restores the previously saved PCI configuration space registers as
  3032. * the card reset also resets the configuration space.
  3033. * Return value:
  3034. * void.
  3035. */
  3036. static void s2io_reset(struct s2io_nic * sp)
  3037. {
  3038. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3039. u64 val64;
  3040. u16 subid, pci_cmd;
  3041. int i;
  3042. u16 val16;
  3043. unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
  3044. unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
  3045. DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
  3046. __FUNCTION__, sp->dev->name);
  3047. /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
  3048. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
  3049. val64 = SW_RESET_ALL;
  3050. writeq(val64, &bar0->sw_reset);
  3051. if (strstr(sp->product_name, "CX4")) {
  3052. msleep(750);
  3053. }
  3054. msleep(250);
  3055. for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
  3056. /* Restore the PCI state saved during initialization. */
  3057. pci_restore_state(sp->pdev);
  3058. pci_read_config_word(sp->pdev, 0x2, &val16);
  3059. if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
  3060. break;
  3061. msleep(200);
  3062. }
  3063. if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
  3064. DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
  3065. }
  3066. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
  3067. s2io_init_pci(sp);
  3068. /* Set swapper to enable I/O register access */
  3069. s2io_set_swapper(sp);
  3070. /* Restore the MSIX table entries from local variables */
  3071. restore_xmsi_data(sp);
  3072. /* Clear certain PCI/PCI-X fields after reset */
  3073. if (sp->device_type == XFRAME_II_DEVICE) {
  3074. /* Clear "detected parity error" bit */
  3075. pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
  3076. /* Clearing PCIX Ecc status register */
  3077. pci_write_config_dword(sp->pdev, 0x68, 0x7C);
  3078. /* Clearing PCI_STATUS error reflected here */
  3079. writeq(BIT(62), &bar0->txpic_int_reg);
  3080. }
  3081. /* Reset device statistics maintained by OS */
  3082. memset(&sp->stats, 0, sizeof (struct net_device_stats));
  3083. up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
  3084. down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
  3085. up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
  3086. down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
  3087. reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
  3088. mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
  3089. mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
  3090. watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
  3091. /* save link up/down time/cnt, reset/memory/watchdog cnt */
  3092. memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
  3093. /* restore link up/down time/cnt, reset/memory/watchdog cnt */
  3094. sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
  3095. sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
  3096. sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
  3097. sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
  3098. sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
  3099. sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
  3100. sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
  3101. sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
  3102. /* SXE-002: Configure link and activity LED to turn it off */
  3103. subid = sp->pdev->subsystem_device;
  3104. if (((subid & 0xFF) >= 0x07) &&
  3105. (sp->device_type == XFRAME_I_DEVICE)) {
  3106. val64 = readq(&bar0->gpio_control);
  3107. val64 |= 0x0000800000000000ULL;
  3108. writeq(val64, &bar0->gpio_control);
  3109. val64 = 0x0411040400000000ULL;
  3110. writeq(val64, (void __iomem *)bar0 + 0x2700);
  3111. }
  3112. /*
  3113. * Clear spurious ECC interrupts that would have occured on
  3114. * XFRAME II cards after reset.
  3115. */
  3116. if (sp->device_type == XFRAME_II_DEVICE) {
  3117. val64 = readq(&bar0->pcc_err_reg);
  3118. writeq(val64, &bar0->pcc_err_reg);
  3119. }
  3120. /* restore the previously assigned mac address */
  3121. s2io_set_mac_addr(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
  3122. sp->device_enabled_once = FALSE;
  3123. }
  3124. /**
  3125. * s2io_set_swapper - to set the swapper controle on the card
  3126. * @sp : private member of the device structure,
  3127. * pointer to the s2io_nic structure.
  3128. * Description: Function to set the swapper control on the card
  3129. * correctly depending on the 'endianness' of the system.
  3130. * Return value:
  3131. * SUCCESS on success and FAILURE on failure.
  3132. */
  3133. static int s2io_set_swapper(struct s2io_nic * sp)
  3134. {
  3135. struct net_device *dev = sp->dev;
  3136. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3137. u64 val64, valt, valr;
  3138. /*
  3139. * Set proper endian settings and verify the same by reading
  3140. * the PIF Feed-back register.
  3141. */
  3142. val64 = readq(&bar0->pif_rd_swapper_fb);
  3143. if (val64 != 0x0123456789ABCDEFULL) {
  3144. int i = 0;
  3145. u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
  3146. 0x8100008181000081ULL, /* FE=1, SE=0 */
  3147. 0x4200004242000042ULL, /* FE=0, SE=1 */
  3148. 0}; /* FE=0, SE=0 */
  3149. while(i<4) {
  3150. writeq(value[i], &bar0->swapper_ctrl);
  3151. val64 = readq(&bar0->pif_rd_swapper_fb);
  3152. if (val64 == 0x0123456789ABCDEFULL)
  3153. break;
  3154. i++;
  3155. }
  3156. if (i == 4) {
  3157. DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
  3158. dev->name);
  3159. DBG_PRINT(ERR_DBG, "feedback read %llx\n",
  3160. (unsigned long long) val64);
  3161. return FAILURE;
  3162. }
  3163. valr = value[i];
  3164. } else {
  3165. valr = readq(&bar0->swapper_ctrl);
  3166. }
  3167. valt = 0x0123456789ABCDEFULL;
  3168. writeq(valt, &bar0->xmsi_address);
  3169. val64 = readq(&bar0->xmsi_address);
  3170. if(val64 != valt) {
  3171. int i = 0;
  3172. u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
  3173. 0x0081810000818100ULL, /* FE=1, SE=0 */
  3174. 0x0042420000424200ULL, /* FE=0, SE=1 */
  3175. 0}; /* FE=0, SE=0 */
  3176. while(i<4) {
  3177. writeq((value[i] | valr), &bar0->swapper_ctrl);
  3178. writeq(valt, &bar0->xmsi_address);
  3179. val64 = readq(&bar0->xmsi_address);
  3180. if(val64 == valt)
  3181. break;
  3182. i++;
  3183. }
  3184. if(i == 4) {
  3185. unsigned long long x = val64;
  3186. DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
  3187. DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
  3188. return FAILURE;
  3189. }
  3190. }
  3191. val64 = readq(&bar0->swapper_ctrl);
  3192. val64 &= 0xFFFF000000000000ULL;
  3193. #ifdef __BIG_ENDIAN
  3194. /*
  3195. * The device by default set to a big endian format, so a
  3196. * big endian driver need not set anything.
  3197. */
  3198. val64 |= (SWAPPER_CTRL_TXP_FE |
  3199. SWAPPER_CTRL_TXP_SE |
  3200. SWAPPER_CTRL_TXD_R_FE |
  3201. SWAPPER_CTRL_TXD_W_FE |
  3202. SWAPPER_CTRL_TXF_R_FE |
  3203. SWAPPER_CTRL_RXD_R_FE |
  3204. SWAPPER_CTRL_RXD_W_FE |
  3205. SWAPPER_CTRL_RXF_W_FE |
  3206. SWAPPER_CTRL_XMSI_FE |
  3207. SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
  3208. if (sp->config.intr_type == INTA)
  3209. val64 |= SWAPPER_CTRL_XMSI_SE;
  3210. writeq(val64, &bar0->swapper_ctrl);
  3211. #else
  3212. /*
  3213. * Initially we enable all bits to make it accessible by the
  3214. * driver, then we selectively enable only those bits that
  3215. * we want to set.
  3216. */
  3217. val64 |= (SWAPPER_CTRL_TXP_FE |
  3218. SWAPPER_CTRL_TXP_SE |
  3219. SWAPPER_CTRL_TXD_R_FE |
  3220. SWAPPER_CTRL_TXD_R_SE |
  3221. SWAPPER_CTRL_TXD_W_FE |
  3222. SWAPPER_CTRL_TXD_W_SE |
  3223. SWAPPER_CTRL_TXF_R_FE |
  3224. SWAPPER_CTRL_RXD_R_FE |
  3225. SWAPPER_CTRL_RXD_R_SE |
  3226. SWAPPER_CTRL_RXD_W_FE |
  3227. SWAPPER_CTRL_RXD_W_SE |
  3228. SWAPPER_CTRL_RXF_W_FE |
  3229. SWAPPER_CTRL_XMSI_FE |
  3230. SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
  3231. if (sp->config.intr_type == INTA)
  3232. val64 |= SWAPPER_CTRL_XMSI_SE;
  3233. writeq(val64, &bar0->swapper_ctrl);
  3234. #endif
  3235. val64 = readq(&bar0->swapper_ctrl);
  3236. /*
  3237. * Verifying if endian settings are accurate by reading a
  3238. * feedback register.
  3239. */
  3240. val64 = readq(&bar0->pif_rd_swapper_fb);
  3241. if (val64 != 0x0123456789ABCDEFULL) {
  3242. /* Endian settings are incorrect, calls for another dekko. */
  3243. DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
  3244. dev->name);
  3245. DBG_PRINT(ERR_DBG, "feedback read %llx\n",
  3246. (unsigned long long) val64);
  3247. return FAILURE;
  3248. }
  3249. return SUCCESS;
  3250. }
  3251. static int wait_for_msix_trans(struct s2io_nic *nic, int i)
  3252. {
  3253. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3254. u64 val64;
  3255. int ret = 0, cnt = 0;
  3256. do {
  3257. val64 = readq(&bar0->xmsi_access);
  3258. if (!(val64 & BIT(15)))
  3259. break;
  3260. mdelay(1);
  3261. cnt++;
  3262. } while(cnt < 5);
  3263. if (cnt == 5) {
  3264. DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
  3265. ret = 1;
  3266. }
  3267. return ret;
  3268. }
  3269. static void restore_xmsi_data(struct s2io_nic *nic)
  3270. {
  3271. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3272. u64 val64;
  3273. int i;
  3274. for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
  3275. writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
  3276. writeq(nic->msix_info[i].data, &bar0->xmsi_data);
  3277. val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
  3278. writeq(val64, &bar0->xmsi_access);
  3279. if (wait_for_msix_trans(nic, i)) {
  3280. DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
  3281. continue;
  3282. }
  3283. }
  3284. }
  3285. static void store_xmsi_data(struct s2io_nic *nic)
  3286. {
  3287. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3288. u64 val64, addr, data;
  3289. int i;
  3290. /* Store and display */
  3291. for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
  3292. val64 = (BIT(15) | vBIT(i, 26, 6));
  3293. writeq(val64, &bar0->xmsi_access);
  3294. if (wait_for_msix_trans(nic, i)) {
  3295. DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
  3296. continue;
  3297. }
  3298. addr = readq(&bar0->xmsi_address);
  3299. data = readq(&bar0->xmsi_data);
  3300. if (addr && data) {
  3301. nic->msix_info[i].addr = addr;
  3302. nic->msix_info[i].data = data;
  3303. }
  3304. }
  3305. }
  3306. static int s2io_enable_msi_x(struct s2io_nic *nic)
  3307. {
  3308. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3309. u64 tx_mat, rx_mat;
  3310. u16 msi_control; /* Temp variable */
  3311. int ret, i, j, msix_indx = 1;
  3312. nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
  3313. GFP_KERNEL);
  3314. if (nic->entries == NULL) {
  3315. DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
  3316. __FUNCTION__);
  3317. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  3318. return -ENOMEM;
  3319. }
  3320. nic->mac_control.stats_info->sw_stat.mem_allocated
  3321. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3322. memset(nic->entries, 0,MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3323. nic->s2io_entries =
  3324. kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
  3325. GFP_KERNEL);
  3326. if (nic->s2io_entries == NULL) {
  3327. DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
  3328. __FUNCTION__);
  3329. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  3330. kfree(nic->entries);
  3331. nic->mac_control.stats_info->sw_stat.mem_freed
  3332. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3333. return -ENOMEM;
  3334. }
  3335. nic->mac_control.stats_info->sw_stat.mem_allocated
  3336. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3337. memset(nic->s2io_entries, 0,
  3338. MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3339. for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
  3340. nic->entries[i].entry = i;
  3341. nic->s2io_entries[i].entry = i;
  3342. nic->s2io_entries[i].arg = NULL;
  3343. nic->s2io_entries[i].in_use = 0;
  3344. }
  3345. tx_mat = readq(&bar0->tx_mat0_n[0]);
  3346. for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
  3347. tx_mat |= TX_MAT_SET(i, msix_indx);
  3348. nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
  3349. nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
  3350. nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
  3351. }
  3352. writeq(tx_mat, &bar0->tx_mat0_n[0]);
  3353. if (!nic->config.bimodal) {
  3354. rx_mat = readq(&bar0->rx_mat);
  3355. for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
  3356. rx_mat |= RX_MAT_SET(j, msix_indx);
  3357. nic->s2io_entries[msix_indx].arg
  3358. = &nic->mac_control.rings[j];
  3359. nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
  3360. nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
  3361. }
  3362. writeq(rx_mat, &bar0->rx_mat);
  3363. } else {
  3364. tx_mat = readq(&bar0->tx_mat0_n[7]);
  3365. for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
  3366. tx_mat |= TX_MAT_SET(i, msix_indx);
  3367. nic->s2io_entries[msix_indx].arg
  3368. = &nic->mac_control.rings[j];
  3369. nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
  3370. nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
  3371. }
  3372. writeq(tx_mat, &bar0->tx_mat0_n[7]);
  3373. }
  3374. nic->avail_msix_vectors = 0;
  3375. ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
  3376. /* We fail init if error or we get less vectors than min required */
  3377. if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
  3378. nic->avail_msix_vectors = ret;
  3379. ret = pci_enable_msix(nic->pdev, nic->entries, ret);
  3380. }
  3381. if (ret) {
  3382. DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
  3383. kfree(nic->entries);
  3384. nic->mac_control.stats_info->sw_stat.mem_freed
  3385. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3386. kfree(nic->s2io_entries);
  3387. nic->mac_control.stats_info->sw_stat.mem_freed
  3388. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3389. nic->entries = NULL;
  3390. nic->s2io_entries = NULL;
  3391. nic->avail_msix_vectors = 0;
  3392. return -ENOMEM;
  3393. }
  3394. if (!nic->avail_msix_vectors)
  3395. nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
  3396. /*
  3397. * To enable MSI-X, MSI also needs to be enabled, due to a bug
  3398. * in the herc NIC. (Temp change, needs to be removed later)
  3399. */
  3400. pci_read_config_word(nic->pdev, 0x42, &msi_control);
  3401. msi_control |= 0x1; /* Enable MSI */
  3402. pci_write_config_word(nic->pdev, 0x42, msi_control);
  3403. return 0;
  3404. }
  3405. /* Handle software interrupt used during MSI(X) test */
  3406. static irqreturn_t __devinit s2io_test_intr(int irq, void *dev_id)
  3407. {
  3408. struct s2io_nic *sp = dev_id;
  3409. sp->msi_detected = 1;
  3410. wake_up(&sp->msi_wait);
  3411. return IRQ_HANDLED;
  3412. }
  3413. /* Test interrupt path by forcing a a software IRQ */
  3414. static int __devinit s2io_test_msi(struct s2io_nic *sp)
  3415. {
  3416. struct pci_dev *pdev = sp->pdev;
  3417. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3418. int err;
  3419. u64 val64, saved64;
  3420. err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
  3421. sp->name, sp);
  3422. if (err) {
  3423. DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
  3424. sp->dev->name, pci_name(pdev), pdev->irq);
  3425. return err;
  3426. }
  3427. init_waitqueue_head (&sp->msi_wait);
  3428. sp->msi_detected = 0;
  3429. saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
  3430. val64 |= SCHED_INT_CTRL_ONE_SHOT;
  3431. val64 |= SCHED_INT_CTRL_TIMER_EN;
  3432. val64 |= SCHED_INT_CTRL_INT2MSI(1);
  3433. writeq(val64, &bar0->scheduled_int_ctrl);
  3434. wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
  3435. if (!sp->msi_detected) {
  3436. /* MSI(X) test failed, go back to INTx mode */
  3437. DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated"
  3438. "using MSI(X) during test\n", sp->dev->name,
  3439. pci_name(pdev));
  3440. err = -EOPNOTSUPP;
  3441. }
  3442. free_irq(sp->entries[1].vector, sp);
  3443. writeq(saved64, &bar0->scheduled_int_ctrl);
  3444. return err;
  3445. }
  3446. /* ********************************************************* *
  3447. * Functions defined below concern the OS part of the driver *
  3448. * ********************************************************* */
  3449. /**
  3450. * s2io_open - open entry point of the driver
  3451. * @dev : pointer to the device structure.
  3452. * Description:
  3453. * This function is the open entry point of the driver. It mainly calls a
  3454. * function to allocate Rx buffers and inserts them into the buffer
  3455. * descriptors and then enables the Rx part of the NIC.
  3456. * Return value:
  3457. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3458. * file on failure.
  3459. */
  3460. static int s2io_open(struct net_device *dev)
  3461. {
  3462. struct s2io_nic *sp = dev->priv;
  3463. int err = 0;
  3464. /*
  3465. * Make sure you have link off by default every time
  3466. * Nic is initialized
  3467. */
  3468. netif_carrier_off(dev);
  3469. sp->last_link_state = 0;
  3470. napi_enable(&sp->napi);
  3471. if (sp->config.intr_type == MSI_X) {
  3472. int ret = s2io_enable_msi_x(sp);
  3473. if (!ret) {
  3474. u16 msi_control;
  3475. ret = s2io_test_msi(sp);
  3476. /* rollback MSI-X, will re-enable during add_isr() */
  3477. kfree(sp->entries);
  3478. sp->mac_control.stats_info->sw_stat.mem_freed +=
  3479. (MAX_REQUESTED_MSI_X *
  3480. sizeof(struct msix_entry));
  3481. kfree(sp->s2io_entries);
  3482. sp->mac_control.stats_info->sw_stat.mem_freed +=
  3483. (MAX_REQUESTED_MSI_X *
  3484. sizeof(struct s2io_msix_entry));
  3485. sp->entries = NULL;
  3486. sp->s2io_entries = NULL;
  3487. pci_read_config_word(sp->pdev, 0x42, &msi_control);
  3488. msi_control &= 0xFFFE; /* Disable MSI */
  3489. pci_write_config_word(sp->pdev, 0x42, msi_control);
  3490. pci_disable_msix(sp->pdev);
  3491. }
  3492. if (ret) {
  3493. DBG_PRINT(ERR_DBG,
  3494. "%s: MSI-X requested but failed to enable\n",
  3495. dev->name);
  3496. sp->config.intr_type = INTA;
  3497. }
  3498. }
  3499. /* NAPI doesn't work well with MSI(X) */
  3500. if (sp->config.intr_type != INTA) {
  3501. if(sp->config.napi)
  3502. sp->config.napi = 0;
  3503. }
  3504. /* Initialize H/W and enable interrupts */
  3505. err = s2io_card_up(sp);
  3506. if (err) {
  3507. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  3508. dev->name);
  3509. goto hw_init_failed;
  3510. }
  3511. if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
  3512. DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
  3513. s2io_card_down(sp);
  3514. err = -ENODEV;
  3515. goto hw_init_failed;
  3516. }
  3517. netif_start_queue(dev);
  3518. return 0;
  3519. hw_init_failed:
  3520. napi_disable(&sp->napi);
  3521. if (sp->config.intr_type == MSI_X) {
  3522. if (sp->entries) {
  3523. kfree(sp->entries);
  3524. sp->mac_control.stats_info->sw_stat.mem_freed
  3525. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3526. }
  3527. if (sp->s2io_entries) {
  3528. kfree(sp->s2io_entries);
  3529. sp->mac_control.stats_info->sw_stat.mem_freed
  3530. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3531. }
  3532. }
  3533. return err;
  3534. }
  3535. /**
  3536. * s2io_close -close entry point of the driver
  3537. * @dev : device pointer.
  3538. * Description:
  3539. * This is the stop entry point of the driver. It needs to undo exactly
  3540. * whatever was done by the open entry point,thus it's usually referred to
  3541. * as the close function.Among other things this function mainly stops the
  3542. * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
  3543. * Return value:
  3544. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3545. * file on failure.
  3546. */
  3547. static int s2io_close(struct net_device *dev)
  3548. {
  3549. struct s2io_nic *sp = dev->priv;
  3550. netif_stop_queue(dev);
  3551. napi_disable(&sp->napi);
  3552. /* Reset card, kill tasklet and free Tx and Rx buffers. */
  3553. s2io_card_down(sp);
  3554. return 0;
  3555. }
  3556. /**
  3557. * s2io_xmit - Tx entry point of te driver
  3558. * @skb : the socket buffer containing the Tx data.
