hw.c 81 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <linux/module.h>
  19. #include <asm/unaligned.h>
  20. #include "hw.h"
  21. #include "hw-ops.h"
  22. #include "rc.h"
  23. #include "ar9003_mac.h"
  24. #include "ar9003_mci.h"
  25. #include "debug.h"
  26. #include "ath9k.h"
  27. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  28. MODULE_AUTHOR("Atheros Communications");
  29. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  30. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  31. MODULE_LICENSE("Dual BSD/GPL");
  32. static int __init ath9k_init(void)
  33. {
  34. return 0;
  35. }
  36. module_init(ath9k_init);
  37. static void __exit ath9k_exit(void)
  38. {
  39. return;
  40. }
  41. module_exit(ath9k_exit);
  42. /* Private hardware callbacks */
  43. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  44. {
  45. ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  46. }
  47. static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
  48. {
  49. ath9k_hw_private_ops(ah)->init_mode_regs(ah);
  50. }
  51. static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  52. struct ath9k_channel *chan)
  53. {
  54. return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  55. }
  56. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  57. {
  58. if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  59. return;
  60. ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  61. }
  62. static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  63. {
  64. /* You will not have this callback if using the old ANI */
  65. if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  66. return;
  67. ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  68. }
  69. /********************/
  70. /* Helper Functions */
  71. /********************/
  72. #ifdef CONFIG_ATH9K_DEBUGFS
  73. void ath9k_debug_sync_cause(struct ath_common *common, u32 sync_cause)
  74. {
  75. struct ath_softc *sc = common->priv;
  76. if (sync_cause)
  77. sc->debug.stats.istats.sync_cause_all++;
  78. if (sync_cause & AR_INTR_SYNC_RTC_IRQ)
  79. sc->debug.stats.istats.sync_rtc_irq++;
  80. if (sync_cause & AR_INTR_SYNC_MAC_IRQ)
  81. sc->debug.stats.istats.sync_mac_irq++;
  82. if (sync_cause & AR_INTR_SYNC_EEPROM_ILLEGAL_ACCESS)
  83. sc->debug.stats.istats.eeprom_illegal_access++;
  84. if (sync_cause & AR_INTR_SYNC_APB_TIMEOUT)
  85. sc->debug.stats.istats.apb_timeout++;
  86. if (sync_cause & AR_INTR_SYNC_PCI_MODE_CONFLICT)
  87. sc->debug.stats.istats.pci_mode_conflict++;
  88. if (sync_cause & AR_INTR_SYNC_HOST1_FATAL)
  89. sc->debug.stats.istats.host1_fatal++;
  90. if (sync_cause & AR_INTR_SYNC_HOST1_PERR)
  91. sc->debug.stats.istats.host1_perr++;
  92. if (sync_cause & AR_INTR_SYNC_TRCV_FIFO_PERR)
  93. sc->debug.stats.istats.trcv_fifo_perr++;
  94. if (sync_cause & AR_INTR_SYNC_RADM_CPL_EP)
  95. sc->debug.stats.istats.radm_cpl_ep++;
  96. if (sync_cause & AR_INTR_SYNC_RADM_CPL_DLLP_ABORT)
  97. sc->debug.stats.istats.radm_cpl_dllp_abort++;
  98. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TLP_ABORT)
  99. sc->debug.stats.istats.radm_cpl_tlp_abort++;
  100. if (sync_cause & AR_INTR_SYNC_RADM_CPL_ECRC_ERR)
  101. sc->debug.stats.istats.radm_cpl_ecrc_err++;
  102. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT)
  103. sc->debug.stats.istats.radm_cpl_timeout++;
  104. if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT)
  105. sc->debug.stats.istats.local_timeout++;
  106. if (sync_cause & AR_INTR_SYNC_PM_ACCESS)
  107. sc->debug.stats.istats.pm_access++;
  108. if (sync_cause & AR_INTR_SYNC_MAC_AWAKE)
  109. sc->debug.stats.istats.mac_awake++;
  110. if (sync_cause & AR_INTR_SYNC_MAC_ASLEEP)
  111. sc->debug.stats.istats.mac_asleep++;
  112. if (sync_cause & AR_INTR_SYNC_MAC_SLEEP_ACCESS)
  113. sc->debug.stats.istats.mac_sleep_access++;
  114. }
  115. #endif
  116. static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  117. {
  118. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  119. struct ath_common *common = ath9k_hw_common(ah);
  120. unsigned int clockrate;
  121. /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
  122. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
  123. clockrate = 117;
  124. else if (!ah->curchan) /* should really check for CCK instead */
  125. clockrate = ATH9K_CLOCK_RATE_CCK;
  126. else if (conf->channel->band == IEEE80211_BAND_2GHZ)
  127. clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  128. else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  129. clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  130. else
  131. clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  132. if (conf_is_ht40(conf))
  133. clockrate *= 2;
  134. if (ah->curchan) {
  135. if (IS_CHAN_HALF_RATE(ah->curchan))
  136. clockrate /= 2;
  137. if (IS_CHAN_QUARTER_RATE(ah->curchan))
  138. clockrate /= 4;
  139. }
  140. common->clockrate = clockrate;
  141. }
  142. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  143. {
  144. struct ath_common *common = ath9k_hw_common(ah);
  145. return usecs * common->clockrate;
  146. }
  147. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  148. {
  149. int i;
  150. BUG_ON(timeout < AH_TIME_QUANTUM);
  151. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  152. if ((REG_READ(ah, reg) & mask) == val)
  153. return true;
  154. udelay(AH_TIME_QUANTUM);
  155. }
  156. ath_dbg(ath9k_hw_common(ah), ANY,
  157. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  158. timeout, reg, REG_READ(ah, reg), mask, val);
  159. return false;
  160. }
  161. EXPORT_SYMBOL(ath9k_hw_wait);
  162. void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
  163. int hw_delay)
  164. {
  165. if (IS_CHAN_B(chan))
  166. hw_delay = (4 * hw_delay) / 22;
  167. else
  168. hw_delay /= 10;
  169. if (IS_CHAN_HALF_RATE(chan))
  170. hw_delay *= 2;
  171. else if (IS_CHAN_QUARTER_RATE(chan))
  172. hw_delay *= 4;
  173. udelay(hw_delay + BASE_ACTIVATE_DELAY);
  174. }
  175. void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
  176. int column, unsigned int *writecnt)
  177. {
  178. int r;
  179. ENABLE_REGWRITE_BUFFER(ah);
  180. for (r = 0; r < array->ia_rows; r++) {
  181. REG_WRITE(ah, INI_RA(array, r, 0),
  182. INI_RA(array, r, column));
  183. DO_DELAY(*writecnt);
  184. }
  185. REGWRITE_BUFFER_FLUSH(ah);
  186. }
  187. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  188. {
  189. u32 retval;
  190. int i;
  191. for (i = 0, retval = 0; i < n; i++) {
  192. retval = (retval << 1) | (val & 1);
  193. val >>= 1;
  194. }
  195. return retval;
  196. }
  197. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  198. u8 phy, int kbps,
  199. u32 frameLen, u16 rateix,
  200. bool shortPreamble)
  201. {
  202. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  203. if (kbps == 0)
  204. return 0;
  205. switch (phy) {
  206. case WLAN_RC_PHY_CCK:
  207. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  208. if (shortPreamble)
  209. phyTime >>= 1;
  210. numBits = frameLen << 3;
  211. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  212. break;
  213. case WLAN_RC_PHY_OFDM:
  214. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  215. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  216. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  217. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  218. txTime = OFDM_SIFS_TIME_QUARTER
  219. + OFDM_PREAMBLE_TIME_QUARTER
  220. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  221. } else if (ah->curchan &&
  222. IS_CHAN_HALF_RATE(ah->curchan)) {
  223. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  224. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  225. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  226. txTime = OFDM_SIFS_TIME_HALF +
  227. OFDM_PREAMBLE_TIME_HALF
  228. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  229. } else {
  230. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  231. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  232. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  233. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  234. + (numSymbols * OFDM_SYMBOL_TIME);
  235. }
  236. break;
  237. default:
  238. ath_err(ath9k_hw_common(ah),
  239. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  240. txTime = 0;
  241. break;
  242. }
  243. return txTime;
  244. }
  245. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  246. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  247. struct ath9k_channel *chan,
  248. struct chan_centers *centers)
  249. {
  250. int8_t extoff;
  251. if (!IS_CHAN_HT40(chan)) {
  252. centers->ctl_center = centers->ext_center =
  253. centers->synth_center = chan->channel;
  254. return;
  255. }
  256. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  257. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  258. centers->synth_center =
  259. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  260. extoff = 1;
  261. } else {
  262. centers->synth_center =
  263. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  264. extoff = -1;
  265. }
  266. centers->ctl_center =
  267. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  268. /* 25 MHz spacing is supported by hw but not on upper layers */
  269. centers->ext_center =
  270. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  271. }
  272. /******************/
  273. /* Chip Revisions */
  274. /******************/
  275. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  276. {
  277. u32 val;
  278. switch (ah->hw_version.devid) {
  279. case AR5416_AR9100_DEVID:
  280. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  281. break;
  282. case AR9300_DEVID_AR9330:
  283. ah->hw_version.macVersion = AR_SREV_VERSION_9330;
  284. if (ah->get_mac_revision) {
  285. ah->hw_version.macRev = ah->get_mac_revision();
  286. } else {
  287. val = REG_READ(ah, AR_SREV);
  288. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  289. }
  290. return;
  291. case AR9300_DEVID_AR9340:
  292. ah->hw_version.macVersion = AR_SREV_VERSION_9340;
  293. val = REG_READ(ah, AR_SREV);
  294. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  295. return;
  296. }
  297. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  298. if (val == 0xFF) {
  299. val = REG_READ(ah, AR_SREV);
  300. ah->hw_version.macVersion =
  301. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  302. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  303. if (AR_SREV_9462(ah))
  304. ah->is_pciexpress = true;
  305. else
  306. ah->is_pciexpress = (val &
  307. AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  308. } else {
  309. if (!AR_SREV_9100(ah))
  310. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  311. ah->hw_version.macRev = val & AR_SREV_REVISION;
  312. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  313. ah->is_pciexpress = true;
  314. }
  315. }
  316. /************************************/
  317. /* HW Attach, Detach, Init Routines */
  318. /************************************/
  319. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  320. {
  321. if (!AR_SREV_5416(ah))
  322. return;
  323. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  324. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  325. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  326. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  327. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  328. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  329. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  330. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  331. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  332. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  333. }
  334. /* This should work for all families including legacy */
  335. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  336. {
  337. struct ath_common *common = ath9k_hw_common(ah);
  338. u32 regAddr[2] = { AR_STA_ID0 };
  339. u32 regHold[2];
  340. static const u32 patternData[4] = {
  341. 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
  342. };
  343. int i, j, loop_max;
  344. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  345. loop_max = 2;
  346. regAddr[1] = AR_PHY_BASE + (8 << 2);
  347. } else
  348. loop_max = 1;
  349. for (i = 0; i < loop_max; i++) {
  350. u32 addr = regAddr[i];
  351. u32 wrData, rdData;
  352. regHold[i] = REG_READ(ah, addr);
  353. for (j = 0; j < 0x100; j++) {
  354. wrData = (j << 16) | j;
  355. REG_WRITE(ah, addr, wrData);
  356. rdData = REG_READ(ah, addr);
  357. if (rdData != wrData) {
  358. ath_err(common,
  359. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  360. addr, wrData, rdData);
  361. return false;
  362. }
  363. }
  364. for (j = 0; j < 4; j++) {
  365. wrData = patternData[j];
  366. REG_WRITE(ah, addr, wrData);
  367. rdData = REG_READ(ah, addr);
  368. if (wrData != rdData) {
  369. ath_err(common,
  370. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  371. addr, wrData, rdData);
  372. return false;
  373. }
  374. }
  375. REG_WRITE(ah, regAddr[i], regHold[i]);
  376. }
  377. udelay(100);
  378. return true;
  379. }
  380. static void ath9k_hw_init_config(struct ath_hw *ah)
  381. {
  382. int i;
  383. ah->config.dma_beacon_response_time = 1;
  384. ah->config.sw_beacon_response_time = 6;
  385. ah->config.additional_swba_backoff = 0;
  386. ah->config.ack_6mb = 0x0;
  387. ah->config.cwm_ignore_extcca = 0;
  388. ah->config.pcie_clock_req = 0;
  389. ah->config.pcie_waen = 0;
  390. ah->config.analog_shiftreg = 1;
  391. ah->config.enable_ani = true;
  392. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  393. ah->config.spurchans[i][0] = AR_NO_SPUR;
  394. ah->config.spurchans[i][1] = AR_NO_SPUR;
  395. }
  396. /* PAPRD needs some more work to be enabled */
  397. ah->config.paprd_disable = 1;
  398. ah->config.rx_intr_mitigation = true;
  399. ah->config.pcieSerDesWrite = true;
  400. /*
  401. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  402. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  403. * This means we use it for all AR5416 devices, and the few
  404. * minor PCI AR9280 devices out there.
