rt2500pci.c 60 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998
  1. /*
  2. Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2500pci
  19. Abstract: rt2500pci device specific routines.
  20. Supported chipsets: RT2560.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/pci.h>
  28. #include <linux/eeprom_93cx6.h>
  29. #include "rt2x00.h"
  30. #include "rt2x00pci.h"
  31. #include "rt2500pci.h"
  32. /*
  33. * Register access.
  34. * All access to the CSR registers will go through the methods
  35. * rt2x00pci_register_read and rt2x00pci_register_write.
  36. * BBP and RF register require indirect register access,
  37. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  38. * These indirect registers work with busy bits,
  39. * and we will try maximal REGISTER_BUSY_COUNT times to access
  40. * the register while taking a REGISTER_BUSY_DELAY us delay
  41. * between each attampt. When the busy bit is still set at that time,
  42. * the access attempt is considered to have failed,
  43. * and we will print an error.
  44. */
  45. static u32 rt2500pci_bbp_check(struct rt2x00_dev *rt2x00dev)
  46. {
  47. u32 reg;
  48. unsigned int i;
  49. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  50. rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
  51. if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
  52. break;
  53. udelay(REGISTER_BUSY_DELAY);
  54. }
  55. return reg;
  56. }
  57. static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  58. const unsigned int word, const u8 value)
  59. {
  60. u32 reg;
  61. /*
  62. * Wait until the BBP becomes ready.
  63. */
  64. reg = rt2500pci_bbp_check(rt2x00dev);
  65. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  66. ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
  67. return;
  68. }
  69. /*
  70. * Write the data into the BBP.
  71. */
  72. reg = 0;
  73. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  74. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  75. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  76. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  77. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  78. }
  79. static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  80. const unsigned int word, u8 *value)
  81. {
  82. u32 reg;
  83. /*
  84. * Wait until the BBP becomes ready.
  85. */
  86. reg = rt2500pci_bbp_check(rt2x00dev);
  87. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  88. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  89. return;
  90. }
  91. /*
  92. * Write the request into the BBP.
  93. */
  94. reg = 0;
  95. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  96. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  97. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  98. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  99. /*
  100. * Wait until the BBP becomes ready.
  101. */
  102. reg = rt2500pci_bbp_check(rt2x00dev);
  103. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  104. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  105. *value = 0xff;
  106. return;
  107. }
  108. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  109. }
  110. static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
  111. const unsigned int word, const u32 value)
  112. {
  113. u32 reg;
  114. unsigned int i;
  115. if (!word)
  116. return;
  117. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  118. rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
  119. if (!rt2x00_get_field32(reg, RFCSR_BUSY))
  120. goto rf_write;
  121. udelay(REGISTER_BUSY_DELAY);
  122. }
  123. ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
  124. return;
  125. rf_write:
  126. reg = 0;
  127. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  128. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  129. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  130. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  131. rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
  132. rt2x00_rf_write(rt2x00dev, word, value);
  133. }
  134. static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  135. {
  136. struct rt2x00_dev *rt2x00dev = eeprom->data;
  137. u32 reg;
  138. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  139. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  140. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  141. eeprom->reg_data_clock =
  142. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  143. eeprom->reg_chip_select =
  144. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  145. }
  146. static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  147. {
  148. struct rt2x00_dev *rt2x00dev = eeprom->data;
  149. u32 reg = 0;
  150. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  151. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  152. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  153. !!eeprom->reg_data_clock);
  154. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  155. !!eeprom->reg_chip_select);
  156. rt2x00pci_register_write(rt2x00dev, CSR21, reg);
  157. }
  158. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  159. #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
  160. static void rt2500pci_read_csr(struct rt2x00_dev *rt2x00dev,
  161. const unsigned int word, u32 *data)
  162. {
  163. rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
  164. }
  165. static void rt2500pci_write_csr(struct rt2x00_dev *rt2x00dev,
  166. const unsigned int word, u32 data)
  167. {
  168. rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
  169. }
  170. static const struct rt2x00debug rt2500pci_rt2x00debug = {
  171. .owner = THIS_MODULE,
  172. .csr = {
  173. .read = rt2500pci_read_csr,
  174. .write = rt2500pci_write_csr,
  175. .word_size = sizeof(u32),
  176. .word_count = CSR_REG_SIZE / sizeof(u32),
  177. },
  178. .eeprom = {
  179. .read = rt2x00_eeprom_read,
  180. .write = rt2x00_eeprom_write,
  181. .word_size = sizeof(u16),
  182. .word_count = EEPROM_SIZE / sizeof(u16),
  183. },
  184. .bbp = {
  185. .read = rt2500pci_bbp_read,
  186. .write = rt2500pci_bbp_write,
  187. .word_size = sizeof(u8),
  188. .word_count = BBP_SIZE / sizeof(u8),
  189. },
  190. .rf = {
  191. .read = rt2x00_rf_read,
  192. .write = rt2500pci_rf_write,
  193. .word_size = sizeof(u32),
  194. .word_count = RF_SIZE / sizeof(u32),
  195. },
  196. };
  197. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  198. #ifdef CONFIG_RT2500PCI_RFKILL
  199. static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  200. {
  201. u32 reg;
  202. rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
  203. return rt2x00_get_field32(reg, GPIOCSR_BIT0);
  204. }
  205. #else
  206. #define rt2500pci_rfkill_poll NULL
  207. #endif /* CONFIG_RT2500PCI_RFKILL */
  208. /*
  209. * Configuration handlers.
  210. */
  211. static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
  212. struct rt2x00_intf *intf,
  213. struct rt2x00intf_conf *conf,
  214. const unsigned int flags)
  215. {
  216. struct data_queue *queue =
  217. rt2x00queue_get_queue(rt2x00dev, RT2X00_BCN_QUEUE_BEACON);
  218. unsigned int bcn_preload;
  219. u32 reg;
  220. if (flags & CONFIG_UPDATE_TYPE) {
  221. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  222. /*
  223. * Enable beacon config
  224. */
  225. bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
  226. rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
  227. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
  228. rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
  229. rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
  230. /*
  231. * Enable synchronisation.
