target_core_device.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636
  1. /*******************************************************************************
  2. * Filename: target_core_device.c (based on iscsi_target_device.c)
  3. *
  4. * This file contains the TCM Virtual Device and Disk Transport
  5. * agnostic related functions.
  6. *
  7. * Copyright (c) 2003, 2004, 2005 PyX Technologies, Inc.
  8. * Copyright (c) 2005-2006 SBE, Inc. All Rights Reserved.
  9. * Copyright (c) 2007-2010 Rising Tide Systems
  10. * Copyright (c) 2008-2010 Linux-iSCSI.org
  11. *
  12. * Nicholas A. Bellinger <nab@kernel.org>
  13. *
  14. * This program is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License as published by
  16. * the Free Software Foundation; either version 2 of the License, or
  17. * (at your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License
  25. * along with this program; if not, write to the Free Software
  26. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  27. *
  28. ******************************************************************************/
  29. #include <linux/net.h>
  30. #include <linux/string.h>
  31. #include <linux/delay.h>
  32. #include <linux/timer.h>
  33. #include <linux/slab.h>
  34. #include <linux/spinlock.h>
  35. #include <linux/kthread.h>
  36. #include <linux/in.h>
  37. #include <net/sock.h>
  38. #include <net/tcp.h>
  39. #include <scsi/scsi.h>
  40. #include <scsi/scsi_device.h>
  41. #include <target/target_core_base.h>
  42. #include <target/target_core_device.h>
  43. #include <target/target_core_tpg.h>
  44. #include <target/target_core_transport.h>
  45. #include <target/target_core_fabric_ops.h>
  46. #include "target_core_alua.h"
  47. #include "target_core_hba.h"
  48. #include "target_core_pr.h"
  49. #include "target_core_ua.h"
  50. static void se_dev_start(struct se_device *dev);
  51. static void se_dev_stop(struct se_device *dev);
  52. static struct se_hba *lun0_hba;
  53. static struct se_subsystem_dev *lun0_su_dev;
  54. /* not static, needed by tpg.c */
  55. struct se_device *g_lun0_dev;
  56. int transport_lookup_cmd_lun(struct se_cmd *se_cmd, u32 unpacked_lun)
  57. {
  58. struct se_lun *se_lun = NULL;
  59. struct se_session *se_sess = se_cmd->se_sess;
  60. struct se_device *dev;
  61. unsigned long flags;
  62. if (unpacked_lun >= TRANSPORT_MAX_LUNS_PER_TPG) {
  63. se_cmd->scsi_sense_reason = TCM_NON_EXISTENT_LUN;
  64. se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
  65. return -ENODEV;
  66. }
  67. spin_lock_irq(&se_sess->se_node_acl->device_list_lock);
  68. se_cmd->se_deve = &se_sess->se_node_acl->device_list[unpacked_lun];
  69. if (se_cmd->se_deve->lun_flags & TRANSPORT_LUNFLAGS_INITIATOR_ACCESS) {
  70. struct se_dev_entry *deve = se_cmd->se_deve;
  71. deve->total_cmds++;
  72. deve->total_bytes += se_cmd->data_length;
  73. if ((se_cmd->data_direction == DMA_TO_DEVICE) &&
  74. (deve->lun_flags & TRANSPORT_LUNFLAGS_READ_ONLY)) {
  75. se_cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
  76. se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
  77. printk("TARGET_CORE[%s]: Detected WRITE_PROTECTED LUN"
  78. " Access for 0x%08x\n",
  79. se_cmd->se_tfo->get_fabric_name(),
  80. unpacked_lun);
  81. spin_unlock_irq(&se_sess->se_node_acl->device_list_lock);
  82. return -EACCES;
  83. }
  84. if (se_cmd->data_direction == DMA_TO_DEVICE)
  85. deve->write_bytes += se_cmd->data_length;
  86. else if (se_cmd->data_direction == DMA_FROM_DEVICE)
  87. deve->read_bytes += se_cmd->data_length;
  88. deve->deve_cmds++;
  89. se_lun = deve->se_lun;
  90. se_cmd->se_lun = deve->se_lun;
  91. se_cmd->pr_res_key = deve->pr_res_key;
  92. se_cmd->orig_fe_lun = unpacked_lun;
  93. se_cmd->se_orig_obj_ptr = se_cmd->se_lun->lun_se_dev;
  94. se_cmd->se_cmd_flags |= SCF_SE_LUN_CMD;
  95. }
  96. spin_unlock_irq(&se_sess->se_node_acl->device_list_lock);
  97. if (!se_lun) {
  98. /*
  99. * Use the se_portal_group->tpg_virt_lun0 to allow for
  100. * REPORT_LUNS, et al to be returned when no active
  101. * MappedLUN=0 exists for this Initiator Port.
  102. */
  103. if (unpacked_lun != 0) {
  104. se_cmd->scsi_sense_reason = TCM_NON_EXISTENT_LUN;
  105. se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
  106. printk("TARGET_CORE[%s]: Detected NON_EXISTENT_LUN"
  107. " Access for 0x%08x\n",
  108. se_cmd->se_tfo->get_fabric_name(),
  109. unpacked_lun);
  110. return -ENODEV;
  111. }
  112. /*
  113. * Force WRITE PROTECT for virtual LUN 0
  114. */
  115. if ((se_cmd->data_direction != DMA_FROM_DEVICE) &&
  116. (se_cmd->data_direction != DMA_NONE)) {
  117. se_cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
  118. se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
  119. return -EACCES;
  120. }
  121. se_lun = &se_sess->se_tpg->tpg_virt_lun0;
  122. se_cmd->se_lun = &se_sess->se_tpg->tpg_virt_lun0;
  123. se_cmd->orig_fe_lun = 0;
  124. se_cmd->se_orig_obj_ptr = se_cmd->se_lun->lun_se_dev;
  125. se_cmd->se_cmd_flags |= SCF_SE_LUN_CMD;
  126. }
  127. /*
  128. * Determine if the struct se_lun is online.
  129. * FIXME: Check for LUN_RESET + UNIT Attention
  130. */
  131. if (se_dev_check_online(se_lun->lun_se_dev) != 0) {
  132. se_cmd->scsi_sense_reason = TCM_NON_EXISTENT_LUN;
  133. se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
  134. return -ENODEV;
  135. }
  136. /* Directly associate cmd with se_dev */
  137. se_cmd->se_dev = se_lun->lun_se_dev;
  138. /* TODO: get rid of this and use atomics for stats */
  139. dev = se_lun->lun_se_dev;
  140. spin_lock_irq(&dev->stats_lock);
  141. dev->num_cmds++;
  142. if (se_cmd->data_direction == DMA_TO_DEVICE)
  143. dev->write_bytes += se_cmd->data_length;
  144. else if (se_cmd->data_direction == DMA_FROM_DEVICE)
  145. dev->read_bytes += se_cmd->data_length;
  146. spin_unlock_irq(&dev->stats_lock);
  147. /*
  148. * Add the iscsi_cmd_t to the struct se_lun's cmd list. This list is used
  149. * for tracking state of struct se_cmds during LUN shutdown events.
  150. */
  151. spin_lock_irqsave(&se_lun->lun_cmd_lock, flags);
  152. list_add_tail(&se_cmd->se_lun_node, &se_lun->lun_cmd_list);
  153. atomic_set(&se_cmd->t_task.transport_lun_active, 1);
  154. spin_unlock_irqrestore(&se_lun->lun_cmd_lock, flags);
  155. return 0;
  156. }
  157. EXPORT_SYMBOL(transport_lookup_cmd_lun);
  158. int transport_lookup_tmr_lun(struct se_cmd *se_cmd, u32 unpacked_lun)
  159. {
  160. struct se_dev_entry *deve;
  161. struct se_lun *se_lun = NULL;
  162. struct se_session *se_sess = se_cmd->se_sess;
  163. struct se_tmr_req *se_tmr = se_cmd->se_tmr_req;
  164. if (unpacked_lun >= TRANSPORT_MAX_LUNS_PER_TPG) {
  165. se_cmd->scsi_sense_reason = TCM_NON_EXISTENT_LUN;
  166. se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
  167. return -ENODEV;
  168. }
  169. spin_lock_irq(&se_sess->se_node_acl->device_list_lock);
  170. se_cmd->se_deve = &se_sess->se_node_acl->device_list[unpacked_lun];
  171. deve = se_cmd->se_deve;
  172. if (deve->lun_flags & TRANSPORT_LUNFLAGS_INITIATOR_ACCESS) {
  173. se_tmr->tmr_lun = deve->se_lun;
  174. se_cmd->se_lun = deve->se_lun;
  175. se_lun = deve->se_lun;
  176. se_cmd->pr_res_key = deve->pr_res_key;
  177. se_cmd->orig_fe_lun = unpacked_lun;
  178. se_cmd->se_orig_obj_ptr = se_cmd->se_dev;
  179. }
  180. spin_unlock_irq(&se_sess->se_node_acl->device_list_lock);
  181. if (!se_lun) {
  182. printk(KERN_INFO "TARGET_CORE[%s]: Detected NON_EXISTENT_LUN"
  183. " Access for 0x%08x\n",
  184. se_cmd->se_tfo->get_fabric_name(),
  185. unpacked_lun);
  186. se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
  187. return -ENODEV;
  188. }
  189. /*
  190. * Determine if the struct se_lun is online.