  405. *
  406. * Serialization is required because these devices do not handle
  407. * well the case of two concurrent reads/writes due to the latency
  408. * involved. During one read/write another read/write can be issued
  409. * on another CPU while the previous read/write may still be working
  410. * on our hardware, if we hit this case the hardware poops in a loop.
  411. * We prevent this by serializing reads and writes.
  412. *
  413. * This issue is not present on PCI-Express devices or pre-AR5416
  414. * devices (legacy, 802.11abg).
  415. */
  416. if (num_possible_cpus() > 1)
  417. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  418. }
  419. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  420. {
  421. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  422. regulatory->country_code = CTRY_DEFAULT;
  423. regulatory->power_limit = MAX_RATE_POWER;
  424. ah->hw_version.magic = AR5416_MAGIC;
  425. ah->hw_version.subvendorid = 0;
  426. ah->atim_window = 0;
  427. ah->sta_id1_defaults =
  428. AR_STA_ID1_CRPT_MIC_ENABLE |
  429. AR_STA_ID1_MCAST_KSRCH;
  430. if (AR_SREV_9100(ah))
  431. ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
  432. ah->slottime = ATH9K_SLOT_TIME_9;
  433. ah->globaltxtimeout = (u32) -1;
  434. ah->power_mode = ATH9K_PM_UNDEFINED;
  435. ah->htc_reset_init = true;
  436. }
  437. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  438. {
  439. struct ath_common *common = ath9k_hw_common(ah);
  440. u32 sum;
  441. int i;
  442. u16 eeval;
  443. static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
  444. sum = 0;
  445. for (i = 0; i < 3; i++) {
  446. eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
  447. sum += eeval;
  448. common->macaddr[2 * i] = eeval >> 8;
  449. common->macaddr[2 * i + 1] = eeval & 0xff;
  450. }
  451. if (sum == 0 || sum == 0xffff * 3)
  452. return -EADDRNOTAVAIL;
  453. return 0;
  454. }
  455. static int ath9k_hw_post_init(struct ath_hw *ah)
  456. {
  457. struct ath_common *common = ath9k_hw_common(ah);
  458. int ecode;
  459. if (common->bus_ops->ath_bus_type != ATH_USB) {
  460. if (!ath9k_hw_chip_test(ah))
  461. return -ENODEV;
  462. }
  463. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  464. ecode = ar9002_hw_rf_claim(ah);
  465. if (ecode != 0)
  466. return ecode;
  467. }
  468. ecode = ath9k_hw_eeprom_init(ah);
  469. if (ecode != 0)
  470. return ecode;
  471. ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
  472. ah->eep_ops->get_eeprom_ver(ah),
  473. ah->eep_ops->get_eeprom_rev(ah));
  474. ecode = ath9k_hw_rf_alloc_ext_banks(ah);
  475. if (ecode) {
  476. ath_err(ath9k_hw_common(ah),
  477. "Failed allocating banks for external radio\n");
  478. ath9k_hw_rf_free_ext_banks(ah);
  479. return ecode;
  480. }
  481. if (ah->config.enable_ani) {
  482. ath9k_hw_ani_setup(ah);
  483. ath9k_hw_ani_init(ah);
  484. }
  485. return 0;
  486. }
  487. static void ath9k_hw_attach_ops(struct ath_hw *ah)
  488. {
  489. if (AR_SREV_9300_20_OR_LATER(ah))
  490. ar9003_hw_attach_ops(ah);
  491. else
  492. ar9002_hw_attach_ops(ah);
  493. }
  494. /* Called for all hardware families */
  495. static int __ath9k_hw_init(struct ath_hw *ah)
  496. {
  497. struct ath_common *common = ath9k_hw_common(ah);
  498. int r = 0;
  499. ath9k_hw_read_revisions(ah);
  500. /*
  501. * Read back AR_WA into a permanent copy and set bits 14 and 17.
  502. * We need to do this to avoid RMW of this register. We cannot
  503. * read the reg when chip is asleep.
  504. */
  505. ah->WARegVal = REG_READ(ah, AR_WA);
  506. ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
  507. AR_WA_ASPM_TIMER_BASED_DISABLE);
  508. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  509. ath_err(common, "Couldn't reset chip\n");
  510. return -EIO;
  511. }
  512. if (AR_SREV_9462(ah))
  513. ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
  514. ath9k_hw_init_defaults(ah);
  515. ath9k_hw_init_config(ah);
  516. ath9k_hw_attach_ops(ah);
  517. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  518. ath_err(common, "Couldn't wakeup chip\n");
  519. return -EIO;
  520. }
  521. if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  522. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  523. ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
  524. !ah->is_pciexpress)) {
  525. ah->config.serialize_regmode =
  526. SER_REG_MODE_ON;
  527. } else {
  528. ah->config.serialize_regmode =
  529. SER_REG_MODE_OFF;
  530. }
  531. }
  532. ath_dbg(common, RESET, "serialize_regmode is %d\n",
  533. ah->config.serialize_regmode);
  534. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  535. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  536. else
  537. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  538. switch (ah->hw_version.macVersion) {
  539. case AR_SREV_VERSION_5416_PCI:
  540. case AR_SREV_VERSION_5416_PCIE:
  541. case AR_SREV_VERSION_9160:
  542. case AR_SREV_VERSION_9100:
  543. case AR_SREV_VERSION_9280:
  544. case AR_SREV_VERSION_9285:
  545. case AR_SREV_VERSION_9287:
  546. case AR_SREV_VERSION_9271:
  547. case AR_SREV_VERSION_9300:
  548. case AR_SREV_VERSION_9330:
  549. case AR_SREV_VERSION_9485:
  550. case AR_SREV_VERSION_9340:
  551. case AR_SREV_VERSION_9462:
  552. break;
  553. default:
  554. ath_err(common,
  555. "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
  556. ah->hw_version.macVersion, ah->hw_version.macRev);
  557. return -EOPNOTSUPP;
  558. }
  559. if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
  560. AR_SREV_9330(ah))
  561. ah->is_pciexpress = false;
  562. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  563. ath9k_hw_init_cal_settings(ah);
  564. ah->ani_function = ATH9K_ANI_ALL;
  565. if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  566. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  567. if (!AR_SREV_9300_20_OR_LATER(ah))
  568. ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
  569. /* disable ANI for 9340 */
  570. if (AR_SREV_9340(ah))
  571. ah->config.enable_ani = false;
  572. ath9k_hw_init_mode_regs(ah);
  573. if (!ah->is_pciexpress)
  574. ath9k_hw_disablepcie(ah);
  575. r = ath9k_hw_post_init(ah);
  576. if (r)
  577. return r;
  578. ath9k_hw_init_mode_gain_regs(ah);
  579. r = ath9k_hw_fill_cap_info(ah);
  580. if (r)
  581. return r;
  582. r = ath9k_hw_init_macaddr(ah);
  583. if (r) {
  584. ath_err(common, "Failed to initialize MAC address\n");
  585. return r;
  586. }
  587. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  588. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  589. else
  590. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  591. if (AR_SREV_9330(ah))
  592. ah->bb_watchdog_timeout_ms = 85;
  593. else
  594. ah->bb_watchdog_timeout_ms = 25;
  595. common->state = ATH_HW_INITIALIZED;
  596. return 0;
  597. }
  598. int ath9k_hw_init(struct ath_hw *ah)
  599. {
  600. int ret;
  601. struct ath_common *common = ath9k_hw_common(ah);
  602. /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
  603. switch (ah->hw_version.devid) {
  604. case AR5416_DEVID_PCI:
  605. case AR5416_DEVID_PCIE:
  606. case AR5416_AR9100_DEVID:
  607. case AR9160_DEVID_PCI:
  608. case AR9280_DEVID_PCI:
  609. case AR9280_DEVID_PCIE:
  610. case AR9285_DEVID_PCIE:
  611. case AR9287_DEVID_PCI:
  612. case AR9287_DEVID_PCIE:
  613. case AR2427_DEVID_PCIE:
  614. case AR9300_DEVID_PCIE:
  615. case AR9300_DEVID_AR9485_PCIE:
  616. case AR9300_DEVID_AR9330:
  617. case AR9300_DEVID_AR9340:
  618. case AR9300_DEVID_AR9580:
  619. case AR9300_DEVID_AR9462:
  620. break;
  621. default:
  622. if (common->bus_ops->ath_bus_type == ATH_USB)
  623. break;
  624. ath_err(common, "Hardware device ID 0x%04x not supported\n",
  625. ah->hw_version.devid);
  626. return -EOPNOTSUPP;
  627. }
  628. ret = __ath9k_hw_init(ah);
  629. if (ret) {
  630. ath_err(common,
  631. "Unable to initialize hardware; initialization status: %d\n",
  632. ret);
  633. return ret;
  634. }
  635. return 0;
  636. }
  637. EXPORT_SYMBOL(ath9k_hw_init);
  638. static void ath9k_hw_init_qos(struct ath_hw *ah)
  639. {
  640. ENABLE_REGWRITE_BUFFER(ah);
  641. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  642. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  643. REG_WRITE(ah, AR_QOS_NO_ACK,
  644. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  645. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  646. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  647. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  648. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  649. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  650. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  651. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  652. REGWRITE_BUFFER_FLUSH(ah);
  653. }
  654. u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
  655. {
  656. REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  657. udelay(100);
  658. REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  659. while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
  660. udelay(100);
  661. return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
  662. }
  663. EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
  664. static void ath9k_hw_init_pll(struct ath_hw *ah,
  665. struct ath9k_channel *chan)
  666. {
  667. u32 pll;
  668. if (AR_SREV_9485(ah)) {
  669. /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
  670. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  671. AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
  672. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  673. AR_CH0_DPLL2_KD, 0x40);
  674. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  675. AR_CH0_DPLL2_KI, 0x4);
  676. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  677. AR_CH0_BB_DPLL1_REFDIV, 0x5);
  678. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  679. AR_CH0_BB_DPLL1_NINI, 0x58);
  680. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  681. AR_CH0_BB_DPLL1_NFRAC, 0x0);
  682. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  683. AR_CH0_BB_DPLL2_OUTDIV, 0x1);
  684. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  685. AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
  686. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  687. AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
  688. /* program BB PLL phase_shift to 0x6 */
  689. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  690. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
  691. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  692. AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
  693. udelay(1000);
  694. } else if (AR_SREV_9330(ah)) {
  695. u32 ddr_dpll2, pll_control2, kd;
  696. if (ah->is_clk_25mhz) {
  697. ddr_dpll2 = 0x18e82f01;
  698. pll_control2 = 0xe04a3d;
  699. kd = 0x1d;
  700. } else {
  701. ddr_dpll2 = 0x19e82f01;
  702. pll_control2 = 0x886666;
  703. kd = 0x3d;
  704. }
  705. /* program DDR PLL ki and kd value */
  706. REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
  707. /* program DDR PLL phase_shift */
  708. REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