  3559. * @dev : device pointer.
  3560. * Description :
  3561. * This function is the Tx entry point of the driver. S2IO NIC supports
  3562. * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
  3563. * NOTE: when device cant queue the pkt,just the trans_start variable will
  3564. * not be upadted.
  3565. * Return value:
  3566. * 0 on success & 1 on failure.
  3567. */
  3568. static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
  3569. {
  3570. struct s2io_nic *sp = dev->priv;
  3571. u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
  3572. register u64 val64;
  3573. struct TxD *txdp;
  3574. struct TxFIFO_element __iomem *tx_fifo;
  3575. unsigned long flags;
  3576. u16 vlan_tag = 0;
  3577. int vlan_priority = 0;
  3578. struct mac_info *mac_control;
  3579. struct config_param *config;
  3580. int offload_type;
  3581. struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
  3582. mac_control = &sp->mac_control;
  3583. config = &sp->config;
  3584. DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
  3585. if (unlikely(skb->len <= 0)) {
  3586. DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
  3587. dev_kfree_skb_any(skb);
  3588. return 0;
  3589. }
  3590. spin_lock_irqsave(&sp->tx_lock, flags);
  3591. if (!is_s2io_card_up(sp)) {
  3592. DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
  3593. dev->name);
  3594. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3595. dev_kfree_skb(skb);
  3596. return 0;
  3597. }
  3598. queue = 0;
  3599. /* Get Fifo number to Transmit based on vlan priority */
  3600. if (sp->vlgrp && vlan_tx_tag_present(skb)) {
  3601. vlan_tag = vlan_tx_tag_get(skb);
  3602. vlan_priority = vlan_tag >> 13;
  3603. queue = config->fifo_mapping[vlan_priority];
  3604. }
  3605. put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
  3606. get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
  3607. txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
  3608. list_virt_addr;
  3609. queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
  3610. /* Avoid "put" pointer going beyond "get" pointer */
  3611. if (txdp->Host_Control ||
  3612. ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3613. DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
  3614. netif_stop_queue(dev);
  3615. dev_kfree_skb(skb);
  3616. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3617. return 0;
  3618. }
  3619. offload_type = s2io_offload_type(skb);
  3620. if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
  3621. txdp->Control_1 |= TXD_TCP_LSO_EN;
  3622. txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
  3623. }
  3624. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  3625. txdp->Control_2 |=
  3626. (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
  3627. TXD_TX_CKO_UDP_EN);
  3628. }
  3629. txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
  3630. txdp->Control_1 |= TXD_LIST_OWN_XENA;
  3631. txdp->Control_2 |= config->tx_intr_type;
  3632. if (sp->vlgrp && vlan_tx_tag_present(skb)) {
  3633. txdp->Control_2 |= TXD_VLAN_ENABLE;
  3634. txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
  3635. }
  3636. frg_len = skb->len - skb->data_len;
  3637. if (offload_type == SKB_GSO_UDP) {
  3638. int ufo_size;
  3639. ufo_size = s2io_udp_mss(skb);
  3640. ufo_size &= ~7;
  3641. txdp->Control_1 |= TXD_UFO_EN;
  3642. txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
  3643. txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
  3644. #ifdef __BIG_ENDIAN
  3645. sp->ufo_in_band_v[put_off] =
  3646. (u64)skb_shinfo(skb)->ip6_frag_id;
  3647. #else
  3648. sp->ufo_in_band_v[put_off] =
  3649. (u64)skb_shinfo(skb)->ip6_frag_id << 32;
  3650. #endif
  3651. txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
  3652. txdp->Buffer_Pointer = pci_map_single(sp->pdev,
  3653. sp->ufo_in_band_v,
  3654. sizeof(u64), PCI_DMA_TODEVICE);
  3655. if((txdp->Buffer_Pointer == 0) ||
  3656. (txdp->Buffer_Pointer == DMA_ERROR_CODE))
  3657. goto pci_map_failed;
  3658. txdp++;
  3659. }
  3660. txdp->Buffer_Pointer = pci_map_single
  3661. (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
  3662. if((txdp->Buffer_Pointer == 0) ||
  3663. (txdp->Buffer_Pointer == DMA_ERROR_CODE))
  3664. goto pci_map_failed;
  3665. txdp->Host_Control = (unsigned long) skb;
  3666. txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
  3667. if (offload_type == SKB_GSO_UDP)
  3668. txdp->Control_1 |= TXD_UFO_EN;
  3669. frg_cnt = skb_shinfo(skb)->nr_frags;
  3670. /* For fragmented SKB. */
  3671. for (i = 0; i < frg_cnt; i++) {
  3672. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  3673. /* A '0' length fragment will be ignored */
  3674. if (!frag->size)
  3675. continue;
  3676. txdp++;
  3677. txdp->Buffer_Pointer = (u64) pci_map_page
  3678. (sp->pdev, frag->page, frag->page_offset,
  3679. frag->size, PCI_DMA_TODEVICE);
  3680. txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
  3681. if (offload_type == SKB_GSO_UDP)
  3682. txdp->Control_1 |= TXD_UFO_EN;
  3683. }
  3684. txdp->Control_1 |= TXD_GATHER_CODE_LAST;
  3685. if (offload_type == SKB_GSO_UDP)
  3686. frg_cnt++; /* as Txd0 was used for inband header */
  3687. tx_fifo = mac_control->tx_FIFO_start[queue];
  3688. val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
  3689. writeq(val64, &tx_fifo->TxDL_Pointer);
  3690. val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
  3691. TX_FIFO_LAST_LIST);
  3692. if (offload_type)
  3693. val64 |= TX_FIFO_SPECIAL_FUNC;
  3694. writeq(val64, &tx_fifo->List_Control);
  3695. mmiowb();
  3696. put_off++;
  3697. if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
  3698. put_off = 0;
  3699. mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
  3700. /* Avoid "put" pointer going beyond "get" pointer */
  3701. if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3702. sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
  3703. DBG_PRINT(TX_DBG,
  3704. "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
  3705. put_off, get_off);
  3706. netif_stop_queue(dev);
  3707. }
  3708. mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
  3709. dev->trans_start = jiffies;
  3710. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3711. return 0;
  3712. pci_map_failed:
  3713. stats->pci_map_fail_cnt++;
  3714. netif_stop_queue(dev);
  3715. stats->mem_freed += skb->truesize;
  3716. dev_kfree_skb(skb);
  3717. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3718. return 0;
  3719. }
  3720. static void
  3721. s2io_alarm_handle(unsigned long data)
  3722. {
  3723. struct s2io_nic *sp = (struct s2io_nic *)data;
  3724. struct net_device *dev = sp->dev;
  3725. s2io_handle_errors(dev);
  3726. mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
  3727. }
  3728. static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
  3729. {
  3730. int rxb_size, level;
  3731. if (!sp->lro) {
  3732. rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
  3733. level = rx_buffer_level(sp, rxb_size, rng_n);
  3734. if ((level == PANIC) && (!TASKLET_IN_USE)) {
  3735. int ret;
  3736. DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
  3737. DBG_PRINT(INTR_DBG, "PANIC levels\n");
  3738. if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
  3739. DBG_PRINT(INFO_DBG, "Out of memory in %s",
  3740. __FUNCTION__);
  3741. clear_bit(0, (&sp->tasklet_status));
  3742. return -1;
  3743. }
  3744. clear_bit(0, (&sp->tasklet_status));
  3745. } else if (level == LOW)
  3746. tasklet_schedule(&sp->task);
  3747. } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
  3748. DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
  3749. DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
  3750. }
  3751. return 0;
  3752. }
  3753. static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
  3754. {
  3755. struct ring_info *ring = (struct ring_info *)dev_id;
  3756. struct s2io_nic *sp = ring->nic;
  3757. if (!is_s2io_card_up(sp))
  3758. return IRQ_HANDLED;
  3759. rx_intr_handler(ring);
  3760. s2io_chk_rx_buffers(sp, ring->ring_no);
  3761. return IRQ_HANDLED;
  3762. }
  3763. static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
  3764. {
  3765. struct fifo_info *fifo = (struct fifo_info *)dev_id;
  3766. struct s2io_nic *sp = fifo->nic;
  3767. if (!is_s2io_card_up(sp))
  3768. return IRQ_HANDLED;
  3769. tx_intr_handler(fifo);
  3770. return IRQ_HANDLED;
  3771. }
  3772. static void s2io_txpic_intr_handle(struct s2io_nic *sp)
  3773. {
  3774. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3775. u64 val64;
  3776. val64 = readq(&bar0->pic_int_status);
  3777. if (val64 & PIC_INT_GPIO) {
  3778. val64 = readq(&bar0->gpio_int_reg);
  3779. if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
  3780. (val64 & GPIO_INT_REG_LINK_UP)) {
  3781. /*
  3782. * This is unstable state so clear both up/down
  3783. * interrupt and adapter to re-evaluate the link state.
  3784. */
  3785. val64 |= GPIO_INT_REG_LINK_DOWN;
  3786. val64 |= GPIO_INT_REG_LINK_UP;
  3787. writeq(val64, &bar0->gpio_int_reg);
  3788. val64 = readq(&bar0->gpio_int_mask);
  3789. val64 &= ~(GPIO_INT_MASK_LINK_UP |
  3790. GPIO_INT_MASK_LINK_DOWN);
  3791. writeq(val64, &bar0->gpio_int_mask);
  3792. }
  3793. else if (val64 & GPIO_INT_REG_LINK_UP) {
  3794. val64 = readq(&bar0->adapter_status);
  3795. /* Enable Adapter */
  3796. val64 = readq(&bar0->adapter_control);
  3797. val64 |= ADAPTER_CNTL_EN;
  3798. writeq(val64, &bar0->adapter_control);
  3799. val64 |= ADAPTER_LED_ON;
  3800. writeq(val64, &bar0->adapter_control);
  3801. if (!sp->device_enabled_once)
  3802. sp->device_enabled_once = 1;
  3803. s2io_link(sp, LINK_UP);
  3804. /*
  3805. * unmask link down interrupt and mask link-up
  3806. * intr
  3807. */
  3808. val64 = readq(&bar0->gpio_int_mask);
  3809. val64 &= ~GPIO_INT_MASK_LINK_DOWN;
  3810. val64 |= GPIO_INT_MASK_LINK_UP;
  3811. writeq(val64, &bar0->gpio_int_mask);
  3812. }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
  3813. val64 = readq(&bar0->adapter_status);
  3814. s2io_link(sp, LINK_DOWN);
  3815. /* Link is down so unmaks link up interrupt */
  3816. val64 = readq(&bar0->gpio_int_mask);
  3817. val64 &= ~GPIO_INT_MASK_LINK_UP;
  3818. val64 |= GPIO_INT_MASK_LINK_DOWN;
  3819. writeq(val64, &bar0->gpio_int_mask);
  3820. /* turn off LED */
  3821. val64 = readq(&bar0->adapter_control);
  3822. val64 = val64 &(~ADAPTER_LED_ON);
  3823. writeq(val64, &bar0->adapter_control);
  3824. }
  3825. }
  3826. val64 = readq(&bar0->gpio_int_mask);
  3827. }
  3828. /**
  3829. * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
  3830. * @value: alarm bits
  3831. * @addr: address value
  3832. * @cnt: counter variable
  3833. * Description: Check for alarm and increment the counter
  3834. * Return Value:
  3835. * 1 - if alarm bit set
  3836. * 0 - if alarm bit is not set
  3837. */
  3838. int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
  3839. unsigned long long *cnt)
  3840. {
  3841. u64 val64;
  3842. val64 = readq(addr);
  3843. if ( val64 & value ) {
  3844. writeq(val64, addr);
  3845. (*cnt)++;
  3846. return 1;
  3847. }
  3848. return 0;
  3849. }
  3850. /**
  3851. * s2io_handle_errors - Xframe error indication handler
  3852. * @nic: device private variable
  3853. * Description: Handle alarms such as loss of link, single or
  3854. * double ECC errors, critical and serious errors.
  3855. * Return Value:
  3856. * NONE
  3857. */
  3858. static void s2io_handle_errors(void * dev_id)
  3859. {
  3860. struct net_device *dev = (struct net_device *) dev_id;
  3861. struct s2io_nic *sp = dev->priv;
  3862. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3863. u64 temp64 = 0,val64=0;
  3864. int i = 0;
  3865. struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
  3866. struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
  3867. if (!is_s2io_card_up(sp))
  3868. return;
  3869. if (pci_channel_offline(sp->pdev))
  3870. return;
  3871. memset(&sw_stat->ring_full_cnt, 0,
  3872. sizeof(sw_stat->ring_full_cnt));
  3873. /* Handling the XPAK counters update */
  3874. if(stats->xpak_timer_count < 72000) {
  3875. /* waiting for an hour */
  3876. stats->xpak_timer_count++;
  3877. } else {
  3878. s2io_updt_xpak_counter(dev);
  3879. /* reset the count to zero */
  3880. stats->xpak_timer_count = 0;
  3881. }
  3882. /* Handling link status change error Intr */
  3883. if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
  3884. val64 = readq(&bar0->mac_rmac_err_reg);
  3885. writeq(val64, &bar0->mac_rmac_err_reg);
  3886. if (val64 & RMAC_LINK_STATE_CHANGE_INT)
  3887. schedule_work(&sp->set_link_task);
  3888. }
  3889. /* In case of a serious error, the device will be Reset. */
  3890. if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
  3891. &sw_stat->serious_err_cnt))
  3892. goto reset;
  3893. /* Check for data parity error */
  3894. if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
  3895. &sw_stat->parity_err_cnt))
  3896. goto reset;
  3897. /* Check for ring full counter */
  3898. if (sp->device_type == XFRAME_II_DEVICE) {
  3899. val64 = readq(&bar0->ring_bump_counter1);
  3900. for (i=0; i<4; i++) {
  3901. temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
  3902. temp64 >>= 64 - ((i+1)*16);
  3903. sw_stat->ring_full_cnt[i] += temp64;
  3904. }
  3905. val64 = readq(&bar0->ring_bump_counter2);
  3906. for (i=0; i<4; i++) {
  3907. temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
  3908. temp64 >>= 64 - ((i+1)*16);
  3909. sw_stat->ring_full_cnt[i+4] += temp64;
  3910. }
  3911. }
  3912. val64 = readq(&bar0->txdma_int_status);
  3913. /*check for pfc_err*/
  3914. if (val64 & TXDMA_PFC_INT) {
  3915. if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
  3916. PFC_MISC_0_ERR | PFC_MISC_1_ERR|
  3917. PFC_PCIX_ERR, &bar0->pfc_err_reg,
  3918. &sw_stat->pfc_err_cnt))
  3919. goto reset;
  3920. do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
  3921. &sw_stat->pfc_err_cnt);
  3922. }
  3923. /*check for tda_err*/
  3924. if (val64 & TXDMA_TDA_INT) {
  3925. if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
  3926. TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
  3927. &sw_stat->tda_err_cnt))
  3928. goto reset;
  3929. do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
  3930. &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
  3931. }
  3932. /*check for pcc_err*/
  3933. if (val64 & TXDMA_PCC_INT) {
  3934. if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
  3935. | PCC_N_SERR | PCC_6_COF_OV_ERR
  3936. | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
  3937. | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
  3938. | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
  3939. &sw_stat->pcc_err_cnt))
  3940. goto reset;
  3941. do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
  3942. &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
  3943. }
  3944. /*check for tti_err*/
  3945. if (val64 & TXDMA_TTI_INT) {
  3946. if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
  3947. &sw_stat->tti_err_cnt))
  3948. goto reset;
  3949. do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
  3950. &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
  3951. }
  3952. /*check for lso_err*/
  3953. if (val64 & TXDMA_LSO_INT) {
  3954. if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
  3955. | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
  3956. &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
  3957. goto reset;
  3958. do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
  3959. &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
  3960. }
  3961. /*check for tpa_err*/
  3962. if (val64 & TXDMA_TPA_INT) {
  3963. if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
  3964. &sw_stat->tpa_err_cnt))
  3965. goto reset;
  3966. do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
  3967. &sw_stat->tpa_err_cnt);
  3968. }
  3969. /*check for sm_err*/
  3970. if (val64 & TXDMA_SM_INT) {
  3971. if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
  3972. &sw_stat->sm_err_cnt))
  3973. goto reset;
  3974. }
  3975. val64 = readq(&bar0->mac_int_status);
  3976. if (val64 & MAC_INT_STATUS_TMAC_INT) {
  3977. if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
  3978. &bar0->mac_tmac_err_reg,
  3979. &sw_stat->mac_tmac_err_cnt))
  3980. goto reset;
  3981. do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
  3982. | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
  3983. &bar0->mac_tmac_err_reg,
  3984. &sw_stat->mac_tmac_err_cnt);
  3985. }
  3986. val64 = readq(&bar0->xgxs_int_status);
  3987. if (val64 & XGXS_INT_STATUS_TXGXS) {
  3988. if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
  3989. &bar0->xgxs_txgxs_err_reg,
  3990. &sw_stat->xgxs_txgxs_err_cnt))
  3991. goto reset;
  3992. do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
  3993. &bar0->xgxs_txgxs_err_reg,
  3994. &sw_stat->xgxs_txgxs_err_cnt);
  3995. }
  3996. val64 = readq(&bar0->rxdma_int_status);
  3997. if (val64 & RXDMA_INT_RC_INT_M) {
  3998. if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
  3999. | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
  4000. &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
  4001. goto reset;
  4002. do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
  4003. | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
  4004. &sw_stat->rc_err_cnt);
  4005. if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
  4006. | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
  4007. &sw_stat->prc_pcix_err_cnt))
  4008. goto reset;
  4009. do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
  4010. | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
  4011. &sw_stat->prc_pcix_err_cnt);
  4012. }
  4013. if (val64 & RXDMA_INT_RPA_INT_M) {
  4014. if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
  4015. &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
  4016. goto reset;
  4017. do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
  4018. &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
  4019. }
  4020. if (val64 & RXDMA_INT_RDA_INT_M) {
  4021. if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
  4022. | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
  4023. | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
  4024. &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
  4025. goto reset;
  4026. do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
  4027. | RDA_MISC_ERR | RDA_PCIX_ERR,
  4028. &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
  4029. }
  4030. if (val64 & RXDMA_INT_RTI_INT_M) {
  4031. if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
  4032. &sw_stat->rti_err_cnt))
  4033. goto reset;
  4034. do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
  4035. &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
  4036. }
  4037. val64 = readq(&bar0->mac_int_status);
  4038. if (val64 & MAC_INT_STATUS_RMAC_INT) {
  4039. if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
  4040. &bar0->mac_rmac_err_reg,
  4041. &sw_stat->mac_rmac_err_cnt))
  4042. goto reset;
  4043. do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
  4044. RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
  4045. &sw_stat->mac_rmac_err_cnt);
  4046. }
  4047. val64 = readq(&bar0->xgxs_int_status);
  4048. if (val64 & XGXS_INT_STATUS_RXGXS) {
  4049. if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
  4050. &bar0->xgxs_rxgxs_err_reg,
  4051. &sw_stat->xgxs_rxgxs_err_cnt))
  4052. goto reset;
  4053. }
  4054. val64 = readq(&bar0->mc_int_status);
  4055. if(val64 & MC_INT_STATUS_MC_INT) {
  4056. if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
  4057. &sw_stat->mc_err_cnt))
  4058. goto reset;
  4059. /* Handling Ecc errors */
  4060. if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
  4061. writeq(val64, &bar0->mc_err_reg);
  4062. if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
  4063. sw_stat->double_ecc_errs++;
  4064. if (sp->device_type != XFRAME_II_DEVICE) {
  4065. /*
  4066. * Reset XframeI only if critical error
  4067. */
  4068. if (val64 &
  4069. (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
  4070. MC_ERR_REG_MIRI_ECC_DB_ERR_1))
  4071. goto reset;
  4072. }
  4073. } else
  4074. sw_stat->single_ecc_errs++;
  4075. }
  4076. }
  4077. return;
  4078. reset:
  4079. netif_stop_queue(dev);
  4080. schedule_work(&sp->rst_timer_task);
  4081. sw_stat->soft_reset_cnt++;
  4082. return;
  4083. }
  4084. /**
  4085. * s2io_isr - ISR handler of the device .
  4086. * @irq: the irq of the device.
  4087. * @dev_id: a void pointer to the dev structure of the NIC.