  191. * FIXME: Check for LUN_RESET + UNIT Attention
  192. */
  193. if (se_dev_check_online(se_lun->lun_se_dev) != 0) {
  194. se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
  195. return -ENODEV;
  196. }
  197. /* Directly associate cmd with se_dev */
  198. se_cmd->se_dev = se_lun->lun_se_dev;
  199. se_tmr->tmr_dev = se_lun->lun_se_dev;
  200. spin_lock(&se_tmr->tmr_dev->se_tmr_lock);
  201. list_add_tail(&se_tmr->tmr_list, &se_tmr->tmr_dev->dev_tmr_list);
  202. spin_unlock(&se_tmr->tmr_dev->se_tmr_lock);
  203. return 0;
  204. }
  205. EXPORT_SYMBOL(transport_lookup_tmr_lun);
  206. /*
  207. * This function is called from core_scsi3_emulate_pro_register_and_move()
  208. * and core_scsi3_decode_spec_i_port(), and will increment &deve->pr_ref_count
  209. * when a matching rtpi is found.
  210. */
  211. struct se_dev_entry *core_get_se_deve_from_rtpi(
  212. struct se_node_acl *nacl,
  213. u16 rtpi)
  214. {
  215. struct se_dev_entry *deve;
  216. struct se_lun *lun;
  217. struct se_port *port;
  218. struct se_portal_group *tpg = nacl->se_tpg;
  219. u32 i;
  220. spin_lock_irq(&nacl->device_list_lock);
  221. for (i = 0; i < TRANSPORT_MAX_LUNS_PER_TPG; i++) {
  222. deve = &nacl->device_list[i];
  223. if (!(deve->lun_flags & TRANSPORT_LUNFLAGS_INITIATOR_ACCESS))
  224. continue;
  225. lun = deve->se_lun;
  226. if (!(lun)) {
  227. printk(KERN_ERR "%s device entries device pointer is"
  228. " NULL, but Initiator has access.\n",
  229. tpg->se_tpg_tfo->get_fabric_name());
  230. continue;
  231. }
  232. port = lun->lun_sep;
  233. if (!(port)) {
  234. printk(KERN_ERR "%s device entries device pointer is"
  235. " NULL, but Initiator has access.\n",
  236. tpg->se_tpg_tfo->get_fabric_name());
  237. continue;
  238. }
  239. if (port->sep_rtpi != rtpi)
  240. continue;
  241. atomic_inc(&deve->pr_ref_count);
  242. smp_mb__after_atomic_inc();
  243. spin_unlock_irq(&nacl->device_list_lock);
  244. return deve;
  245. }
  246. spin_unlock_irq(&nacl->device_list_lock);
  247. return NULL;
  248. }
  249. int core_free_device_list_for_node(
  250. struct se_node_acl *nacl,
  251. struct se_portal_group *tpg)
  252. {
  253. struct se_dev_entry *deve;
  254. struct se_lun *lun;
  255. u32 i;
  256. if (!nacl->device_list)
  257. return 0;
  258. spin_lock_irq(&nacl->device_list_lock);
  259. for (i = 0; i < TRANSPORT_MAX_LUNS_PER_TPG; i++) {
  260. deve = &nacl->device_list[i];
  261. if (!(deve->lun_flags & TRANSPORT_LUNFLAGS_INITIATOR_ACCESS))
  262. continue;
  263. if (!deve->se_lun) {
  264. printk(KERN_ERR "%s device entries device pointer is"
  265. " NULL, but Initiator has access.\n",
  266. tpg->se_tpg_tfo->get_fabric_name());
  267. continue;
  268. }
  269. lun = deve->se_lun;
  270. spin_unlock_irq(&nacl->device_list_lock);
  271. core_update_device_list_for_node(lun, NULL, deve->mapped_lun,
  272. TRANSPORT_LUNFLAGS_NO_ACCESS, nacl, tpg, 0);
  273. spin_lock_irq(&nacl->device_list_lock);
  274. }
  275. spin_unlock_irq(&nacl->device_list_lock);
  276. kfree(nacl->device_list);
  277. nacl->device_list = NULL;
  278. return 0;
  279. }
  280. void core_dec_lacl_count(struct se_node_acl *se_nacl, struct se_cmd *se_cmd)
  281. {
  282. struct se_dev_entry *deve;
  283. spin_lock_irq(&se_nacl->device_list_lock);
  284. deve = &se_nacl->device_list[se_cmd->orig_fe_lun];
  285. deve->deve_cmds--;
  286. spin_unlock_irq(&se_nacl->device_list_lock);
  287. }
  288. void core_update_device_list_access(
  289. u32 mapped_lun,
  290. u32 lun_access,
  291. struct se_node_acl *nacl)
  292. {
  293. struct se_dev_entry *deve;
  294. spin_lock_irq(&nacl->device_list_lock);
  295. deve = &nacl->device_list[mapped_lun];
  296. if (lun_access & TRANSPORT_LUNFLAGS_READ_WRITE) {
  297. deve->lun_flags &= ~TRANSPORT_LUNFLAGS_READ_ONLY;
  298. deve->lun_flags |= TRANSPORT_LUNFLAGS_READ_WRITE;
  299. } else {
  300. deve->lun_flags &= ~TRANSPORT_LUNFLAGS_READ_WRITE;
  301. deve->lun_flags |= TRANSPORT_LUNFLAGS_READ_ONLY;
  302. }
  303. spin_unlock_irq(&nacl->device_list_lock);
  304. }
  305. /* core_update_device_list_for_node():
  306. *
  307. *
  308. */
  309. int core_update_device_list_for_node(
  310. struct se_lun *lun,
  311. struct se_lun_acl *lun_acl,
  312. u32 mapped_lun,
  313. u32 lun_access,
  314. struct se_node_acl *nacl,
  315. struct se_portal_group *tpg,
  316. int enable)
  317. {
  318. struct se_port *port = lun->lun_sep;
  319. struct se_dev_entry *deve = &nacl->device_list[mapped_lun];
  320. int trans = 0;
  321. /*
  322. * If the MappedLUN entry is being disabled, the entry in
  323. * port->sep_alua_list must be removed now before clearing the
  324. * struct se_dev_entry pointers below as logic in
  325. * core_alua_do_transition_tg_pt() depends on these being present.
  326. */
  327. if (!(enable)) {
  328. /*
  329. * deve->se_lun_acl will be NULL for demo-mode created LUNs
  330. * that have not been explicitly concerted to MappedLUNs ->
  331. * struct se_lun_acl, but we remove deve->alua_port_list from
  332. * port->sep_alua_list. This also means that active UAs and
  333. * NodeACL context specific PR metadata for demo-mode
  334. * MappedLUN *deve will be released below..
  335. */
  336. spin_lock_bh(&port->sep_alua_lock);
  337. list_del(&deve->alua_port_list);
  338. spin_unlock_bh(&port->sep_alua_lock);
  339. }
  340. spin_lock_irq(&nacl->device_list_lock);
  341. if (enable) {
  342. /*
  343. * Check if the call is handling demo mode -> explict LUN ACL
  344. * transition. This transition must be for the same struct se_lun
  345. * + mapped_lun that was setup in demo mode..