  709. AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
  710. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  711. udelay(1000);
  712. /* program refdiv, nint, frac to RTC register */
  713. REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
  714. /* program BB PLL kd and ki value */
  715. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
  716. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
  717. /* program BB PLL phase_shift */
  718. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  719. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
  720. } else if (AR_SREV_9340(ah)) {
  721. u32 regval, pll2_divint, pll2_divfrac, refdiv;
  722. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  723. udelay(1000);
  724. REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
  725. udelay(100);
  726. if (ah->is_clk_25mhz) {
  727. pll2_divint = 0x54;
  728. pll2_divfrac = 0x1eb85;
  729. refdiv = 3;
  730. } else {
  731. pll2_divint = 88;
  732. pll2_divfrac = 0;
  733. refdiv = 5;
  734. }
  735. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  736. regval |= (0x1 << 16);
  737. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  738. udelay(100);
  739. REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
  740. (pll2_divint << 18) | pll2_divfrac);
  741. udelay(100);
  742. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  743. regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
  744. (0x4 << 26) | (0x18 << 19);
  745. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  746. REG_WRITE(ah, AR_PHY_PLL_MODE,
  747. REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
  748. udelay(1000);
  749. }
  750. pll = ath9k_hw_compute_pll_control(ah, chan);
  751. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  752. if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
  753. udelay(1000);
  754. /* Switch the core clock for ar9271 to 117Mhz */
  755. if (AR_SREV_9271(ah)) {
  756. udelay(500);
  757. REG_WRITE(ah, 0x50040, 0x304);
  758. }
  759. udelay(RTC_PLL_SETTLE_DELAY);
  760. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  761. if (AR_SREV_9340(ah)) {
  762. if (ah->is_clk_25mhz) {
  763. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
  764. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
  765. REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
  766. } else {
  767. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
  768. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
  769. REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
  770. }
  771. udelay(100);
  772. }
  773. }
  774. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  775. enum nl80211_iftype opmode)
  776. {
  777. u32 sync_default = AR_INTR_SYNC_DEFAULT;
  778. u32 imr_reg = AR_IMR_TXERR |
  779. AR_IMR_TXURN |
  780. AR_IMR_RXERR |
  781. AR_IMR_RXORN |
  782. AR_IMR_BCNMISC;
  783. if (AR_SREV_9340(ah))
  784. sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
  785. if (AR_SREV_9300_20_OR_LATER(ah)) {
  786. imr_reg |= AR_IMR_RXOK_HP;
  787. if (ah->config.rx_intr_mitigation)
  788. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  789. else
  790. imr_reg |= AR_IMR_RXOK_LP;
  791. } else {
  792. if (ah->config.rx_intr_mitigation)
  793. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  794. else
  795. imr_reg |= AR_IMR_RXOK;
  796. }
  797. if (ah->config.tx_intr_mitigation)
  798. imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
  799. else
  800. imr_reg |= AR_IMR_TXOK;
  801. if (opmode == NL80211_IFTYPE_AP)
  802. imr_reg |= AR_IMR_MIB;
  803. ENABLE_REGWRITE_BUFFER(ah);
  804. REG_WRITE(ah, AR_IMR, imr_reg);
  805. ah->imrs2_reg |= AR_IMR_S2_GTT;
  806. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  807. if (!AR_SREV_9100(ah)) {
  808. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  809. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
  810. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  811. }
  812. REGWRITE_BUFFER_FLUSH(ah);
  813. if (AR_SREV_9300_20_OR_LATER(ah)) {
  814. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
  815. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
  816. REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
  817. REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
  818. }
  819. }
  820. static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
  821. {
  822. u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
  823. val = min(val, (u32) 0xFFFF);
  824. REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
  825. }
  826. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  827. {
  828. u32 val = ath9k_hw_mac_to_clks(ah, us);
  829. val = min(val, (u32) 0xFFFF);
  830. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  831. }
  832. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  833. {
  834. u32 val = ath9k_hw_mac_to_clks(ah, us);
  835. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  836. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  837. }
  838. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  839. {
  840. u32 val = ath9k_hw_mac_to_clks(ah, us);
  841. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  842. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  843. }
  844. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  845. {
  846. if (tu > 0xFFFF) {
  847. ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
  848. tu);
  849. ah->globaltxtimeout = (u32) -1;
  850. return false;
  851. } else {
  852. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  853. ah->globaltxtimeout = tu;
  854. return true;
  855. }
  856. }
  857. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  858. {
  859. struct ath_common *common = ath9k_hw_common(ah);
  860. struct ieee80211_conf *conf = &common->hw->conf;
  861. const struct ath9k_channel *chan = ah->curchan;
  862. int acktimeout, ctstimeout, ack_offset = 0;
  863. int slottime;
  864. int sifstime;
  865. int rx_lat = 0, tx_lat = 0, eifs = 0;
  866. u32 reg;
  867. ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
  868. ah->misc_mode);
  869. if (!chan)
  870. return;
  871. if (ah->misc_mode != 0)
  872. REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
  873. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  874. rx_lat = 41;
  875. else
  876. rx_lat = 37;
  877. tx_lat = 54;
  878. if (IS_CHAN_5GHZ(chan))
  879. sifstime = 16;
  880. else
  881. sifstime = 10;
  882. if (IS_CHAN_HALF_RATE(chan)) {
  883. eifs = 175;
  884. rx_lat *= 2;
  885. tx_lat *= 2;
  886. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  887. tx_lat += 11;
  888. sifstime *= 2;
  889. ack_offset = 16;
  890. slottime = 13;
  891. } else if (IS_CHAN_QUARTER_RATE(chan)) {
  892. eifs = 340;
  893. rx_lat = (rx_lat * 4) - 1;
  894. tx_lat *= 4;
  895. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  896. tx_lat += 22;
  897. sifstime *= 4;
  898. ack_offset = 32;
  899. slottime = 21;
  900. } else {
  901. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  902. eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
  903. reg = AR_USEC_ASYNC_FIFO;
  904. } else {
  905. eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
  906. common->clockrate;
  907. reg = REG_READ(ah, AR_USEC);
  908. }
  909. rx_lat = MS(reg, AR_USEC_RX_LAT);
  910. tx_lat = MS(reg, AR_USEC_TX_LAT);
  911. slottime = ah->slottime;
  912. }
  913. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  914. acktimeout = slottime + sifstime + 3 * ah->coverage_class + ack_offset;
  915. ctstimeout = acktimeout;
  916. /*
  917. * Workaround for early ACK timeouts, add an offset to match the
  918. * initval's 64us ack timeout value. Use 48us for the CTS timeout.
  919. * This was initially only meant to work around an issue with delayed
  920. * BA frames in some implementations, but it has been found to fix ACK
  921. * timeout issues in other cases as well.
  922. */
  923. if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ &&
  924. !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
  925. acktimeout += 64 - sifstime - ah->slottime;
  926. ctstimeout += 48 - sifstime - ah->slottime;
  927. }
  928. ath9k_hw_set_sifs_time(ah, sifstime);
  929. ath9k_hw_setslottime(ah, slottime);
  930. ath9k_hw_set_ack_timeout(ah, acktimeout);
  931. ath9k_hw_set_cts_timeout(ah, ctstimeout);
  932. if (ah->globaltxtimeout != (u32) -1)
  933. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  934. REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
  935. REG_RMW(ah, AR_USEC,
  936. (common->clockrate - 1) |
  937. SM(rx_lat, AR_USEC_RX_LAT) |
  938. SM(tx_lat, AR_USEC_TX_LAT),
  939. AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
  940. }
  941. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  942. void ath9k_hw_deinit(struct ath_hw *ah)
  943. {
  944. struct ath_common *common = ath9k_hw_common(ah);
  945. if (common->state < ATH_HW_INITIALIZED)
  946. goto free_hw;
  947. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  948. free_hw:
  949. ath9k_hw_rf_free_ext_banks(ah);
  950. }
  951. EXPORT_SYMBOL(ath9k_hw_deinit);
  952. /*******/
  953. /* INI */
  954. /*******/
  955. u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
  956. {
  957. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  958. if (IS_CHAN_B(chan))
  959. ctl |= CTL_11B;
  960. else if (IS_CHAN_G(chan))
  961. ctl |= CTL_11G;
  962. else
  963. ctl |= CTL_11A;
  964. return ctl;
  965. }
  966. /****************************************/
  967. /* Reset and Channel Switching Routines */
  968. /****************************************/
  969. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  970. {
  971. struct ath_common *common = ath9k_hw_common(ah);
  972. ENABLE_REGWRITE_BUFFER(ah);
  973. /*
  974. * set AHB_MODE not to do cacheline prefetches
  975. */
  976. if (!AR_SREV_9300_20_OR_LATER(ah))
  977. REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
  978. /*
  979. * let mac dma reads be in 128 byte chunks
  980. */
  981. REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
  982. REGWRITE_BUFFER_FLUSH(ah);
  983. /*
  984. * Restore TX Trigger Level to its pre-reset value.
  985. * The initial value depends on whether aggregation is enabled, and is
  986. * adjusted whenever underruns are detected.
  987. */
  988. if (!AR_SREV_9300_20_OR_LATER(ah))
  989. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  990. ENABLE_REGWRITE_BUFFER(ah);
  991. /*
  992. * let mac dma writes be in 128 byte chunks
  993. */
  994. REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
  995. /*
  996. * Setup receive FIFO threshold to hold off TX activities
  997. */
  998. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  999. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1000. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
  1001. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
  1002. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  1003. ah->caps.rx_status_len);
  1004. }
  1005. /*
  1006. * reduce the number of usable entries in PCU TXBUF to avoid
  1007. * wrap around issues.
  1008. */
  1009. if (AR_SREV_9285(ah)) {
  1010. /* For AR9285 the number of Fifos are reduced to half.