  232. */
  233. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  234. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  235. rt2x00_set_field32(&reg, CSR14_TBCN,
  236. (conf->sync == TSF_SYNC_BEACON));
  237. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  238. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
  239. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  240. }
  241. if (flags & CONFIG_UPDATE_MAC)
  242. rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
  243. conf->mac, sizeof(conf->mac));
  244. if (flags & CONFIG_UPDATE_BSSID)
  245. rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
  246. conf->bssid, sizeof(conf->bssid));
  247. }
  248. static int rt2500pci_config_preamble(struct rt2x00_dev *rt2x00dev,
  249. const int short_preamble,
  250. const int ack_timeout,
  251. const int ack_consume_time)
  252. {
  253. int preamble_mask;
  254. u32 reg;
  255. /*
  256. * When short preamble is enabled, we should set bit 0x08
  257. */
  258. preamble_mask = short_preamble << 3;
  259. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  260. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, ack_timeout);
  261. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, ack_consume_time);
  262. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  263. rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
  264. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
  265. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  266. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
  267. rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
  268. rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
  269. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  270. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  271. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
  272. rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
  273. rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
  274. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  275. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  276. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
  277. rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
  278. rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
  279. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  280. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  281. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
  282. rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
  283. return 0;
  284. }
  285. static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
  286. const int basic_rate_mask)
  287. {
  288. rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
  289. }
  290. static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
  291. struct rf_channel *rf, const int txpower)
  292. {
  293. u8 r70;
  294. /*
  295. * Set TXpower.
  296. */
  297. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  298. /*
  299. * Switch on tuning bits.
  300. * For RT2523 devices we do not need to update the R1 register.
  301. */
  302. if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
  303. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  304. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  305. /*
  306. * For RT2525 we should first set the channel to half band higher.
  307. */
  308. if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
  309. static const u32 vals[] = {
  310. 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
  311. 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
  312. 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
  313. 0x00080d2e, 0x00080d3a
  314. };
  315. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  316. rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
  317. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  318. if (rf->rf4)
  319. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  320. }
  321. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  322. rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
  323. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  324. if (rf->rf4)
  325. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  326. /*
  327. * Channel 14 requires the Japan filter bit to be set.
  328. */
  329. r70 = 0x46;
  330. rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
  331. rt2500pci_bbp_write(rt2x00dev, 70, r70);
  332. msleep(1);
  333. /*
  334. * Switch off tuning bits.
  335. * For RT2523 devices we do not need to update the R1 register.
  336. */
  337. if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
  338. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  339. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  340. }
  341. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  342. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  343. /*
  344. * Clear false CRC during channel switch.
  345. */
  346. rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
  347. }
  348. static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
  349. const int txpower)
  350. {
  351. u32 rf3;
  352. rt2x00_rf_read(rt2x00dev, 3, &rf3);
  353. rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  354. rt2500pci_rf_write(rt2x00dev, 3, rf3);
  355. }
  356. static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
  357. struct antenna_setup *ant)
  358. {
  359. u32 reg;
  360. u8 r14;
  361. u8 r2;
  362. rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
  363. rt2500pci_bbp_read(rt2x00dev, 14, &r14);
  364. rt2500pci_bbp_read(rt2x00dev, 2, &r2);
  365. /*
  366. * Configure the TX antenna.
  367. */
  368. switch (ant->tx) {
  369. case ANTENNA_A:
  370. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
  371. rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
  372. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
  373. break;
  374. case ANTENNA_HW_DIVERSITY:
  375. case ANTENNA_SW_DIVERSITY:
  376. /*
  377. * NOTE: We should never come here because rt2x00lib is
  378. * supposed to catch this and send us the correct antenna
  379. * explicitely. However we are nog going to bug about this.
  380. * Instead, just default to antenna B.
  381. */
  382. case ANTENNA_B:
  383. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  384. rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
  385. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
  386. break;
  387. }
  388. /*
  389. * Configure the RX antenna.
  390. */
  391. switch (ant->rx) {
  392. case ANTENNA_A:
  393. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
  394. break;
  395. case ANTENNA_HW_DIVERSITY:
  396. case ANTENNA_SW_DIVERSITY:
  397. /*
  398. * NOTE: We should never come here because rt2x00lib is
  399. * supposed to catch this and send us the correct antenna
  400. * explicitely. However we are nog going to bug about this.
  401. * Instead, just default to antenna B.
  402. */
  403. case ANTENNA_B:
  404. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  405. break;
  406. }
  407. /*
  408. * RT2525E and RT5222 need to flip TX I/Q
  409. */
  410. if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
  411. rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  412. rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
  413. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
  414. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
  415. /*
  416. * RT2525E does not need RX I/Q Flip.
  417. */
  418. if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
  419. rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
  420. } else {
  421. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
  422. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
  423. }
  424. rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
  425. rt2500pci_bbp_write(rt2x00dev, 14, r14);
  426. rt2500pci_bbp_write(rt2x00dev, 2, r2);
  427. }
  428. static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
  429. struct rt2x00lib_conf *libconf)
  430. {
  431. u32 reg;
  432. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  433. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
  434. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  435. rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
  436. rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
  437. rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
  438. rt2x00pci_register_write(rt2x00dev, CSR18, reg);
  439. rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
  440. rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
  441. rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
  442. rt2x00pci_register_write(rt2x00dev, CSR19, reg);
  443. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  444. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  445. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  446. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  447. rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
  448. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
  449. libconf->conf->beacon_int * 16);
  450. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
  451. libconf->conf->beacon_int * 16);
  452. rt2x00pci_register_write(rt2x00dev, CSR12, reg);
  453. }
  454. static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
  455. struct rt2x00lib_conf *libconf,
  456. const unsigned int flags)
  457. {
  458. if (flags & CONFIG_UPDATE_PHYMODE)
  459. rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
  460. if (flags & CONFIG_UPDATE_CHANNEL)
  461. rt2500pci_config_channel(rt2x00dev, &libconf->rf,
  462. libconf->conf->power_level);
  463. if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
  464. rt2500pci_config_txpower(rt2x00dev,
  465. libconf->conf->power_level);
  466. if (flags & CONFIG_UPDATE_ANTENNA)
  467. rt2500pci_config_antenna(rt2x00dev, &libconf->ant);
  468. if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
  469. rt2500pci_config_duration(rt2x00dev, libconf);
  470. }
  471. /*
  472. * LED functions.