  4088. * Description: This function is the ISR handler of the device. It
  4089. * identifies the reason for the interrupt and calls the relevant
  4090. * service routines. As a contongency measure, this ISR allocates the
  4091. * recv buffers, if their numbers are below the panic value which is
  4092. * presently set to 25% of the original number of rcv buffers allocated.
  4093. * Return value:
  4094. * IRQ_HANDLED: will be returned if IRQ was handled by this routine
  4095. * IRQ_NONE: will be returned if interrupt is not from our device
  4096. */
  4097. static irqreturn_t s2io_isr(int irq, void *dev_id)
  4098. {
  4099. struct net_device *dev = (struct net_device *) dev_id;
  4100. struct s2io_nic *sp = dev->priv;
  4101. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4102. int i;
  4103. u64 reason = 0;
  4104. struct mac_info *mac_control;
  4105. struct config_param *config;
  4106. /* Pretend we handled any irq's from a disconnected card */
  4107. if (pci_channel_offline(sp->pdev))
  4108. return IRQ_NONE;
  4109. if (!is_s2io_card_up(sp))
  4110. return IRQ_NONE;
  4111. mac_control = &sp->mac_control;
  4112. config = &sp->config;
  4113. /*
  4114. * Identify the cause for interrupt and call the appropriate
  4115. * interrupt handler. Causes for the interrupt could be;
  4116. * 1. Rx of packet.
  4117. * 2. Tx complete.
  4118. * 3. Link down.
  4119. */
  4120. reason = readq(&bar0->general_int_status);
  4121. if (unlikely(reason == S2IO_MINUS_ONE) ) {
  4122. /* Nothing much can be done. Get out */
  4123. return IRQ_HANDLED;
  4124. }
  4125. if (reason & (GEN_INTR_RXTRAFFIC |
  4126. GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
  4127. {
  4128. writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
  4129. if (config->napi) {
  4130. if (reason & GEN_INTR_RXTRAFFIC) {
  4131. if (likely(netif_rx_schedule_prep(dev,
  4132. &sp->napi))) {
  4133. __netif_rx_schedule(dev, &sp->napi);
  4134. writeq(S2IO_MINUS_ONE,
  4135. &bar0->rx_traffic_mask);
  4136. } else
  4137. writeq(S2IO_MINUS_ONE,
  4138. &bar0->rx_traffic_int);
  4139. }
  4140. } else {
  4141. /*
  4142. * rx_traffic_int reg is an R1 register, writing all 1's
  4143. * will ensure that the actual interrupt causing bit
  4144. * get's cleared and hence a read can be avoided.
  4145. */
  4146. if (reason & GEN_INTR_RXTRAFFIC)
  4147. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  4148. for (i = 0; i < config->rx_ring_num; i++)
  4149. rx_intr_handler(&mac_control->rings[i]);
  4150. }
  4151. /*
  4152. * tx_traffic_int reg is an R1 register, writing all 1's
  4153. * will ensure that the actual interrupt causing bit get's
  4154. * cleared and hence a read can be avoided.
  4155. */
  4156. if (reason & GEN_INTR_TXTRAFFIC)
  4157. writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
  4158. for (i = 0; i < config->tx_fifo_num; i++)
  4159. tx_intr_handler(&mac_control->fifos[i]);
  4160. if (reason & GEN_INTR_TXPIC)
  4161. s2io_txpic_intr_handle(sp);
  4162. /*
  4163. * Reallocate the buffers from the interrupt handler itself.
  4164. */
  4165. if (!config->napi) {
  4166. for (i = 0; i < config->rx_ring_num; i++)
  4167. s2io_chk_rx_buffers(sp, i);
  4168. }
  4169. writeq(sp->general_int_mask, &bar0->general_int_mask);
  4170. readl(&bar0->general_int_status);
  4171. return IRQ_HANDLED;
  4172. }
  4173. else if (!reason) {
  4174. /* The interrupt was not raised by us */
  4175. return IRQ_NONE;
  4176. }
  4177. return IRQ_HANDLED;
  4178. }
  4179. /**
  4180. * s2io_updt_stats -
  4181. */
  4182. static void s2io_updt_stats(struct s2io_nic *sp)
  4183. {
  4184. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4185. u64 val64;
  4186. int cnt = 0;
  4187. if (is_s2io_card_up(sp)) {
  4188. /* Apprx 30us on a 133 MHz bus */
  4189. val64 = SET_UPDT_CLICKS(10) |
  4190. STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
  4191. writeq(val64, &bar0->stat_cfg);
  4192. do {
  4193. udelay(100);
  4194. val64 = readq(&bar0->stat_cfg);
  4195. if (!(val64 & BIT(0)))
  4196. break;
  4197. cnt++;
  4198. if (cnt == 5)
  4199. break; /* Updt failed */
  4200. } while(1);
  4201. }
  4202. }
  4203. /**
  4204. * s2io_get_stats - Updates the device statistics structure.
  4205. * @dev : pointer to the device structure.
  4206. * Description:
  4207. * This function updates the device statistics structure in the s2io_nic
  4208. * structure and returns a pointer to the same.
  4209. * Return value:
  4210. * pointer to the updated net_device_stats structure.
  4211. */
  4212. static struct net_device_stats *s2io_get_stats(struct net_device *dev)
  4213. {
  4214. struct s2io_nic *sp = dev->priv;
  4215. struct mac_info *mac_control;
  4216. struct config_param *config;
  4217. mac_control = &sp->mac_control;
  4218. config = &sp->config;
  4219. /* Configure Stats for immediate updt */
  4220. s2io_updt_stats(sp);
  4221. sp->stats.tx_packets =
  4222. le32_to_cpu(mac_control->stats_info->tmac_frms);
  4223. sp->stats.tx_errors =
  4224. le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
  4225. sp->stats.rx_errors =
  4226. le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
  4227. sp->stats.multicast =
  4228. le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
  4229. sp->stats.rx_length_errors =
  4230. le64_to_cpu(mac_control->stats_info->rmac_long_frms);
  4231. return (&sp->stats);
  4232. }
  4233. /**
  4234. * s2io_set_multicast - entry point for multicast address enable/disable.
  4235. * @dev : pointer to the device structure
  4236. * Description:
  4237. * This function is a driver entry point which gets called by the kernel
  4238. * whenever multicast addresses must be enabled/disabled. This also gets
  4239. * called to set/reset promiscuous mode. Depending on the deivce flag, we
  4240. * determine, if multicast address must be enabled or if promiscuous mode
  4241. * is to be disabled etc.
  4242. * Return value:
  4243. * void.
  4244. */
  4245. static void s2io_set_multicast(struct net_device *dev)
  4246. {
  4247. int i, j, prev_cnt;
  4248. struct dev_mc_list *mclist;
  4249. struct s2io_nic *sp = dev->priv;
  4250. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4251. u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
  4252. 0xfeffffffffffULL;
  4253. u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
  4254. void __iomem *add;
  4255. if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
  4256. /* Enable all Multicast addresses */
  4257. writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
  4258. &bar0->rmac_addr_data0_mem);
  4259. writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
  4260. &bar0->rmac_addr_data1_mem);
  4261. val64 = RMAC_ADDR_CMD_MEM_WE |
  4262. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4263. RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
  4264. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4265. /* Wait till command completes */
  4266. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4267. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4268. S2IO_BIT_RESET);
  4269. sp->m_cast_flg = 1;
  4270. sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
  4271. } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
  4272. /* Disable all Multicast addresses */
  4273. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4274. &bar0->rmac_addr_data0_mem);
  4275. writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
  4276. &bar0->rmac_addr_data1_mem);
  4277. val64 = RMAC_ADDR_CMD_MEM_WE |
  4278. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4279. RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
  4280. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4281. /* Wait till command completes */
  4282. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4283. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4284. S2IO_BIT_RESET);
  4285. sp->m_cast_flg = 0;
  4286. sp->all_multi_pos = 0;
  4287. }
  4288. if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
  4289. /* Put the NIC into promiscuous mode */
  4290. add = &bar0->mac_cfg;
  4291. val64 = readq(&bar0->mac_cfg);
  4292. val64 |= MAC_CFG_RMAC_PROM_ENABLE;
  4293. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4294. writel((u32) val64, add);
  4295. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4296. writel((u32) (val64 >> 32), (add + 4));
  4297. if (vlan_tag_strip != 1) {
  4298. val64 = readq(&bar0->rx_pa_cfg);
  4299. val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
  4300. writeq(val64, &bar0->rx_pa_cfg);
  4301. vlan_strip_flag = 0;
  4302. }
  4303. val64 = readq(&bar0->mac_cfg);
  4304. sp->promisc_flg = 1;
  4305. DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
  4306. dev->name);
  4307. } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
  4308. /* Remove the NIC from promiscuous mode */
  4309. add = &bar0->mac_cfg;
  4310. val64 = readq(&bar0->mac_cfg);
  4311. val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
  4312. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4313. writel((u32) val64, add);
  4314. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4315. writel((u32) (val64 >> 32), (add + 4));
  4316. if (vlan_tag_strip != 0) {
  4317. val64 = readq(&bar0->rx_pa_cfg);
  4318. val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
  4319. writeq(val64, &bar0->rx_pa_cfg);
  4320. vlan_strip_flag = 1;
  4321. }
  4322. val64 = readq(&bar0->mac_cfg);
  4323. sp->promisc_flg = 0;
  4324. DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
  4325. dev->name);
  4326. }
  4327. /* Update individual M_CAST address list */
  4328. if ((!sp->m_cast_flg) && dev->mc_count) {
  4329. if (dev->mc_count >
  4330. (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
  4331. DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
  4332. dev->name);
  4333. DBG_PRINT(ERR_DBG, "can be added, please enable ");
  4334. DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
  4335. return;
  4336. }
  4337. prev_cnt = sp->mc_addr_count;
  4338. sp->mc_addr_count = dev->mc_count;
  4339. /* Clear out the previous list of Mc in the H/W. */
  4340. for (i = 0; i < prev_cnt; i++) {
  4341. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4342. &bar0->rmac_addr_data0_mem);
  4343. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4344. &bar0->rmac_addr_data1_mem);
  4345. val64 = RMAC_ADDR_CMD_MEM_WE |
  4346. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4347. RMAC_ADDR_CMD_MEM_OFFSET
  4348. (MAC_MC_ADDR_START_OFFSET + i);
  4349. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4350. /* Wait for command completes */
  4351. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4352. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4353. S2IO_BIT_RESET)) {
  4354. DBG_PRINT(ERR_DBG, "%s: Adding ",
  4355. dev->name);
  4356. DBG_PRINT(ERR_DBG, "Multicasts failed\n");
  4357. return;
  4358. }
  4359. }
  4360. /* Create the new Rx filter list and update the same in H/W. */
  4361. for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
  4362. i++, mclist = mclist->next) {
  4363. memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
  4364. ETH_ALEN);
  4365. mac_addr = 0;
  4366. for (j = 0; j < ETH_ALEN; j++) {
  4367. mac_addr |= mclist->dmi_addr[j];
  4368. mac_addr <<= 8;
  4369. }
  4370. mac_addr >>= 8;
  4371. writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
  4372. &bar0->rmac_addr_data0_mem);
  4373. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4374. &bar0->rmac_addr_data1_mem);
  4375. val64 = RMAC_ADDR_CMD_MEM_WE |
  4376. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4377. RMAC_ADDR_CMD_MEM_OFFSET
  4378. (i + MAC_MC_ADDR_START_OFFSET);
  4379. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4380. /* Wait for command completes */
  4381. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4382. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4383. S2IO_BIT_RESET)) {
  4384. DBG_PRINT(ERR_DBG, "%s: Adding ",
  4385. dev->name);
  4386. DBG_PRINT(ERR_DBG, "Multicasts failed\n");
  4387. return;
  4388. }
  4389. }
  4390. }
  4391. }
  4392. /**
  4393. * s2io_set_mac_addr - Programs the Xframe mac address
  4394. * @dev : pointer to the device structure.
  4395. * @addr: a uchar pointer to the new mac address which is to be set.
  4396. * Description : This procedure will program the Xframe to receive
  4397. * frames with new Mac Address
  4398. * Return value: SUCCESS on success and an appropriate (-)ve integer
  4399. * as defined in errno.h file on failure.
  4400. */
  4401. static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
  4402. {
  4403. struct s2io_nic *sp = dev->priv;
  4404. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4405. register u64 val64, mac_addr = 0;
  4406. int i;
  4407. u64 old_mac_addr = 0;
  4408. /*
  4409. * Set the new MAC address as the new unicast filter and reflect this
  4410. * change on the device address registered with the OS. It will be
  4411. * at offset 0.
  4412. */
  4413. for (i = 0; i < ETH_ALEN; i++) {
  4414. mac_addr <<= 8;
  4415. mac_addr |= addr[i];
  4416. old_mac_addr <<= 8;
  4417. old_mac_addr |= sp->def_mac_addr[0].mac_addr[i];
  4418. }
  4419. if(0 == mac_addr)
  4420. return SUCCESS;
  4421. /* Update the internal structure with this new mac address */
  4422. if(mac_addr != old_mac_addr) {
  4423. memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
  4424. sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_addr);
  4425. sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_addr >> 8);
  4426. sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_addr >> 16);
  4427. sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_addr >> 24);
  4428. sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_addr >> 32);
  4429. sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_addr >> 40);
  4430. }
  4431. writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
  4432. &bar0->rmac_addr_data0_mem);
  4433. val64 =
  4434. RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4435. RMAC_ADDR_CMD_MEM_OFFSET(0);
  4436. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4437. /* Wait till command completes */
  4438. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4439. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET)) {
  4440. DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
  4441. return FAILURE;
  4442. }
  4443. return SUCCESS;
  4444. }
  4445. /**
  4446. * s2io_ethtool_sset - Sets different link parameters.
  4447. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
  4448. * @info: pointer to the structure with parameters given by ethtool to set
  4449. * link information.
  4450. * Description:
  4451. * The function sets different link parameters provided by the user onto
  4452. * the NIC.
  4453. * Return value:
  4454. * 0 on success.
  4455. */
  4456. static int s2io_ethtool_sset(struct net_device *dev,
  4457. struct ethtool_cmd *info)
  4458. {
  4459. struct s2io_nic *sp = dev->priv;
  4460. if ((info->autoneg == AUTONEG_ENABLE) ||
  4461. (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
  4462. return -EINVAL;
  4463. else {
  4464. s2io_close(sp->dev);
  4465. s2io_open(sp->dev);
  4466. }
  4467. return 0;
  4468. }
  4469. /**
  4470. * s2io_ethtol_gset - Return link specific information.
  4471. * @sp : private member of the device structure, pointer to the
  4472. * s2io_nic structure.
  4473. * @info : pointer to the structure with parameters given by ethtool
  4474. * to return link information.
  4475. * Description:
  4476. * Returns link specific information like speed, duplex etc.. to ethtool.
  4477. * Return value :
  4478. * return 0 on success.
  4479. */
  4480. static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
  4481. {
  4482. struct s2io_nic *sp = dev->priv;
  4483. info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  4484. info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  4485. info->port = PORT_FIBRE;
  4486. /* info->transceiver?? TODO */
  4487. if (netif_carrier_ok(sp->dev)) {
  4488. info->speed = 10000;
  4489. info->duplex = DUPLEX_FULL;
  4490. } else {
  4491. info->speed = -1;
  4492. info->duplex = -1;
  4493. }
  4494. info->autoneg = AUTONEG_DISABLE;
  4495. return 0;
  4496. }
  4497. /**
  4498. * s2io_ethtool_gdrvinfo - Returns driver specific information.
  4499. * @sp : private member of the device structure, which is a pointer to the
  4500. * s2io_nic structure.
  4501. * @info : pointer to the structure with parameters given by ethtool to
  4502. * return driver information.
  4503. * Description:
  4504. * Returns driver specefic information like name, version etc.. to ethtool.
  4505. * Return value:
  4506. * void
  4507. */
  4508. static void s2io_ethtool_gdrvinfo(struct net_device *dev,
  4509. struct ethtool_drvinfo *info)
  4510. {
  4511. struct s2io_nic *sp = dev->priv;
  4512. strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
  4513. strncpy(info->version, s2io_driver_version, sizeof(info->version));
  4514. strncpy(info->fw_version, "", sizeof(info->fw_version));
  4515. strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
  4516. info->regdump_len = XENA_REG_SPACE;
  4517. info->eedump_len = XENA_EEPROM_SPACE;
  4518. info->testinfo_len = S2IO_TEST_LEN;
  4519. if (sp->device_type == XFRAME_I_DEVICE)
  4520. info->n_stats = XFRAME_I_STAT_LEN;
  4521. else
  4522. info->n_stats = XFRAME_II_STAT_LEN;
  4523. }
  4524. /**
  4525. * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
  4526. * @sp: private member of the device structure, which is a pointer to the
  4527. * s2io_nic structure.
  4528. * @regs : pointer to the structure with parameters given by ethtool for
  4529. * dumping the registers.
  4530. * @reg_space: The input argumnet into which all the registers are dumped.
  4531. * Description:
  4532. * Dumps the entire register space of xFrame NIC into the user given
  4533. * buffer area.
  4534. * Return value :
  4535. * void .
  4536. */
  4537. static void s2io_ethtool_gregs(struct net_device *dev,
  4538. struct ethtool_regs *regs, void *space)
  4539. {
  4540. int i;
  4541. u64 reg;
  4542. u8 *reg_space = (u8 *) space;
  4543. struct s2io_nic *sp = dev->priv;
  4544. regs->len = XENA_REG_SPACE;
  4545. regs->version = sp->pdev->subsystem_device;
  4546. for (i = 0; i < regs->len; i += 8) {
  4547. reg = readq(sp->bar0 + i);
  4548. memcpy((reg_space + i), &reg, 8);
  4549. }
  4550. }
  4551. /**
  4552. * s2io_phy_id - timer function that alternates adapter LED.
  4553. * @data : address of the private member of the device structure, which
  4554. * is a pointer to the s2io_nic structure, provided as an u32.
  4555. * Description: This is actually the timer function that alternates the
  4556. * adapter LED bit of the adapter control bit to set/reset every time on
  4557. * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
  4558. * once every second.
  4559. */
  4560. static void s2io_phy_id(unsigned long data)
  4561. {
  4562. struct s2io_nic *sp = (struct s2io_nic *) data;
  4563. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4564. u64 val64 = 0;
  4565. u16 subid;
  4566. subid = sp->pdev->subsystem_device;
  4567. if ((sp->device_type == XFRAME_II_DEVICE) ||
  4568. ((subid & 0xFF) >= 0x07)) {
  4569. val64 = readq(&bar0->gpio_control);
  4570. val64 ^= GPIO_CTRL_GPIO_0;
  4571. writeq(val64, &bar0->gpio_control);
  4572. } else {
  4573. val64 = readq(&bar0->adapter_control);
  4574. val64 ^= ADAPTER_LED_ON;
  4575. writeq(val64, &bar0->adapter_control);
  4576. }
  4577. mod_timer(&sp->id_timer, jiffies + HZ / 2);
  4578. }
  4579. /**
  4580. * s2io_ethtool_idnic - To physically identify the nic on the system.
  4581. * @sp : private member of the device structure, which is a pointer to the
  4582. * s2io_nic structure.
  4583. * @id : pointer to the structure with identification parameters given by
  4584. * ethtool.
  4585. * Description: Used to physically identify the NIC on the system.
  4586. * The Link LED will blink for a time specified by the user for
  4587. * identification.
  4588. * NOTE: The Link has to be Up to be able to blink the LED. Hence
  4589. * identification is possible only if it's link is up.