  1011. * So set the usable tx buf size also to half to
  1012. * avoid data/delimiter underruns
  1013. */
  1014. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  1015. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  1016. } else if (!AR_SREV_9271(ah)) {
  1017. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  1018. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  1019. }
  1020. REGWRITE_BUFFER_FLUSH(ah);
  1021. if (AR_SREV_9300_20_OR_LATER(ah))
  1022. ath9k_hw_reset_txstatus_ring(ah);
  1023. }
  1024. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  1025. {
  1026. u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
  1027. u32 set = AR_STA_ID1_KSRCH_MODE;
  1028. switch (opmode) {
  1029. case NL80211_IFTYPE_ADHOC:
  1030. case NL80211_IFTYPE_MESH_POINT:
  1031. set |= AR_STA_ID1_ADHOC;
  1032. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1033. break;
  1034. case NL80211_IFTYPE_AP:
  1035. set |= AR_STA_ID1_STA_AP;
  1036. /* fall through */
  1037. case NL80211_IFTYPE_STATION:
  1038. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1039. break;
  1040. default:
  1041. if (!ah->is_monitoring)
  1042. set = 0;
  1043. break;
  1044. }
  1045. REG_RMW(ah, AR_STA_ID1, set, mask);
  1046. }
  1047. void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
  1048. u32 *coef_mantissa, u32 *coef_exponent)
  1049. {
  1050. u32 coef_exp, coef_man;
  1051. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  1052. if ((coef_scaled >> coef_exp) & 0x1)
  1053. break;
  1054. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  1055. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  1056. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  1057. *coef_exponent = coef_exp - 16;
  1058. }
  1059. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  1060. {
  1061. u32 rst_flags;
  1062. u32 tmpReg;
  1063. if (AR_SREV_9100(ah)) {
  1064. REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
  1065. AR_RTC_DERIVED_CLK_PERIOD, 1);
  1066. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  1067. }
  1068. ENABLE_REGWRITE_BUFFER(ah);
  1069. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1070. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1071. udelay(10);
  1072. }
  1073. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1074. AR_RTC_FORCE_WAKE_ON_INT);
  1075. if (AR_SREV_9100(ah)) {
  1076. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  1077. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  1078. } else {
  1079. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  1080. if (tmpReg &
  1081. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  1082. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  1083. u32 val;
  1084. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  1085. val = AR_RC_HOSTIF;
  1086. if (!AR_SREV_9300_20_OR_LATER(ah))
  1087. val |= AR_RC_AHB;
  1088. REG_WRITE(ah, AR_RC, val);
  1089. } else if (!AR_SREV_9300_20_OR_LATER(ah))
  1090. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1091. rst_flags = AR_RTC_RC_MAC_WARM;
  1092. if (type == ATH9K_RESET_COLD)
  1093. rst_flags |= AR_RTC_RC_MAC_COLD;
  1094. }
  1095. if (AR_SREV_9330(ah)) {
  1096. int npend = 0;
  1097. int i;
  1098. /* AR9330 WAR:
  1099. * call external reset function to reset WMAC if:
  1100. * - doing a cold reset
  1101. * - we have pending frames in the TX queues
  1102. */
  1103. for (i = 0; i < AR_NUM_QCU; i++) {
  1104. npend = ath9k_hw_numtxpending(ah, i);
  1105. if (npend)
  1106. break;
  1107. }
  1108. if (ah->external_reset &&
  1109. (npend || type == ATH9K_RESET_COLD)) {
  1110. int reset_err = 0;
  1111. ath_dbg(ath9k_hw_common(ah), RESET,
  1112. "reset MAC via external reset\n");
  1113. reset_err = ah->external_reset();
  1114. if (reset_err) {
  1115. ath_err(ath9k_hw_common(ah),
  1116. "External reset failed, err=%d\n",
  1117. reset_err);
  1118. return false;
  1119. }
  1120. REG_WRITE(ah, AR_RTC_RESET, 1);
  1121. }
  1122. }
  1123. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  1124. REGWRITE_BUFFER_FLUSH(ah);
  1125. udelay(50);
  1126. REG_WRITE(ah, AR_RTC_RC, 0);
  1127. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  1128. ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
  1129. return false;
  1130. }
  1131. if (!AR_SREV_9100(ah))
  1132. REG_WRITE(ah, AR_RC, 0);
  1133. if (AR_SREV_9100(ah))
  1134. udelay(50);
  1135. return true;
  1136. }
  1137. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  1138. {
  1139. ENABLE_REGWRITE_BUFFER(ah);
  1140. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1141. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1142. udelay(10);
  1143. }
  1144. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1145. AR_RTC_FORCE_WAKE_ON_INT);
  1146. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1147. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1148. REG_WRITE(ah, AR_RTC_RESET, 0);
  1149. REGWRITE_BUFFER_FLUSH(ah);
  1150. if (!AR_SREV_9300_20_OR_LATER(ah))
  1151. udelay(2);
  1152. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1153. REG_WRITE(ah, AR_RC, 0);
  1154. REG_WRITE(ah, AR_RTC_RESET, 1);
  1155. if (!ath9k_hw_wait(ah,
  1156. AR_RTC_STATUS,
  1157. AR_RTC_STATUS_M,
  1158. AR_RTC_STATUS_ON,
  1159. AH_WAIT_TIMEOUT)) {
  1160. ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
  1161. return false;
  1162. }
  1163. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  1164. }
  1165. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  1166. {
  1167. bool ret = false;
  1168. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1169. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1170. udelay(10);
  1171. }
  1172. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1173. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  1174. switch (type) {
  1175. case ATH9K_RESET_POWER_ON:
  1176. ret = ath9k_hw_set_reset_power_on(ah);
  1177. break;
  1178. case ATH9K_RESET_WARM:
  1179. case ATH9K_RESET_COLD:
  1180. ret = ath9k_hw_set_reset(ah, type);
  1181. break;
  1182. default:
  1183. break;
  1184. }
  1185. return ret;
  1186. }
  1187. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  1188. struct ath9k_channel *chan)
  1189. {
  1190. int reset_type = ATH9K_RESET_WARM;
  1191. if (AR_SREV_9280(ah)) {
  1192. if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
  1193. reset_type = ATH9K_RESET_POWER_ON;
  1194. else
  1195. reset_type = ATH9K_RESET_COLD;
  1196. }
  1197. if (!ath9k_hw_set_reset_reg(ah, reset_type))
  1198. return false;
  1199. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1200. return false;
  1201. ah->chip_fullsleep = false;
  1202. if (AR_SREV_9330(ah))
  1203. ar9003_hw_internal_regulator_apply(ah);
  1204. ath9k_hw_init_pll(ah, chan);
  1205. ath9k_hw_set_rfmode(ah, chan);
  1206. return true;
  1207. }
  1208. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  1209. struct ath9k_channel *chan)
  1210. {
  1211. struct ath_common *common = ath9k_hw_common(ah);
  1212. u32 qnum;
  1213. int r;
  1214. bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1215. bool band_switch, mode_diff;
  1216. u8 ini_reloaded;
  1217. band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
  1218. (ah->curchan->channelFlags & (CHANNEL_2GHZ |
  1219. CHANNEL_5GHZ));
  1220. mode_diff = (chan->chanmode != ah->curchan->chanmode);
  1221. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  1222. if (ath9k_hw_numtxpending(ah, qnum)) {
  1223. ath_dbg(common, QUEUE,
  1224. "Transmit frames pending on queue %d\n", qnum);
  1225. return false;
  1226. }
  1227. }
  1228. if (!ath9k_hw_rfbus_req(ah)) {
  1229. ath_err(common, "Could not kill baseband RX\n");
  1230. return false;
  1231. }
  1232. if (edma && (band_switch || mode_diff)) {
  1233. ath9k_hw_mark_phy_inactive(ah);
  1234. udelay(5);
  1235. ath9k_hw_init_pll(ah, NULL);
  1236. if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
  1237. ath_err(common, "Failed to do fast channel change\n");
  1238. return false;
  1239. }
  1240. }
  1241. ath9k_hw_set_channel_regs(ah, chan);
  1242. r = ath9k_hw_rf_set_freq(ah, chan);
  1243. if (r) {
  1244. ath_err(common, "Failed to set channel\n");
  1245. return false;
  1246. }
  1247. ath9k_hw_set_clockrate(ah);
  1248. ath9k_hw_apply_txpower(ah, chan, false);
  1249. ath9k_hw_rfbus_done(ah);
  1250. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1251. ath9k_hw_set_delta_slope(ah, chan);
  1252. ath9k_hw_spur_mitigate_freq(ah, chan);
  1253. if (edma && (band_switch || mode_diff)) {
  1254. ah->ah_flags |= AH_FASTCC;
  1255. if (band_switch || ini_reloaded)
  1256. ah->eep_ops->set_board_values(ah, chan);
  1257. ath9k_hw_init_bb(ah, chan);
  1258. if (band_switch || ini_reloaded)
  1259. ath9k_hw_init_cal(ah, chan);
  1260. ah->ah_flags &= ~AH_FASTCC;
  1261. }
  1262. return true;
  1263. }
  1264. static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
  1265. {
  1266. u32 gpio_mask = ah->gpio_mask;
  1267. int i;
  1268. for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
  1269. if (!(gpio_mask & 1))
  1270. continue;
  1271. ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  1272. ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
  1273. }
  1274. }
  1275. static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states,
  1276. int *hang_state, int *hang_pos)
  1277. {
  1278. static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */
  1279. u32 chain_state, dcs_pos, i;
  1280. for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) {
  1281. chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f;
  1282. for (i = 0; i < 3; i++) {
  1283. if (chain_state == dcu_chain_state[i]) {
  1284. *hang_state = chain_state;
  1285. *hang_pos = dcs_pos;
  1286. return true;
  1287. }
  1288. }
  1289. }
  1290. return false;
  1291. }
  1292. #define DCU_COMPLETE_STATE 1
  1293. #define DCU_COMPLETE_STATE_MASK 0x3
  1294. #define NUM_STATUS_READS 50
  1295. static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah)
  1296. {
  1297. u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4;
  1298. u32 i, hang_pos, hang_state, num_state = 6;
  1299. comp_state = REG_READ(ah, AR_DMADBG_6);
  1300. if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) {
  1301. ath_dbg(ath9k_hw_common(ah), RESET,
  1302. "MAC Hang signature not found at DCU complete\n");
  1303. return false;
  1304. }
  1305. chain_state = REG_READ(ah, dcs_reg);
  1306. if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
  1307. goto hang_check_iter;
  1308. dcs_reg = AR_DMADBG_5;
  1309. num_state = 4;
  1310. chain_state = REG_READ(ah, dcs_reg);
  1311. if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
  1312. goto hang_check_iter;
  1313. ath_dbg(ath9k_hw_common(ah), RESET,
  1314. "MAC Hang signature 1 not found\n");
  1315. return false;
  1316. hang_check_iter:
  1317. ath_dbg(ath9k_hw_common(ah), RESET,
  1318. "DCU registers: chain %08x complete %08x Hang: state %d pos %d\n",
  1319. chain_state, comp_state, hang_state, hang_pos);
  1320. for (i = 0; i < NUM_STATUS_READS; i++) {
  1321. chain_state = REG_READ(ah, dcs_reg);
  1322. chain_state = (chain_state >> (5 * hang_pos)) & 0x1f;
  1323. comp_state = REG_READ(ah, AR_DMADBG_6);
  1324. if (((comp_state & DCU_COMPLETE_STATE_MASK) !=
  1325. DCU_COMPLETE_STATE) ||
  1326. (chain_state != hang_state))
  1327. return false;
  1328. }
  1329. ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n");
  1330. return true;
  1331. }
  1332. bool ath9k_hw_check_alive(struct ath_hw *ah)
  1333. {
  1334. int count = 50;
  1335. u32 reg;
  1336. if (AR_SREV_9300(ah))
  1337. return !ath9k_hw_detect_mac_hang(ah);
  1338. if (AR_SREV_9285_12_OR_LATER(ah))
  1339. return true;
  1340. do {
  1341. reg = REG_READ(ah, AR_OBS_BUS_1);
  1342. if ((reg & 0x7E7FFFEF) == 0x00702400)
  1343. continue;
  1344. switch (reg & 0x7E000B00) {
  1345. case 0x1E000000:
  1346. case 0x52000B00:
  1347. case 0x18000B00:
  1348. continue;
  1349. default:
  1350. return true;
  1351. }
  1352. } while (count-- > 0);
  1353. return false;
  1354. }
  1355. EXPORT_SYMBOL(ath9k_hw_check_alive);
  1356. /*
  1357. * Fast channel change:
  1358. * (Change synthesizer based on channel freq without resetting chip)
  1359. *
  1360. * Don't do FCC when
  1361. * - Flag is not set
  1362. * - Chip is just coming out of full sleep
  1363. * - Channel to be set is same as current channel
  1364. * - Channel flags are different, (eg.,moving from 2GHz to 5GHz channel)
  1365. */
  1366. static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
  1367. {
  1368. struct ath_common *common = ath9k_hw_common(ah);
  1369. int ret;
  1370. if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
  1371. goto fail;
  1372. if (ah->chip_fullsleep)
  1373. goto fail;
  1374. if (!ah->curchan)
  1375. goto fail;
  1376. if (chan->channel == ah->curchan->channel)
  1377. goto fail;
  1378. if ((ah->curchan->channelFlags | chan->channelFlags) &
  1379. (CHANNEL_HALF | CHANNEL_QUARTER))
  1380. goto fail;
  1381. if ((chan->channelFlags & CHANNEL_ALL) !=
  1382. (ah->curchan->channelFlags & CHANNEL_ALL))
  1383. goto fail;
  1384. if (!ath9k_hw_check_alive(ah))
  1385. goto fail;
  1386. /*
  1387. * For AR9462, make sure that calibration data for
  1388. * re-using are present.