  346. */
  347. if (deve->lun_flags & TRANSPORT_LUNFLAGS_INITIATOR_ACCESS) {
  348. if (deve->se_lun_acl != NULL) {
  349. printk(KERN_ERR "struct se_dev_entry->se_lun_acl"
  350. " already set for demo mode -> explict"
  351. " LUN ACL transition\n");
  352. spin_unlock_irq(&nacl->device_list_lock);
  353. return -EINVAL;
  354. }
  355. if (deve->se_lun != lun) {
  356. printk(KERN_ERR "struct se_dev_entry->se_lun does"
  357. " match passed struct se_lun for demo mode"
  358. " -> explict LUN ACL transition\n");
  359. spin_unlock_irq(&nacl->device_list_lock);
  360. return -EINVAL;
  361. }
  362. deve->se_lun_acl = lun_acl;
  363. trans = 1;
  364. } else {
  365. deve->se_lun = lun;
  366. deve->se_lun_acl = lun_acl;
  367. deve->mapped_lun = mapped_lun;
  368. deve->lun_flags |= TRANSPORT_LUNFLAGS_INITIATOR_ACCESS;
  369. }
  370. if (lun_access & TRANSPORT_LUNFLAGS_READ_WRITE) {
  371. deve->lun_flags &= ~TRANSPORT_LUNFLAGS_READ_ONLY;
  372. deve->lun_flags |= TRANSPORT_LUNFLAGS_READ_WRITE;
  373. } else {
  374. deve->lun_flags &= ~TRANSPORT_LUNFLAGS_READ_WRITE;
  375. deve->lun_flags |= TRANSPORT_LUNFLAGS_READ_ONLY;
  376. }
  377. if (trans) {
  378. spin_unlock_irq(&nacl->device_list_lock);
  379. return 0;
  380. }
  381. deve->creation_time = get_jiffies_64();
  382. deve->attach_count++;
  383. spin_unlock_irq(&nacl->device_list_lock);
  384. spin_lock_bh(&port->sep_alua_lock);
  385. list_add_tail(&deve->alua_port_list, &port->sep_alua_list);
  386. spin_unlock_bh(&port->sep_alua_lock);
  387. return 0;
  388. }
  389. /*
  390. * Wait for any in process SPEC_I_PT=1 or REGISTER_AND_MOVE
  391. * PR operation to complete.
  392. */
  393. spin_unlock_irq(&nacl->device_list_lock);
  394. while (atomic_read(&deve->pr_ref_count) != 0)
  395. cpu_relax();
  396. spin_lock_irq(&nacl->device_list_lock);
  397. /*
  398. * Disable struct se_dev_entry LUN ACL mapping
  399. */
  400. core_scsi3_ua_release_all(deve);
  401. deve->se_lun = NULL;
  402. deve->se_lun_acl = NULL;
  403. deve->lun_flags = 0;
  404. deve->creation_time = 0;
  405. deve->attach_count--;
  406. spin_unlock_irq(&nacl->device_list_lock);
  407. core_scsi3_free_pr_reg_from_nacl(lun->lun_se_dev, nacl);
  408. return 0;
  409. }
  410. /* core_clear_lun_from_tpg():
  411. *
  412. *
  413. */
  414. void core_clear_lun_from_tpg(struct se_lun *lun, struct se_portal_group *tpg)
  415. {
  416. struct se_node_acl *nacl;
  417. struct se_dev_entry *deve;
  418. u32 i;
  419. spin_lock_bh(&tpg->acl_node_lock);
  420. list_for_each_entry(nacl, &tpg->acl_node_list, acl_list) {
  421. spin_unlock_bh(&tpg->acl_node_lock);
  422. spin_lock_irq(&nacl->device_list_lock);
  423. for (i = 0; i < TRANSPORT_MAX_LUNS_PER_TPG; i++) {
  424. deve = &nacl->device_list[i];
  425. if (lun != deve->se_lun)
  426. continue;
  427. spin_unlock_irq(&nacl->device_list_lock);
  428. core_update_device_list_for_node(lun, NULL,
  429. deve->mapped_lun, TRANSPORT_LUNFLAGS_NO_ACCESS,
  430. nacl, tpg, 0);
  431. spin_lock_irq(&nacl->device_list_lock);
  432. }
  433. spin_unlock_irq(&nacl->device_list_lock);
  434. spin_lock_bh(&tpg->acl_node_lock);
  435. }
  436. spin_unlock_bh(&tpg->acl_node_lock);
  437. }
  438. static struct se_port *core_alloc_port(struct se_device *dev)
  439. {
  440. struct se_port *port, *port_tmp;
  441. port = kzalloc(sizeof(struct se_port), GFP_KERNEL);
  442. if (!(port)) {
  443. printk(KERN_ERR "Unable to allocate struct se_port\n");
  444. return ERR_PTR(-ENOMEM);
  445. }
  446. INIT_LIST_HEAD(&port->sep_alua_list);
  447. INIT_LIST_HEAD(&port->sep_list);
  448. atomic_set(&port->sep_tg_pt_secondary_offline, 0);
  449. spin_lock_init(&port->sep_alua_lock);
  450. mutex_init(&port->sep_tg_pt_md_mutex);
  451. spin_lock(&dev->se_port_lock);
  452. if (dev->dev_port_count == 0x0000ffff) {
  453. printk(KERN_WARNING "Reached dev->dev_port_count =="
  454. " 0x0000ffff\n");
  455. spin_unlock(&dev->se_port_lock);
  456. return ERR_PTR(-ENOSPC);
  457. }
  458. again:
  459. /*
  460. * Allocate the next RELATIVE TARGET PORT IDENTIFER for this struct se_device
  461. * Here is the table from spc4r17 section 7.7.3.8.
  462. *
  463. * Table 473 -- RELATIVE TARGET PORT IDENTIFIER field
  464. *
  465. * Code Description
  466. * 0h Reserved
  467. * 1h Relative port 1, historically known as port A
  468. * 2h Relative port 2, historically known as port B
  469. * 3h to FFFFh Relative port 3 through 65 535
  470. */
  471. port->sep_rtpi = dev->dev_rpti_counter++;
  472. if (!(port->sep_rtpi))
  473. goto again;
  474. list_for_each_entry(port_tmp, &dev->dev_sep_list, sep_list) {
  475. /*
  476. * Make sure RELATIVE TARGET PORT IDENTIFER is unique
  477. * for 16-bit wrap..
  478. */
  479. if (port->sep_rtpi == port_tmp->sep_rtpi)
  480. goto again;
  481. }
  482. spin_unlock(&dev->se_port_lock);
  483. return port;
  484. }
  485. static void core_export_port(
  486. struct se_device *dev,
  487. struct se_portal_group *tpg,
  488. struct se_port *port,
  489. struct se_lun *lun)
  490. {
  491. struct se_subsystem_dev *su_dev = dev->se_sub_dev;
  492. struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem = NULL;
  493. spin_lock(&dev->se_port_lock);
  494. spin_lock(&lun->lun_sep_lock);
  495. port->sep_tpg = tpg;
  496. port->sep_lun = lun;
  497. lun->lun_sep = port;
  498. spin_unlock(&lun->lun_sep_lock);
  499. list_add_tail(&port->sep_list, &dev->dev_sep_list);
  500. spin_unlock(&dev->se_port_lock);
  501. if (su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
  502. tg_pt_gp_mem = core_alua_allocate_tg_pt_gp_mem(port);
  503. if (IS_ERR(tg_pt_gp_mem) || !tg_pt_gp_mem) {
  504. printk(KERN_ERR "Unable to allocate t10_alua_tg_pt"
  505. "_gp_member_t\n");
  506. return;
  507. }
  508. spin_lock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  509. __core_alua_attach_tg_pt_gp_mem(tg_pt_gp_mem,
  510. su_dev->t10_alua.default_tg_pt_gp);
  511. spin_unlock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  512. printk(KERN_INFO "%s/%s: Adding to default ALUA Target Port"
  513. " Group: alua/default_tg_pt_gp\n",
  514. dev->transport->name, tpg->se_tpg_tfo->get_fabric_name());
  515. }
  516. dev->dev_port_count++;
  517. port->sep_index = port->sep_rtpi; /* RELATIVE TARGET PORT IDENTIFER */
  518. }
  519. /*
  520. * Called with struct se_device->se_port_lock spinlock held.