  473. */
  474. static void rt2500pci_enable_led(struct rt2x00_dev *rt2x00dev)
  475. {
  476. u32 reg;
  477. rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
  478. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
  479. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
  480. rt2x00_set_field32(&reg, LEDCSR_LINK,
  481. (rt2x00dev->led_mode != LED_MODE_ASUS));
  482. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY,
  483. (rt2x00dev->led_mode != LED_MODE_TXRX_ACTIVITY));
  484. rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
  485. }
  486. static void rt2500pci_disable_led(struct rt2x00_dev *rt2x00dev)
  487. {
  488. u32 reg;
  489. rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
  490. rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
  491. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
  492. rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
  493. }
  494. /*
  495. * Link tuning
  496. */
  497. static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
  498. struct link_qual *qual)
  499. {
  500. u32 reg;
  501. /*
  502. * Update FCS error count from register.
  503. */
  504. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  505. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  506. /*
  507. * Update False CCA count from register.
  508. */
  509. rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
  510. qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
  511. }
  512. static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
  513. {
  514. rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
  515. rt2x00dev->link.vgc_level = 0x48;
  516. }
  517. static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
  518. {
  519. int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
  520. u8 r17;
  521. /*
  522. * To prevent collisions with MAC ASIC on chipsets
  523. * up to version C the link tuning should halt after 20
  524. * seconds while being associated.
  525. */
  526. if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
  527. rt2x00dev->intf_associated &&
  528. rt2x00dev->link.count > 20)
  529. return;
  530. rt2500pci_bbp_read(rt2x00dev, 17, &r17);
  531. /*
  532. * Chipset versions C and lower should directly continue
  533. * to the dynamic CCA tuning. Chipset version D and higher
  534. * should go straight to dynamic CCA tuning when they
  535. * are not associated.
  536. */
  537. if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D ||
  538. !rt2x00dev->intf_associated)
  539. goto dynamic_cca_tune;
  540. /*
  541. * A too low RSSI will cause too much false CCA which will
  542. * then corrupt the R17 tuning. To remidy this the tuning should
  543. * be stopped (While making sure the R17 value will not exceed limits)
  544. */
  545. if (rssi < -80 && rt2x00dev->link.count > 20) {
  546. if (r17 >= 0x41) {
  547. r17 = rt2x00dev->link.vgc_level;
  548. rt2500pci_bbp_write(rt2x00dev, 17, r17);
  549. }
  550. return;
  551. }
  552. /*
  553. * Special big-R17 for short distance
  554. */
  555. if (rssi >= -58) {
  556. if (r17 != 0x50)
  557. rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
  558. return;
  559. }
  560. /*
  561. * Special mid-R17 for middle distance
  562. */
  563. if (rssi >= -74) {
  564. if (r17 != 0x41)
  565. rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
  566. return;
  567. }
  568. /*
  569. * Leave short or middle distance condition, restore r17
  570. * to the dynamic tuning range.
  571. */
  572. if (r17 >= 0x41) {
  573. rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
  574. return;
  575. }
  576. dynamic_cca_tune:
  577. /*
  578. * R17 is inside the dynamic tuning range,
  579. * start tuning the link based on the false cca counter.
  580. */
  581. if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
  582. rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
  583. rt2x00dev->link.vgc_level = r17;
  584. } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
  585. rt2500pci_bbp_write(rt2x00dev, 17, --r17);
  586. rt2x00dev->link.vgc_level = r17;
  587. }
  588. }
  589. /*
  590. * Initialization functions.
  591. */
  592. static void rt2500pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
  593. struct queue_entry *entry)
  594. {
  595. struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
  596. u32 word;
  597. rt2x00_desc_read(priv_rx->desc, 1, &word);
  598. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, priv_rx->dma);
  599. rt2x00_desc_write(priv_rx->desc, 1, word);
  600. rt2x00_desc_read(priv_rx->desc, 0, &word);
  601. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  602. rt2x00_desc_write(priv_rx->desc, 0, word);
  603. }
  604. static void rt2500pci_init_txentry(struct rt2x00_dev *rt2x00dev,
  605. struct queue_entry *entry)
  606. {
  607. struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
  608. u32 word;
  609. rt2x00_desc_read(priv_tx->desc, 1, &word);
  610. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, priv_tx->dma);
  611. rt2x00_desc_write(priv_tx->desc, 1, word);
  612. rt2x00_desc_read(priv_tx->desc, 0, &word);
  613. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  614. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  615. rt2x00_desc_write(priv_tx->desc, 0, word);
  616. }
  617. static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
  618. {
  619. struct queue_entry_priv_pci_rx *priv_rx;
  620. struct queue_entry_priv_pci_tx *priv_tx;
  621. u32 reg;
  622. /*
  623. * Initialize registers.
  624. */
  625. rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
  626. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
  627. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
  628. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
  629. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
  630. rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
  631. priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
  632. rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
  633. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER, priv_tx->dma);
  634. rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
  635. priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
  636. rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
  637. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER, priv_tx->dma);
  638. rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
  639. priv_tx = rt2x00dev->bcn[1].entries[0].priv_data;
  640. rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
  641. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER, priv_tx->dma);
  642. rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
  643. priv_tx = rt2x00dev->bcn[0].entries[0].priv_data;
  644. rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
  645. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER, priv_tx->dma);
  646. rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
  647. rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
  648. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  649. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
  650. rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
  651. priv_rx = rt2x00dev->rx->entries[0].priv_data;
  652. rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
  653. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER, priv_tx->dma);
  654. rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
  655. return 0;
  656. }
  657. static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
  658. {
  659. u32 reg;
  660. rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
  661. rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
  662. rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
  663. rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
  664. rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
  665. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  666. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  667. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  668. rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
  669. rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
  670. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  671. rt2x00dev->rx->data_size / 128);
  672. rt2x00pci_register_write(rt2x00dev, CSR9, reg);
  673. /*
  674. * Always use CWmin and CWmax set in descriptor.