  1389. */
  1390. if (AR_SREV_9462(ah) && (ah->caldata &&
  1391. (!ah->caldata->done_txiqcal_once ||
  1392. !ah->caldata->done_txclcal_once ||
  1393. !ah->caldata->rtt_done)))
  1394. goto fail;
  1395. ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
  1396. ah->curchan->channel, chan->channel);
  1397. ret = ath9k_hw_channel_change(ah, chan);
  1398. if (!ret)
  1399. goto fail;
  1400. ath9k_hw_loadnf(ah, ah->curchan);
  1401. ath9k_hw_start_nfcal(ah, true);
  1402. if (ath9k_hw_mci_is_enabled(ah))
  1403. ar9003_mci_2g5g_switch(ah, true);
  1404. if (AR_SREV_9271(ah))
  1405. ar9002_hw_load_ani_reg(ah, chan);
  1406. return 0;
  1407. fail:
  1408. return -EINVAL;
  1409. }
  1410. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  1411. struct ath9k_hw_cal_data *caldata, bool fastcc)
  1412. {
  1413. struct ath_common *common = ath9k_hw_common(ah);
  1414. u32 saveLedState;
  1415. u32 saveDefAntenna;
  1416. u32 macStaId1;
  1417. u64 tsf = 0;
  1418. int i, r;
  1419. bool start_mci_reset = false;
  1420. bool save_fullsleep = ah->chip_fullsleep;
  1421. if (ath9k_hw_mci_is_enabled(ah)) {
  1422. start_mci_reset = ar9003_mci_start_reset(ah, chan);
  1423. if (start_mci_reset)
  1424. return 0;
  1425. }
  1426. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1427. return -EIO;
  1428. if (ah->curchan && !ah->chip_fullsleep)
  1429. ath9k_hw_getnf(ah, ah->curchan);
  1430. ah->caldata = caldata;
  1431. if (caldata &&
  1432. (chan->channel != caldata->channel ||
  1433. (chan->channelFlags & ~CHANNEL_CW_INT) !=
  1434. (caldata->channelFlags & ~CHANNEL_CW_INT))) {
  1435. /* Operating channel changed, reset channel calibration data */
  1436. memset(caldata, 0, sizeof(*caldata));
  1437. ath9k_init_nfcal_hist_buffer(ah, chan);
  1438. }
  1439. ah->noise = ath9k_hw_getchan_noise(ah, chan);
  1440. if (fastcc) {
  1441. r = ath9k_hw_do_fastcc(ah, chan);
  1442. if (!r)
  1443. return r;
  1444. }
  1445. if (ath9k_hw_mci_is_enabled(ah))
  1446. ar9003_mci_stop_bt(ah, save_fullsleep);
  1447. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1448. if (saveDefAntenna == 0)
  1449. saveDefAntenna = 1;
  1450. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1451. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1452. if (AR_SREV_9100(ah) ||
  1453. (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
  1454. tsf = ath9k_hw_gettsf64(ah);
  1455. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1456. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1457. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1458. ath9k_hw_mark_phy_inactive(ah);
  1459. ah->paprd_table_write_done = false;
  1460. /* Only required on the first reset */
  1461. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1462. REG_WRITE(ah,
  1463. AR9271_RESET_POWER_DOWN_CONTROL,
  1464. AR9271_RADIO_RF_RST);
  1465. udelay(50);
  1466. }
  1467. if (!ath9k_hw_chip_reset(ah, chan)) {
  1468. ath_err(common, "Chip reset failed\n");
  1469. return -EINVAL;
  1470. }
  1471. /* Only required on the first reset */
  1472. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1473. ah->htc_reset_init = false;
  1474. REG_WRITE(ah,
  1475. AR9271_RESET_POWER_DOWN_CONTROL,
  1476. AR9271_GATE_MAC_CTL);
  1477. udelay(50);
  1478. }
  1479. /* Restore TSF */
  1480. if (tsf)
  1481. ath9k_hw_settsf64(ah, tsf);
  1482. if (AR_SREV_9280_20_OR_LATER(ah))
  1483. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1484. if (!AR_SREV_9300_20_OR_LATER(ah))
  1485. ar9002_hw_enable_async_fifo(ah);
  1486. r = ath9k_hw_process_ini(ah, chan);
  1487. if (r)
  1488. return r;
  1489. if (ath9k_hw_mci_is_enabled(ah))
  1490. ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
  1491. /*
  1492. * Some AR91xx SoC devices frequently fail to accept TSF writes
  1493. * right after the chip reset. When that happens, write a new
  1494. * value after the initvals have been applied, with an offset
  1495. * based on measured time difference
  1496. */
  1497. if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
  1498. tsf += 1500;
  1499. ath9k_hw_settsf64(ah, tsf);
  1500. }
  1501. /* Setup MFP options for CCMP */
  1502. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1503. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1504. * frames when constructing CCMP AAD. */
  1505. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1506. 0xc7ff);
  1507. ah->sw_mgmt_crypto = false;
  1508. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1509. /* Disable hardware crypto for management frames */
  1510. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1511. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1512. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1513. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1514. ah->sw_mgmt_crypto = true;
  1515. } else
  1516. ah->sw_mgmt_crypto = true;
  1517. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1518. ath9k_hw_set_delta_slope(ah, chan);
  1519. ath9k_hw_spur_mitigate_freq(ah, chan);
  1520. ah->eep_ops->set_board_values(ah, chan);
  1521. ENABLE_REGWRITE_BUFFER(ah);
  1522. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
  1523. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
  1524. | macStaId1
  1525. | AR_STA_ID1_RTS_USE_DEF
  1526. | (ah->config.
  1527. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1528. | ah->sta_id1_defaults);
  1529. ath_hw_setbssidmask(common);
  1530. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1531. ath9k_hw_write_associd(ah);
  1532. REG_WRITE(ah, AR_ISR, ~0);
  1533. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1534. REGWRITE_BUFFER_FLUSH(ah);
  1535. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1536. r = ath9k_hw_rf_set_freq(ah, chan);
  1537. if (r)
  1538. return r;
  1539. ath9k_hw_set_clockrate(ah);
  1540. ENABLE_REGWRITE_BUFFER(ah);
  1541. for (i = 0; i < AR_NUM_DCU; i++)
  1542. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1543. REGWRITE_BUFFER_FLUSH(ah);
  1544. ah->intr_txqs = 0;
  1545. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1546. ath9k_hw_resettxqueue(ah, i);
  1547. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1548. ath9k_hw_ani_cache_ini_regs(ah);
  1549. ath9k_hw_init_qos(ah);
  1550. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1551. ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
  1552. ath9k_hw_init_global_settings(ah);
  1553. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  1554. REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
  1555. AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
  1556. REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
  1557. AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
  1558. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1559. AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
  1560. }
  1561. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
  1562. ath9k_hw_set_dma(ah);
  1563. REG_WRITE(ah, AR_OBS, 8);
  1564. if (ah->config.rx_intr_mitigation) {
  1565. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1566. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1567. }
  1568. if (ah->config.tx_intr_mitigation) {
  1569. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
  1570. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
  1571. }
  1572. ath9k_hw_init_bb(ah, chan);
  1573. if (caldata) {
  1574. caldata->done_txiqcal_once = false;
  1575. caldata->done_txclcal_once = false;
  1576. }
  1577. if (!ath9k_hw_init_cal(ah, chan))
  1578. return -EIO;
  1579. ath9k_hw_loadnf(ah, chan);
  1580. ath9k_hw_start_nfcal(ah, true);
  1581. if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
  1582. return -EIO;
  1583. ENABLE_REGWRITE_BUFFER(ah);
  1584. ath9k_hw_restore_chainmask(ah);
  1585. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1586. REGWRITE_BUFFER_FLUSH(ah);
  1587. /*
  1588. * For big endian systems turn on swapping for descriptors
  1589. */
  1590. if (AR_SREV_9100(ah)) {
  1591. u32 mask;
  1592. mask = REG_READ(ah, AR_CFG);
  1593. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1594. ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
  1595. mask);
  1596. } else {
  1597. mask =
  1598. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1599. REG_WRITE(ah, AR_CFG, mask);
  1600. ath_dbg(common, RESET, "Setting CFG 0x%x\n",
  1601. REG_READ(ah, AR_CFG));
  1602. }
  1603. } else {
  1604. if (common->bus_ops->ath_bus_type == ATH_USB) {
  1605. /* Configure AR9271 target WLAN */
  1606. if (AR_SREV_9271(ah))
  1607. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1608. else
  1609. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1610. }
  1611. #ifdef __BIG_ENDIAN
  1612. else if (AR_SREV_9330(ah) || AR_SREV_9340(ah))
  1613. REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
  1614. else
  1615. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1616. #endif
  1617. }
  1618. if (ath9k_hw_btcoex_is_enabled(ah))
  1619. ath9k_hw_btcoex_enable(ah);
  1620. if (ath9k_hw_mci_is_enabled(ah))
  1621. ar9003_mci_check_bt(ah);
  1622. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1623. ar9003_hw_bb_watchdog_config(ah);
  1624. ar9003_hw_disable_phy_restart(ah);
  1625. }
  1626. ath9k_hw_apply_gpio_override(ah);
  1627. return 0;
  1628. }
  1629. EXPORT_SYMBOL(ath9k_hw_reset);
  1630. /******************************/
  1631. /* Power Management (Chipset) */
  1632. /******************************/
  1633. /*
  1634. * Notify Power Mgt is disabled in self-generated frames.
  1635. * If requested, force chip to sleep.
