addon_cpuid_features.c 3.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146
  1. /*
  2. * Routines to indentify additional cpu features that are scattered in
  3. * cpuid space.
  4. */
  5. #include <linux/cpu.h>
  6. #include <asm/pat.h>
  7. #include <asm/processor.h>
  8. #include <asm/apic.h>
  9. struct cpuid_bit {
  10. u16 feature;
  11. u8 reg;
  12. u8 bit;
  13. u32 level;
  14. };
  15. enum cpuid_regs {
  16. CR_EAX = 0,
  17. CR_ECX,
  18. CR_EDX,
  19. CR_EBX
  20. };
  21. void __cpuinit init_scattered_cpuid_features(struct cpuinfo_x86 *c)
  22. {
  23. u32 max_level;
  24. u32 regs[4];
  25. const struct cpuid_bit *cb;
  26. static const struct cpuid_bit __cpuinitconst cpuid_bits[] = {
  27. { X86_FEATURE_IDA, CR_EAX, 1, 0x00000006 },
  28. { X86_FEATURE_ARAT, CR_EAX, 2, 0x00000006 },
  29. { X86_FEATURE_CPB, CR_EDX, 9, 0x80000007 },
  30. { X86_FEATURE_NPT, CR_EDX, 0, 0x8000000a },
  31. { X86_FEATURE_LBRV, CR_EDX, 1, 0x8000000a },
  32. { X86_FEATURE_SVML, CR_EDX, 2, 0x8000000a },
  33. { X86_FEATURE_NRIPS, CR_EDX, 3, 0x8000000a },
  34. { 0, 0, 0, 0 }
  35. };
  36. for (cb = cpuid_bits; cb->feature; cb++) {
  37. /* Verify that the level is valid */
  38. max_level = cpuid_eax(cb->level & 0xffff0000);
  39. if (max_level < cb->level ||
  40. max_level > (cb->level | 0xffff))
  41. continue;
  42. cpuid(cb->level, &regs[CR_EAX], &regs[CR_EBX],
  43. &regs[CR_ECX], &regs[CR_EDX]);
  44. if (regs[cb->reg] & (1 << cb->bit))
  45. set_cpu_cap(c, cb->feature);
  46. }
  47. }
  48. /* leaf 0xb SMT level */
  49. #define SMT_LEVEL 0
  50. /* leaf 0xb sub-leaf types */
  51. #define INVALID_TYPE 0
  52. #define SMT_TYPE 1
  53. #define CORE_TYPE 2
  54. #define LEAFB_SUBTYPE(ecx) (((ecx) >> 8) & 0xff)
  55. #define BITS_SHIFT_NEXT_LEVEL(eax) ((eax) & 0x1f)
  56. #define LEVEL_MAX_SIBLINGS(ebx) ((ebx) & 0xffff)
  57. /*
  58. * Check for extended topology enumeration cpuid leaf 0xb and if it
  59. * exists, use it for populating initial_apicid and cpu topology
  60. * detection.
  61. */
  62. void __cpuinit detect_extended_topology(struct cpuinfo_x86 *c)
  63. {
  64. #ifdef CONFIG_SMP
  65. unsigned int eax, ebx, ecx, edx, sub_index;
  66. unsigned int ht_mask_width, core_plus_mask_width;
  67. unsigned int core_select_mask, core_level_siblings;
  68. static bool printed;
  69. if (c->cpuid_level < 0xb)
  70. return;
  71. cpuid_count(0xb, SMT_LEVEL, &eax, &ebx, &ecx, &edx);
  72. /*
  73. * check if the cpuid leaf 0xb is actually implemented.
  74. */
  75. if (ebx == 0 || (LEAFB_SUBTYPE(ecx) != SMT_TYPE))
  76. return;
  77. set_cpu_cap(c, X86_FEATURE_XTOPOLOGY);
  78. /*
  79. * initial apic id, which also represents 32-bit extended x2apic id.
  80. */
  81. c->initial_apicid = edx;
  82. /*
  83. * Populate HT related information from sub-leaf level 0.
  84. */
  85. core_level_siblings = smp_num_siblings = LEVEL_MAX_SIBLINGS(ebx);
  86. core_plus_mask_width = ht_mask_width = BITS_SHIFT_NEXT_LEVEL(eax);
  87. sub_index = 1;
  88. do {
  89. cpuid_count(0xb, sub_index, &eax, &ebx, &ecx, &edx);
  90. /*
  91. * Check for the Core type in the implemented sub leaves.
  92. */
  93. if (LEAFB_SUBTYPE(ecx) == CORE_TYPE) {
  94. core_level_siblings = LEVEL_MAX_SIBLINGS(ebx);
  95. core_plus_mask_width = BITS_SHIFT_NEXT_LEVEL(eax);
  96. break;
  97. }
  98. sub_index++;
  99. } while (LEAFB_SUBTYPE(ecx) != INVALID_TYPE);
  100. core_select_mask = (~(-1 << core_plus_mask_width)) >> ht_mask_width;
  101. c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, ht_mask_width)
  102. & core_select_mask;
  103. c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, core_plus_mask_width);
  104. /*
  105. * Reinit the apicid, now that we have extended initial_apicid.
  106. */
  107. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  108. c->x86_max_cores = (core_level_siblings / smp_num_siblings);
  109. if (!printed) {
  110. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  111. c->phys_proc_id);
  112. if (c->x86_max_cores > 1)
  113. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  114. c->cpu_core_id);
  115. printed = 1;
  116. }
  117. return;
  118. #endif
  119. }