  4590. * Return value:
  4591. * int , returns 0 on success
  4592. */
  4593. static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
  4594. {
  4595. u64 val64 = 0, last_gpio_ctrl_val;
  4596. struct s2io_nic *sp = dev->priv;
  4597. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4598. u16 subid;
  4599. subid = sp->pdev->subsystem_device;
  4600. last_gpio_ctrl_val = readq(&bar0->gpio_control);
  4601. if ((sp->device_type == XFRAME_I_DEVICE) &&
  4602. ((subid & 0xFF) < 0x07)) {
  4603. val64 = readq(&bar0->adapter_control);
  4604. if (!(val64 & ADAPTER_CNTL_EN)) {
  4605. printk(KERN_ERR
  4606. "Adapter Link down, cannot blink LED\n");
  4607. return -EFAULT;
  4608. }
  4609. }
  4610. if (sp->id_timer.function == NULL) {
  4611. init_timer(&sp->id_timer);
  4612. sp->id_timer.function = s2io_phy_id;
  4613. sp->id_timer.data = (unsigned long) sp;
  4614. }
  4615. mod_timer(&sp->id_timer, jiffies);
  4616. if (data)
  4617. msleep_interruptible(data * HZ);
  4618. else
  4619. msleep_interruptible(MAX_FLICKER_TIME);
  4620. del_timer_sync(&sp->id_timer);
  4621. if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
  4622. writeq(last_gpio_ctrl_val, &bar0->gpio_control);
  4623. last_gpio_ctrl_val = readq(&bar0->gpio_control);
  4624. }
  4625. return 0;
  4626. }
  4627. static void s2io_ethtool_gringparam(struct net_device *dev,
  4628. struct ethtool_ringparam *ering)
  4629. {
  4630. struct s2io_nic *sp = dev->priv;
  4631. int i,tx_desc_count=0,rx_desc_count=0;
  4632. if (sp->rxd_mode == RXD_MODE_1)
  4633. ering->rx_max_pending = MAX_RX_DESC_1;
  4634. else if (sp->rxd_mode == RXD_MODE_3B)
  4635. ering->rx_max_pending = MAX_RX_DESC_2;
  4636. ering->tx_max_pending = MAX_TX_DESC;
  4637. for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
  4638. tx_desc_count += sp->config.tx_cfg[i].fifo_len;
  4639. DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
  4640. ering->tx_pending = tx_desc_count;
  4641. rx_desc_count = 0;
  4642. for (i = 0 ; i < sp->config.rx_ring_num ; i++)
  4643. rx_desc_count += sp->config.rx_cfg[i].num_rxd;
  4644. ering->rx_pending = rx_desc_count;
  4645. ering->rx_mini_max_pending = 0;
  4646. ering->rx_mini_pending = 0;
  4647. if(sp->rxd_mode == RXD_MODE_1)
  4648. ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
  4649. else if (sp->rxd_mode == RXD_MODE_3B)
  4650. ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
  4651. ering->rx_jumbo_pending = rx_desc_count;
  4652. }
  4653. /**
  4654. * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
  4655. * @sp : private member of the device structure, which is a pointer to the
  4656. * s2io_nic structure.
  4657. * @ep : pointer to the structure with pause parameters given by ethtool.
  4658. * Description:
  4659. * Returns the Pause frame generation and reception capability of the NIC.
  4660. * Return value:
  4661. * void
  4662. */
  4663. static void s2io_ethtool_getpause_data(struct net_device *dev,
  4664. struct ethtool_pauseparam *ep)
  4665. {
  4666. u64 val64;
  4667. struct s2io_nic *sp = dev->priv;
  4668. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4669. val64 = readq(&bar0->rmac_pause_cfg);
  4670. if (val64 & RMAC_PAUSE_GEN_ENABLE)
  4671. ep->tx_pause = TRUE;
  4672. if (val64 & RMAC_PAUSE_RX_ENABLE)
  4673. ep->rx_pause = TRUE;
  4674. ep->autoneg = FALSE;
  4675. }
  4676. /**
  4677. * s2io_ethtool_setpause_data - set/reset pause frame generation.
  4678. * @sp : private member of the device structure, which is a pointer to the
  4679. * s2io_nic structure.
  4680. * @ep : pointer to the structure with pause parameters given by ethtool.
  4681. * Description:
  4682. * It can be used to set or reset Pause frame generation or reception
  4683. * support of the NIC.
  4684. * Return value:
  4685. * int, returns 0 on Success
  4686. */
  4687. static int s2io_ethtool_setpause_data(struct net_device *dev,
  4688. struct ethtool_pauseparam *ep)
  4689. {
  4690. u64 val64;
  4691. struct s2io_nic *sp = dev->priv;
  4692. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4693. val64 = readq(&bar0->rmac_pause_cfg);
  4694. if (ep->tx_pause)
  4695. val64 |= RMAC_PAUSE_GEN_ENABLE;
  4696. else
  4697. val64 &= ~RMAC_PAUSE_GEN_ENABLE;
  4698. if (ep->rx_pause)
  4699. val64 |= RMAC_PAUSE_RX_ENABLE;
  4700. else
  4701. val64 &= ~RMAC_PAUSE_RX_ENABLE;
  4702. writeq(val64, &bar0->rmac_pause_cfg);
  4703. return 0;
  4704. }
  4705. /**
  4706. * read_eeprom - reads 4 bytes of data from user given offset.
  4707. * @sp : private member of the device structure, which is a pointer to the
  4708. * s2io_nic structure.
  4709. * @off : offset at which the data must be written
  4710. * @data : Its an output parameter where the data read at the given
  4711. * offset is stored.
  4712. * Description:
  4713. * Will read 4 bytes of data from the user given offset and return the
  4714. * read data.
  4715. * NOTE: Will allow to read only part of the EEPROM visible through the
  4716. * I2C bus.
  4717. * Return value:
  4718. * -1 on failure and 0 on success.
  4719. */
  4720. #define S2IO_DEV_ID 5
  4721. static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
  4722. {
  4723. int ret = -1;
  4724. u32 exit_cnt = 0;
  4725. u64 val64;
  4726. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4727. if (sp->device_type == XFRAME_I_DEVICE) {
  4728. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
  4729. I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
  4730. I2C_CONTROL_CNTL_START;
  4731. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  4732. while (exit_cnt < 5) {
  4733. val64 = readq(&bar0->i2c_control);
  4734. if (I2C_CONTROL_CNTL_END(val64)) {
  4735. *data = I2C_CONTROL_GET_DATA(val64);
  4736. ret = 0;
  4737. break;
  4738. }
  4739. msleep(50);
  4740. exit_cnt++;
  4741. }
  4742. }
  4743. if (sp->device_type == XFRAME_II_DEVICE) {
  4744. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  4745. SPI_CONTROL_BYTECNT(0x3) |
  4746. SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
  4747. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4748. val64 |= SPI_CONTROL_REQ;
  4749. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4750. while (exit_cnt < 5) {
  4751. val64 = readq(&bar0->spi_control);
  4752. if (val64 & SPI_CONTROL_NACK) {
  4753. ret = 1;
  4754. break;
  4755. } else if (val64 & SPI_CONTROL_DONE) {
  4756. *data = readq(&bar0->spi_data);
  4757. *data &= 0xffffff;
  4758. ret = 0;
  4759. break;
  4760. }
  4761. msleep(50);
  4762. exit_cnt++;
  4763. }
  4764. }
  4765. return ret;
  4766. }
  4767. /**
  4768. * write_eeprom - actually writes the relevant part of the data value.
  4769. * @sp : private member of the device structure, which is a pointer to the
  4770. * s2io_nic structure.
  4771. * @off : offset at which the data must be written
  4772. * @data : The data that is to be written
  4773. * @cnt : Number of bytes of the data that are actually to be written into
  4774. * the Eeprom. (max of 3)
  4775. * Description:
  4776. * Actually writes the relevant part of the data value into the Eeprom
  4777. * through the I2C bus.
  4778. * Return value:
  4779. * 0 on success, -1 on failure.
  4780. */
  4781. static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
  4782. {
  4783. int exit_cnt = 0, ret = -1;
  4784. u64 val64;
  4785. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4786. if (sp->device_type == XFRAME_I_DEVICE) {
  4787. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
  4788. I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
  4789. I2C_CONTROL_CNTL_START;
  4790. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  4791. while (exit_cnt < 5) {
  4792. val64 = readq(&bar0->i2c_control);
  4793. if (I2C_CONTROL_CNTL_END(val64)) {
  4794. if (!(val64 & I2C_CONTROL_NACK))
  4795. ret = 0;
  4796. break;
  4797. }
  4798. msleep(50);
  4799. exit_cnt++;
  4800. }
  4801. }
  4802. if (sp->device_type == XFRAME_II_DEVICE) {
  4803. int write_cnt = (cnt == 8) ? 0 : cnt;
  4804. writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
  4805. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  4806. SPI_CONTROL_BYTECNT(write_cnt) |
  4807. SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
  4808. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4809. val64 |= SPI_CONTROL_REQ;
  4810. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4811. while (exit_cnt < 5) {
  4812. val64 = readq(&bar0->spi_control);
  4813. if (val64 & SPI_CONTROL_NACK) {
  4814. ret = 1;
  4815. break;
  4816. } else if (val64 & SPI_CONTROL_DONE) {
  4817. ret = 0;
  4818. break;
  4819. }
  4820. msleep(50);
  4821. exit_cnt++;
  4822. }
  4823. }
  4824. return ret;
  4825. }
  4826. static void s2io_vpd_read(struct s2io_nic *nic)
  4827. {
  4828. u8 *vpd_data;
  4829. u8 data;
  4830. int i=0, cnt, fail = 0;
  4831. int vpd_addr = 0x80;
  4832. if (nic->device_type == XFRAME_II_DEVICE) {
  4833. strcpy(nic->product_name, "Xframe II 10GbE network adapter");
  4834. vpd_addr = 0x80;
  4835. }
  4836. else {
  4837. strcpy(nic->product_name, "Xframe I 10GbE network adapter");
  4838. vpd_addr = 0x50;
  4839. }
  4840. strcpy(nic->serial_num, "NOT AVAILABLE");
  4841. vpd_data = kmalloc(256, GFP_KERNEL);
  4842. if (!vpd_data) {
  4843. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  4844. return;
  4845. }
  4846. nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
  4847. for (i = 0; i < 256; i +=4 ) {
  4848. pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
  4849. pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
  4850. pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
  4851. for (cnt = 0; cnt <5; cnt++) {
  4852. msleep(2);
  4853. pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
  4854. if (data == 0x80)
  4855. break;
  4856. }
  4857. if (cnt >= 5) {
  4858. DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
  4859. fail = 1;
  4860. break;
  4861. }
  4862. pci_read_config_dword(nic->pdev, (vpd_addr + 4),
  4863. (u32 *)&vpd_data[i]);
  4864. }
  4865. if(!fail) {
  4866. /* read serial number of adapter */
  4867. for (cnt = 0; cnt < 256; cnt++) {
  4868. if ((vpd_data[cnt] == 'S') &&
  4869. (vpd_data[cnt+1] == 'N') &&
  4870. (vpd_data[cnt+2] < VPD_STRING_LEN)) {
  4871. memset(nic->serial_num, 0, VPD_STRING_LEN);
  4872. memcpy(nic->serial_num, &vpd_data[cnt + 3],
  4873. vpd_data[cnt+2]);
  4874. break;
  4875. }
  4876. }
  4877. }
  4878. if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
  4879. memset(nic->product_name, 0, vpd_data[1]);
  4880. memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
  4881. }
  4882. kfree(vpd_data);
  4883. nic->mac_control.stats_info->sw_stat.mem_freed += 256;
  4884. }
  4885. /**
  4886. * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
  4887. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
  4888. * @eeprom : pointer to the user level structure provided by ethtool,
  4889. * containing all relevant information.
  4890. * @data_buf : user defined value to be written into Eeprom.
  4891. * Description: Reads the values stored in the Eeprom at given offset
  4892. * for a given length. Stores these values int the input argument data
  4893. * buffer 'data_buf' and returns these to the caller (ethtool.)
  4894. * Return value:
  4895. * int 0 on success
  4896. */
  4897. static int s2io_ethtool_geeprom(struct net_device *dev,
  4898. struct ethtool_eeprom *eeprom, u8 * data_buf)
  4899. {
  4900. u32 i, valid;
  4901. u64 data;
  4902. struct s2io_nic *sp = dev->priv;
  4903. eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
  4904. if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
  4905. eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
  4906. for (i = 0; i < eeprom->len; i += 4) {
  4907. if (read_eeprom(sp, (eeprom->offset + i), &data)) {
  4908. DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
  4909. return -EFAULT;
  4910. }
  4911. valid = INV(data);
  4912. memcpy((data_buf + i), &valid, 4);
  4913. }
  4914. return 0;
  4915. }
  4916. /**
  4917. * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
  4918. * @sp : private member of the device structure, which is a pointer to the
  4919. * s2io_nic structure.
  4920. * @eeprom : pointer to the user level structure provided by ethtool,
  4921. * containing all relevant information.
  4922. * @data_buf ; user defined value to be written into Eeprom.
  4923. * Description:
  4924. * Tries to write the user provided value in the Eeprom, at the offset
  4925. * given by the user.
  4926. * Return value:
  4927. * 0 on success, -EFAULT on failure.
  4928. */
  4929. static int s2io_ethtool_seeprom(struct net_device *dev,
  4930. struct ethtool_eeprom *eeprom,
  4931. u8 * data_buf)
  4932. {
  4933. int len = eeprom->len, cnt = 0;
  4934. u64 valid = 0, data;
  4935. struct s2io_nic *sp = dev->priv;
  4936. if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
  4937. DBG_PRINT(ERR_DBG,
  4938. "ETHTOOL_WRITE_EEPROM Err: Magic value ");
  4939. DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
  4940. eeprom->magic);
  4941. return -EFAULT;
  4942. }
  4943. while (len) {
  4944. data = (u32) data_buf[cnt] & 0x000000FF;
  4945. if (data) {
  4946. valid = (u32) (data << 24);
  4947. } else
  4948. valid = data;
  4949. if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
  4950. DBG_PRINT(ERR_DBG,
  4951. "ETHTOOL_WRITE_EEPROM Err: Cannot ");
  4952. DBG_PRINT(ERR_DBG,
  4953. "write into the specified offset\n");
  4954. return -EFAULT;
  4955. }
  4956. cnt++;
  4957. len--;
  4958. }
  4959. return 0;
  4960. }
  4961. /**
  4962. * s2io_register_test - reads and writes into all clock domains.
  4963. * @sp : private member of the device structure, which is a pointer to the
  4964. * s2io_nic structure.
  4965. * @data : variable that returns the result of each of the test conducted b
  4966. * by the driver.
  4967. * Description:
  4968. * Read and write into all clock domains. The NIC has 3 clock domains,
  4969. * see that registers in all the three regions are accessible.
  4970. * Return value:
  4971. * 0 on success.
  4972. */
  4973. static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
  4974. {
  4975. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4976. u64 val64 = 0, exp_val;
  4977. int fail = 0;
  4978. val64 = readq(&bar0->pif_rd_swapper_fb);
  4979. if (val64 != 0x123456789abcdefULL) {
  4980. fail = 1;
  4981. DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
  4982. }
  4983. val64 = readq(&bar0->rmac_pause_cfg);
  4984. if (val64 != 0xc000ffff00000000ULL) {
  4985. fail = 1;
  4986. DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
  4987. }
  4988. val64 = readq(&bar0->rx_queue_cfg);
  4989. if (sp->device_type == XFRAME_II_DEVICE)
  4990. exp_val = 0x0404040404040404ULL;
  4991. else
  4992. exp_val = 0x0808080808080808ULL;
  4993. if (val64 != exp_val) {
  4994. fail = 1;
  4995. DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
  4996. }
  4997. val64 = readq(&bar0->xgxs_efifo_cfg);
  4998. if (val64 != 0x000000001923141EULL) {
  4999. fail = 1;
  5000. DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
  5001. }
  5002. val64 = 0x5A5A5A5A5A5A5A5AULL;
  5003. writeq(val64, &bar0->xmsi_data);
  5004. val64 = readq(&bar0->xmsi_data);
  5005. if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
  5006. fail = 1;
  5007. DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
  5008. }
  5009. val64 = 0xA5A5A5A5A5A5A5A5ULL;
  5010. writeq(val64, &bar0->xmsi_data);
  5011. val64 = readq(&bar0->xmsi_data);
  5012. if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
  5013. fail = 1;
  5014. DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
  5015. }
  5016. *data = fail;
  5017. return fail;
  5018. }
  5019. /**
  5020. * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
  5021. * @sp : private member of the device structure, which is a pointer to the
  5022. * s2io_nic structure.
  5023. * @data:variable that returns the result of each of the test conducted by
  5024. * the driver.
  5025. * Description:
  5026. * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
  5027. * register.
  5028. * Return value:
  5029. * 0 on success.
  5030. */
  5031. static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
  5032. {
  5033. int fail = 0;
  5034. u64 ret_data, org_4F0, org_7F0;
  5035. u8 saved_4F0 = 0, saved_7F0 = 0;
  5036. struct net_device *dev = sp->dev;
  5037. /* Test Write Error at offset 0 */
  5038. /* Note that SPI interface allows write access to all areas
  5039. * of EEPROM. Hence doing all negative testing only for Xframe I.
  5040. */
  5041. if (sp->device_type == XFRAME_I_DEVICE)
  5042. if (!write_eeprom(sp, 0, 0, 3))
  5043. fail = 1;
  5044. /* Save current values at offsets 0x4F0 and 0x7F0 */
  5045. if (!read_eeprom(sp, 0x4F0, &org_4F0))
  5046. saved_4F0 = 1;
  5047. if (!read_eeprom(sp, 0x7F0, &org_7F0))
  5048. saved_7F0 = 1;
  5049. /* Test Write at offset 4f0 */
  5050. if (write_eeprom(sp, 0x4F0, 0x012345, 3))
  5051. fail = 1;
  5052. if (read_eeprom(sp, 0x4F0, &ret_data))
  5053. fail = 1;
  5054. if (ret_data != 0x012345) {
  5055. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
  5056. "Data written %llx Data read %llx\n",
  5057. dev->name, (unsigned long long)0x12345,
  5058. (unsigned long long)ret_data);
  5059. fail = 1;
  5060. }
  5061. /* Reset the EEPROM data go FFFF */
  5062. write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
  5063. /* Test Write Request Error at offset 0x7c */
  5064. if (sp->device_type == XFRAME_I_DEVICE)
  5065. if (!write_eeprom(sp, 0x07C, 0, 3))
  5066. fail = 1;
  5067. /* Test Write Request at offset 0x7f0 */
  5068. if (write_eeprom(sp, 0x7F0, 0x012345, 3))
  5069. fail = 1;
  5070. if (read_eeprom(sp, 0x7F0, &ret_data))
  5071. fail = 1;
  5072. if (ret_data != 0x012345) {
  5073. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
  5074. "Data written %llx Data read %llx\n",
  5075. dev->name, (unsigned long long)0x12345,
  5076. (unsigned long long)ret_data);
  5077. fail = 1;
  5078. }
  5079. /* Reset the EEPROM data go FFFF */
  5080. write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
  5081. if (sp->device_type == XFRAME_I_DEVICE) {
  5082. /* Test Write Error at offset 0x80 */
  5083. if (!write_eeprom(sp, 0x080, 0, 3))
  5084. fail = 1;
  5085. /* Test Write Error at offset 0xfc */
  5086. if (!write_eeprom(sp, 0x0FC, 0, 3))
  5087. fail = 1;
  5088. /* Test Write Error at offset 0x100 */
  5089. if (!write_eeprom(sp, 0x100, 0, 3))
  5090. fail = 1;
  5091. /* Test Write Error at offset 4ec */
  5092. if (!write_eeprom(sp, 0x4EC, 0, 3))
  5093. fail = 1;
  5094. }
  5095. /* Restore values at offsets 0x4F0 and 0x7F0 */
  5096. if (saved_4F0)
  5097. write_eeprom(sp, 0x4F0, org_4F0, 3);
  5098. if (saved_7F0)
  5099. write_eeprom(sp, 0x7F0, org_7F0, 3);
  5100. *data = fail;
  5101. return fail;
  5102. }
  5103. /**
  5104. * s2io_bist_test - invokes the MemBist test of the card .
  5105. * @sp : private member of the device structure, which is a pointer to the
  5106. * s2io_nic structure.
  5107. * @data:variable that returns the result of each of the test conducted by
  5108. * the driver.
  5109. * Description:
  5110. * This invokes the MemBist test of the card. We give around
  5111. * 2 secs time for the Test to complete. If it's still not complete
  5112. * within this peiod, we consider that the test failed.
  5113. * Return value:
  5114. * 0 on success and -1 on failure.
  5115. */
  5116. static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
  5117. {
  5118. u8 bist = 0;
  5119. int cnt = 0, ret = -1;
  5120. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  5121. bist |= PCI_BIST_START;
  5122. pci_write_config_word(sp->pdev, PCI_BIST, bist);
  5123. while (cnt < 20) {
  5124. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  5125. if (!(bist & PCI_BIST_START)) {
  5126. *data = (bist & PCI_BIST_CODE_MASK);
  5127. ret = 0;
  5128. break;
  5129. }
  5130. msleep(100);
  5131. cnt++;
  5132. }
  5133. return ret;
  5134. }
  5135. /**
  5136. * s2io-link_test - verifies the link state of the nic
  5137. * @sp ; private member of the device structure, which is a pointer to the
  5138. * s2io_nic structure.
  5139. * @data: variable that returns the result of each of the test conducted by
  5140. * the driver.