  675. */
  676. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  677. rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
  678. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  679. rt2x00pci_register_write(rt2x00dev, CNT3, 0);
  680. rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
  681. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
  682. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
  683. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
  684. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
  685. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
  686. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
  687. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
  688. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
  689. rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
  690. rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
  691. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
  692. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
  693. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
  694. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
  695. rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
  696. rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
  697. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
  698. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
  699. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
  700. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
  701. rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
  702. rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
  703. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
  704. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
  705. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
  706. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
  707. rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
  708. rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
  709. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
  710. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  711. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
  712. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  713. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
  714. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  715. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
  716. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
  717. rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
  718. rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
  719. rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
  720. rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
  721. rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
  722. rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
  723. rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
  724. rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
  725. rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
  726. rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
  727. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  728. rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
  729. rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
  730. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  731. return -EBUSY;
  732. rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
  733. rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
  734. rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
  735. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  736. rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
  737. rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
  738. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  739. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
  740. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
  741. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  742. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
  743. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
  744. rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
  745. rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
  746. rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
  747. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  748. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  749. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  750. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  751. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  752. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  753. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  754. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  755. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  756. /*
  757. * We must clear the FCS and FIFO error count.
  758. * These registers are cleared on read,
  759. * so we may pass a useless variable to store the value.
  760. */
  761. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  762. rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
  763. return 0;
  764. }
  765. static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  766. {
  767. unsigned int i;
  768. u16 eeprom;
  769. u8 reg_id;
  770. u8 value;
  771. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  772. rt2500pci_bbp_read(rt2x00dev, 0, &value);
  773. if ((value != 0xff) && (value != 0x00))
  774. goto continue_csr_init;
  775. NOTICE(rt2x00dev, "Waiting for BBP register.\n");
  776. udelay(REGISTER_BUSY_DELAY);
  777. }
  778. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  779. return -EACCES;
  780. continue_csr_init:
  781. rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
  782. rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
  783. rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
  784. rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
  785. rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
  786. rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
  787. rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
  788. rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
  789. rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
  790. rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
  791. rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
  792. rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
  793. rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
  794. rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
  795. rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
  796. rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
  797. rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
  798. rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
  799. rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
  800. rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
  801. rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
  802. rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
  803. rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
  804. rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
  805. rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
  806. rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
  807. rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
  808. rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
  809. rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
  810. rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
  811. DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
  812. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  813. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  814. if (eeprom != 0xffff && eeprom != 0x0000) {
  815. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  816. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  817. DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
  818. reg_id, value);
  819. rt2500pci_bbp_write(rt2x00dev, reg_id, value);
  820. }
  821. }
  822. DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
  823. return 0;
  824. }
  825. /*
  826. * Device state switch handlers.
  827. */
  828. static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  829. enum dev_state state)
  830. {
  831. u32 reg;
  832. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  833. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
  834. state == STATE_RADIO_RX_OFF);
  835. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  836. }
  837. static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  838. enum dev_state state)
  839. {
  840. int mask = (state == STATE_RADIO_IRQ_OFF);
  841. u32 reg;
  842. /*
  843. * When interrupts are being enabled, the interrupt registers
  844. * should clear the register to assure a clean state.
  845. */
  846. if (state == STATE_RADIO_IRQ_ON) {
  847. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  848. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  849. }
  850. /*
  851. * Only toggle the interrupts bits we are going to use.
  852. * Non-checked interrupt bits are disabled by default.
  853. */
  854. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  855. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  856. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  857. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  858. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  859. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  860. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  861. }
  862. static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  863. {
  864. /*
  865. * Initialize all registers.
  866. */
  867. if (rt2500pci_init_queues(rt2x00dev) ||
  868. rt2500pci_init_registers(rt2x00dev) ||
  869. rt2500pci_init_bbp(rt2x00dev)) {
  870. ERROR(rt2x00dev, "Register initialization failed.\n");
  871. return -EIO;
  872. }
  873. /*
  874. * Enable interrupts.
  875. */
  876. rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
  877. /*
  878. * Enable LED
  879. */
  880. rt2500pci_enable_led(rt2x00dev);
  881. return 0;
  882. }
  883. static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  884. {
  885. u32 reg;
  886. /*
  887. * Disable LED
  888. */
  889. rt2500pci_disable_led(rt2x00dev);
  890. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
  891. /*
  892. * Disable synchronisation.
  893. */
  894. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  895. /*
  896. * Cancel RX and TX.
  897. */
  898. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  899. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  900. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  901. /*
  902. * Disable interrupts.
  903. */
  904. rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
  905. }
  906. static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
  907. enum dev_state state)
  908. {
  909. u32 reg;
  910. unsigned int i;
  911. char put_to_sleep;
  912. char bbp_state;
  913. char rf_state;
  914. put_to_sleep = (state != STATE_AWAKE);
  915. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  916. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  917. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  918. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  919. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  920. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  921. /*
  922. * Device is not guaranteed to be in the requested state yet.
  923. * We must wait until the register indicates that the
  924. * device has entered the correct state.
  925. */
  926. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  927. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  928. bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
  929. rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
  930. if (bbp_state == state && rf_state == state)
  931. return 0;
  932. msleep(10);
  933. }
  934. NOTICE(rt2x00dev, "Device failed to enter state %d, "
  935. "current device state: bbp %d and rf %d.\n",
  936. state, bbp_state, rf_state);
  937. return -EBUSY;
  938. }
  939. static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  940. enum dev_state state)
  941. {
  942. int retval = 0;
  943. switch (state) {
  944. case STATE_RADIO_ON:
  945. retval = rt2500pci_enable_radio(rt2x00dev);
  946. break;
  947. case STATE_RADIO_OFF:
  948. rt2500pci_disable_radio(rt2x00dev);
  949. break;
  950. case STATE_RADIO_RX_ON:
  951. case STATE_RADIO_RX_ON_LINK:
  952. rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
  953. break;
  954. case STATE_RADIO_RX_OFF:
  955. case STATE_RADIO_RX_OFF_LINK:
  956. rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
  957. break;
  958. case STATE_DEEP_SLEEP:
  959. case STATE_SLEEP:
  960. case STATE_STANDBY:
  961. case STATE_AWAKE:
  962. retval = rt2500pci_set_state(rt2x00dev, state);
  963. break;
  964. default:
  965. retval = -ENOTSUPP;
  966. break;
  967. }
  968. return retval;
  969. }
  970. /*
  971. * TX descriptor initialization
  972. */
  973. static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  974. struct sk_buff *skb,
  975. struct txentry_desc *txdesc,
  976. struct ieee80211_tx_control *control)
  977. {
  978. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  979. __le32 *txd = skbdesc->desc;
  980. u32 word;
  981. /*
  982. * Start writing the descriptor words.