  521. */
  522. static void core_release_port(struct se_device *dev, struct se_port *port)
  523. __releases(&dev->se_port_lock) __acquires(&dev->se_port_lock)
  524. {
  525. /*
  526. * Wait for any port reference for PR ALL_TG_PT=1 operation
  527. * to complete in __core_scsi3_alloc_registration()
  528. */
  529. spin_unlock(&dev->se_port_lock);
  530. if (atomic_read(&port->sep_tg_pt_ref_cnt))
  531. cpu_relax();
  532. spin_lock(&dev->se_port_lock);
  533. core_alua_free_tg_pt_gp_mem(port);
  534. list_del(&port->sep_list);
  535. dev->dev_port_count--;
  536. kfree(port);
  537. }
  538. int core_dev_export(
  539. struct se_device *dev,
  540. struct se_portal_group *tpg,
  541. struct se_lun *lun)
  542. {
  543. struct se_port *port;
  544. port = core_alloc_port(dev);
  545. if (IS_ERR(port))
  546. return PTR_ERR(port);
  547. lun->lun_se_dev = dev;
  548. se_dev_start(dev);
  549. atomic_inc(&dev->dev_export_obj.obj_access_count);
  550. core_export_port(dev, tpg, port, lun);
  551. return 0;
  552. }
  553. void core_dev_unexport(
  554. struct se_device *dev,
  555. struct se_portal_group *tpg,
  556. struct se_lun *lun)
  557. {
  558. struct se_port *port = lun->lun_sep;
  559. spin_lock(&lun->lun_sep_lock);
  560. if (lun->lun_se_dev == NULL) {
  561. spin_unlock(&lun->lun_sep_lock);
  562. return;
  563. }
  564. spin_unlock(&lun->lun_sep_lock);
  565. spin_lock(&dev->se_port_lock);
  566. atomic_dec(&dev->dev_export_obj.obj_access_count);
  567. core_release_port(dev, port);
  568. spin_unlock(&dev->se_port_lock);
  569. se_dev_stop(dev);
  570. lun->lun_se_dev = NULL;
  571. }
  572. int transport_core_report_lun_response(struct se_cmd *se_cmd)
  573. {
  574. struct se_dev_entry *deve;
  575. struct se_lun *se_lun;
  576. struct se_session *se_sess = se_cmd->se_sess;
  577. struct se_task *se_task;
  578. unsigned char *buf = se_cmd->t_task.t_task_buf;
  579. u32 cdb_offset = 0, lun_count = 0, offset = 8, i;
  580. list_for_each_entry(se_task, &se_cmd->t_task.t_task_list, t_list)
  581. break;
  582. if (!(se_task)) {
  583. printk(KERN_ERR "Unable to locate struct se_task for struct se_cmd\n");
  584. return PYX_TRANSPORT_LU_COMM_FAILURE;
  585. }
  586. /*
  587. * If no struct se_session pointer is present, this struct se_cmd is
  588. * coming via a target_core_mod PASSTHROUGH op, and not through
  589. * a $FABRIC_MOD. In that case, report LUN=0 only.
  590. */
  591. if (!(se_sess)) {
  592. int_to_scsilun(0, (struct scsi_lun *)&buf[offset]);
  593. lun_count = 1;
  594. goto done;
  595. }
  596. spin_lock_irq(&se_sess->se_node_acl->device_list_lock);
  597. for (i = 0; i < TRANSPORT_MAX_LUNS_PER_TPG; i++) {
  598. deve = &se_sess->se_node_acl->device_list[i];
  599. if (!(deve->lun_flags & TRANSPORT_LUNFLAGS_INITIATOR_ACCESS))
  600. continue;
  601. se_lun = deve->se_lun;
  602. /*
  603. * We determine the correct LUN LIST LENGTH even once we
  604. * have reached the initial allocation length.
  605. * See SPC2-R20 7.19.
  606. */
  607. lun_count++;
  608. if ((cdb_offset + 8) >= se_cmd->data_length)
  609. continue;
  610. int_to_scsilun(deve->mapped_lun, (struct scsi_lun *)&buf[offset]);
  611. offset += 8;
  612. cdb_offset += 8;
  613. }
  614. spin_unlock_irq(&se_sess->se_node_acl->device_list_lock);
  615. /*
  616. * See SPC3 r07, page 159.
  617. */
  618. done:
  619. lun_count *= 8;
  620. buf[0] = ((lun_count >> 24) & 0xff);
  621. buf[1] = ((lun_count >> 16) & 0xff);
  622. buf[2] = ((lun_count >> 8) & 0xff);
  623. buf[3] = (lun_count & 0xff);
  624. return PYX_TRANSPORT_SENT_TO_TRANSPORT;
  625. }
  626. /* se_release_device_for_hba():
  627. *
  628. *
  629. */
  630. void se_release_device_for_hba(struct se_device *dev)
  631. {
  632. struct se_hba *hba = dev->se_hba;
  633. if ((dev->dev_status & TRANSPORT_DEVICE_ACTIVATED) ||
  634. (dev->dev_status & TRANSPORT_DEVICE_DEACTIVATED) ||
  635. (dev->dev_status & TRANSPORT_DEVICE_SHUTDOWN) ||
  636. (dev->dev_status & TRANSPORT_DEVICE_OFFLINE_ACTIVATED) ||
  637. (dev->dev_status & TRANSPORT_DEVICE_OFFLINE_DEACTIVATED))
  638. se_dev_stop(dev);
  639. if (dev->dev_ptr) {
  640. kthread_stop(dev->process_thread);
  641. if (dev->transport->free_device)
  642. dev->transport->free_device(dev->dev_ptr);
  643. }
  644. spin_lock(&hba->device_lock);
  645. list_del(&dev->dev_list);
  646. hba->dev_count--;
  647. spin_unlock(&hba->device_lock);
  648. core_scsi3_free_all_registrations(dev);
  649. se_release_vpd_for_dev(dev);
  650. kfree(dev);
  651. }
  652. void se_release_vpd_for_dev(struct se_device *dev)
  653. {
  654. struct t10_vpd *vpd, *vpd_tmp;
  655. spin_lock(&dev->se_sub_dev->t10_wwn.t10_vpd_lock);
  656. list_for_each_entry_safe(vpd, vpd_tmp,
  657. &dev->se_sub_dev->t10_wwn.t10_vpd_list, vpd_list) {
  658. list_del(&vpd->vpd_list);
  659. kfree(vpd);
  660. }
  661. spin_unlock(&dev->se_sub_dev->t10_wwn.t10_vpd_lock);
  662. }
  663. /* se_free_virtual_device():
  664. *
  665. * Used for IBLOCK, RAMDISK, and FILEIO Transport Drivers.