  5141. * Description:
  5142. * The function verifies the link state of the NIC and updates the input
  5143. * argument 'data' appropriately.
  5144. * Return value:
  5145. * 0 on success.
  5146. */
  5147. static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
  5148. {
  5149. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5150. u64 val64;
  5151. val64 = readq(&bar0->adapter_status);
  5152. if(!(LINK_IS_UP(val64)))
  5153. *data = 1;
  5154. else
  5155. *data = 0;
  5156. return *data;
  5157. }
  5158. /**
  5159. * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
  5160. * @sp - private member of the device structure, which is a pointer to the
  5161. * s2io_nic structure.
  5162. * @data - variable that returns the result of each of the test
  5163. * conducted by the driver.
  5164. * Description:
  5165. * This is one of the offline test that tests the read and write
  5166. * access to the RldRam chip on the NIC.
  5167. * Return value:
  5168. * 0 on success.
  5169. */
  5170. static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
  5171. {
  5172. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5173. u64 val64;
  5174. int cnt, iteration = 0, test_fail = 0;
  5175. val64 = readq(&bar0->adapter_control);
  5176. val64 &= ~ADAPTER_ECC_EN;
  5177. writeq(val64, &bar0->adapter_control);
  5178. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5179. val64 |= MC_RLDRAM_TEST_MODE;
  5180. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5181. val64 = readq(&bar0->mc_rldram_mrs);
  5182. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
  5183. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  5184. val64 |= MC_RLDRAM_MRS_ENABLE;
  5185. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  5186. while (iteration < 2) {
  5187. val64 = 0x55555555aaaa0000ULL;
  5188. if (iteration == 1) {
  5189. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5190. }
  5191. writeq(val64, &bar0->mc_rldram_test_d0);
  5192. val64 = 0xaaaa5a5555550000ULL;
  5193. if (iteration == 1) {
  5194. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5195. }
  5196. writeq(val64, &bar0->mc_rldram_test_d1);
  5197. val64 = 0x55aaaaaaaa5a0000ULL;
  5198. if (iteration == 1) {
  5199. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5200. }
  5201. writeq(val64, &bar0->mc_rldram_test_d2);
  5202. val64 = (u64) (0x0000003ffffe0100ULL);
  5203. writeq(val64, &bar0->mc_rldram_test_add);
  5204. val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
  5205. MC_RLDRAM_TEST_GO;
  5206. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5207. for (cnt = 0; cnt < 5; cnt++) {
  5208. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5209. if (val64 & MC_RLDRAM_TEST_DONE)
  5210. break;
  5211. msleep(200);
  5212. }
  5213. if (cnt == 5)
  5214. break;
  5215. val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
  5216. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5217. for (cnt = 0; cnt < 5; cnt++) {
  5218. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5219. if (val64 & MC_RLDRAM_TEST_DONE)
  5220. break;
  5221. msleep(500);
  5222. }
  5223. if (cnt == 5)
  5224. break;
  5225. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5226. if (!(val64 & MC_RLDRAM_TEST_PASS))
  5227. test_fail = 1;
  5228. iteration++;
  5229. }
  5230. *data = test_fail;
  5231. /* Bring the adapter out of test mode */
  5232. SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
  5233. return test_fail;
  5234. }
  5235. /**
  5236. * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
  5237. * @sp : private member of the device structure, which is a pointer to the
  5238. * s2io_nic structure.
  5239. * @ethtest : pointer to a ethtool command specific structure that will be
  5240. * returned to the user.
  5241. * @data : variable that returns the result of each of the test
  5242. * conducted by the driver.
  5243. * Description:
  5244. * This function conducts 6 tests ( 4 offline and 2 online) to determine
  5245. * the health of the card.
  5246. * Return value:
  5247. * void
  5248. */
  5249. static void s2io_ethtool_test(struct net_device *dev,
  5250. struct ethtool_test *ethtest,
  5251. uint64_t * data)
  5252. {
  5253. struct s2io_nic *sp = dev->priv;
  5254. int orig_state = netif_running(sp->dev);
  5255. if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
  5256. /* Offline Tests. */
  5257. if (orig_state)
  5258. s2io_close(sp->dev);
  5259. if (s2io_register_test(sp, &data[0]))
  5260. ethtest->flags |= ETH_TEST_FL_FAILED;
  5261. s2io_reset(sp);
  5262. if (s2io_rldram_test(sp, &data[3]))
  5263. ethtest->flags |= ETH_TEST_FL_FAILED;
  5264. s2io_reset(sp);
  5265. if (s2io_eeprom_test(sp, &data[1]))
  5266. ethtest->flags |= ETH_TEST_FL_FAILED;
  5267. if (s2io_bist_test(sp, &data[4]))
  5268. ethtest->flags |= ETH_TEST_FL_FAILED;
  5269. if (orig_state)
  5270. s2io_open(sp->dev);
  5271. data[2] = 0;
  5272. } else {
  5273. /* Online Tests. */
  5274. if (!orig_state) {
  5275. DBG_PRINT(ERR_DBG,
  5276. "%s: is not up, cannot run test\n",
  5277. dev->name);
  5278. data[0] = -1;
  5279. data[1] = -1;
  5280. data[2] = -1;
  5281. data[3] = -1;
  5282. data[4] = -1;
  5283. }
  5284. if (s2io_link_test(sp, &data[2]))
  5285. ethtest->flags |= ETH_TEST_FL_FAILED;
  5286. data[0] = 0;
  5287. data[1] = 0;
  5288. data[3] = 0;
  5289. data[4] = 0;
  5290. }
  5291. }
  5292. static void s2io_get_ethtool_stats(struct net_device *dev,
  5293. struct ethtool_stats *estats,
  5294. u64 * tmp_stats)
  5295. {
  5296. int i = 0, k;
  5297. struct s2io_nic *sp = dev->priv;
  5298. struct stat_block *stat_info = sp->mac_control.stats_info;
  5299. s2io_updt_stats(sp);
  5300. tmp_stats[i++] =
  5301. (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
  5302. le32_to_cpu(stat_info->tmac_frms);
  5303. tmp_stats[i++] =
  5304. (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
  5305. le32_to_cpu(stat_info->tmac_data_octets);
  5306. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
  5307. tmp_stats[i++] =
  5308. (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
  5309. le32_to_cpu(stat_info->tmac_mcst_frms);
  5310. tmp_stats[i++] =
  5311. (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
  5312. le32_to_cpu(stat_info->tmac_bcst_frms);
  5313. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
  5314. tmp_stats[i++] =
  5315. (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
  5316. le32_to_cpu(stat_info->tmac_ttl_octets);
  5317. tmp_stats[i++] =
  5318. (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
  5319. le32_to_cpu(stat_info->tmac_ucst_frms);
  5320. tmp_stats[i++] =
  5321. (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
  5322. le32_to_cpu(stat_info->tmac_nucst_frms);
  5323. tmp_stats[i++] =
  5324. (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
  5325. le32_to_cpu(stat_info->tmac_any_err_frms);
  5326. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
  5327. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
  5328. tmp_stats[i++] =
  5329. (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
  5330. le32_to_cpu(stat_info->tmac_vld_ip);
  5331. tmp_stats[i++] =
  5332. (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
  5333. le32_to_cpu(stat_info->tmac_drop_ip);
  5334. tmp_stats[i++] =
  5335. (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
  5336. le32_to_cpu(stat_info->tmac_icmp);
  5337. tmp_stats[i++] =
  5338. (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
  5339. le32_to_cpu(stat_info->tmac_rst_tcp);
  5340. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
  5341. tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
  5342. le32_to_cpu(stat_info->tmac_udp);
  5343. tmp_stats[i++] =
  5344. (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
  5345. le32_to_cpu(stat_info->rmac_vld_frms);
  5346. tmp_stats[i++] =
  5347. (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
  5348. le32_to_cpu(stat_info->rmac_data_octets);
  5349. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
  5350. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
  5351. tmp_stats[i++] =
  5352. (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
  5353. le32_to_cpu(stat_info->rmac_vld_mcst_frms);
  5354. tmp_stats[i++] =
  5355. (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
  5356. le32_to_cpu(stat_info->rmac_vld_bcst_frms);
  5357. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
  5358. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
  5359. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
  5360. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
  5361. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
  5362. tmp_stats[i++] =
  5363. (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
  5364. le32_to_cpu(stat_info->rmac_ttl_octets);
  5365. tmp_stats[i++] =
  5366. (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
  5367. << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
  5368. tmp_stats[i++] =
  5369. (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
  5370. << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
  5371. tmp_stats[i++] =
  5372. (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
  5373. le32_to_cpu(stat_info->rmac_discarded_frms);
  5374. tmp_stats[i++] =
  5375. (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
  5376. << 32 | le32_to_cpu(stat_info->rmac_drop_events);
  5377. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
  5378. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
  5379. tmp_stats[i++] =
  5380. (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
  5381. le32_to_cpu(stat_info->rmac_usized_frms);
  5382. tmp_stats[i++] =
  5383. (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
  5384. le32_to_cpu(stat_info->rmac_osized_frms);
  5385. tmp_stats[i++] =
  5386. (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
  5387. le32_to_cpu(stat_info->rmac_frag_frms);
  5388. tmp_stats[i++] =
  5389. (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
  5390. le32_to_cpu(stat_info->rmac_jabber_frms);
  5391. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
  5392. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
  5393. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
  5394. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
  5395. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
  5396. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
  5397. tmp_stats[i++] =
  5398. (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
  5399. le32_to_cpu(stat_info->rmac_ip);
  5400. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
  5401. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
  5402. tmp_stats[i++] =
  5403. (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
  5404. le32_to_cpu(stat_info->rmac_drop_ip);
  5405. tmp_stats[i++] =
  5406. (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
  5407. le32_to_cpu(stat_info->rmac_icmp);
  5408. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
  5409. tmp_stats[i++] =
  5410. (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
  5411. le32_to_cpu(stat_info->rmac_udp);
  5412. tmp_stats[i++] =
  5413. (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
  5414. le32_to_cpu(stat_info->rmac_err_drp_udp);
  5415. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
  5416. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
  5417. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
  5418. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
  5419. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
  5420. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
  5421. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
  5422. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
  5423. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
  5424. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
  5425. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
  5426. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
  5427. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
  5428. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
  5429. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
  5430. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
  5431. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
  5432. tmp_stats[i++] =
  5433. (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
  5434. le32_to_cpu(stat_info->rmac_pause_cnt);
  5435. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
  5436. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
  5437. tmp_stats[i++] =
  5438. (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
  5439. le32_to_cpu(stat_info->rmac_accepted_ip);
  5440. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
  5441. tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
  5442. tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
  5443. tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
  5444. tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
  5445. tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
  5446. tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
  5447. tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
  5448. tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
  5449. tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
  5450. tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
  5451. tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
  5452. tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
  5453. tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
  5454. tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
  5455. tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
  5456. tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
  5457. tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
  5458. tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
  5459. /* Enhanced statistics exist only for Hercules */
  5460. if(sp->device_type == XFRAME_II_DEVICE) {
  5461. tmp_stats[i++] =
  5462. le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
  5463. tmp_stats[i++] =
  5464. le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
  5465. tmp_stats[i++] =
  5466. le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
  5467. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
  5468. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
  5469. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
  5470. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
  5471. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
  5472. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
  5473. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
  5474. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
  5475. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
  5476. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
  5477. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
  5478. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
  5479. tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
  5480. }
  5481. tmp_stats[i++] = 0;
  5482. tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
  5483. tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
  5484. tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
  5485. tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
  5486. tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
  5487. tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
  5488. for (k = 0; k < MAX_RX_RINGS; k++)
  5489. tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
  5490. tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
  5491. tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
  5492. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
  5493. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
  5494. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
  5495. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
  5496. tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
  5497. tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
  5498. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
  5499. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
  5500. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
  5501. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
  5502. tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
  5503. tmp_stats[i++] = stat_info->sw_stat.sending_both;
  5504. tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
  5505. tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
  5506. if (stat_info->sw_stat.num_aggregations) {
  5507. u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
  5508. int count = 0;
  5509. /*
  5510. * Since 64-bit divide does not work on all platforms,
  5511. * do repeated subtraction.
  5512. */
  5513. while (tmp >= stat_info->sw_stat.num_aggregations) {
  5514. tmp -= stat_info->sw_stat.num_aggregations;
  5515. count++;
  5516. }
  5517. tmp_stats[i++] = count;
  5518. }
  5519. else
  5520. tmp_stats[i++] = 0;
  5521. tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
  5522. tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
  5523. tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
  5524. tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
  5525. tmp_stats[i++] = stat_info->sw_stat.mem_freed;
  5526. tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
  5527. tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
  5528. tmp_stats[i++] = stat_info->sw_stat.link_up_time;
  5529. tmp_stats[i++] = stat_info->sw_stat.link_down_time;
  5530. tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
  5531. tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
  5532. tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
  5533. tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
  5534. tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
  5535. tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
  5536. tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
  5537. tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
  5538. tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
  5539. tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
  5540. tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
  5541. tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
  5542. tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
  5543. tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
  5544. tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
  5545. tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
  5546. tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
  5547. tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
  5548. tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
  5549. tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
  5550. tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
  5551. tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
  5552. tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
  5553. tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
  5554. tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
  5555. tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
  5556. tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
  5557. tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
  5558. tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
  5559. tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
  5560. tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
  5561. }
  5562. static int s2io_ethtool_get_regs_len(struct net_device *dev)
  5563. {
  5564. return (XENA_REG_SPACE);
  5565. }
  5566. static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
  5567. {
  5568. struct s2io_nic *sp = dev->priv;
  5569. return (sp->rx_csum);
  5570. }
  5571. static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
  5572. {
  5573. struct s2io_nic *sp = dev->priv;
  5574. if (data)
  5575. sp->rx_csum = 1;
  5576. else
  5577. sp->rx_csum = 0;
  5578. return 0;
  5579. }
  5580. static int s2io_get_eeprom_len(struct net_device *dev)
  5581. {
  5582. return (XENA_EEPROM_SPACE);
  5583. }
  5584. static int s2io_ethtool_self_test_count(struct net_device *dev)
  5585. {
  5586. return (S2IO_TEST_LEN);
  5587. }
  5588. static void s2io_ethtool_get_strings(struct net_device *dev,
  5589. u32 stringset, u8 * data)
  5590. {
  5591. int stat_size = 0;
  5592. struct s2io_nic *sp = dev->priv;
  5593. switch (stringset) {
  5594. case ETH_SS_TEST:
  5595. memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
  5596. break;
  5597. case ETH_SS_STATS:
  5598. stat_size = sizeof(ethtool_xena_stats_keys);
  5599. memcpy(data, &ethtool_xena_stats_keys,stat_size);
  5600. if(sp->device_type == XFRAME_II_DEVICE) {
  5601. memcpy(data + stat_size,
  5602. &ethtool_enhanced_stats_keys,
  5603. sizeof(ethtool_enhanced_stats_keys));
  5604. stat_size += sizeof(ethtool_enhanced_stats_keys);
  5605. }
  5606. memcpy(data + stat_size, &ethtool_driver_stats_keys,
  5607. sizeof(ethtool_driver_stats_keys));
  5608. }
  5609. }
  5610. static int s2io_ethtool_get_stats_count(struct net_device *dev)
  5611. {
  5612. struct s2io_nic *sp = dev->priv;
  5613. int stat_count = 0;
  5614. switch(sp->device_type) {
  5615. case XFRAME_I_DEVICE:
  5616. stat_count = XFRAME_I_STAT_LEN;
  5617. break;
  5618. case XFRAME_II_DEVICE:
  5619. stat_count = XFRAME_II_STAT_LEN;
  5620. break;
  5621. }
  5622. return stat_count;
  5623. }
  5624. static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
  5625. {
  5626. if (data)
  5627. dev->features |= NETIF_F_IP_CSUM;
  5628. else
  5629. dev->features &= ~NETIF_F_IP_CSUM;
  5630. return 0;
  5631. }
  5632. static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
  5633. {
  5634. return (dev->features & NETIF_F_TSO) != 0;
  5635. }
  5636. static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
  5637. {
  5638. if (data)
  5639. dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
  5640. else
  5641. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
  5642. return 0;
  5643. }
  5644. static const struct ethtool_ops netdev_ethtool_ops = {
  5645. .get_settings = s2io_ethtool_gset,
  5646. .set_settings = s2io_ethtool_sset,
  5647. .get_drvinfo = s2io_ethtool_gdrvinfo,
  5648. .get_regs_len = s2io_ethtool_get_regs_len,
  5649. .get_regs = s2io_ethtool_gregs,
  5650. .get_link = ethtool_op_get_link,
  5651. .get_eeprom_len = s2io_get_eeprom_len,
  5652. .get_eeprom = s2io_ethtool_geeprom,
  5653. .set_eeprom = s2io_ethtool_seeprom,
  5654. .get_ringparam = s2io_ethtool_gringparam,
  5655. .get_pauseparam = s2io_ethtool_getpause_data,
  5656. .set_pauseparam = s2io_ethtool_setpause_data,
  5657. .get_rx_csum = s2io_ethtool_get_rx_csum,
  5658. .set_rx_csum = s2io_ethtool_set_rx_csum,
  5659. .get_tx_csum = ethtool_op_get_tx_csum,
  5660. .set_tx_csum = s2io_ethtool_op_set_tx_csum,
  5661. .get_sg = ethtool_op_get_sg,
  5662. .set_sg = ethtool_op_set_sg,
  5663. .get_tso = s2io_ethtool_op_get_tso,
  5664. .set_tso = s2io_ethtool_op_set_tso,
  5665. .get_ufo = ethtool_op_get_ufo,
  5666. .set_ufo = ethtool_op_set_ufo,
  5667. .self_test_count = s2io_ethtool_self_test_count,
  5668. .self_test = s2io_ethtool_test,
  5669. .get_strings = s2io_ethtool_get_strings,
  5670. .phys_id = s2io_ethtool_idnic,
  5671. .get_stats_count = s2io_ethtool_get_stats_count,
  5672. .get_ethtool_stats = s2io_get_ethtool_stats
  5673. };
  5674. /**
  5675. * s2io_ioctl - Entry point for the Ioctl
  5676. * @dev : Device pointer.
  5677. * @ifr : An IOCTL specefic structure, that can contain a pointer to
  5678. * a proprietary structure used to pass information to the driver.
  5679. * @cmd : This is used to distinguish between the different commands that
  5680. * can be passed to the IOCTL functions.
  5681. * Description:
  5682. * Currently there are no special functionality supported in IOCTL, hence
  5683. * function always return EOPNOTSUPPORTED
  5684. */
  5685. static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  5686. {
  5687. return -EOPNOTSUPP;
  5688. }
  5689. /**
  5690. * s2io_change_mtu - entry point to change MTU size for the device.
  5691. * @dev : device pointer.
  5692. * @new_mtu : the new MTU size for the device.
  5693. * Description: A driver entry point to change MTU size for the device.
  5694. * Before changing the MTU the device must be stopped.
  5695. * Return value:
  5696. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  5697. * file on failure.
  5698. */
  5699. static int s2io_change_mtu(struct net_device *dev, int new_mtu)
  5700. {
  5701. struct s2io_nic *sp = dev->priv;
  5702. if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
  5703. DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
  5704. dev->name);
  5705. return -EPERM;
  5706. }
  5707. dev->mtu = new_mtu;
  5708. if (netif_running(dev)) {
  5709. s2io_card_down(sp);
  5710. netif_stop_queue(dev);
  5711. if (s2io_card_up(sp)) {
  5712. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
  5713. __FUNCTION__);
  5714. }
  5715. if (netif_queue_stopped(dev))
  5716. netif_wake_queue(dev);
  5717. } else { /* Device is down */
  5718. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5719. u64 val64 = new_mtu;
  5720. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  5721. }
  5722. return 0;
  5723. }
  5724. /**
  5725. * s2io_tasklet - Bottom half of the ISR.
  5726. * @dev_adr : address of the device structure in dma_addr_t format.
  5727. * Description:
  5728. * This is the tasklet or the bottom half of the ISR. This is
  5729. * an extension of the ISR which is scheduled by the scheduler to be run
  5730. * when the load on the CPU is low. All low priority tasks of the ISR can
  5731. * be pushed into the tasklet. For now the tasklet is used only to
  5732. * replenish the Rx buffers in the Rx buffer descriptors.
  5733. * Return value:
  5734. * void.