  983. */
  984. rt2x00_desc_read(txd, 2, &word);
  985. rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
  986. rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
  987. rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
  988. rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
  989. rt2x00_desc_write(txd, 2, word);
  990. rt2x00_desc_read(txd, 3, &word);
  991. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
  992. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
  993. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
  994. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
  995. rt2x00_desc_write(txd, 3, word);
  996. rt2x00_desc_read(txd, 10, &word);
  997. rt2x00_set_field32(&word, TXD_W10_RTS,
  998. test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
  999. rt2x00_desc_write(txd, 10, word);
  1000. rt2x00_desc_read(txd, 0, &word);
  1001. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  1002. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  1003. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  1004. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  1005. rt2x00_set_field32(&word, TXD_W0_ACK,
  1006. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  1007. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  1008. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  1009. rt2x00_set_field32(&word, TXD_W0_OFDM,
  1010. test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
  1011. rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
  1012. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  1013. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  1014. !!(control->flags &
  1015. IEEE80211_TXCTL_LONG_RETRY_LIMIT));
  1016. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
  1017. rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
  1018. rt2x00_desc_write(txd, 0, word);
  1019. }
  1020. /*
  1021. * TX data initialization
  1022. */
  1023. static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  1024. const unsigned int queue)
  1025. {
  1026. u32 reg;
  1027. if (queue == RT2X00_BCN_QUEUE_BEACON) {
  1028. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  1029. if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
  1030. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  1031. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  1032. }
  1033. return;
  1034. }
  1035. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  1036. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO,
  1037. (queue == IEEE80211_TX_QUEUE_DATA0));
  1038. rt2x00_set_field32(&reg, TXCSR0_KICK_TX,
  1039. (queue == IEEE80211_TX_QUEUE_DATA1));
  1040. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM,
  1041. (queue == RT2X00_BCN_QUEUE_ATIM));
  1042. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  1043. }
  1044. /*
  1045. * RX control handlers
  1046. */
  1047. static void rt2500pci_fill_rxdone(struct queue_entry *entry,
  1048. struct rxdone_entry_desc *rxdesc)
  1049. {
  1050. struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
  1051. u32 word0;
  1052. u32 word2;
  1053. rt2x00_desc_read(priv_rx->desc, 0, &word0);
  1054. rt2x00_desc_read(priv_rx->desc, 2, &word2);
  1055. rxdesc->flags = 0;
  1056. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1057. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1058. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  1059. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  1060. rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
  1061. rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
  1062. entry->queue->rt2x00dev->rssi_offset;
  1063. rxdesc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
  1064. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1065. rxdesc->my_bss = !!rt2x00_get_field32(word0, RXD_W0_MY_BSS);
  1066. }
  1067. /*
  1068. * Interrupt functions.
  1069. */
  1070. static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
  1071. const enum ieee80211_tx_queue queue_idx)
  1072. {
  1073. struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  1074. struct queue_entry_priv_pci_tx *priv_tx;
  1075. struct queue_entry *entry;
  1076. struct txdone_entry_desc txdesc;
  1077. u32 word;
  1078. while (!rt2x00queue_empty(queue)) {
  1079. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1080. priv_tx = entry->priv_data;
  1081. rt2x00_desc_read(priv_tx->desc, 0, &word);
  1082. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1083. !rt2x00_get_field32(word, TXD_W0_VALID))
  1084. break;
  1085. /*
  1086. * Obtain the status about this packet.
  1087. */
  1088. txdesc.status = rt2x00_get_field32(word, TXD_W0_RESULT);
  1089. txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  1090. rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
  1091. }
  1092. }
  1093. static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
  1094. {
  1095. struct rt2x00_dev *rt2x00dev = dev_instance;
  1096. u32 reg;
  1097. /*
  1098. * Get the interrupt sources & saved to local variable.
  1099. * Write register value back to clear pending interrupts.
  1100. */
  1101. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  1102. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  1103. if (!reg)
  1104. return IRQ_NONE;
  1105. if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
  1106. return IRQ_HANDLED;
  1107. /*
  1108. * Handle interrupts, walk through all bits
  1109. * and run the tasks, the bits are checked in order of
  1110. * priority.
  1111. */
  1112. /*
  1113. * 1 - Beacon timer expired interrupt.
  1114. */
  1115. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  1116. rt2x00lib_beacondone(rt2x00dev);
  1117. /*
  1118. * 2 - Rx ring done interrupt.
  1119. */
  1120. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  1121. rt2x00pci_rxdone(rt2x00dev);
  1122. /*
  1123. * 3 - Atim ring transmit done interrupt.
  1124. */
  1125. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
  1126. rt2500pci_txdone(rt2x00dev, RT2X00_BCN_QUEUE_ATIM);
  1127. /*
  1128. * 4 - Priority ring transmit done interrupt.
  1129. */
  1130. if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
  1131. rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
  1132. /*
  1133. * 5 - Tx ring transmit done interrupt.
  1134. */
  1135. if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
  1136. rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
  1137. return IRQ_HANDLED;
  1138. }
  1139. /*
  1140. * Device probe functions.
  1141. */
  1142. static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1143. {
  1144. struct eeprom_93cx6 eeprom;
  1145. u32 reg;
  1146. u16 word;
  1147. u8 *mac;
  1148. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  1149. eeprom.data = rt2x00dev;
  1150. eeprom.register_read = rt2500pci_eepromregister_read;
  1151. eeprom.register_write = rt2500pci_eepromregister_write;
  1152. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1153. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1154. eeprom.reg_data_in = 0;
  1155. eeprom.reg_data_out = 0;
  1156. eeprom.reg_data_clock = 0;
  1157. eeprom.reg_chip_select = 0;
  1158. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1159. EEPROM_SIZE / sizeof(u16));
  1160. /*
  1161. * Start validation of the data that has been read.