  666. */
  667. int se_free_virtual_device(struct se_device *dev, struct se_hba *hba)
  668. {
  669. if (!list_empty(&dev->dev_sep_list))
  670. dump_stack();
  671. core_alua_free_lu_gp_mem(dev);
  672. se_release_device_for_hba(dev);
  673. return 0;
  674. }
  675. static void se_dev_start(struct se_device *dev)
  676. {
  677. struct se_hba *hba = dev->se_hba;
  678. spin_lock(&hba->device_lock);
  679. atomic_inc(&dev->dev_obj.obj_access_count);
  680. if (atomic_read(&dev->dev_obj.obj_access_count) == 1) {
  681. if (dev->dev_status & TRANSPORT_DEVICE_DEACTIVATED) {
  682. dev->dev_status &= ~TRANSPORT_DEVICE_DEACTIVATED;
  683. dev->dev_status |= TRANSPORT_DEVICE_ACTIVATED;
  684. } else if (dev->dev_status &
  685. TRANSPORT_DEVICE_OFFLINE_DEACTIVATED) {
  686. dev->dev_status &=
  687. ~TRANSPORT_DEVICE_OFFLINE_DEACTIVATED;
  688. dev->dev_status |= TRANSPORT_DEVICE_OFFLINE_ACTIVATED;
  689. }
  690. }
  691. spin_unlock(&hba->device_lock);
  692. }
  693. static void se_dev_stop(struct se_device *dev)
  694. {
  695. struct se_hba *hba = dev->se_hba;
  696. spin_lock(&hba->device_lock);
  697. atomic_dec(&dev->dev_obj.obj_access_count);
  698. if (atomic_read(&dev->dev_obj.obj_access_count) == 0) {
  699. if (dev->dev_status & TRANSPORT_DEVICE_ACTIVATED) {
  700. dev->dev_status &= ~TRANSPORT_DEVICE_ACTIVATED;
  701. dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
  702. } else if (dev->dev_status &
  703. TRANSPORT_DEVICE_OFFLINE_ACTIVATED) {
  704. dev->dev_status &= ~TRANSPORT_DEVICE_OFFLINE_ACTIVATED;
  705. dev->dev_status |= TRANSPORT_DEVICE_OFFLINE_DEACTIVATED;
  706. }
  707. }
  708. spin_unlock(&hba->device_lock);
  709. }
  710. int se_dev_check_online(struct se_device *dev)
  711. {
  712. int ret;
  713. spin_lock_irq(&dev->dev_status_lock);
  714. ret = ((dev->dev_status & TRANSPORT_DEVICE_ACTIVATED) ||
  715. (dev->dev_status & TRANSPORT_DEVICE_DEACTIVATED)) ? 0 : 1;
  716. spin_unlock_irq(&dev->dev_status_lock);
  717. return ret;
  718. }
  719. int se_dev_check_shutdown(struct se_device *dev)
  720. {
  721. int ret;
  722. spin_lock_irq(&dev->dev_status_lock);
  723. ret = (dev->dev_status & TRANSPORT_DEVICE_SHUTDOWN);
  724. spin_unlock_irq(&dev->dev_status_lock);
  725. return ret;
  726. }
  727. void se_dev_set_default_attribs(
  728. struct se_device *dev,
  729. struct se_dev_limits *dev_limits)
  730. {
  731. struct queue_limits *limits = &dev_limits->limits;
  732. dev->se_sub_dev->se_dev_attrib.emulate_dpo = DA_EMULATE_DPO;
  733. dev->se_sub_dev->se_dev_attrib.emulate_fua_write = DA_EMULATE_FUA_WRITE;
  734. dev->se_sub_dev->se_dev_attrib.emulate_fua_read = DA_EMULATE_FUA_READ;
  735. dev->se_sub_dev->se_dev_attrib.emulate_write_cache = DA_EMULATE_WRITE_CACHE;
  736. dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl = DA_EMULATE_UA_INTLLCK_CTRL;
  737. dev->se_sub_dev->se_dev_attrib.emulate_tas = DA_EMULATE_TAS;
  738. dev->se_sub_dev->se_dev_attrib.emulate_tpu = DA_EMULATE_TPU;
  739. dev->se_sub_dev->se_dev_attrib.emulate_tpws = DA_EMULATE_TPWS;
  740. dev->se_sub_dev->se_dev_attrib.emulate_reservations = DA_EMULATE_RESERVATIONS;
  741. dev->se_sub_dev->se_dev_attrib.emulate_alua = DA_EMULATE_ALUA;
  742. dev->se_sub_dev->se_dev_attrib.enforce_pr_isids = DA_ENFORCE_PR_ISIDS;
  743. /*
  744. * The TPU=1 and TPWS=1 settings will be set in TCM/IBLOCK
  745. * iblock_create_virtdevice() from struct queue_limits values
  746. * if blk_queue_discard()==1
  747. */
  748. dev->se_sub_dev->se_dev_attrib.max_unmap_lba_count = DA_MAX_UNMAP_LBA_COUNT;
  749. dev->se_sub_dev->se_dev_attrib.max_unmap_block_desc_count =
  750. DA_MAX_UNMAP_BLOCK_DESC_COUNT;
  751. dev->se_sub_dev->se_dev_attrib.unmap_granularity = DA_UNMAP_GRANULARITY_DEFAULT;
  752. dev->se_sub_dev->se_dev_attrib.unmap_granularity_alignment =
  753. DA_UNMAP_GRANULARITY_ALIGNMENT_DEFAULT;
  754. /*
  755. * block_size is based on subsystem plugin dependent requirements.
  756. */
  757. dev->se_sub_dev->se_dev_attrib.hw_block_size = limits->logical_block_size;
  758. dev->se_sub_dev->se_dev_attrib.block_size = limits->logical_block_size;
  759. /*
  760. * max_sectors is based on subsystem plugin dependent requirements.
  761. */
  762. dev->se_sub_dev->se_dev_attrib.hw_max_sectors = limits->max_hw_sectors;
  763. dev->se_sub_dev->se_dev_attrib.max_sectors = limits->max_sectors;
  764. /*
  765. * Set optimal_sectors from max_sectors, which can be lowered via
  766. * configfs.
  767. */
  768. dev->se_sub_dev->se_dev_attrib.optimal_sectors = limits->max_sectors;
  769. /*
  770. * queue_depth is based on subsystem plugin dependent requirements.
  771. */
  772. dev->se_sub_dev->se_dev_attrib.hw_queue_depth = dev_limits->hw_queue_depth;
  773. dev->se_sub_dev->se_dev_attrib.queue_depth = dev_limits->queue_depth;
  774. }
  775. int se_dev_set_task_timeout(struct se_device *dev, u32 task_timeout)
  776. {
  777. if (task_timeout > DA_TASK_TIMEOUT_MAX) {
  778. printk(KERN_ERR "dev[%p]: Passed task_timeout: %u larger then"
  779. " DA_TASK_TIMEOUT_MAX\n", dev, task_timeout);
  780. return -EINVAL;
  781. } else {
  782. dev->se_sub_dev->se_dev_attrib.task_timeout = task_timeout;
  783. printk(KERN_INFO "dev[%p]: Set SE Device task_timeout: %u\n",
  784. dev, task_timeout);
  785. }
  786. return 0;
  787. }
  788. int se_dev_set_max_unmap_lba_count(
  789. struct se_device *dev,
  790. u32 max_unmap_lba_count)
  791. {
  792. dev->se_sub_dev->se_dev_attrib.max_unmap_lba_count = max_unmap_lba_count;
  793. printk(KERN_INFO "dev[%p]: Set max_unmap_lba_count: %u\n",
  794. dev, dev->se_sub_dev->se_dev_attrib.max_unmap_lba_count);
  795. return 0;
  796. }
  797. int se_dev_set_max_unmap_block_desc_count(
  798. struct se_device *dev,
  799. u32 max_unmap_block_desc_count)
  800. {
  801. dev->se_sub_dev->se_dev_attrib.max_unmap_block_desc_count =
  802. max_unmap_block_desc_count;
  803. printk(KERN_INFO "dev[%p]: Set max_unmap_block_desc_count: %u\n",
  804. dev, dev->se_sub_dev->se_dev_attrib.max_unmap_block_desc_count);
  805. return 0;
  806. }
  807. int se_dev_set_unmap_granularity(
  808. struct se_device *dev,
  809. u32 unmap_granularity)
  810. {
  811. dev->se_sub_dev->se_dev_attrib.unmap_granularity = unmap_granularity;
  812. printk(KERN_INFO "dev[%p]: Set unmap_granularity: %u\n",
  813. dev, dev->se_sub_dev->se_dev_attrib.unmap_granularity);
  814. return 0;
  815. }
  816. int se_dev_set_unmap_granularity_alignment(
  817. struct se_device *dev,
  818. u32 unmap_granularity_alignment)
  819. {
  820. dev->se_sub_dev->se_dev_attrib.unmap_granularity_alignment = unmap_granularity_alignment;