  5735. */
  5736. static void s2io_tasklet(unsigned long dev_addr)
  5737. {
  5738. struct net_device *dev = (struct net_device *) dev_addr;
  5739. struct s2io_nic *sp = dev->priv;
  5740. int i, ret;
  5741. struct mac_info *mac_control;
  5742. struct config_param *config;
  5743. mac_control = &sp->mac_control;
  5744. config = &sp->config;
  5745. if (!TASKLET_IN_USE) {
  5746. for (i = 0; i < config->rx_ring_num; i++) {
  5747. ret = fill_rx_buffers(sp, i);
  5748. if (ret == -ENOMEM) {
  5749. DBG_PRINT(INFO_DBG, "%s: Out of ",
  5750. dev->name);
  5751. DBG_PRINT(INFO_DBG, "memory in tasklet\n");
  5752. break;
  5753. } else if (ret == -EFILL) {
  5754. DBG_PRINT(INFO_DBG,
  5755. "%s: Rx Ring %d is full\n",
  5756. dev->name, i);
  5757. break;
  5758. }
  5759. }
  5760. clear_bit(0, (&sp->tasklet_status));
  5761. }
  5762. }
  5763. /**
  5764. * s2io_set_link - Set the LInk status
  5765. * @data: long pointer to device private structue
  5766. * Description: Sets the link status for the adapter
  5767. */
  5768. static void s2io_set_link(struct work_struct *work)
  5769. {
  5770. struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
  5771. struct net_device *dev = nic->dev;
  5772. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  5773. register u64 val64;
  5774. u16 subid;
  5775. rtnl_lock();
  5776. if (!netif_running(dev))
  5777. goto out_unlock;
  5778. if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
  5779. /* The card is being reset, no point doing anything */
  5780. goto out_unlock;
  5781. }
  5782. subid = nic->pdev->subsystem_device;
  5783. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  5784. /*
  5785. * Allow a small delay for the NICs self initiated
  5786. * cleanup to complete.
  5787. */
  5788. msleep(100);
  5789. }
  5790. val64 = readq(&bar0->adapter_status);
  5791. if (LINK_IS_UP(val64)) {
  5792. if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
  5793. if (verify_xena_quiescence(nic)) {
  5794. val64 = readq(&bar0->adapter_control);
  5795. val64 |= ADAPTER_CNTL_EN;
  5796. writeq(val64, &bar0->adapter_control);
  5797. if (CARDS_WITH_FAULTY_LINK_INDICATORS(
  5798. nic->device_type, subid)) {
  5799. val64 = readq(&bar0->gpio_control);
  5800. val64 |= GPIO_CTRL_GPIO_0;
  5801. writeq(val64, &bar0->gpio_control);
  5802. val64 = readq(&bar0->gpio_control);
  5803. } else {
  5804. val64 |= ADAPTER_LED_ON;
  5805. writeq(val64, &bar0->adapter_control);
  5806. }
  5807. nic->device_enabled_once = TRUE;
  5808. } else {
  5809. DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
  5810. DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
  5811. netif_stop_queue(dev);
  5812. }
  5813. }
  5814. val64 = readq(&bar0->adapter_control);
  5815. val64 |= ADAPTER_LED_ON;
  5816. writeq(val64, &bar0->adapter_control);
  5817. s2io_link(nic, LINK_UP);
  5818. } else {
  5819. if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
  5820. subid)) {
  5821. val64 = readq(&bar0->gpio_control);
  5822. val64 &= ~GPIO_CTRL_GPIO_0;
  5823. writeq(val64, &bar0->gpio_control);
  5824. val64 = readq(&bar0->gpio_control);
  5825. }
  5826. /* turn off LED */
  5827. val64 = readq(&bar0->adapter_control);
  5828. val64 = val64 &(~ADAPTER_LED_ON);
  5829. writeq(val64, &bar0->adapter_control);
  5830. s2io_link(nic, LINK_DOWN);
  5831. }
  5832. clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
  5833. out_unlock:
  5834. rtnl_unlock();
  5835. }
  5836. static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
  5837. struct buffAdd *ba,
  5838. struct sk_buff **skb, u64 *temp0, u64 *temp1,
  5839. u64 *temp2, int size)
  5840. {
  5841. struct net_device *dev = sp->dev;
  5842. struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
  5843. if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
  5844. struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
  5845. /* allocate skb */
  5846. if (*skb) {
  5847. DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
  5848. /*
  5849. * As Rx frame are not going to be processed,
  5850. * using same mapped address for the Rxd
  5851. * buffer pointer
  5852. */
  5853. rxdp1->Buffer0_ptr = *temp0;
  5854. } else {
  5855. *skb = dev_alloc_skb(size);
  5856. if (!(*skb)) {
  5857. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  5858. DBG_PRINT(INFO_DBG, "memory to allocate ");
  5859. DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
  5860. sp->mac_control.stats_info->sw_stat. \
  5861. mem_alloc_fail_cnt++;
  5862. return -ENOMEM ;
  5863. }
  5864. sp->mac_control.stats_info->sw_stat.mem_allocated
  5865. += (*skb)->truesize;
  5866. /* storing the mapped addr in a temp variable
  5867. * such it will be used for next rxd whose
  5868. * Host Control is NULL
  5869. */
  5870. rxdp1->Buffer0_ptr = *temp0 =
  5871. pci_map_single( sp->pdev, (*skb)->data,
  5872. size - NET_IP_ALIGN,
  5873. PCI_DMA_FROMDEVICE);
  5874. if( (rxdp1->Buffer0_ptr == 0) ||
  5875. (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
  5876. goto memalloc_failed;
  5877. }
  5878. rxdp->Host_Control = (unsigned long) (*skb);
  5879. }
  5880. } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
  5881. struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
  5882. /* Two buffer Mode */
  5883. if (*skb) {
  5884. rxdp3->Buffer2_ptr = *temp2;
  5885. rxdp3->Buffer0_ptr = *temp0;
  5886. rxdp3->Buffer1_ptr = *temp1;
  5887. } else {
  5888. *skb = dev_alloc_skb(size);
  5889. if (!(*skb)) {
  5890. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  5891. DBG_PRINT(INFO_DBG, "memory to allocate ");
  5892. DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
  5893. sp->mac_control.stats_info->sw_stat. \
  5894. mem_alloc_fail_cnt++;
  5895. return -ENOMEM;
  5896. }
  5897. sp->mac_control.stats_info->sw_stat.mem_allocated
  5898. += (*skb)->truesize;
  5899. rxdp3->Buffer2_ptr = *temp2 =
  5900. pci_map_single(sp->pdev, (*skb)->data,
  5901. dev->mtu + 4,
  5902. PCI_DMA_FROMDEVICE);
  5903. if( (rxdp3->Buffer2_ptr == 0) ||
  5904. (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
  5905. goto memalloc_failed;
  5906. }
  5907. rxdp3->Buffer0_ptr = *temp0 =
  5908. pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
  5909. PCI_DMA_FROMDEVICE);
  5910. if( (rxdp3->Buffer0_ptr == 0) ||
  5911. (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
  5912. pci_unmap_single (sp->pdev,
  5913. (dma_addr_t)rxdp3->Buffer2_ptr,
  5914. dev->mtu + 4, PCI_DMA_FROMDEVICE);
  5915. goto memalloc_failed;
  5916. }
  5917. rxdp->Host_Control = (unsigned long) (*skb);
  5918. /* Buffer-1 will be dummy buffer not used */
  5919. rxdp3->Buffer1_ptr = *temp1 =
  5920. pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
  5921. PCI_DMA_FROMDEVICE);
  5922. if( (rxdp3->Buffer1_ptr == 0) ||
  5923. (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
  5924. pci_unmap_single (sp->pdev,
  5925. (dma_addr_t)rxdp3->Buffer0_ptr,
  5926. BUF0_LEN, PCI_DMA_FROMDEVICE);
  5927. pci_unmap_single (sp->pdev,
  5928. (dma_addr_t)rxdp3->Buffer2_ptr,
  5929. dev->mtu + 4, PCI_DMA_FROMDEVICE);
  5930. goto memalloc_failed;
  5931. }
  5932. }
  5933. }
  5934. return 0;
  5935. memalloc_failed:
  5936. stats->pci_map_fail_cnt++;
  5937. stats->mem_freed += (*skb)->truesize;
  5938. dev_kfree_skb(*skb);
  5939. return -ENOMEM;
  5940. }
  5941. static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
  5942. int size)
  5943. {
  5944. struct net_device *dev = sp->dev;
  5945. if (sp->rxd_mode == RXD_MODE_1) {
  5946. rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
  5947. } else if (sp->rxd_mode == RXD_MODE_3B) {
  5948. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  5949. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  5950. rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
  5951. }
  5952. }
  5953. static int rxd_owner_bit_reset(struct s2io_nic *sp)
  5954. {
  5955. int i, j, k, blk_cnt = 0, size;
  5956. struct mac_info * mac_control = &sp->mac_control;
  5957. struct config_param *config = &sp->config;
  5958. struct net_device *dev = sp->dev;
  5959. struct RxD_t *rxdp = NULL;
  5960. struct sk_buff *skb = NULL;
  5961. struct buffAdd *ba = NULL;
  5962. u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
  5963. /* Calculate the size based on ring mode */
  5964. size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
  5965. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  5966. if (sp->rxd_mode == RXD_MODE_1)
  5967. size += NET_IP_ALIGN;
  5968. else if (sp->rxd_mode == RXD_MODE_3B)
  5969. size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  5970. for (i = 0; i < config->rx_ring_num; i++) {
  5971. blk_cnt = config->rx_cfg[i].num_rxd /
  5972. (rxd_count[sp->rxd_mode] +1);
  5973. for (j = 0; j < blk_cnt; j++) {
  5974. for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
  5975. rxdp = mac_control->rings[i].
  5976. rx_blocks[j].rxds[k].virt_addr;
  5977. if(sp->rxd_mode == RXD_MODE_3B)
  5978. ba = &mac_control->rings[i].ba[j][k];
  5979. if (set_rxd_buffer_pointer(sp, rxdp, ba,
  5980. &skb,(u64 *)&temp0_64,
  5981. (u64 *)&temp1_64,
  5982. (u64 *)&temp2_64,
  5983. size) == ENOMEM) {
  5984. return 0;
  5985. }
  5986. set_rxd_buffer_size(sp, rxdp, size);
  5987. wmb();
  5988. /* flip the Ownership bit to Hardware */
  5989. rxdp->Control_1 |= RXD_OWN_XENA;
  5990. }
  5991. }
  5992. }
  5993. return 0;
  5994. }
  5995. static int s2io_add_isr(struct s2io_nic * sp)
  5996. {
  5997. int ret = 0;
  5998. struct net_device *dev = sp->dev;
  5999. int err = 0;
  6000. if (sp->config.intr_type == MSI_X)
  6001. ret = s2io_enable_msi_x(sp);
  6002. if (ret) {
  6003. DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
  6004. sp->config.intr_type = INTA;
  6005. }
  6006. /* Store the values of the MSIX table in the struct s2io_nic structure */
  6007. store_xmsi_data(sp);
  6008. /* After proper initialization of H/W, register ISR */
  6009. if (sp->config.intr_type == MSI_X) {
  6010. int i, msix_tx_cnt=0,msix_rx_cnt=0;
  6011. for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
  6012. if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
  6013. sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
  6014. dev->name, i);
  6015. err = request_irq(sp->entries[i].vector,
  6016. s2io_msix_fifo_handle, 0, sp->desc[i],
  6017. sp->s2io_entries[i].arg);
  6018. /* If either data or addr is zero print it */
  6019. if(!(sp->msix_info[i].addr &&
  6020. sp->msix_info[i].data)) {
  6021. DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
  6022. "Data:0x%lx\n",sp->desc[i],
  6023. (unsigned long long)
  6024. sp->msix_info[i].addr,
  6025. (unsigned long)
  6026. ntohl(sp->msix_info[i].data));
  6027. } else {
  6028. msix_tx_cnt++;
  6029. }
  6030. } else {
  6031. sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
  6032. dev->name, i);
  6033. err = request_irq(sp->entries[i].vector,
  6034. s2io_msix_ring_handle, 0, sp->desc[i],
  6035. sp->s2io_entries[i].arg);
  6036. /* If either data or addr is zero print it */
  6037. if(!(sp->msix_info[i].addr &&
  6038. sp->msix_info[i].data)) {
  6039. DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
  6040. "Data:0x%lx\n",sp->desc[i],
  6041. (unsigned long long)
  6042. sp->msix_info[i].addr,
  6043. (unsigned long)
  6044. ntohl(sp->msix_info[i].data));
  6045. } else {
  6046. msix_rx_cnt++;
  6047. }
  6048. }
  6049. if (err) {
  6050. DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
  6051. "failed\n", dev->name, i);
  6052. DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
  6053. return -1;
  6054. }
  6055. sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
  6056. }
  6057. printk("MSI-X-TX %d entries enabled\n",msix_tx_cnt);
  6058. printk("MSI-X-RX %d entries enabled\n",msix_rx_cnt);
  6059. }
  6060. if (sp->config.intr_type == INTA) {
  6061. err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
  6062. sp->name, dev);
  6063. if (err) {
  6064. DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
  6065. dev->name);
  6066. return -1;
  6067. }
  6068. }
  6069. return 0;
  6070. }
  6071. static void s2io_rem_isr(struct s2io_nic * sp)
  6072. {
  6073. struct net_device *dev = sp->dev;
  6074. struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
  6075. if (sp->config.intr_type == MSI_X) {
  6076. int i;
  6077. u16 msi_control;
  6078. for (i=1; (sp->s2io_entries[i].in_use ==
  6079. MSIX_REGISTERED_SUCCESS); i++) {
  6080. int vector = sp->entries[i].vector;
  6081. void *arg = sp->s2io_entries[i].arg;
  6082. synchronize_irq(vector);
  6083. free_irq(vector, arg);
  6084. }
  6085. kfree(sp->entries);
  6086. stats->mem_freed +=
  6087. (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  6088. kfree(sp->s2io_entries);
  6089. stats->mem_freed +=
  6090. (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  6091. sp->entries = NULL;
  6092. sp->s2io_entries = NULL;
  6093. pci_read_config_word(sp->pdev, 0x42, &msi_control);
  6094. msi_control &= 0xFFFE; /* Disable MSI */
  6095. pci_write_config_word(sp->pdev, 0x42, msi_control);
  6096. pci_disable_msix(sp->pdev);
  6097. } else {
  6098. synchronize_irq(sp->pdev->irq);
  6099. free_irq(sp->pdev->irq, dev);
  6100. }
  6101. }
  6102. static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
  6103. {
  6104. int cnt = 0;
  6105. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  6106. unsigned long flags;
  6107. register u64 val64 = 0;
  6108. del_timer_sync(&sp->alarm_timer);
  6109. /* If s2io_set_link task is executing, wait till it completes. */
  6110. while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
  6111. msleep(50);
  6112. }
  6113. clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
  6114. /* disable Tx and Rx traffic on the NIC */
  6115. if (do_io)
  6116. stop_nic(sp);
  6117. s2io_rem_isr(sp);
  6118. /* Kill tasklet. */
  6119. tasklet_kill(&sp->task);
  6120. /* Check if the device is Quiescent and then Reset the NIC */
  6121. while(do_io) {
  6122. /* As per the HW requirement we need to replenish the
  6123. * receive buffer to avoid the ring bump. Since there is
  6124. * no intention of processing the Rx frame at this pointwe are
  6125. * just settting the ownership bit of rxd in Each Rx
  6126. * ring to HW and set the appropriate buffer size
  6127. * based on the ring mode
  6128. */
  6129. rxd_owner_bit_reset(sp);
  6130. val64 = readq(&bar0->adapter_status);
  6131. if (verify_xena_quiescence(sp)) {
  6132. if(verify_pcc_quiescent(sp, sp->device_enabled_once))
  6133. break;
  6134. }
  6135. msleep(50);
  6136. cnt++;
  6137. if (cnt == 10) {
  6138. DBG_PRINT(ERR_DBG,
  6139. "s2io_close:Device not Quiescent ");
  6140. DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
  6141. (unsigned long long) val64);
  6142. break;
  6143. }
  6144. }
  6145. if (do_io)
  6146. s2io_reset(sp);
  6147. spin_lock_irqsave(&sp->tx_lock, flags);
  6148. /* Free all Tx buffers */
  6149. free_tx_buffers(sp);
  6150. spin_unlock_irqrestore(&sp->tx_lock, flags);
  6151. /* Free all Rx buffers */
  6152. spin_lock_irqsave(&sp->rx_lock, flags);
  6153. free_rx_buffers(sp);
  6154. spin_unlock_irqrestore(&sp->rx_lock, flags);
  6155. clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
  6156. }
  6157. static void s2io_card_down(struct s2io_nic * sp)
  6158. {
  6159. do_s2io_card_down(sp, 1);
  6160. }
  6161. static int s2io_card_up(struct s2io_nic * sp)
  6162. {
  6163. int i, ret = 0;
  6164. struct mac_info *mac_control;
  6165. struct config_param *config;
  6166. struct net_device *dev = (struct net_device *) sp->dev;
  6167. u16 interruptible;
  6168. /* Initialize the H/W I/O registers */
  6169. if (init_nic(sp) != 0) {
  6170. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  6171. dev->name);
  6172. s2io_reset(sp);
  6173. return -ENODEV;
  6174. }
  6175. /*
  6176. * Initializing the Rx buffers. For now we are considering only 1
  6177. * Rx ring and initializing buffers into 30 Rx blocks
  6178. */
  6179. mac_control = &sp->mac_control;
  6180. config = &sp->config;
  6181. for (i = 0; i < config->rx_ring_num; i++) {
  6182. if ((ret = fill_rx_buffers(sp, i))) {
  6183. DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
  6184. dev->name);
  6185. s2io_reset(sp);
  6186. free_rx_buffers(sp);
  6187. return -ENOMEM;
  6188. }
  6189. DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
  6190. atomic_read(&sp->rx_bufs_left[i]));
  6191. }
  6192. /* Maintain the state prior to the open */
  6193. if (sp->promisc_flg)
  6194. sp->promisc_flg = 0;
  6195. if (sp->m_cast_flg) {
  6196. sp->m_cast_flg = 0;
  6197. sp->all_multi_pos= 0;
  6198. }
  6199. /* Setting its receive mode */
  6200. s2io_set_multicast(dev);
  6201. if (sp->lro) {
  6202. /* Initialize max aggregatable pkts per session based on MTU */
  6203. sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
  6204. /* Check if we can use(if specified) user provided value */
  6205. if (lro_max_pkts < sp->lro_max_aggr_per_sess)
  6206. sp->lro_max_aggr_per_sess = lro_max_pkts;
  6207. }
  6208. /* Enable Rx Traffic and interrupts on the NIC */
  6209. if (start_nic(sp)) {
  6210. DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
  6211. s2io_reset(sp);
  6212. free_rx_buffers(sp);
  6213. return -ENODEV;
  6214. }
  6215. /* Add interrupt service routine */
  6216. if (s2io_add_isr(sp) != 0) {
  6217. if (sp->config.intr_type == MSI_X)
  6218. s2io_rem_isr(sp);
  6219. s2io_reset(sp);
  6220. free_rx_buffers(sp);
  6221. return -ENODEV;
  6222. }
  6223. S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
  6224. /* Enable tasklet for the device */
  6225. tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
  6226. /* Enable select interrupts */
  6227. en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
  6228. if (sp->config.intr_type != INTA)
  6229. en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
  6230. else {
  6231. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  6232. interruptible |= TX_PIC_INTR;
  6233. en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
  6234. }
  6235. set_bit(__S2IO_STATE_CARD_UP, &sp->state);
  6236. return 0;
  6237. }
  6238. /**
  6239. * s2io_restart_nic - Resets the NIC.
  6240. * @data : long pointer to the device private structure
  6241. * Description:
  6242. * This function is scheduled to be run by the s2io_tx_watchdog
  6243. * function after 0.5 secs to reset the NIC. The idea is to reduce
  6244. * the run time of the watch dog routine which is run holding a
  6245. * spin lock.
  6246. */
  6247. static void s2io_restart_nic(struct work_struct *work)
  6248. {
  6249. struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
  6250. struct net_device *dev = sp->dev;
  6251. rtnl_lock();
  6252. if (!netif_running(dev))
  6253. goto out_unlock;
  6254. s2io_card_down(sp);
  6255. if (s2io_card_up(sp)) {
  6256. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
  6257. dev->name);
  6258. }
  6259. netif_wake_queue(dev);
  6260. DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
  6261. dev->name);
  6262. out_unlock:
  6263. rtnl_unlock();
  6264. }
  6265. /**
  6266. * s2io_tx_watchdog - Watchdog for transmit side.