  1162. */
  1163. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1164. if (!is_valid_ether_addr(mac)) {
  1165. DECLARE_MAC_BUF(macbuf);
  1166. random_ether_addr(mac);
  1167. EEPROM(rt2x00dev, "MAC: %s\n",
  1168. print_mac(macbuf, mac));
  1169. }
  1170. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1171. if (word == 0xffff) {
  1172. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1173. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
  1174. ANTENNA_SW_DIVERSITY);
  1175. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
  1176. ANTENNA_SW_DIVERSITY);
  1177. rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
  1178. LED_MODE_DEFAULT);
  1179. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1180. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1181. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
  1182. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1183. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  1184. }
  1185. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1186. if (word == 0xffff) {
  1187. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1188. rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
  1189. rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
  1190. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1191. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  1192. }
  1193. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
  1194. if (word == 0xffff) {
  1195. rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
  1196. DEFAULT_RSSI_OFFSET);
  1197. rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
  1198. EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
  1199. }
  1200. return 0;
  1201. }
  1202. static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1203. {
  1204. u32 reg;
  1205. u16 value;
  1206. u16 eeprom;
  1207. /*
  1208. * Read EEPROM word for configuration.
  1209. */
  1210. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1211. /*
  1212. * Identify RF chipset.
  1213. */
  1214. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1215. rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
  1216. rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
  1217. if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
  1218. !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
  1219. !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
  1220. !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
  1221. !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
  1222. !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1223. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1224. return -ENODEV;
  1225. }
  1226. /*
  1227. * Identify default antenna configuration.
  1228. */
  1229. rt2x00dev->default_ant.tx =
  1230. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1231. rt2x00dev->default_ant.rx =
  1232. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1233. /*
  1234. * Store led mode, for correct led behaviour.
  1235. */
  1236. rt2x00dev->led_mode =
  1237. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1238. /*
  1239. * Detect if this device has an hardware controlled radio.
  1240. */
  1241. #ifdef CONFIG_RT2500PCI_RFKILL
  1242. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1243. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1244. #endif /* CONFIG_RT2500PCI_RFKILL */
  1245. /*
  1246. * Check if the BBP tuning should be enabled.
  1247. */
  1248. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1249. if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
  1250. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1251. /*
  1252. * Read the RSSI <-> dBm offset information.
  1253. */
  1254. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
  1255. rt2x00dev->rssi_offset =
  1256. rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
  1257. return 0;
  1258. }
  1259. /*
  1260. * RF value list for RF2522
  1261. * Supports: 2.4 GHz
  1262. */
  1263. static const struct rf_channel rf_vals_bg_2522[] = {
  1264. { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
  1265. { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
  1266. { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
  1267. { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
  1268. { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
  1269. { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
  1270. { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
  1271. { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
  1272. { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
  1273. { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
  1274. { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
  1275. { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
  1276. { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
  1277. { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
  1278. };
  1279. /*
  1280. * RF value list for RF2523
  1281. * Supports: 2.4 GHz
  1282. */
  1283. static const struct rf_channel rf_vals_bg_2523[] = {
  1284. { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
  1285. { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
  1286. { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
  1287. { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
  1288. { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
  1289. { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
  1290. { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
  1291. { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
  1292. { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
  1293. { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
  1294. { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
  1295. { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
  1296. { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
  1297. { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
  1298. };
  1299. /*
  1300. * RF value list for RF2524
  1301. * Supports: 2.4 GHz
  1302. */
  1303. static const struct rf_channel rf_vals_bg_2524[] = {
  1304. { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
  1305. { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
  1306. { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
  1307. { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
  1308. { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
  1309. { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
  1310. { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
  1311. { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
  1312. { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
  1313. { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
  1314. { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
  1315. { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
  1316. { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
  1317. { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
  1318. };
  1319. /*
  1320. * RF value list for RF2525
  1321. * Supports: 2.4 GHz
  1322. */
  1323. static const struct rf_channel rf_vals_bg_2525[] = {
  1324. { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
  1325. { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
  1326. { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
  1327. { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
  1328. { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
  1329. { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
  1330. { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
  1331. { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
  1332. { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
  1333. { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
  1334. { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
  1335. { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
  1336. { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
  1337. { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
  1338. };
  1339. /*
  1340. * RF value list for RF2525e
  1341. * Supports: 2.4 GHz
  1342. */
  1343. static const struct rf_channel rf_vals_bg_2525e[] = {
  1344. { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
  1345. { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
  1346. { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
  1347. { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
  1348. { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
  1349. { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
  1350. { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
  1351. { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
  1352. { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
  1353. { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
  1354. { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
  1355. { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
  1356. { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
  1357. { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
  1358. };
  1359. /*
  1360. * RF value list for RF5222
  1361. * Supports: 2.4 GHz & 5.2 GHz
  1362. */
  1363. static const struct rf_channel rf_vals_5222[] = {
  1364. { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
  1365. { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
  1366. { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
  1367. { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
  1368. { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
  1369. { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
  1370. { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
  1371. { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
  1372. { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
  1373. { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
  1374. { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
  1375. { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
  1376. { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
  1377. { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
  1378. /* 802.11 UNI / HyperLan 2 */
  1379. { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
  1380. { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
  1381. { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
  1382. { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
  1383. { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
  1384. { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
  1385. { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
  1386. { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
  1387. /* 802.11 HyperLan 2 */
  1388. { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
  1389. { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
  1390. { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
  1391. { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
  1392. { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
  1393. { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
  1394. { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
  1395. { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
  1396. { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
  1397. { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
  1398. /* 802.11 UNII */
  1399. { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
  1400. { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
  1401. { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
  1402. { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
  1403. { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
  1404. };
  1405. static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1406. {
  1407. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1408. u8 *txpower;
  1409. unsigned int i;
  1410. /*
  1411. * Initialize all hw fields.
  1412. */
  1413. rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
  1414. rt2x00dev->hw->extra_tx_headroom = 0;
  1415. rt2x00dev->hw->max_signal = MAX_SIGNAL;
  1416. rt2x00dev->hw->max_rssi = MAX_RX_SSI;
  1417. rt2x00dev->hw->queues = 2;
  1418. SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
  1419. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1420. rt2x00_eeprom_addr(rt2x00dev,
  1421. EEPROM_MAC_ADDR_0));
  1422. /*
  1423. * Convert tx_power array in eeprom.