  821. printk(KERN_INFO "dev[%p]: Set unmap_granularity_alignment: %u\n",
  822. dev, dev->se_sub_dev->se_dev_attrib.unmap_granularity_alignment);
  823. return 0;
  824. }
  825. int se_dev_set_emulate_dpo(struct se_device *dev, int flag)
  826. {
  827. if ((flag != 0) && (flag != 1)) {
  828. printk(KERN_ERR "Illegal value %d\n", flag);
  829. return -EINVAL;
  830. }
  831. if (dev->transport->dpo_emulated == NULL) {
  832. printk(KERN_ERR "dev->transport->dpo_emulated is NULL\n");
  833. return -EINVAL;
  834. }
  835. if (dev->transport->dpo_emulated(dev) == 0) {
  836. printk(KERN_ERR "dev->transport->dpo_emulated not supported\n");
  837. return -EINVAL;
  838. }
  839. dev->se_sub_dev->se_dev_attrib.emulate_dpo = flag;
  840. printk(KERN_INFO "dev[%p]: SE Device Page Out (DPO) Emulation"
  841. " bit: %d\n", dev, dev->se_sub_dev->se_dev_attrib.emulate_dpo);
  842. return 0;
  843. }
  844. int se_dev_set_emulate_fua_write(struct se_device *dev, int flag)
  845. {
  846. if ((flag != 0) && (flag != 1)) {
  847. printk(KERN_ERR "Illegal value %d\n", flag);
  848. return -EINVAL;
  849. }
  850. if (dev->transport->fua_write_emulated == NULL) {
  851. printk(KERN_ERR "dev->transport->fua_write_emulated is NULL\n");
  852. return -EINVAL;
  853. }
  854. if (dev->transport->fua_write_emulated(dev) == 0) {
  855. printk(KERN_ERR "dev->transport->fua_write_emulated not supported\n");
  856. return -EINVAL;
  857. }
  858. dev->se_sub_dev->se_dev_attrib.emulate_fua_write = flag;
  859. printk(KERN_INFO "dev[%p]: SE Device Forced Unit Access WRITEs: %d\n",
  860. dev, dev->se_sub_dev->se_dev_attrib.emulate_fua_write);
  861. return 0;
  862. }
  863. int se_dev_set_emulate_fua_read(struct se_device *dev, int flag)
  864. {
  865. if ((flag != 0) && (flag != 1)) {
  866. printk(KERN_ERR "Illegal value %d\n", flag);
  867. return -EINVAL;
  868. }
  869. if (dev->transport->fua_read_emulated == NULL) {
  870. printk(KERN_ERR "dev->transport->fua_read_emulated is NULL\n");
  871. return -EINVAL;
  872. }
  873. if (dev->transport->fua_read_emulated(dev) == 0) {
  874. printk(KERN_ERR "dev->transport->fua_read_emulated not supported\n");
  875. return -EINVAL;
  876. }
  877. dev->se_sub_dev->se_dev_attrib.emulate_fua_read = flag;
  878. printk(KERN_INFO "dev[%p]: SE Device Forced Unit Access READs: %d\n",
  879. dev, dev->se_sub_dev->se_dev_attrib.emulate_fua_read);
  880. return 0;
  881. }
  882. int se_dev_set_emulate_write_cache(struct se_device *dev, int flag)
  883. {
  884. if ((flag != 0) && (flag != 1)) {
  885. printk(KERN_ERR "Illegal value %d\n", flag);
  886. return -EINVAL;
  887. }
  888. if (dev->transport->write_cache_emulated == NULL) {
  889. printk(KERN_ERR "dev->transport->write_cache_emulated is NULL\n");
  890. return -EINVAL;
  891. }
  892. if (dev->transport->write_cache_emulated(dev) == 0) {
  893. printk(KERN_ERR "dev->transport->write_cache_emulated not supported\n");
  894. return -EINVAL;
  895. }
  896. dev->se_sub_dev->se_dev_attrib.emulate_write_cache = flag;
  897. printk(KERN_INFO "dev[%p]: SE Device WRITE_CACHE_EMULATION flag: %d\n",
  898. dev, dev->se_sub_dev->se_dev_attrib.emulate_write_cache);
  899. return 0;
  900. }
  901. int se_dev_set_emulate_ua_intlck_ctrl(struct se_device *dev, int flag)
  902. {
  903. if ((flag != 0) && (flag != 1) && (flag != 2)) {
  904. printk(KERN_ERR "Illegal value %d\n", flag);
  905. return -EINVAL;
  906. }
  907. if (atomic_read(&dev->dev_export_obj.obj_access_count)) {
  908. printk(KERN_ERR "dev[%p]: Unable to change SE Device"
  909. " UA_INTRLCK_CTRL while dev_export_obj: %d count"
  910. " exists\n", dev,
  911. atomic_read(&dev->dev_export_obj.obj_access_count));
  912. return -EINVAL;
  913. }
  914. dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl = flag;
  915. printk(KERN_INFO "dev[%p]: SE Device UA_INTRLCK_CTRL flag: %d\n",
  916. dev, dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl);
  917. return 0;
  918. }
  919. int se_dev_set_emulate_tas(struct se_device *dev, int flag)
  920. {
  921. if ((flag != 0) && (flag != 1)) {
  922. printk(KERN_ERR "Illegal value %d\n", flag);
  923. return -EINVAL;
  924. }
  925. if (atomic_read(&dev->dev_export_obj.obj_access_count)) {
  926. printk(KERN_ERR "dev[%p]: Unable to change SE Device TAS while"
  927. " dev_export_obj: %d count exists\n", dev,
  928. atomic_read(&dev->dev_export_obj.obj_access_count));
  929. return -EINVAL;
  930. }
  931. dev->se_sub_dev->se_dev_attrib.emulate_tas = flag;
  932. printk(KERN_INFO "dev[%p]: SE Device TASK_ABORTED status bit: %s\n",
  933. dev, (dev->se_sub_dev->se_dev_attrib.emulate_tas) ? "Enabled" : "Disabled");
  934. return 0;
  935. }
  936. int se_dev_set_emulate_tpu(struct se_device *dev, int flag)
  937. {
  938. if ((flag != 0) && (flag != 1)) {
  939. printk(KERN_ERR "Illegal value %d\n", flag);
  940. return -EINVAL;
  941. }
  942. /*
  943. * We expect this value to be non-zero when generic Block Layer
  944. * Discard supported is detected iblock_create_virtdevice().
  945. */
  946. if (!(dev->se_sub_dev->se_dev_attrib.max_unmap_block_desc_count)) {
  947. printk(KERN_ERR "Generic Block Discard not supported\n");
  948. return -ENOSYS;
  949. }
  950. dev->se_sub_dev->se_dev_attrib.emulate_tpu = flag;
  951. printk(KERN_INFO "dev[%p]: SE Device Thin Provisioning UNMAP bit: %d\n",
  952. dev, flag);
  953. return 0;
  954. }
  955. int se_dev_set_emulate_tpws(struct se_device *dev, int flag)
  956. {
  957. if ((flag != 0) && (flag != 1)) {
  958. printk(KERN_ERR "Illegal value %d\n", flag);
  959. return -EINVAL;
  960. }
  961. /*
  962. * We expect this value to be non-zero when generic Block Layer
  963. * Discard supported is detected iblock_create_virtdevice().
  964. */
  965. if (!(dev->se_sub_dev->se_dev_attrib.max_unmap_block_desc_count)) {
  966. printk(KERN_ERR "Generic Block Discard not supported\n");
  967. return -ENOSYS;
  968. }
  969. dev->se_sub_dev->se_dev_attrib.emulate_tpws = flag;
  970. printk(KERN_INFO "dev[%p]: SE Device Thin Provisioning WRITE_SAME: %d\n",
  971. dev, flag);
  972. return 0;
  973. }
  974. int se_dev_set_enforce_pr_isids(struct se_device *dev, int flag)
  975. {
  976. if ((flag != 0) && (flag != 1)) {
  977. printk(KERN_ERR "Illegal value %d\n", flag);
  978. return -EINVAL;
  979. }
  980. dev->se_sub_dev->se_dev_attrib.enforce_pr_isids = flag;
  981. printk(KERN_INFO "dev[%p]: SE Device enforce_pr_isids bit: %s\n", dev,
  982. (dev->se_sub_dev->se_dev_attrib.enforce_pr_isids) ? "Enabled" : "Disabled");
  983. return 0;
  984. }
  985. /*
  986. * Note, this can only be called on unexported SE Device Object.