  1636. */
  1637. static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
  1638. {
  1639. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1640. if (setChip) {
  1641. if (AR_SREV_9462(ah)) {
  1642. REG_WRITE(ah, AR_TIMER_MODE,
  1643. REG_READ(ah, AR_TIMER_MODE) & 0xFFFFFF00);
  1644. REG_WRITE(ah, AR_NDP2_TIMER_MODE, REG_READ(ah,
  1645. AR_NDP2_TIMER_MODE) & 0xFFFFFF00);
  1646. REG_WRITE(ah, AR_SLP32_INC,
  1647. REG_READ(ah, AR_SLP32_INC) & 0xFFF00000);
  1648. /* xxx Required for WLAN only case ? */
  1649. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
  1650. udelay(100);
  1651. }
  1652. /*
  1653. * Clear the RTC force wake bit to allow the
  1654. * mac to go to sleep.
  1655. */
  1656. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
  1657. if (AR_SREV_9462(ah))
  1658. udelay(100);
  1659. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1660. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1661. /* Shutdown chip. Active low */
  1662. if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
  1663. REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
  1664. udelay(2);
  1665. }
  1666. }
  1667. /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
  1668. if (AR_SREV_9300_20_OR_LATER(ah))
  1669. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1670. }
  1671. /*
  1672. * Notify Power Management is enabled in self-generating
  1673. * frames. If request, set power mode of chip to
  1674. * auto/normal. Duration in units of 128us (1/8 TU).
  1675. */
  1676. static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
  1677. {
  1678. u32 val;
  1679. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1680. if (setChip) {
  1681. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1682. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  1683. /* Set WakeOnInterrupt bit; clear ForceWake bit */
  1684. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1685. AR_RTC_FORCE_WAKE_ON_INT);
  1686. } else {
  1687. /* When chip goes into network sleep, it could be waken
  1688. * up by MCI_INT interrupt caused by BT's HW messages
  1689. * (LNA_xxx, CONT_xxx) which chould be in a very fast
  1690. * rate (~100us). This will cause chip to leave and
  1691. * re-enter network sleep mode frequently, which in
  1692. * consequence will have WLAN MCI HW to generate lots of
  1693. * SYS_WAKING and SYS_SLEEPING messages which will make
  1694. * BT CPU to busy to process.
  1695. */
  1696. if (AR_SREV_9462(ah)) {
  1697. val = REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_EN) &
  1698. ~AR_MCI_INTERRUPT_RX_HW_MSG_MASK;
  1699. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, val);
  1700. }
  1701. /*
  1702. * Clear the RTC force wake bit to allow the
  1703. * mac to go to sleep.
  1704. */
  1705. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1706. AR_RTC_FORCE_WAKE_EN);
  1707. if (AR_SREV_9462(ah))
  1708. udelay(30);
  1709. }
  1710. }
  1711. /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
  1712. if (AR_SREV_9300_20_OR_LATER(ah))
  1713. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1714. }
  1715. static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
  1716. {
  1717. u32 val;
  1718. int i;
  1719. /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
  1720. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1721. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1722. udelay(10);
  1723. }
  1724. if (setChip) {
  1725. if ((REG_READ(ah, AR_RTC_STATUS) &
  1726. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  1727. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  1728. return false;
  1729. }
  1730. if (!AR_SREV_9300_20_OR_LATER(ah))
  1731. ath9k_hw_init_pll(ah, NULL);
  1732. }
  1733. if (AR_SREV_9100(ah))
  1734. REG_SET_BIT(ah, AR_RTC_RESET,
  1735. AR_RTC_RESET_EN);
  1736. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1737. AR_RTC_FORCE_WAKE_EN);
  1738. udelay(50);
  1739. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  1740. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  1741. if (val == AR_RTC_STATUS_ON)
  1742. break;
  1743. udelay(50);
  1744. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1745. AR_RTC_FORCE_WAKE_EN);
  1746. }
  1747. if (i == 0) {
  1748. ath_err(ath9k_hw_common(ah),
  1749. "Failed to wakeup in %uus\n",
  1750. POWER_UP_TIME / 20);
  1751. return false;
  1752. }
  1753. }
  1754. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1755. return true;
  1756. }
  1757. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  1758. {
  1759. struct ath_common *common = ath9k_hw_common(ah);
  1760. int status = true, setChip = true;
  1761. static const char *modes[] = {
  1762. "AWAKE",
  1763. "FULL-SLEEP",
  1764. "NETWORK SLEEP",
  1765. "UNDEFINED"
  1766. };
  1767. if (ah->power_mode == mode)
  1768. return status;
  1769. ath_dbg(common, RESET, "%s -> %s\n",
  1770. modes[ah->power_mode], modes[mode]);
  1771. switch (mode) {
  1772. case ATH9K_PM_AWAKE:
  1773. status = ath9k_hw_set_power_awake(ah, setChip);
  1774. break;
  1775. case ATH9K_PM_FULL_SLEEP:
  1776. if (ath9k_hw_mci_is_enabled(ah))
  1777. ar9003_mci_set_full_sleep(ah);
  1778. ath9k_set_power_sleep(ah, setChip);
  1779. ah->chip_fullsleep = true;
  1780. break;
  1781. case ATH9K_PM_NETWORK_SLEEP:
  1782. ath9k_set_power_network_sleep(ah, setChip);
  1783. break;
  1784. default:
  1785. ath_err(common, "Unknown power mode %u\n", mode);
  1786. return false;
  1787. }
  1788. ah->power_mode = mode;
  1789. /*
  1790. * XXX: If this warning never comes up after a while then
  1791. * simply keep the ATH_DBG_WARN_ON_ONCE() but make
  1792. * ath9k_hw_setpower() return type void.
  1793. */
  1794. if (!(ah->ah_flags & AH_UNPLUGGED))
  1795. ATH_DBG_WARN_ON_ONCE(!status);
  1796. return status;
  1797. }
  1798. EXPORT_SYMBOL(ath9k_hw_setpower);
  1799. /*******************/
  1800. /* Beacon Handling */
  1801. /*******************/
  1802. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  1803. {
  1804. int flags = 0;
  1805. ENABLE_REGWRITE_BUFFER(ah);
  1806. switch (ah->opmode) {
  1807. case NL80211_IFTYPE_ADHOC:
  1808. case NL80211_IFTYPE_MESH_POINT:
  1809. REG_SET_BIT(ah, AR_TXCFG,
  1810. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  1811. REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
  1812. TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
  1813. flags |= AR_NDP_TIMER_EN;
  1814. case NL80211_IFTYPE_AP:
  1815. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
  1816. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
  1817. TU_TO_USEC(ah->config.dma_beacon_response_time));
  1818. REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
  1819. TU_TO_USEC(ah->config.sw_beacon_response_time));
  1820. flags |=
  1821. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  1822. break;
  1823. default:
  1824. ath_dbg(ath9k_hw_common(ah), BEACON,
  1825. "%s: unsupported opmode: %d\n", __func__, ah->opmode);
  1826. return;
  1827. break;
  1828. }
  1829. REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
  1830. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
  1831. REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
  1832. REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
  1833. REGWRITE_BUFFER_FLUSH(ah);
  1834. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  1835. }
  1836. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  1837. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  1838. const struct ath9k_beacon_state *bs)
  1839. {
  1840. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  1841. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1842. struct ath_common *common = ath9k_hw_common(ah);
  1843. ENABLE_REGWRITE_BUFFER(ah);
  1844. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  1845. REG_WRITE(ah, AR_BEACON_PERIOD,
  1846. TU_TO_USEC(bs->bs_intval));
  1847. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  1848. TU_TO_USEC(bs->bs_intval));
  1849. REGWRITE_BUFFER_FLUSH(ah);
  1850. REG_RMW_FIELD(ah, AR_RSSI_THR,
  1851. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  1852. beaconintval = bs->bs_intval;
  1853. if (bs->bs_sleepduration > beaconintval)
  1854. beaconintval = bs->bs_sleepduration;
  1855. dtimperiod = bs->bs_dtimperiod;
  1856. if (bs->bs_sleepduration > dtimperiod)
  1857. dtimperiod = bs->bs_sleepduration;
  1858. if (beaconintval == dtimperiod)
  1859. nextTbtt = bs->bs_nextdtim;
  1860. else
  1861. nextTbtt = bs->bs_nexttbtt;
  1862. ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  1863. ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
  1864. ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
  1865. ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
  1866. ENABLE_REGWRITE_BUFFER(ah);
  1867. REG_WRITE(ah, AR_NEXT_DTIM,
  1868. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  1869. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  1870. REG_WRITE(ah, AR_SLEEP1,
  1871. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  1872. | AR_SLEEP1_ASSUME_DTIM);
  1873. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  1874. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  1875. else
  1876. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  1877. REG_WRITE(ah, AR_SLEEP2,
  1878. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  1879. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  1880. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  1881. REGWRITE_BUFFER_FLUSH(ah);
  1882. REG_SET_BIT(ah, AR_TIMER_MODE,
  1883. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  1884. AR_DTIM_TIMER_EN);
  1885. /* TSF Out of Range Threshold */
  1886. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  1887. }
  1888. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  1889. /*******************/
  1890. /* HW Capabilities */
  1891. /*******************/
  1892. static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
  1893. {
  1894. eeprom_chainmask &= chip_chainmask;
  1895. if (eeprom_chainmask)
  1896. return eeprom_chainmask;
  1897. else
  1898. return chip_chainmask;
  1899. }
  1900. /**
  1901. * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
  1902. * @ah: the atheros hardware data structure
  1903. *
  1904. * We enable DFS support upstream on chipsets which have passed a series
  1905. * of tests. The testing requirements are going to be documented. Desired
  1906. * test requirements are documented at:
  1907. *
  1908. * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
  1909. *
  1910. * Once a new chipset gets properly tested an individual commit can be used
  1911. * to document the testing for DFS for that chipset.
  1912. */
  1913. static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
  1914. {
  1915. switch (ah->hw_version.macVersion) {
  1916. /* AR9580 will likely be our first target to get testing on */
  1917. case AR_SREV_VERSION_9580:
  1918. default:
  1919. return false;
  1920. }
  1921. }
  1922. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  1923. {
  1924. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1925. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1926. struct ath_common *common = ath9k_hw_common(ah);
  1927. unsigned int chip_chainmask;
  1928. u16 eeval;
  1929. u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
  1930. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  1931. regulatory->current_rd = eeval;
  1932. if (ah->opmode != NL80211_IFTYPE_AP &&
  1933. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  1934. if (regulatory->current_rd == 0x64 ||
  1935. regulatory->current_rd == 0x65)
  1936. regulatory->current_rd += 5;
  1937. else if (regulatory->current_rd == 0x41)
  1938. regulatory->current_rd = 0x43;
  1939. ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
  1940. regulatory->current_rd);
  1941. }
  1942. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  1943. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  1944. ath_err(common,
  1945. "no band has been marked as supported in EEPROM\n");
  1946. return -EINVAL;
  1947. }
  1948. if (eeval & AR5416_OPFLAGS_11A)
  1949. pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
  1950. if (eeval & AR5416_OPFLAGS_11G)
  1951. pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
  1952. if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah))
  1953. chip_chainmask = 1;
  1954. else if (AR_SREV_9462(ah))
  1955. chip_chainmask = 3;
  1956. else if (!AR_SREV_9280_20_OR_LATER(ah))
  1957. chip_chainmask = 7;
  1958. else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
  1959. chip_chainmask = 3;
  1960. else
  1961. chip_chainmask = 7;
  1962. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  1963. /*
  1964. * For AR9271 we will temporarilly uses the rx chainmax as read from
  1965. * the EEPROM.