  6267. * @dev : Pointer to net device structure
  6268. * Description:
  6269. * This function is triggered if the Tx Queue is stopped
  6270. * for a pre-defined amount of time when the Interface is still up.
  6271. * If the Interface is jammed in such a situation, the hardware is
  6272. * reset (by s2io_close) and restarted again (by s2io_open) to
  6273. * overcome any problem that might have been caused in the hardware.
  6274. * Return value:
  6275. * void
  6276. */
  6277. static void s2io_tx_watchdog(struct net_device *dev)
  6278. {
  6279. struct s2io_nic *sp = dev->priv;
  6280. if (netif_carrier_ok(dev)) {
  6281. sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
  6282. schedule_work(&sp->rst_timer_task);
  6283. sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
  6284. }
  6285. }
  6286. /**
  6287. * rx_osm_handler - To perform some OS related operations on SKB.
  6288. * @sp: private member of the device structure,pointer to s2io_nic structure.
  6289. * @skb : the socket buffer pointer.
  6290. * @len : length of the packet
  6291. * @cksum : FCS checksum of the frame.
  6292. * @ring_no : the ring from which this RxD was extracted.
  6293. * Description:
  6294. * This function is called by the Rx interrupt serivce routine to perform
  6295. * some OS related operations on the SKB before passing it to the upper
  6296. * layers. It mainly checks if the checksum is OK, if so adds it to the
  6297. * SKBs cksum variable, increments the Rx packet count and passes the SKB
  6298. * to the upper layer. If the checksum is wrong, it increments the Rx
  6299. * packet error count, frees the SKB and returns error.
  6300. * Return value:
  6301. * SUCCESS on success and -1 on failure.
  6302. */
  6303. static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
  6304. {
  6305. struct s2io_nic *sp = ring_data->nic;
  6306. struct net_device *dev = (struct net_device *) sp->dev;
  6307. struct sk_buff *skb = (struct sk_buff *)
  6308. ((unsigned long) rxdp->Host_Control);
  6309. int ring_no = ring_data->ring_no;
  6310. u16 l3_csum, l4_csum;
  6311. unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
  6312. struct lro *lro;
  6313. u8 err_mask;
  6314. skb->dev = dev;
  6315. if (err) {
  6316. /* Check for parity error */
  6317. if (err & 0x1) {
  6318. sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
  6319. }
  6320. err_mask = err >> 48;
  6321. switch(err_mask) {
  6322. case 1:
  6323. sp->mac_control.stats_info->sw_stat.
  6324. rx_parity_err_cnt++;
  6325. break;
  6326. case 2:
  6327. sp->mac_control.stats_info->sw_stat.
  6328. rx_abort_cnt++;
  6329. break;
  6330. case 3:
  6331. sp->mac_control.stats_info->sw_stat.
  6332. rx_parity_abort_cnt++;
  6333. break;
  6334. case 4:
  6335. sp->mac_control.stats_info->sw_stat.
  6336. rx_rda_fail_cnt++;
  6337. break;
  6338. case 5:
  6339. sp->mac_control.stats_info->sw_stat.
  6340. rx_unkn_prot_cnt++;
  6341. break;
  6342. case 6:
  6343. sp->mac_control.stats_info->sw_stat.
  6344. rx_fcs_err_cnt++;
  6345. break;
  6346. case 7:
  6347. sp->mac_control.stats_info->sw_stat.
  6348. rx_buf_size_err_cnt++;
  6349. break;
  6350. case 8:
  6351. sp->mac_control.stats_info->sw_stat.
  6352. rx_rxd_corrupt_cnt++;
  6353. break;
  6354. case 15:
  6355. sp->mac_control.stats_info->sw_stat.
  6356. rx_unkn_err_cnt++;
  6357. break;
  6358. }
  6359. /*
  6360. * Drop the packet if bad transfer code. Exception being
  6361. * 0x5, which could be due to unsupported IPv6 extension header.
  6362. * In this case, we let stack handle the packet.
  6363. * Note that in this case, since checksum will be incorrect,
  6364. * stack will validate the same.
  6365. */
  6366. if (err_mask != 0x5) {
  6367. DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
  6368. dev->name, err_mask);
  6369. sp->stats.rx_crc_errors++;
  6370. sp->mac_control.stats_info->sw_stat.mem_freed
  6371. += skb->truesize;
  6372. dev_kfree_skb(skb);
  6373. atomic_dec(&sp->rx_bufs_left[ring_no]);
  6374. rxdp->Host_Control = 0;
  6375. return 0;
  6376. }
  6377. }
  6378. /* Updating statistics */
  6379. sp->stats.rx_packets++;
  6380. rxdp->Host_Control = 0;
  6381. if (sp->rxd_mode == RXD_MODE_1) {
  6382. int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
  6383. sp->stats.rx_bytes += len;
  6384. skb_put(skb, len);
  6385. } else if (sp->rxd_mode == RXD_MODE_3B) {
  6386. int get_block = ring_data->rx_curr_get_info.block_index;
  6387. int get_off = ring_data->rx_curr_get_info.offset;
  6388. int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
  6389. int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
  6390. unsigned char *buff = skb_push(skb, buf0_len);
  6391. struct buffAdd *ba = &ring_data->ba[get_block][get_off];
  6392. sp->stats.rx_bytes += buf0_len + buf2_len;
  6393. memcpy(buff, ba->ba_0, buf0_len);
  6394. skb_put(skb, buf2_len);
  6395. }
  6396. if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
  6397. (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
  6398. (sp->rx_csum)) {
  6399. l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
  6400. l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
  6401. if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
  6402. /*
  6403. * NIC verifies if the Checksum of the received
  6404. * frame is Ok or not and accordingly returns
  6405. * a flag in the RxD.
  6406. */
  6407. skb->ip_summed = CHECKSUM_UNNECESSARY;
  6408. if (sp->lro) {
  6409. u32 tcp_len;
  6410. u8 *tcp;
  6411. int ret = 0;
  6412. ret = s2io_club_tcp_session(skb->data, &tcp,
  6413. &tcp_len, &lro, rxdp, sp);
  6414. switch (ret) {
  6415. case 3: /* Begin anew */
  6416. lro->parent = skb;
  6417. goto aggregate;
  6418. case 1: /* Aggregate */
  6419. {
  6420. lro_append_pkt(sp, lro,
  6421. skb, tcp_len);
  6422. goto aggregate;
  6423. }
  6424. case 4: /* Flush session */
  6425. {
  6426. lro_append_pkt(sp, lro,
  6427. skb, tcp_len);
  6428. queue_rx_frame(lro->parent);
  6429. clear_lro_session(lro);
  6430. sp->mac_control.stats_info->
  6431. sw_stat.flush_max_pkts++;
  6432. goto aggregate;
  6433. }
  6434. case 2: /* Flush both */
  6435. lro->parent->data_len =
  6436. lro->frags_len;
  6437. sp->mac_control.stats_info->
  6438. sw_stat.sending_both++;
  6439. queue_rx_frame(lro->parent);
  6440. clear_lro_session(lro);
  6441. goto send_up;
  6442. case 0: /* sessions exceeded */
  6443. case -1: /* non-TCP or not
  6444. * L2 aggregatable
  6445. */
  6446. case 5: /*
  6447. * First pkt in session not
  6448. * L3/L4 aggregatable
  6449. */
  6450. break;
  6451. default:
  6452. DBG_PRINT(ERR_DBG,
  6453. "%s: Samadhana!!\n",
  6454. __FUNCTION__);
  6455. BUG();
  6456. }
  6457. }
  6458. } else {
  6459. /*
  6460. * Packet with erroneous checksum, let the
  6461. * upper layers deal with it.
  6462. */
  6463. skb->ip_summed = CHECKSUM_NONE;
  6464. }
  6465. } else {
  6466. skb->ip_summed = CHECKSUM_NONE;
  6467. }
  6468. sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  6469. if (!sp->lro) {
  6470. skb->protocol = eth_type_trans(skb, dev);
  6471. if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
  6472. vlan_strip_flag)) {
  6473. /* Queueing the vlan frame to the upper layer */
  6474. if (napi)
  6475. vlan_hwaccel_receive_skb(skb, sp->vlgrp,
  6476. RXD_GET_VLAN_TAG(rxdp->Control_2));
  6477. else
  6478. vlan_hwaccel_rx(skb, sp->vlgrp,
  6479. RXD_GET_VLAN_TAG(rxdp->Control_2));
  6480. } else {
  6481. if (napi)
  6482. netif_receive_skb(skb);
  6483. else
  6484. netif_rx(skb);
  6485. }
  6486. } else {
  6487. send_up:
  6488. queue_rx_frame(skb);
  6489. }
  6490. dev->last_rx = jiffies;
  6491. aggregate:
  6492. atomic_dec(&sp->rx_bufs_left[ring_no]);
  6493. return SUCCESS;
  6494. }
  6495. /**
  6496. * s2io_link - stops/starts the Tx queue.
  6497. * @sp : private member of the device structure, which is a pointer to the
  6498. * s2io_nic structure.
  6499. * @link : inidicates whether link is UP/DOWN.
  6500. * Description:
  6501. * This function stops/starts the Tx queue depending on whether the link
  6502. * status of the NIC is is down or up. This is called by the Alarm
  6503. * interrupt handler whenever a link change interrupt comes up.
  6504. * Return value:
  6505. * void.
  6506. */
  6507. static void s2io_link(struct s2io_nic * sp, int link)
  6508. {
  6509. struct net_device *dev = (struct net_device *) sp->dev;
  6510. if (link != sp->last_link_state) {
  6511. if (link == LINK_DOWN) {
  6512. DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
  6513. netif_carrier_off(dev);
  6514. if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
  6515. sp->mac_control.stats_info->sw_stat.link_up_time =
  6516. jiffies - sp->start_time;
  6517. sp->mac_control.stats_info->sw_stat.link_down_cnt++;
  6518. } else {
  6519. DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
  6520. if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
  6521. sp->mac_control.stats_info->sw_stat.link_down_time =
  6522. jiffies - sp->start_time;
  6523. sp->mac_control.stats_info->sw_stat.link_up_cnt++;
  6524. netif_carrier_on(dev);
  6525. }
  6526. }
  6527. sp->last_link_state = link;
  6528. sp->start_time = jiffies;
  6529. }
  6530. /**
  6531. * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
  6532. * @sp : private member of the device structure, which is a pointer to the
  6533. * s2io_nic structure.
  6534. * Description:
  6535. * This function initializes a few of the PCI and PCI-X configuration registers
  6536. * with recommended values.
  6537. * Return value:
  6538. * void
  6539. */
  6540. static void s2io_init_pci(struct s2io_nic * sp)
  6541. {
  6542. u16 pci_cmd = 0, pcix_cmd = 0;
  6543. /* Enable Data Parity Error Recovery in PCI-X command register. */
  6544. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6545. &(pcix_cmd));
  6546. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6547. (pcix_cmd | 1));
  6548. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6549. &(pcix_cmd));
  6550. /* Set the PErr Response bit in PCI command register. */
  6551. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6552. pci_write_config_word(sp->pdev, PCI_COMMAND,
  6553. (pci_cmd | PCI_COMMAND_PARITY));
  6554. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6555. }
  6556. static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
  6557. {
  6558. if ( tx_fifo_num > 8) {
  6559. DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
  6560. "supported\n");
  6561. DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
  6562. tx_fifo_num = 8;
  6563. }
  6564. if ( rx_ring_num > 8) {
  6565. DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
  6566. "supported\n");
  6567. DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
  6568. rx_ring_num = 8;
  6569. }
  6570. if (*dev_intr_type != INTA)
  6571. napi = 0;
  6572. if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
  6573. DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
  6574. "Defaulting to INTA\n");
  6575. *dev_intr_type = INTA;
  6576. }
  6577. if ((*dev_intr_type == MSI_X) &&
  6578. ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
  6579. (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
  6580. DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
  6581. "Defaulting to INTA\n");
  6582. *dev_intr_type = INTA;
  6583. }
  6584. if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
  6585. DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
  6586. DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
  6587. rx_ring_mode = 1;
  6588. }
  6589. return SUCCESS;
  6590. }
  6591. /**
  6592. * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
  6593. * or Traffic class respectively.
  6594. * @nic: device peivate variable
  6595. * Description: The function configures the receive steering to
  6596. * desired receive ring.
  6597. * Return Value: SUCCESS on success and
  6598. * '-1' on failure (endian settings incorrect).
  6599. */
  6600. static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
  6601. {
  6602. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  6603. register u64 val64 = 0;
  6604. if (ds_codepoint > 63)
  6605. return FAILURE;
  6606. val64 = RTS_DS_MEM_DATA(ring);
  6607. writeq(val64, &bar0->rts_ds_mem_data);
  6608. val64 = RTS_DS_MEM_CTRL_WE |
  6609. RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
  6610. RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
  6611. writeq(val64, &bar0->rts_ds_mem_ctrl);
  6612. return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
  6613. RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
  6614. S2IO_BIT_RESET);
  6615. }
  6616. /**
  6617. * s2io_init_nic - Initialization of the adapter .
  6618. * @pdev : structure containing the PCI related information of the device.
  6619. * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
  6620. * Description:
  6621. * The function initializes an adapter identified by the pci_dec structure.
  6622. * All OS related initialization including memory and device structure and
  6623. * initlaization of the device private variable is done. Also the swapper
  6624. * control register is initialized to enable read and write into the I/O
  6625. * registers of the device.
  6626. * Return value:
  6627. * returns 0 on success and negative on failure.
  6628. */
  6629. static int __devinit
  6630. s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
  6631. {
  6632. struct s2io_nic *sp;
  6633. struct net_device *dev;
  6634. int i, j, ret;
  6635. int dma_flag = FALSE;
  6636. u32 mac_up, mac_down;
  6637. u64 val64 = 0, tmp64 = 0;
  6638. struct XENA_dev_config __iomem *bar0 = NULL;
  6639. u16 subid;
  6640. struct mac_info *mac_control;
  6641. struct config_param *config;
  6642. int mode;
  6643. u8 dev_intr_type = intr_type;
  6644. if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
  6645. return ret;
  6646. if ((ret = pci_enable_device(pdev))) {
  6647. DBG_PRINT(ERR_DBG,
  6648. "s2io_init_nic: pci_enable_device failed\n");
  6649. return ret;
  6650. }
  6651. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  6652. DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
  6653. dma_flag = TRUE;
  6654. if (pci_set_consistent_dma_mask
  6655. (pdev, DMA_64BIT_MASK)) {
  6656. DBG_PRINT(ERR_DBG,
  6657. "Unable to obtain 64bit DMA for \
  6658. consistent allocations\n");
  6659. pci_disable_device(pdev);
  6660. return -ENOMEM;
  6661. }
  6662. } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
  6663. DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
  6664. } else {
  6665. pci_disable_device(pdev);
  6666. return -ENOMEM;
  6667. }
  6668. if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
  6669. DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
  6670. pci_disable_device(pdev);
  6671. return -ENODEV;
  6672. }
  6673. dev = alloc_etherdev(sizeof(struct s2io_nic));
  6674. if (dev == NULL) {
  6675. DBG_PRINT(ERR_DBG, "Device allocation failed\n");
  6676. pci_disable_device(pdev);
  6677. pci_release_regions(pdev);
  6678. return -ENODEV;
  6679. }
  6680. pci_set_master(pdev);
  6681. pci_set_drvdata(pdev, dev);
  6682. SET_MODULE_OWNER(dev);
  6683. SET_NETDEV_DEV(dev, &pdev->dev);
  6684. /* Private member variable initialized to s2io NIC structure */
  6685. sp = dev->priv;
  6686. memset(sp, 0, sizeof(struct s2io_nic));
  6687. sp->dev = dev;
  6688. sp->pdev = pdev;
  6689. sp->high_dma_flag = dma_flag;
  6690. sp->device_enabled_once = FALSE;
  6691. if (rx_ring_mode == 1)
  6692. sp->rxd_mode = RXD_MODE_1;
  6693. if (rx_ring_mode == 2)
  6694. sp->rxd_mode = RXD_MODE_3B;
  6695. sp->config.intr_type = dev_intr_type;
  6696. if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
  6697. (pdev->device == PCI_DEVICE_ID_HERC_UNI))
  6698. sp->device_type = XFRAME_II_DEVICE;
  6699. else
  6700. sp->device_type = XFRAME_I_DEVICE;
  6701. sp->lro = lro;
  6702. /* Initialize some PCI/PCI-X fields of the NIC. */
  6703. s2io_init_pci(sp);
  6704. /*
  6705. * Setting the device configuration parameters.
  6706. * Most of these parameters can be specified by the user during
  6707. * module insertion as they are module loadable parameters. If
  6708. * these parameters are not not specified during load time, they
  6709. * are initialized with default values.
  6710. */
  6711. mac_control = &sp->mac_control;
  6712. config = &sp->config;
  6713. config->napi = napi;
  6714. /* Tx side parameters. */
  6715. config->tx_fifo_num = tx_fifo_num;
  6716. for (i = 0; i < MAX_TX_FIFOS; i++) {
  6717. config->tx_cfg[i].fifo_len = tx_fifo_len[i];
  6718. config->tx_cfg[i].fifo_priority = i;
  6719. }
  6720. /* mapping the QoS priority to the configured fifos */
  6721. for (i = 0; i < MAX_TX_FIFOS; i++)
  6722. config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
  6723. config->tx_intr_type = TXD_INT_TYPE_UTILZ;
  6724. for (i = 0; i < config->tx_fifo_num; i++) {
  6725. config->tx_cfg[i].f_no_snoop =
  6726. (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
  6727. if (config->tx_cfg[i].fifo_len < 65) {
  6728. config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
  6729. break;
  6730. }
  6731. }
  6732. /* + 2 because one Txd for skb->data and one Txd for UFO */
  6733. config->max_txds = MAX_SKB_FRAGS + 2;
  6734. /* Rx side parameters. */
  6735. config->rx_ring_num = rx_ring_num;
  6736. for (i = 0; i < MAX_RX_RINGS; i++) {
  6737. config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
  6738. (rxd_count[sp->rxd_mode] + 1);
  6739. config->rx_cfg[i].ring_priority = i;
  6740. }
  6741. for (i = 0; i < rx_ring_num; i++) {
  6742. config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
  6743. config->rx_cfg[i].f_no_snoop =
  6744. (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
  6745. }
  6746. /* Setting Mac Control parameters */
  6747. mac_control->rmac_pause_time = rmac_pause_time;
  6748. mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
  6749. mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
  6750. /* Initialize Ring buffer parameters. */
  6751. for (i = 0; i < config->rx_ring_num; i++)
  6752. atomic_set(&sp->rx_bufs_left[i], 0);
  6753. /* initialize the shared memory used by the NIC and the host */
  6754. if (init_shared_mem(sp)) {
  6755. DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
  6756. dev->name);
  6757. ret = -ENOMEM;
  6758. goto mem_alloc_failed;
  6759. }
  6760. sp->bar0 = ioremap(pci_resource_start(pdev, 0),
  6761. pci_resource_len(pdev, 0));
  6762. if (!sp->bar0) {
  6763. DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
  6764. dev->name);
  6765. ret = -ENOMEM;
  6766. goto bar0_remap_failed;
  6767. }
  6768. sp->bar1 = ioremap(pci_resource_start(pdev, 2),
  6769. pci_resource_len(pdev, 2));
  6770. if (!sp->bar1) {
  6771. DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
  6772. dev->name);
  6773. ret = -ENOMEM;
  6774. goto bar1_remap_failed;
  6775. }
  6776. dev->irq = pdev->irq;
  6777. dev->base_addr = (unsigned long) sp->bar0;
  6778. /* Initializing the BAR1 address as the start of the FIFO pointer. */
  6779. for (j = 0; j < MAX_TX_FIFOS; j++) {
  6780. mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
  6781. (sp->bar1 + (j * 0x00020000));
  6782. }
  6783. /* Driver entry points */
  6784. dev->open = &s2io_open;
  6785. dev->stop = &s2io_close;
  6786. dev->hard_start_xmit = &s2io_xmit;
  6787. dev->get_stats = &s2io_get_stats;
  6788. dev->set_multicast_list = &s2io_set_multicast;
  6789. dev->do_ioctl = &s2io_ioctl;
  6790. dev->change_mtu = &s2io_change_mtu;
  6791. SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
  6792. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  6793. dev->vlan_rx_register = s2io_vlan_rx_register;
  6794. /*
  6795. * will use eth_mac_addr() for dev->set_mac_address
  6796. * mac address will be set every time dev->open() is called
  6797. */
  6798. netif_napi_add(dev, &sp->napi, s2io_poll, 32);
  6799. #ifdef CONFIG_NET_POLL_CONTROLLER
  6800. dev->poll_controller = s2io_netpoll;
  6801. #endif
  6802. dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
  6803. if (sp->high_dma_flag == TRUE)
  6804. dev->features |= NETIF_F_HIGHDMA;
  6805. dev->features |= NETIF_F_TSO;
  6806. dev->features |= NETIF_F_TSO6;
  6807. if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
  6808. dev->features |= NETIF_F_UFO;
  6809. dev->features |= NETIF_F_HW_CSUM;
  6810. }
  6811. dev->tx_timeout = &s2io_tx_watchdog;
  6812. dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
  6813. INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
  6814. INIT_WORK(&sp->set_link_task, s2io_set_link);
  6815. pci_save_state(sp->pdev);
  6816. /* Setting swapper control on the NIC, for proper reset operation */
  6817. if (s2io_set_swapper(sp)) {
  6818. DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
  6819. dev->name);
  6820. ret = -EAGAIN;
  6821. goto set_swap_failed;
  6822. }
  6823. /* Verify if the Herc works on the slot its placed into */
  6824. if (sp->device_type & XFRAME_II_DEVICE) {
  6825. mode = s2io_verify_pci_mode(sp);
  6826. if (mode < 0) {
  6827. DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
  6828. DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
  6829. ret = -EBADSLT;
  6830. goto set_swap_failed;
  6831. }
  6832. }
  6833. /* Not needed for Herc */
  6834. if (sp->device_type & XFRAME_I_DEVICE) {
  6835. /*
  6836. * Fix for all "FFs" MAC address problems observed on
  6837. * Alpha platforms
  6838. */
  6839. fix_mac_address(sp);
  6840. s2io_reset(sp);
  6841. }
  6842. /*
  6843. * MAC address initialization.