  1424. */
  1425. txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1426. for (i = 0; i < 14; i++)
  1427. txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
  1428. /*
  1429. * Initialize hw_mode information.
  1430. */
  1431. spec->num_modes = 2;
  1432. spec->num_rates = 12;
  1433. spec->tx_power_a = NULL;
  1434. spec->tx_power_bg = txpower;
  1435. spec->tx_power_default = DEFAULT_TXPOWER;
  1436. if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
  1437. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
  1438. spec->channels = rf_vals_bg_2522;
  1439. } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
  1440. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
  1441. spec->channels = rf_vals_bg_2523;
  1442. } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
  1443. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
  1444. spec->channels = rf_vals_bg_2524;
  1445. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
  1446. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
  1447. spec->channels = rf_vals_bg_2525;
  1448. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
  1449. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
  1450. spec->channels = rf_vals_bg_2525e;
  1451. } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1452. spec->num_channels = ARRAY_SIZE(rf_vals_5222);
  1453. spec->channels = rf_vals_5222;
  1454. spec->num_modes = 3;
  1455. }
  1456. }
  1457. static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1458. {
  1459. int retval;
  1460. /*
  1461. * Allocate eeprom data.
  1462. */
  1463. retval = rt2500pci_validate_eeprom(rt2x00dev);
  1464. if (retval)
  1465. return retval;
  1466. retval = rt2500pci_init_eeprom(rt2x00dev);
  1467. if (retval)
  1468. return retval;
  1469. /*
  1470. * Initialize hw specifications.
  1471. */
  1472. rt2500pci_probe_hw_mode(rt2x00dev);
  1473. /*
  1474. * This device requires the atim queue
  1475. */
  1476. __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  1477. /*
  1478. * Set the rssi offset.
  1479. */
  1480. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1481. return 0;
  1482. }
  1483. /*
  1484. * IEEE80211 stack callback functions.
  1485. */
  1486. static void rt2500pci_configure_filter(struct ieee80211_hw *hw,
  1487. unsigned int changed_flags,
  1488. unsigned int *total_flags,
  1489. int mc_count,
  1490. struct dev_addr_list *mc_list)
  1491. {
  1492. struct rt2x00_dev *rt2x00dev = hw->priv;
  1493. u32 reg;
  1494. /*
  1495. * Mask off any flags we are going to ignore from
  1496. * the total_flags field.
  1497. */
  1498. *total_flags &=
  1499. FIF_ALLMULTI |
  1500. FIF_FCSFAIL |
  1501. FIF_PLCPFAIL |
  1502. FIF_CONTROL |
  1503. FIF_OTHER_BSS |
  1504. FIF_PROMISC_IN_BSS;
  1505. /*
  1506. * Apply some rules to the filters:
  1507. * - Some filters imply different filters to be set.
  1508. * - Some things we can't filter out at all.
  1509. */
  1510. if (mc_count)
  1511. *total_flags |= FIF_ALLMULTI;
  1512. if (*total_flags & FIF_OTHER_BSS ||
  1513. *total_flags & FIF_PROMISC_IN_BSS)
  1514. *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
  1515. /*
  1516. * Check if there is any work left for us.
  1517. */
  1518. if (rt2x00dev->packet_filter == *total_flags)
  1519. return;
  1520. rt2x00dev->packet_filter = *total_flags;
  1521. /*
  1522. * Start configuration steps.
  1523. * Note that the version error will always be dropped
  1524. * and broadcast frames will always be accepted since
  1525. * there is no filter for it at this time.
  1526. */
  1527. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  1528. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  1529. !(*total_flags & FIF_FCSFAIL));
  1530. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  1531. !(*total_flags & FIF_PLCPFAIL));
  1532. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  1533. !(*total_flags & FIF_CONTROL));
  1534. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
  1535. !(*total_flags & FIF_PROMISC_IN_BSS));
  1536. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  1537. !(*total_flags & FIF_PROMISC_IN_BSS));
  1538. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  1539. rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
  1540. !(*total_flags & FIF_ALLMULTI));
  1541. rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
  1542. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  1543. }
  1544. static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
  1545. u32 short_retry, u32 long_retry)
  1546. {
  1547. struct rt2x00_dev *rt2x00dev = hw->priv;
  1548. u32 reg;
  1549. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  1550. rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
  1551. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
  1552. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  1553. return 0;
  1554. }
  1555. static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
  1556. {
  1557. struct rt2x00_dev *rt2x00dev = hw->priv;
  1558. u64 tsf;
  1559. u32 reg;
  1560. rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
  1561. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1562. rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
  1563. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1564. return tsf;
  1565. }
  1566. static void rt2500pci_reset_tsf(struct ieee80211_hw *hw)
  1567. {
  1568. struct rt2x00_dev *rt2x00dev = hw->priv;
  1569. rt2x00pci_register_write(rt2x00dev, CSR16, 0);
  1570. rt2x00pci_register_write(rt2x00dev, CSR17, 0);
  1571. }
  1572. static int rt2500pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
  1573. struct ieee80211_tx_control *control)
  1574. {
  1575. struct rt2x00_dev *rt2x00dev = hw->priv;
  1576. struct rt2x00_intf *intf = vif_to_intf(control->vif);
  1577. struct queue_entry_priv_pci_tx *priv_tx;
  1578. struct skb_frame_desc *skbdesc;
  1579. if (unlikely(!intf->beacon))
  1580. return -ENOBUFS;
  1581. priv_tx = intf->beacon->priv_data;
  1582. /*
  1583. * Fill in skb descriptor
  1584. */
  1585. skbdesc = get_skb_frame_desc(skb);
  1586. memset(skbdesc, 0, sizeof(*skbdesc));
  1587. skbdesc->data = skb->data;
  1588. skbdesc->data_len = skb->len;
  1589. skbdesc->desc = priv_tx->desc;
  1590. skbdesc->desc_len = intf->beacon->queue->desc_size;
  1591. skbdesc->entry = intf->beacon;
  1592. /*
  1593. * mac80211 doesn't provide the control->queue variable
  1594. * for beacons. Set our own queue identification so
  1595. * it can be used during descriptor initialization.