  987. */
  988. int se_dev_set_queue_depth(struct se_device *dev, u32 queue_depth)
  989. {
  990. u32 orig_queue_depth = dev->queue_depth;
  991. if (atomic_read(&dev->dev_export_obj.obj_access_count)) {
  992. printk(KERN_ERR "dev[%p]: Unable to change SE Device TCQ while"
  993. " dev_export_obj: %d count exists\n", dev,
  994. atomic_read(&dev->dev_export_obj.obj_access_count));
  995. return -EINVAL;
  996. }
  997. if (!(queue_depth)) {
  998. printk(KERN_ERR "dev[%p]: Illegal ZERO value for queue"
  999. "_depth\n", dev);
  1000. return -EINVAL;
  1001. }
  1002. if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
  1003. if (queue_depth > dev->se_sub_dev->se_dev_attrib.hw_queue_depth) {
  1004. printk(KERN_ERR "dev[%p]: Passed queue_depth: %u"
  1005. " exceeds TCM/SE_Device TCQ: %u\n",
  1006. dev, queue_depth,
  1007. dev->se_sub_dev->se_dev_attrib.hw_queue_depth);
  1008. return -EINVAL;
  1009. }
  1010. } else {
  1011. if (queue_depth > dev->se_sub_dev->se_dev_attrib.queue_depth) {
  1012. if (queue_depth > dev->se_sub_dev->se_dev_attrib.hw_queue_depth) {
  1013. printk(KERN_ERR "dev[%p]: Passed queue_depth:"
  1014. " %u exceeds TCM/SE_Device MAX"
  1015. " TCQ: %u\n", dev, queue_depth,
  1016. dev->se_sub_dev->se_dev_attrib.hw_queue_depth);
  1017. return -EINVAL;
  1018. }
  1019. }
  1020. }
  1021. dev->se_sub_dev->se_dev_attrib.queue_depth = dev->queue_depth = queue_depth;
  1022. if (queue_depth > orig_queue_depth)
  1023. atomic_add(queue_depth - orig_queue_depth, &dev->depth_left);
  1024. else if (queue_depth < orig_queue_depth)
  1025. atomic_sub(orig_queue_depth - queue_depth, &dev->depth_left);
  1026. printk(KERN_INFO "dev[%p]: SE Device TCQ Depth changed to: %u\n",
  1027. dev, queue_depth);
  1028. return 0;
  1029. }
  1030. int se_dev_set_max_sectors(struct se_device *dev, u32 max_sectors)
  1031. {
  1032. int force = 0; /* Force setting for VDEVS */
  1033. if (atomic_read(&dev->dev_export_obj.obj_access_count)) {
  1034. printk(KERN_ERR "dev[%p]: Unable to change SE Device"
  1035. " max_sectors while dev_export_obj: %d count exists\n",
  1036. dev, atomic_read(&dev->dev_export_obj.obj_access_count));
  1037. return -EINVAL;
  1038. }
  1039. if (!(max_sectors)) {
  1040. printk(KERN_ERR "dev[%p]: Illegal ZERO value for"
  1041. " max_sectors\n", dev);
  1042. return -EINVAL;
  1043. }
  1044. if (max_sectors < DA_STATUS_MAX_SECTORS_MIN) {
  1045. printk(KERN_ERR "dev[%p]: Passed max_sectors: %u less than"
  1046. " DA_STATUS_MAX_SECTORS_MIN: %u\n", dev, max_sectors,
  1047. DA_STATUS_MAX_SECTORS_MIN);
  1048. return -EINVAL;
  1049. }
  1050. if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
  1051. if (max_sectors > dev->se_sub_dev->se_dev_attrib.hw_max_sectors) {
  1052. printk(KERN_ERR "dev[%p]: Passed max_sectors: %u"
  1053. " greater than TCM/SE_Device max_sectors:"
  1054. " %u\n", dev, max_sectors,
  1055. dev->se_sub_dev->se_dev_attrib.hw_max_sectors);
  1056. return -EINVAL;
  1057. }
  1058. } else {
  1059. if (!(force) && (max_sectors >
  1060. dev->se_sub_dev->se_dev_attrib.hw_max_sectors)) {
  1061. printk(KERN_ERR "dev[%p]: Passed max_sectors: %u"
  1062. " greater than TCM/SE_Device max_sectors"
  1063. ": %u, use force=1 to override.\n", dev,
  1064. max_sectors, dev->se_sub_dev->se_dev_attrib.hw_max_sectors);
  1065. return -EINVAL;
  1066. }
  1067. if (max_sectors > DA_STATUS_MAX_SECTORS_MAX) {
  1068. printk(KERN_ERR "dev[%p]: Passed max_sectors: %u"
  1069. " greater than DA_STATUS_MAX_SECTORS_MAX:"
  1070. " %u\n", dev, max_sectors,
  1071. DA_STATUS_MAX_SECTORS_MAX);
  1072. return -EINVAL;
  1073. }
  1074. }
  1075. dev->se_sub_dev->se_dev_attrib.max_sectors = max_sectors;
  1076. printk("dev[%p]: SE Device max_sectors changed to %u\n",
  1077. dev, max_sectors);
  1078. return 0;
  1079. }
  1080. int se_dev_set_optimal_sectors(struct se_device *dev, u32 optimal_sectors)
  1081. {
  1082. if (atomic_read(&dev->dev_export_obj.obj_access_count)) {
  1083. printk(KERN_ERR "dev[%p]: Unable to change SE Device"
  1084. " optimal_sectors while dev_export_obj: %d count exists\n",
  1085. dev, atomic_read(&dev->dev_export_obj.obj_access_count));
  1086. return -EINVAL;
  1087. }
  1088. if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
  1089. printk(KERN_ERR "dev[%p]: Passed optimal_sectors cannot be"
  1090. " changed for TCM/pSCSI\n", dev);
  1091. return -EINVAL;
  1092. }
  1093. if (optimal_sectors > dev->se_sub_dev->se_dev_attrib.max_sectors) {
  1094. printk(KERN_ERR "dev[%p]: Passed optimal_sectors %u cannot be"
  1095. " greater than max_sectors: %u\n", dev,
  1096. optimal_sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
  1097. return -EINVAL;
  1098. }
  1099. dev->se_sub_dev->se_dev_attrib.optimal_sectors = optimal_sectors;
  1100. printk(KERN_INFO "dev[%p]: SE Device optimal_sectors changed to %u\n",
  1101. dev, optimal_sectors);
  1102. return 0;
  1103. }
  1104. int se_dev_set_block_size(struct se_device *dev, u32 block_size)
  1105. {
  1106. if (atomic_read(&dev->dev_export_obj.obj_access_count)) {
  1107. printk(KERN_ERR "dev[%p]: Unable to change SE Device block_size"
  1108. " while dev_export_obj: %d count exists\n", dev,
  1109. atomic_read(&dev->dev_export_obj.obj_access_count));
  1110. return -EINVAL;
  1111. }
  1112. if ((block_size != 512) &&
  1113. (block_size != 1024) &&
  1114. (block_size != 2048) &&
  1115. (block_size != 4096)) {
  1116. printk(KERN_ERR "dev[%p]: Illegal value for block_device: %u"
  1117. " for SE device, must be 512, 1024, 2048 or 4096\n",
  1118. dev, block_size);
  1119. return -EINVAL;
  1120. }
  1121. if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
  1122. printk(KERN_ERR "dev[%p]: Not allowed to change block_size for"
  1123. " Physical Device, use for Linux/SCSI to change"
  1124. " block_size for underlying hardware\n", dev);
  1125. return -EINVAL;
  1126. }
  1127. dev->se_sub_dev->se_dev_attrib.block_size = block_size;
  1128. printk(KERN_INFO "dev[%p]: SE Device block_size changed to %u\n",
  1129. dev, block_size);
  1130. return 0;
  1131. }
  1132. struct se_lun *core_dev_add_lun(
  1133. struct se_portal_group *tpg,
  1134. struct se_hba *hba,
  1135. struct se_device *dev,
  1136. u32 lun)
  1137. {
  1138. struct se_lun *lun_p;
  1139. u32 lun_access = 0;
  1140. if (atomic_read(&dev->dev_access_obj.obj_access_count) != 0) {
  1141. printk(KERN_ERR "Unable to export struct se_device while dev_access_obj: %d\n",
  1142. atomic_read(&dev->dev_access_obj.obj_access_count));
  1143. return NULL;
  1144. }
  1145. lun_p = core_tpg_pre_addlun(tpg, lun);
  1146. if ((IS_ERR(lun_p)) || !(lun_p))
  1147. return NULL;
  1148. if (dev->dev_flags & DF_READ_ONLY)
  1149. lun_access = TRANSPORT_LUNFLAGS_READ_ONLY;
  1150. else
  1151. lun_access = TRANSPORT_LUNFLAGS_READ_WRITE;
  1152. if (core_tpg_post_addlun(tpg, lun_p, lun_access, dev) < 0)
  1153. return NULL;
  1154. printk(KERN_INFO "%s_TPG[%u]_LUN[%u] - Activated %s Logical Unit from"
  1155. " CORE HBA: %u\n", tpg->se_tpg_tfo->get_fabric_name(),
  1156. tpg->se_tpg_tfo->tpg_get_tag(tpg), lun_p->unpacked_lun,
  1157. tpg->se_tpg_tfo->get_fabric_name(), hba->hba_id);
  1158. /*
  1159. * Update LUN maps for dynamically added initiators when
  1160. * generate_node_acl is enabled.