  6844. * For now only one mac address will be read and used.
  6845. */
  6846. bar0 = sp->bar0;
  6847. val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  6848. RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
  6849. writeq(val64, &bar0->rmac_addr_cmd_mem);
  6850. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  6851. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
  6852. tmp64 = readq(&bar0->rmac_addr_data0_mem);
  6853. mac_down = (u32) tmp64;
  6854. mac_up = (u32) (tmp64 >> 32);
  6855. sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
  6856. sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
  6857. sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
  6858. sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
  6859. sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
  6860. sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
  6861. /* Set the factory defined MAC address initially */
  6862. dev->addr_len = ETH_ALEN;
  6863. memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
  6864. /* Store the values of the MSIX table in the s2io_nic structure */
  6865. store_xmsi_data(sp);
  6866. /* reset Nic and bring it to known state */
  6867. s2io_reset(sp);
  6868. /*
  6869. * Initialize the tasklet status and link state flags
  6870. * and the card state parameter
  6871. */
  6872. sp->tasklet_status = 0;
  6873. sp->state = 0;
  6874. /* Initialize spinlocks */
  6875. spin_lock_init(&sp->tx_lock);
  6876. if (!napi)
  6877. spin_lock_init(&sp->put_lock);
  6878. spin_lock_init(&sp->rx_lock);
  6879. /*
  6880. * SXE-002: Configure link and activity LED to init state
  6881. * on driver load.
  6882. */
  6883. subid = sp->pdev->subsystem_device;
  6884. if ((subid & 0xFF) >= 0x07) {
  6885. val64 = readq(&bar0->gpio_control);
  6886. val64 |= 0x0000800000000000ULL;
  6887. writeq(val64, &bar0->gpio_control);
  6888. val64 = 0x0411040400000000ULL;
  6889. writeq(val64, (void __iomem *) bar0 + 0x2700);
  6890. val64 = readq(&bar0->gpio_control);
  6891. }
  6892. sp->rx_csum = 1; /* Rx chksum verify enabled by default */
  6893. if (register_netdev(dev)) {
  6894. DBG_PRINT(ERR_DBG, "Device registration failed\n");
  6895. ret = -ENODEV;
  6896. goto register_failed;
  6897. }
  6898. s2io_vpd_read(sp);
  6899. DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
  6900. DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
  6901. sp->product_name, pdev->revision);
  6902. DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
  6903. s2io_driver_version);
  6904. DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
  6905. "%02x:%02x:%02x:%02x:%02x:%02x", dev->name,
  6906. sp->def_mac_addr[0].mac_addr[0],
  6907. sp->def_mac_addr[0].mac_addr[1],
  6908. sp->def_mac_addr[0].mac_addr[2],
  6909. sp->def_mac_addr[0].mac_addr[3],
  6910. sp->def_mac_addr[0].mac_addr[4],
  6911. sp->def_mac_addr[0].mac_addr[5]);
  6912. DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
  6913. if (sp->device_type & XFRAME_II_DEVICE) {
  6914. mode = s2io_print_pci_mode(sp);
  6915. if (mode < 0) {
  6916. DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
  6917. ret = -EBADSLT;
  6918. unregister_netdev(dev);
  6919. goto set_swap_failed;
  6920. }
  6921. }
  6922. switch(sp->rxd_mode) {
  6923. case RXD_MODE_1:
  6924. DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
  6925. dev->name);
  6926. break;
  6927. case RXD_MODE_3B:
  6928. DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
  6929. dev->name);
  6930. break;
  6931. }
  6932. if (napi)
  6933. DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
  6934. switch(sp->config.intr_type) {
  6935. case INTA:
  6936. DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
  6937. break;
  6938. case MSI_X:
  6939. DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
  6940. break;
  6941. }
  6942. if (sp->lro)
  6943. DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
  6944. dev->name);
  6945. if (ufo)
  6946. DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
  6947. " enabled\n", dev->name);
  6948. /* Initialize device name */
  6949. sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
  6950. /* Initialize bimodal Interrupts */
  6951. sp->config.bimodal = bimodal;
  6952. if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
  6953. sp->config.bimodal = 0;
  6954. DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
  6955. dev->name);
  6956. }
  6957. /*
  6958. * Make Link state as off at this point, when the Link change
  6959. * interrupt comes the state will be automatically changed to
  6960. * the right state.
  6961. */
  6962. netif_carrier_off(dev);
  6963. return 0;
  6964. register_failed:
  6965. set_swap_failed:
  6966. iounmap(sp->bar1);
  6967. bar1_remap_failed:
  6968. iounmap(sp->bar0);
  6969. bar0_remap_failed:
  6970. mem_alloc_failed:
  6971. free_shared_mem(sp);
  6972. pci_disable_device(pdev);
  6973. pci_release_regions(pdev);
  6974. pci_set_drvdata(pdev, NULL);
  6975. free_netdev(dev);
  6976. return ret;
  6977. }
  6978. /**
  6979. * s2io_rem_nic - Free the PCI device
  6980. * @pdev: structure containing the PCI related information of the device.
  6981. * Description: This function is called by the Pci subsystem to release a
  6982. * PCI device and free up all resource held up by the device. This could
  6983. * be in response to a Hot plug event or when the driver is to be removed
  6984. * from memory.
  6985. */
  6986. static void __devexit s2io_rem_nic(struct pci_dev *pdev)
  6987. {
  6988. struct net_device *dev =
  6989. (struct net_device *) pci_get_drvdata(pdev);
  6990. struct s2io_nic *sp;
  6991. if (dev == NULL) {
  6992. DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
  6993. return;
  6994. }
  6995. flush_scheduled_work();
  6996. sp = dev->priv;
  6997. unregister_netdev(dev);
  6998. free_shared_mem(sp);
  6999. iounmap(sp->bar0);
  7000. iounmap(sp->bar1);
  7001. pci_release_regions(pdev);
  7002. pci_set_drvdata(pdev, NULL);
  7003. free_netdev(dev);
  7004. pci_disable_device(pdev);
  7005. }
  7006. /**
  7007. * s2io_starter - Entry point for the driver
  7008. * Description: This function is the entry point for the driver. It verifies
  7009. * the module loadable parameters and initializes PCI configuration space.
  7010. */
  7011. int __init s2io_starter(void)
  7012. {
  7013. return pci_register_driver(&s2io_driver);
  7014. }
  7015. /**
  7016. * s2io_closer - Cleanup routine for the driver
  7017. * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
  7018. */
  7019. static __exit void s2io_closer(void)
  7020. {
  7021. pci_unregister_driver(&s2io_driver);
  7022. DBG_PRINT(INIT_DBG, "cleanup done\n");
  7023. }
  7024. module_init(s2io_starter);
  7025. module_exit(s2io_closer);
  7026. static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
  7027. struct tcphdr **tcp, struct RxD_t *rxdp)
  7028. {
  7029. int ip_off;
  7030. u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
  7031. if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
  7032. DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
  7033. __FUNCTION__);
  7034. return -1;
  7035. }
  7036. /* TODO:
  7037. * By default the VLAN field in the MAC is stripped by the card, if this
  7038. * feature is turned off in rx_pa_cfg register, then the ip_off field
  7039. * has to be shifted by a further 2 bytes
  7040. */
  7041. switch (l2_type) {
  7042. case 0: /* DIX type */
  7043. case 4: /* DIX type with VLAN */
  7044. ip_off = HEADER_ETHERNET_II_802_3_SIZE;
  7045. break;
  7046. /* LLC, SNAP etc are considered non-mergeable */
  7047. default:
  7048. return -1;
  7049. }
  7050. *ip = (struct iphdr *)((u8 *)buffer + ip_off);
  7051. ip_len = (u8)((*ip)->ihl);
  7052. ip_len <<= 2;
  7053. *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
  7054. return 0;
  7055. }
  7056. static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
  7057. struct tcphdr *tcp)
  7058. {
  7059. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7060. if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
  7061. (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
  7062. return -1;
  7063. return 0;
  7064. }
  7065. static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
  7066. {
  7067. return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
  7068. }
  7069. static void initiate_new_session(struct lro *lro, u8 *l2h,
  7070. struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
  7071. {
  7072. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7073. lro->l2h = l2h;
  7074. lro->iph = ip;
  7075. lro->tcph = tcp;
  7076. lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
  7077. lro->tcp_ack = ntohl(tcp->ack_seq);
  7078. lro->sg_num = 1;
  7079. lro->total_len = ntohs(ip->tot_len);
  7080. lro->frags_len = 0;
  7081. /*
  7082. * check if we saw TCP timestamp. Other consistency checks have
  7083. * already been done.
  7084. */
  7085. if (tcp->doff == 8) {
  7086. u32 *ptr;
  7087. ptr = (u32 *)(tcp+1);
  7088. lro->saw_ts = 1;
  7089. lro->cur_tsval = *(ptr+1);
  7090. lro->cur_tsecr = *(ptr+2);
  7091. }
  7092. lro->in_use = 1;
  7093. }
  7094. static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
  7095. {
  7096. struct iphdr *ip = lro->iph;
  7097. struct tcphdr *tcp = lro->tcph;
  7098. __sum16 nchk;
  7099. struct stat_block *statinfo = sp->mac_control.stats_info;
  7100. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7101. /* Update L3 header */
  7102. ip->tot_len = htons(lro->total_len);
  7103. ip->check = 0;
  7104. nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
  7105. ip->check = nchk;
  7106. /* Update L4 header */
  7107. tcp->ack_seq = lro->tcp_ack;
  7108. tcp->window = lro->window;
  7109. /* Update tsecr field if this session has timestamps enabled */
  7110. if (lro->saw_ts) {
  7111. u32 *ptr = (u32 *)(tcp + 1);
  7112. *(ptr+2) = lro->cur_tsecr;
  7113. }
  7114. /* Update counters required for calculation of
  7115. * average no. of packets aggregated.
  7116. */
  7117. statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
  7118. statinfo->sw_stat.num_aggregations++;
  7119. }
  7120. static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
  7121. struct tcphdr *tcp, u32 l4_pyld)
  7122. {
  7123. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7124. lro->total_len += l4_pyld;
  7125. lro->frags_len += l4_pyld;
  7126. lro->tcp_next_seq += l4_pyld;
  7127. lro->sg_num++;
  7128. /* Update ack seq no. and window ad(from this pkt) in LRO object */
  7129. lro->tcp_ack = tcp->ack_seq;
  7130. lro->window = tcp->window;
  7131. if (lro->saw_ts) {
  7132. u32 *ptr;
  7133. /* Update tsecr and tsval from this packet */
  7134. ptr = (u32 *) (tcp + 1);
  7135. lro->cur_tsval = *(ptr + 1);
  7136. lro->cur_tsecr = *(ptr + 2);
  7137. }
  7138. }
  7139. static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
  7140. struct tcphdr *tcp, u32 tcp_pyld_len)
  7141. {
  7142. u8 *ptr;
  7143. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7144. if (!tcp_pyld_len) {
  7145. /* Runt frame or a pure ack */
  7146. return -1;
  7147. }
  7148. if (ip->ihl != 5) /* IP has options */
  7149. return -1;
  7150. /* If we see CE codepoint in IP header, packet is not mergeable */
  7151. if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
  7152. return -1;
  7153. /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
  7154. if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
  7155. tcp->ece || tcp->cwr || !tcp->ack) {
  7156. /*
  7157. * Currently recognize only the ack control word and
  7158. * any other control field being set would result in
  7159. * flushing the LRO session
  7160. */
  7161. return -1;
  7162. }
  7163. /*
  7164. * Allow only one TCP timestamp option. Don't aggregate if
  7165. * any other options are detected.
  7166. */
  7167. if (tcp->doff != 5 && tcp->doff != 8)
  7168. return -1;
  7169. if (tcp->doff == 8) {
  7170. ptr = (u8 *)(tcp + 1);
  7171. while (*ptr == TCPOPT_NOP)
  7172. ptr++;
  7173. if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
  7174. return -1;
  7175. /* Ensure timestamp value increases monotonically */
  7176. if (l_lro)
  7177. if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
  7178. return -1;
  7179. /* timestamp echo reply should be non-zero */
  7180. if (*((u32 *)(ptr+6)) == 0)
  7181. return -1;
  7182. }
  7183. return 0;
  7184. }
  7185. static int
  7186. s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
  7187. struct RxD_t *rxdp, struct s2io_nic *sp)
  7188. {
  7189. struct iphdr *ip;
  7190. struct tcphdr *tcph;
  7191. int ret = 0, i;
  7192. if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
  7193. rxdp))) {
  7194. DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
  7195. ip->saddr, ip->daddr);
  7196. } else {
  7197. return ret;
  7198. }
  7199. tcph = (struct tcphdr *)*tcp;
  7200. *tcp_len = get_l4_pyld_length(ip, tcph);
  7201. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  7202. struct lro *l_lro = &sp->lro0_n[i];
  7203. if (l_lro->in_use) {
  7204. if (check_for_socket_match(l_lro, ip, tcph))
  7205. continue;
  7206. /* Sock pair matched */
  7207. *lro = l_lro;
  7208. if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
  7209. DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
  7210. "0x%x, actual 0x%x\n", __FUNCTION__,
  7211. (*lro)->tcp_next_seq,
  7212. ntohl(tcph->seq));
  7213. sp->mac_control.stats_info->
  7214. sw_stat.outof_sequence_pkts++;
  7215. ret = 2;
  7216. break;
  7217. }
  7218. if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
  7219. ret = 1; /* Aggregate */
  7220. else
  7221. ret = 2; /* Flush both */
  7222. break;
  7223. }
  7224. }
  7225. if (ret == 0) {
  7226. /* Before searching for available LRO objects,
  7227. * check if the pkt is L3/L4 aggregatable. If not
  7228. * don't create new LRO session. Just send this
  7229. * packet up.
  7230. */
  7231. if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
  7232. return 5;
  7233. }
  7234. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  7235. struct lro *l_lro = &sp->lro0_n[i];
  7236. if (!(l_lro->in_use)) {
  7237. *lro = l_lro;
  7238. ret = 3; /* Begin anew */
  7239. break;
  7240. }
  7241. }
  7242. }
  7243. if (ret == 0) { /* sessions exceeded */
  7244. DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
  7245. __FUNCTION__);
  7246. *lro = NULL;
  7247. return ret;
  7248. }
  7249. switch (ret) {
  7250. case 3:
  7251. initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
  7252. break;
  7253. case 2:
  7254. update_L3L4_header(sp, *lro);
  7255. break;
  7256. case 1:
  7257. aggregate_new_rx(*lro, ip, tcph, *tcp_len);
  7258. if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
  7259. update_L3L4_header(sp, *lro);
  7260. ret = 4; /* Flush the LRO */
  7261. }
  7262. break;
  7263. default:
  7264. DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
  7265. __FUNCTION__);
  7266. break;
  7267. }
  7268. return ret;
  7269. }
  7270. static void clear_lro_session(struct lro *lro)
  7271. {
  7272. static u16 lro_struct_size = sizeof(struct lro);
  7273. memset(lro, 0, lro_struct_size);
  7274. }
  7275. static void queue_rx_frame(struct sk_buff *skb)
  7276. {
  7277. struct net_device *dev = skb->dev;
  7278. skb->protocol = eth_type_trans(skb, dev);
  7279. if (napi)
  7280. netif_receive_skb(skb);
  7281. else
  7282. netif_rx(skb);
  7283. }
  7284. static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
  7285. struct sk_buff *skb,
  7286. u32 tcp_len)
  7287. {
  7288. struct sk_buff *first = lro->parent;
  7289. first->len += tcp_len;
  7290. first->data_len = lro->frags_len;
  7291. skb_pull(skb, (skb->len - tcp_len));
  7292. if (skb_shinfo(first)->frag_list)
  7293. lro->last_frag->next = skb;
  7294. else
  7295. skb_shinfo(first)->frag_list = skb;
  7296. first->truesize += skb->truesize;
  7297. lro->last_frag = skb;
  7298. sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
  7299. return;
  7300. }
  7301. /**
  7302. * s2io_io_error_detected - called when PCI error is detected
  7303. * @pdev: Pointer to PCI device
  7304. * @state: The current pci connection state
  7305. *
  7306. * This function is called after a PCI bus error affecting
  7307. * this device has been detected.
  7308. */
  7309. static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
  7310. pci_channel_state_t state)
  7311. {
  7312. struct net_device *netdev = pci_get_drvdata(pdev);
  7313. struct s2io_nic *sp = netdev->priv;
  7314. netif_device_detach(netdev);
  7315. if (netif_running(netdev)) {
  7316. /* Bring down the card, while avoiding PCI I/O */
  7317. do_s2io_card_down(sp, 0);
  7318. }
  7319. pci_disable_device(pdev);
  7320. return PCI_ERS_RESULT_NEED_RESET;
  7321. }
  7322. /**
  7323. * s2io_io_slot_reset - called after the pci bus has been reset.
  7324. * @pdev: Pointer to PCI device
  7325. *
  7326. * Restart the card from scratch, as if from a cold-boot.
  7327. * At this point, the card has exprienced a hard reset,
  7328. * followed by fixups by BIOS, and has its config space
  7329. * set up identically to what it was at cold boot.
  7330. */
  7331. static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
  7332. {
  7333. struct net_device *netdev = pci_get_drvdata(pdev);
  7334. struct s2io_nic *sp = netdev->priv;
  7335. if (pci_enable_device(pdev)) {
  7336. printk(KERN_ERR "s2io: "
  7337. "Cannot re-enable PCI device after reset.\n");
  7338. return PCI_ERS_RESULT_DISCONNECT;
  7339. }
  7340. pci_set_master(pdev);
  7341. s2io_reset(sp);
  7342. return PCI_ERS_RESULT_RECOVERED;
  7343. }
  7344. /**
  7345. * s2io_io_resume - called when traffic can start flowing again.
  7346. * @pdev: Pointer to PCI device
  7347. *
  7348. * This callback is called when the error recovery driver tells
  7349. * us that its OK to resume normal operation.
  7350. */
  7351. static void s2io_io_resume(struct pci_dev *pdev)
  7352. {
  7353. struct net_device *netdev = pci_get_drvdata(pdev);
  7354. struct s2io_nic *sp = netdev->priv;
  7355. if (netif_running(netdev)) {
  7356. if (s2io_card_up(sp)) {
  7357. printk(KERN_ERR "s2io: "
  7358. "Can't bring device back up after reset.\n");
  7359. return;
  7360. }
  7361. if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
  7362. s2io_card_down(sp);
  7363. printk(KERN_ERR "s2io: "
  7364. "Can't resetore mac addr after reset.\n");
  7365. return;
  7366. }
  7367. }
  7368. netif_device_attach(netdev);
  7369. netif_wake_queue(netdev);
  7370. }