  1596. */
  1597. control->queue = RT2X00_BCN_QUEUE_BEACON;
  1598. rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
  1599. /*
  1600. * Enable beacon generation.
  1601. * Write entire beacon with descriptor to register,
  1602. * and kick the beacon generator.
  1603. */
  1604. memcpy(priv_tx->data, skb->data, skb->len);
  1605. rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, control->queue);
  1606. return 0;
  1607. }
  1608. static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
  1609. {
  1610. struct rt2x00_dev *rt2x00dev = hw->priv;
  1611. u32 reg;
  1612. rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
  1613. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1614. }
  1615. static const struct ieee80211_ops rt2500pci_mac80211_ops = {
  1616. .tx = rt2x00mac_tx,
  1617. .start = rt2x00mac_start,
  1618. .stop = rt2x00mac_stop,
  1619. .add_interface = rt2x00mac_add_interface,
  1620. .remove_interface = rt2x00mac_remove_interface,
  1621. .config = rt2x00mac_config,
  1622. .config_interface = rt2x00mac_config_interface,
  1623. .configure_filter = rt2500pci_configure_filter,
  1624. .get_stats = rt2x00mac_get_stats,
  1625. .set_retry_limit = rt2500pci_set_retry_limit,
  1626. .bss_info_changed = rt2x00mac_bss_info_changed,
  1627. .conf_tx = rt2x00mac_conf_tx,
  1628. .get_tx_stats = rt2x00mac_get_tx_stats,
  1629. .get_tsf = rt2500pci_get_tsf,
  1630. .reset_tsf = rt2500pci_reset_tsf,
  1631. .beacon_update = rt2500pci_beacon_update,
  1632. .tx_last_beacon = rt2500pci_tx_last_beacon,
  1633. };
  1634. static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
  1635. .irq_handler = rt2500pci_interrupt,
  1636. .probe_hw = rt2500pci_probe_hw,
  1637. .initialize = rt2x00pci_initialize,
  1638. .uninitialize = rt2x00pci_uninitialize,
  1639. .init_rxentry = rt2500pci_init_rxentry,
  1640. .init_txentry = rt2500pci_init_txentry,
  1641. .set_device_state = rt2500pci_set_device_state,
  1642. .rfkill_poll = rt2500pci_rfkill_poll,
  1643. .link_stats = rt2500pci_link_stats,
  1644. .reset_tuner = rt2500pci_reset_tuner,
  1645. .link_tuner = rt2500pci_link_tuner,
  1646. .write_tx_desc = rt2500pci_write_tx_desc,
  1647. .write_tx_data = rt2x00pci_write_tx_data,
  1648. .kick_tx_queue = rt2500pci_kick_tx_queue,
  1649. .fill_rxdone = rt2500pci_fill_rxdone,
  1650. .config_intf = rt2500pci_config_intf,
  1651. .config_preamble = rt2500pci_config_preamble,
  1652. .config = rt2500pci_config,
  1653. };
  1654. static const struct data_queue_desc rt2500pci_queue_rx = {
  1655. .entry_num = RX_ENTRIES,
  1656. .data_size = DATA_FRAME_SIZE,
  1657. .desc_size = RXD_DESC_SIZE,
  1658. .priv_size = sizeof(struct queue_entry_priv_pci_rx),
  1659. };
  1660. static const struct data_queue_desc rt2500pci_queue_tx = {
  1661. .entry_num = TX_ENTRIES,
  1662. .data_size = DATA_FRAME_SIZE,
  1663. .desc_size = TXD_DESC_SIZE,
  1664. .priv_size = sizeof(struct queue_entry_priv_pci_tx),
  1665. };
  1666. static const struct data_queue_desc rt2500pci_queue_bcn = {
  1667. .entry_num = BEACON_ENTRIES,
  1668. .data_size = MGMT_FRAME_SIZE,
  1669. .desc_size = TXD_DESC_SIZE,
  1670. .priv_size = sizeof(struct queue_entry_priv_pci_tx),
  1671. };
  1672. static const struct data_queue_desc rt2500pci_queue_atim = {
  1673. .entry_num = ATIM_ENTRIES,
  1674. .data_size = DATA_FRAME_SIZE,
  1675. .desc_size = TXD_DESC_SIZE,
  1676. .priv_size = sizeof(struct queue_entry_priv_pci_tx),
  1677. };
  1678. static const struct rt2x00_ops rt2500pci_ops = {
  1679. .name = KBUILD_MODNAME,
  1680. .max_sta_intf = 1,
  1681. .max_ap_intf = 1,
  1682. .eeprom_size = EEPROM_SIZE,
  1683. .rf_size = RF_SIZE,
  1684. .rx = &rt2500pci_queue_rx,
  1685. .tx = &rt2500pci_queue_tx,
  1686. .bcn = &rt2500pci_queue_bcn,
  1687. .atim = &rt2500pci_queue_atim,
  1688. .lib = &rt2500pci_rt2x00_ops,
  1689. .hw = &rt2500pci_mac80211_ops,
  1690. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1691. .debugfs = &rt2500pci_rt2x00debug,
  1692. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1693. };
  1694. /*
  1695. * RT2500pci module information.
  1696. */
  1697. static struct pci_device_id rt2500pci_device_table[] = {
  1698. { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
  1699. { 0, }
  1700. };
  1701. MODULE_AUTHOR(DRV_PROJECT);
  1702. MODULE_VERSION(DRV_VERSION);
  1703. MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
  1704. MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
  1705. MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
  1706. MODULE_LICENSE("GPL");
  1707. static struct pci_driver rt2500pci_driver = {
  1708. .name = KBUILD_MODNAME,
  1709. .id_table = rt2500pci_device_table,
  1710. .probe = rt2x00pci_probe,
  1711. .remove = __devexit_p(rt2x00pci_remove),
  1712. .suspend = rt2x00pci_suspend,
  1713. .resume = rt2x00pci_resume,
  1714. };
  1715. static int __init rt2500pci_init(void)
  1716. {
  1717. return pci_register_driver(&rt2500pci_driver);
  1718. }
  1719. static void __exit rt2500pci_exit(void)
  1720. {
  1721. pci_unregister_driver(&rt2500pci_driver);
  1722. }
  1723. module_init(rt2500pci_init);
  1724. module_exit(rt2500pci_exit);