  1966. */
  1967. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  1968. !(eeval & AR5416_OPFLAGS_11A) &&
  1969. !(AR_SREV_9271(ah)))
  1970. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  1971. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  1972. else if (AR_SREV_9100(ah))
  1973. pCap->rx_chainmask = 0x7;
  1974. else
  1975. /* Use rx_chainmask from EEPROM. */
  1976. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  1977. pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
  1978. pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
  1979. ah->txchainmask = pCap->tx_chainmask;
  1980. ah->rxchainmask = pCap->rx_chainmask;
  1981. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  1982. /* enable key search for every frame in an aggregate */
  1983. if (AR_SREV_9300_20_OR_LATER(ah))
  1984. ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
  1985. common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
  1986. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  1987. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  1988. else
  1989. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  1990. if (AR_SREV_9271(ah))
  1991. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  1992. else if (AR_DEVID_7010(ah))
  1993. pCap->num_gpio_pins = AR7010_NUM_GPIO;
  1994. else if (AR_SREV_9300_20_OR_LATER(ah))
  1995. pCap->num_gpio_pins = AR9300_NUM_GPIO;
  1996. else if (AR_SREV_9287_11_OR_LATER(ah))
  1997. pCap->num_gpio_pins = AR9287_NUM_GPIO;
  1998. else if (AR_SREV_9285_12_OR_LATER(ah))
  1999. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  2000. else if (AR_SREV_9280_20_OR_LATER(ah))
  2001. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  2002. else
  2003. pCap->num_gpio_pins = AR_NUM_GPIO;
  2004. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
  2005. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  2006. else
  2007. pCap->rts_aggr_limit = (8 * 1024);
  2008. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  2009. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  2010. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  2011. ah->rfkill_gpio =
  2012. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  2013. ah->rfkill_polarity =
  2014. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  2015. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  2016. }
  2017. #endif
  2018. if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
  2019. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  2020. else
  2021. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  2022. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  2023. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  2024. else
  2025. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  2026. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2027. pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
  2028. if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
  2029. pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
  2030. pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
  2031. pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
  2032. pCap->rx_status_len = sizeof(struct ar9003_rxs);
  2033. pCap->tx_desc_len = sizeof(struct ar9003_txc);
  2034. pCap->txs_len = sizeof(struct ar9003_txs);
  2035. if (!ah->config.paprd_disable &&
  2036. ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
  2037. pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
  2038. } else {
  2039. pCap->tx_desc_len = sizeof(struct ath_desc);
  2040. if (AR_SREV_9280_20(ah))
  2041. pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
  2042. }
  2043. if (AR_SREV_9300_20_OR_LATER(ah))
  2044. pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
  2045. if (AR_SREV_9300_20_OR_LATER(ah))
  2046. ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
  2047. if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
  2048. pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
  2049. if (AR_SREV_9285(ah))
  2050. if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
  2051. ant_div_ctl1 =
  2052. ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2053. if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
  2054. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2055. }
  2056. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2057. if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
  2058. pCap->hw_caps |= ATH9K_HW_CAP_APM;
  2059. }
  2060. if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
  2061. ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2062. /*
  2063. * enable the diversity-combining algorithm only when
  2064. * both enable_lna_div and enable_fast_div are set
  2065. * Table for Diversity
  2066. * ant_div_alt_lnaconf bit 0-1
  2067. * ant_div_main_lnaconf bit 2-3
  2068. * ant_div_alt_gaintb bit 4
  2069. * ant_div_main_gaintb bit 5
  2070. * enable_ant_div_lnadiv bit 6
  2071. * enable_ant_fast_div bit 7
  2072. */
  2073. if ((ant_div_ctl1 >> 0x6) == 0x3)
  2074. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2075. }
  2076. if (AR_SREV_9485_10(ah)) {
  2077. pCap->pcie_lcr_extsync_en = true;
  2078. pCap->pcie_lcr_offset = 0x80;
  2079. }
  2080. if (ath9k_hw_dfs_tested(ah))
  2081. pCap->hw_caps |= ATH9K_HW_CAP_DFS;
  2082. tx_chainmask = pCap->tx_chainmask;
  2083. rx_chainmask = pCap->rx_chainmask;
  2084. while (tx_chainmask || rx_chainmask) {
  2085. if (tx_chainmask & BIT(0))
  2086. pCap->max_txchains++;
  2087. if (rx_chainmask & BIT(0))
  2088. pCap->max_rxchains++;
  2089. tx_chainmask >>= 1;
  2090. rx_chainmask >>= 1;
  2091. }
  2092. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2093. ah->enabled_cals |= TX_IQ_CAL;
  2094. if (AR_SREV_9485_OR_LATER(ah))
  2095. ah->enabled_cals |= TX_IQ_ON_AGC_CAL;
  2096. }
  2097. if (AR_SREV_9462(ah)) {
  2098. if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
  2099. pCap->hw_caps |= ATH9K_HW_CAP_MCI;
  2100. if (AR_SREV_9462_20(ah))
  2101. pCap->hw_caps |= ATH9K_HW_CAP_RTT;
  2102. }
  2103. return 0;
  2104. }
  2105. /****************************/
  2106. /* GPIO / RFKILL / Antennae */
  2107. /****************************/
  2108. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  2109. u32 gpio, u32 type)
  2110. {
  2111. int addr;
  2112. u32 gpio_shift, tmp;
  2113. if (gpio > 11)
  2114. addr = AR_GPIO_OUTPUT_MUX3;
  2115. else if (gpio > 5)
  2116. addr = AR_GPIO_OUTPUT_MUX2;
  2117. else
  2118. addr = AR_GPIO_OUTPUT_MUX1;
  2119. gpio_shift = (gpio % 6) * 5;
  2120. if (AR_SREV_9280_20_OR_LATER(ah)
  2121. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  2122. REG_RMW(ah, addr, (type << gpio_shift),
  2123. (0x1f << gpio_shift));
  2124. } else {
  2125. tmp = REG_READ(ah, addr);
  2126. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  2127. tmp &= ~(0x1f << gpio_shift);
  2128. tmp |= (type << gpio_shift);
  2129. REG_WRITE(ah, addr, tmp);
  2130. }
  2131. }
  2132. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  2133. {
  2134. u32 gpio_shift;
  2135. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  2136. if (AR_DEVID_7010(ah)) {
  2137. gpio_shift = gpio;
  2138. REG_RMW(ah, AR7010_GPIO_OE,
  2139. (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
  2140. (AR7010_GPIO_OE_MASK << gpio_shift));
  2141. return;
  2142. }
  2143. gpio_shift = gpio << 1;
  2144. REG_RMW(ah,
  2145. AR_GPIO_OE_OUT,
  2146. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  2147. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2148. }
  2149. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  2150. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  2151. {
  2152. #define MS_REG_READ(x, y) \
  2153. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  2154. if (gpio >= ah->caps.num_gpio_pins)
  2155. return 0xffffffff;
  2156. if (AR_DEVID_7010(ah)) {
  2157. u32 val;
  2158. val = REG_READ(ah, AR7010_GPIO_IN);
  2159. return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
  2160. } else if (AR_SREV_9300_20_OR_LATER(ah))
  2161. return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
  2162. AR_GPIO_BIT(gpio)) != 0;
  2163. else if (AR_SREV_9271(ah))
  2164. return MS_REG_READ(AR9271, gpio) != 0;
  2165. else if (AR_SREV_9287_11_OR_LATER(ah))
  2166. return MS_REG_READ(AR9287, gpio) != 0;
  2167. else if (AR_SREV_9285_12_OR_LATER(ah))
  2168. return MS_REG_READ(AR9285, gpio) != 0;
  2169. else if (AR_SREV_9280_20_OR_LATER(ah))
  2170. return MS_REG_READ(AR928X, gpio) != 0;
  2171. else
  2172. return MS_REG_READ(AR, gpio) != 0;
  2173. }
  2174. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  2175. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  2176. u32 ah_signal_type)
  2177. {
  2178. u32 gpio_shift;
  2179. if (AR_DEVID_7010(ah)) {
  2180. gpio_shift = gpio;
  2181. REG_RMW(ah, AR7010_GPIO_OE,
  2182. (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
  2183. (AR7010_GPIO_OE_MASK << gpio_shift));
  2184. return;
  2185. }
  2186. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  2187. gpio_shift = 2 * gpio;
  2188. REG_RMW(ah,
  2189. AR_GPIO_OE_OUT,
  2190. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  2191. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2192. }
  2193. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  2194. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  2195. {
  2196. if (AR_DEVID_7010(ah)) {
  2197. val = val ? 0 : 1;
  2198. REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
  2199. AR_GPIO_BIT(gpio));
  2200. return;
  2201. }
  2202. if (AR_SREV_9271(ah))
  2203. val = ~val;
  2204. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  2205. AR_GPIO_BIT(gpio));
  2206. }
  2207. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  2208. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  2209. {
  2210. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  2211. }
  2212. EXPORT_SYMBOL(ath9k_hw_setantenna);
  2213. /*********************/
  2214. /* General Operation */
  2215. /*********************/
  2216. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  2217. {
  2218. u32 bits = REG_READ(ah, AR_RX_FILTER);
  2219. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  2220. if (phybits & AR_PHY_ERR_RADAR)
  2221. bits |= ATH9K_RX_FILTER_PHYRADAR;
  2222. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  2223. bits |= ATH9K_RX_FILTER_PHYERR;
  2224. return bits;
  2225. }
  2226. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  2227. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  2228. {
  2229. u32 phybits;
  2230. ENABLE_REGWRITE_BUFFER(ah);
  2231. if (AR_SREV_9462(ah))
  2232. bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
  2233. REG_WRITE(ah, AR_RX_FILTER, bits);
  2234. phybits = 0;
  2235. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  2236. phybits |= AR_PHY_ERR_RADAR;
  2237. if (bits & ATH9K_RX_FILTER_PHYERR)
  2238. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  2239. REG_WRITE(ah, AR_PHY_ERR, phybits);
  2240. if (phybits)
  2241. REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2242. else
  2243. REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2244. REGWRITE_BUFFER_FLUSH(ah);
  2245. }
  2246. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  2247. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  2248. {
  2249. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  2250. return false;
  2251. ath9k_hw_init_pll(ah, NULL);
  2252. ah->htc_reset_init = true;
  2253. return true;
  2254. }
  2255. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  2256. bool ath9k_hw_disable(struct ath_hw *ah)
  2257. {
  2258. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  2259. return false;
  2260. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  2261. return false;
  2262. ath9k_hw_init_pll(ah, NULL);
  2263. return true;
  2264. }
  2265. EXPORT_SYMBOL(ath9k_hw_disable);
  2266. static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
  2267. {
  2268. enum eeprom_param gain_param;
  2269. if (IS_CHAN_2GHZ(chan))
  2270. gain_param = EEP_ANTENNA_GAIN_2G;
  2271. else
  2272. gain_param = EEP_ANTENNA_GAIN_5G;
  2273. return ah->eep_ops->get_eeprom(ah, gain_param);
  2274. }
  2275. void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
  2276. bool test)
  2277. {
  2278. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2279. struct ieee80211_channel *channel;
  2280. int chan_pwr, new_pwr, max_gain;
  2281. int ant_gain, ant_reduction = 0;
  2282. if (!chan)
  2283. return;
  2284. channel = chan->chan;
  2285. chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
  2286. new_pwr = min_t(int, chan_pwr, reg->power_limit);
  2287. max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
  2288. ant_gain = get_antenna_gain(ah, chan);
  2289. if (ant_gain > max_gain)
  2290. ant_reduction = ant_gain - max_gain;
  2291. ah->eep_ops->set_txpower(ah, chan,
  2292. ath9k_regd_get_ctl(reg, chan),
  2293. ant_reduction, new_pwr, test);
  2294. }
  2295. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
  2296. {
  2297. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2298. struct ath9k_channel *chan = ah->curchan;
  2299. struct ieee80211_channel *channel = chan->chan;
  2300. reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
  2301. if (test)
  2302. channel->max_power = MAX_RATE_POWER / 2;
  2303. ath9k_hw_apply_txpower(ah, chan, test);
  2304. if (test)
  2305. channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
  2306. }
  2307. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  2308. void ath9k_hw_setopmode(struct ath_hw *ah)
  2309. {
  2310. ath9k_hw_set_operating_mode(ah, ah->opmode);
  2311. }
  2312. EXPORT_SYMBOL(ath9k_hw_setopmode);
  2313. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  2314. {
  2315. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  2316. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  2317. }
  2318. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  2319. void ath9k_hw_write_associd(struct ath_hw *ah)
  2320. {
  2321. struct ath_common *common = ath9k_hw_common(ah);
  2322. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  2323. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  2324. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  2325. }
  2326. EXPORT_SYMBOL(ath9k_hw_write_associd);
  2327. #define ATH9K_MAX_TSF_READ 10
  2328. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  2329. {
  2330. u32 tsf_lower, tsf_upper1, tsf_upper2;
  2331. int i;
  2332. tsf_upper1 = REG_READ(ah, AR_TSF_U32);
  2333. for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
  2334. tsf_lower = REG_READ(ah, AR_TSF_L32);
  2335. tsf_upper2 = REG_READ(ah, AR_TSF_U32);
  2336. if (tsf_upper2 == tsf_upper1)
  2337. break;
  2338. tsf_upper1 = tsf_upper2;
  2339. }
  2340. WARN_ON( i == ATH9K_MAX_TSF_READ );
  2341. return (((u64)tsf_upper1 << 32) | tsf_lower);
  2342. }
  2343. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  2344. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  2345. {
  2346. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  2347. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  2348. }
  2349. EXPORT_SYMBOL(ath9k_hw_settsf64);
  2350. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  2351. {
  2352. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  2353. AH_TSF_WRITE_TIMEOUT))
  2354. ath_dbg(ath9k_hw_common(ah), RESET,
  2355. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  2356. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  2357. }
  2358. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  2359. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
  2360. {
  2361. if (setting)
  2362. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  2363. else
  2364. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  2365. }
  2366. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  2367. void ath9k_hw_set11nmac2040(struct ath_hw *ah)
  2368. {
  2369. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  2370. u32 macmode;
  2371. if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
  2372. macmode = AR_2040_JOINED_RX_CLEAR;
  2373. else
  2374. macmode = 0;
  2375. REG_WRITE(ah, AR_2040_MODE, macmode);
  2376. }
  2377. /* HW Generic timers configuration */
  2378. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  2379. {
  2380. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2381. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2382. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2383. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2384. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2385. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2386. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2387. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2388. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  2389. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  2390. AR_NDP2_TIMER_MODE, 0x0002},
  2391. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  2392. AR_NDP2_TIMER_MODE, 0x0004},
  2393. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  2394. AR_NDP2_TIMER_MODE, 0x0008},
  2395. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  2396. AR_NDP2_TIMER_MODE, 0x0010},
  2397. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  2398. AR_NDP2_TIMER_MODE, 0x0020},
  2399. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  2400. AR_NDP2_TIMER_MODE, 0x0040},
  2401. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  2402. AR_NDP2_TIMER_MODE, 0x0080}
  2403. };
  2404. /* HW generic timer primitives */
  2405. /* compute and clear index of rightmost 1 */
  2406. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  2407. {
  2408. u32 b;
  2409. b = *mask;
  2410. b &= (0-b);
  2411. *mask &= ~b;
  2412. b *= debruijn32;
  2413. b >>= 27;
  2414. return timer_table->gen_timer_index[b];
  2415. }
  2416. u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  2417. {
  2418. return REG_READ(ah, AR_TSF_L32);
  2419. }
  2420. EXPORT_SYMBOL(ath9k_hw_gettsf32);
  2421. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  2422. void (*trigger)(void *),
  2423. void (*overflow)(void *),
  2424. void *arg,
  2425. u8 timer_index)
  2426. {
  2427. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2428. struct ath_gen_timer *timer;
  2429. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  2430. if (timer == NULL) {
  2431. ath_err(ath9k_hw_common(ah),
  2432. "Failed to allocate memory for hw timer[%d]\n",
  2433. timer_index);
  2434. return NULL;
  2435. }
  2436. /* allocate a hardware generic timer slot */
  2437. timer_table->timers[timer_index] = timer;
  2438. timer->index = timer_index;
  2439. timer->trigger = trigger;
  2440. timer->overflow = overflow;
  2441. timer->arg = arg;
  2442. return timer;
  2443. }
  2444. EXPORT_SYMBOL(ath_gen_timer_alloc);
  2445. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  2446. struct ath_gen_timer *timer,
  2447. u32 trig_timeout,
  2448. u32 timer_period)
  2449. {
  2450. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2451. u32 tsf, timer_next;
  2452. BUG_ON(!timer_period);
  2453. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2454. tsf = ath9k_hw_gettsf32(ah);
  2455. timer_next = tsf + trig_timeout;
  2456. ath_dbg(ath9k_hw_common(ah), HWTIMER,
  2457. "current tsf %x period %x timer_next %x\n",
  2458. tsf, timer_period, timer_next);
  2459. /*
  2460. * Program generic timer registers
  2461. */
  2462. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  2463. timer_next);
  2464. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  2465. timer_period);
  2466. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2467. gen_tmr_configuration[timer->index].mode_mask);
  2468. if (AR_SREV_9462(ah)) {
  2469. /*
  2470. * Starting from AR9462, each generic timer can select which tsf
  2471. * to use. But we still follow the old rule, 0 - 7 use tsf and
  2472. * 8 - 15 use tsf2.
  2473. */
  2474. if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
  2475. REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2476. (1 << timer->index));
  2477. else
  2478. REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2479. (1 << timer->index));
  2480. }
  2481. /* Enable both trigger and thresh interrupt masks */
  2482. REG_SET_BIT(ah, AR_IMR_S5,
  2483. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2484. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2485. }
  2486. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  2487. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  2488. {
  2489. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2490. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  2491. (timer->index >= ATH_MAX_GEN_TIMER)) {
  2492. return;
  2493. }
  2494. /* Clear generic timer enable bits. */
  2495. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2496. gen_tmr_configuration[timer->index].mode_mask);
  2497. /* Disable both trigger and thresh interrupt masks */
  2498. REG_CLR_BIT(ah, AR_IMR_S5,
  2499. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2500. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2501. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2502. }
  2503. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  2504. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  2505. {
  2506. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2507. /* free the hardware generic timer slot */
  2508. timer_table->timers[timer->index] = NULL;
  2509. kfree(timer);
  2510. }
  2511. EXPORT_SYMBOL(ath_gen_timer_free);
  2512. /*
  2513. * Generic Timer Interrupts handling
  2514. */
  2515. void ath_gen_timer_isr(struct ath_hw *ah)
  2516. {
  2517. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2518. struct ath_gen_timer *timer;
  2519. struct ath_common *common = ath9k_hw_common(ah);
  2520. u32 trigger_mask, thresh_mask, index;
  2521. /* get hardware generic timer interrupt status */
  2522. trigger_mask = ah->intr_gen_timer_trigger;
  2523. thresh_mask = ah->intr_gen_timer_thresh;
  2524. trigger_mask &= timer_table->timer_mask.val;
  2525. thresh_mask &= timer_table->timer_mask.val;
  2526. trigger_mask &= ~thresh_mask;
  2527. while (thresh_mask) {
  2528. index = rightmost_index(timer_table, &thresh_mask);
  2529. timer = timer_table->timers[index];
  2530. BUG_ON(!timer);
  2531. ath_dbg(common, HWTIMER, "TSF overflow for Gen timer %d\n",
  2532. index);
  2533. timer->overflow(timer->arg);
  2534. }
  2535. while (trigger_mask) {
  2536. index = rightmost_index(timer_table, &trigger_mask);
  2537. timer = timer_table->timers[index];
  2538. BUG_ON(!timer);
  2539. ath_dbg(common, HWTIMER,
  2540. "Gen timer[%d] trigger\n", index);
  2541. timer->trigger(timer->arg);
  2542. }
  2543. }
  2544. EXPORT_SYMBOL(ath_gen_timer_isr);
  2545. /********/
  2546. /* HTC */
  2547. /********/
  2548. static struct {
  2549. u32 version;
  2550. const char * name;
  2551. } ath_mac_bb_names[] = {
  2552. /* Devices with external radios */
  2553. { AR_SREV_VERSION_5416_PCI, "5416" },
  2554. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2555. { AR_SREV_VERSION_9100, "9100" },
  2556. { AR_SREV_VERSION_9160, "9160" },
  2557. /* Single-chip solutions */
  2558. { AR_SREV_VERSION_9280, "9280" },
  2559. { AR_SREV_VERSION_9285, "9285" },
  2560. { AR_SREV_VERSION_9287, "9287" },
  2561. { AR_SREV_VERSION_9271, "9271" },
  2562. { AR_SREV_VERSION_9300, "9300" },
  2563. { AR_SREV_VERSION_9330, "9330" },
  2564. { AR_SREV_VERSION_9340, "9340" },
  2565. { AR_SREV_VERSION_9485, "9485" },
  2566. { AR_SREV_VERSION_9462, "9462" },
  2567. };
  2568. /* For devices with external radios */
  2569. static struct {
  2570. u16 version;
  2571. const char * name;
  2572. } ath_rf_names[] = {
  2573. { 0, "5133" },
  2574. { AR_RAD5133_SREV_MAJOR, "5133" },
  2575. { AR_RAD5122_SREV_MAJOR, "5122" },
  2576. { AR_RAD2133_SREV_MAJOR, "2133" },
  2577. { AR_RAD2122_SREV_MAJOR, "2122" }
  2578. };
  2579. /*
  2580. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2581. */
  2582. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  2583. {
  2584. int i;
  2585. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2586. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2587. return ath_mac_bb_names[i].name;
  2588. }
  2589. }
  2590. return "????";
  2591. }
  2592. /*
  2593. * Return the RF name. "????" is returned if the RF is unknown.
  2594. * Used for devices with external radios.
  2595. */
  2596. static const char *ath9k_hw_rf_name(u16 rf_version)
  2597. {
  2598. int i;
  2599. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2600. if (ath_rf_names[i].version == rf_version) {
  2601. return ath_rf_names[i].name;
  2602. }
  2603. }
  2604. return "????";
  2605. }
  2606. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  2607. {
  2608. int used;
  2609. /* chipsets >= AR9280 are single-chip */
  2610. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2611. used = snprintf(hw_name, len,
  2612. "Atheros AR%s Rev:%x",
  2613. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2614. ah->hw_version.macRev);
  2615. }
  2616. else {
  2617. used = snprintf(hw_name, len,
  2618. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  2619. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2620. ah->hw_version.macRev,
  2621. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
  2622. AR_RADIO_SREV_MAJOR)),
  2623. ah->hw_version.phyRev);
  2624. }
  2625. hw_name[used] = '\0';
  2626. }
  2627. EXPORT_SYMBOL(ath9k_hw_name);