  1161. */
  1162. if (tpg->se_tpg_tfo->tpg_check_demo_mode(tpg)) {
  1163. struct se_node_acl *acl;
  1164. spin_lock_bh(&tpg->acl_node_lock);
  1165. list_for_each_entry(acl, &tpg->acl_node_list, acl_list) {
  1166. if (acl->dynamic_node_acl) {
  1167. spin_unlock_bh(&tpg->acl_node_lock);
  1168. core_tpg_add_node_to_devs(acl, tpg);
  1169. spin_lock_bh(&tpg->acl_node_lock);
  1170. }
  1171. }
  1172. spin_unlock_bh(&tpg->acl_node_lock);
  1173. }
  1174. return lun_p;
  1175. }
  1176. /* core_dev_del_lun():
  1177. *
  1178. *
  1179. */
  1180. int core_dev_del_lun(
  1181. struct se_portal_group *tpg,
  1182. u32 unpacked_lun)
  1183. {
  1184. struct se_lun *lun;
  1185. int ret = 0;
  1186. lun = core_tpg_pre_dellun(tpg, unpacked_lun, &ret);
  1187. if (!(lun))
  1188. return ret;
  1189. core_tpg_post_dellun(tpg, lun);
  1190. printk(KERN_INFO "%s_TPG[%u]_LUN[%u] - Deactivated %s Logical Unit from"
  1191. " device object\n", tpg->se_tpg_tfo->get_fabric_name(),
  1192. tpg->se_tpg_tfo->tpg_get_tag(tpg), unpacked_lun,
  1193. tpg->se_tpg_tfo->get_fabric_name());
  1194. return 0;
  1195. }
  1196. struct se_lun *core_get_lun_from_tpg(struct se_portal_group *tpg, u32 unpacked_lun)
  1197. {
  1198. struct se_lun *lun;
  1199. spin_lock(&tpg->tpg_lun_lock);
  1200. if (unpacked_lun > (TRANSPORT_MAX_LUNS_PER_TPG-1)) {
  1201. printk(KERN_ERR "%s LUN: %u exceeds TRANSPORT_MAX_LUNS"
  1202. "_PER_TPG-1: %u for Target Portal Group: %hu\n",
  1203. tpg->se_tpg_tfo->get_fabric_name(), unpacked_lun,
  1204. TRANSPORT_MAX_LUNS_PER_TPG-1,
  1205. tpg->se_tpg_tfo->tpg_get_tag(tpg));
  1206. spin_unlock(&tpg->tpg_lun_lock);
  1207. return NULL;
  1208. }
  1209. lun = &tpg->tpg_lun_list[unpacked_lun];
  1210. if (lun->lun_status != TRANSPORT_LUN_STATUS_FREE) {
  1211. printk(KERN_ERR "%s Logical Unit Number: %u is not free on"
  1212. " Target Portal Group: %hu, ignoring request.\n",
  1213. tpg->se_tpg_tfo->get_fabric_name(), unpacked_lun,
  1214. tpg->se_tpg_tfo->tpg_get_tag(tpg));
  1215. spin_unlock(&tpg->tpg_lun_lock);
  1216. return NULL;
  1217. }
  1218. spin_unlock(&tpg->tpg_lun_lock);
  1219. return lun;
  1220. }
  1221. /* core_dev_get_lun():
  1222. *
  1223. *
  1224. */
  1225. static struct se_lun *core_dev_get_lun(struct se_portal_group *tpg, u32 unpacked_lun)
  1226. {
  1227. struct se_lun *lun;
  1228. spin_lock(&tpg->tpg_lun_lock);
  1229. if (unpacked_lun > (TRANSPORT_MAX_LUNS_PER_TPG-1)) {
  1230. printk(KERN_ERR "%s LUN: %u exceeds TRANSPORT_MAX_LUNS_PER"
  1231. "_TPG-1: %u for Target Portal Group: %hu\n",
  1232. tpg->se_tpg_tfo->get_fabric_name(), unpacked_lun,
  1233. TRANSPORT_MAX_LUNS_PER_TPG-1,
  1234. tpg->se_tpg_tfo->tpg_get_tag(tpg));
  1235. spin_unlock(&tpg->tpg_lun_lock);
  1236. return NULL;
  1237. }
  1238. lun = &tpg->tpg_lun_list[unpacked_lun];
  1239. if (lun->lun_status != TRANSPORT_LUN_STATUS_ACTIVE) {
  1240. printk(KERN_ERR "%s Logical Unit Number: %u is not active on"
  1241. " Target Portal Group: %hu, ignoring request.\n",
  1242. tpg->se_tpg_tfo->get_fabric_name(), unpacked_lun,
  1243. tpg->se_tpg_tfo->tpg_get_tag(tpg));
  1244. spin_unlock(&tpg->tpg_lun_lock);
  1245. return NULL;
  1246. }
  1247. spin_unlock(&tpg->tpg_lun_lock);
  1248. return lun;
  1249. }
  1250. struct se_lun_acl *core_dev_init_initiator_node_lun_acl(
  1251. struct se_portal_group *tpg,
  1252. u32 mapped_lun,
  1253. char *initiatorname,
  1254. int *ret)
  1255. {
  1256. struct se_lun_acl *lacl;
  1257. struct se_node_acl *nacl;
  1258. if (strlen(initiatorname) >= TRANSPORT_IQN_LEN) {
  1259. printk(KERN_ERR "%s InitiatorName exceeds maximum size.\n",
  1260. tpg->se_tpg_tfo->get_fabric_name());
  1261. *ret = -EOVERFLOW;
  1262. return NULL;
  1263. }
  1264. nacl = core_tpg_get_initiator_node_acl(tpg, initiatorname);
  1265. if (!(nacl)) {
  1266. *ret = -EINVAL;
  1267. return NULL;
  1268. }
  1269. lacl = kzalloc(sizeof(struct se_lun_acl), GFP_KERNEL);
  1270. if (!(lacl)) {
  1271. printk(KERN_ERR "Unable to allocate memory for struct se_lun_acl.\n");
  1272. *ret = -ENOMEM;
  1273. return NULL;
  1274. }
  1275. INIT_LIST_HEAD(&lacl->lacl_list);
  1276. lacl->mapped_lun = mapped_lun;
  1277. lacl->se_lun_nacl = nacl;
  1278. snprintf(lacl->initiatorname, TRANSPORT_IQN_LEN, "%s", initiatorname);
  1279. return lacl;
  1280. }
  1281. int core_dev_add_initiator_node_lun_acl(
  1282. struct se_portal_group *tpg,
  1283. struct se_lun_acl *lacl,
  1284. u32 unpacked_lun,
  1285. u32 lun_access)
  1286. {
  1287. struct se_lun *lun;
  1288. struct se_node_acl *nacl;
  1289. lun = core_dev_get_lun(tpg, unpacked_lun);
  1290. if (!(lun)) {
  1291. printk(KERN_ERR "%s Logical Unit Number: %u is not active on"
  1292. " Target Portal Group: %hu, ignoring request.\n",
  1293. tpg->se_tpg_tfo->get_fabric_name(), unpacked_lun,
  1294. tpg->se_tpg_tfo->tpg_get_tag(tpg));
  1295. return -EINVAL;
  1296. }
  1297. nacl = lacl->se_lun_nacl;
  1298. if (!(nacl))
  1299. return -EINVAL;
  1300. if ((lun->lun_access & TRANSPORT_LUNFLAGS_READ_ONLY) &&
  1301. (lun_access & TRANSPORT_LUNFLAGS_READ_WRITE))
  1302. lun_access = TRANSPORT_LUNFLAGS_READ_ONLY;
  1303. lacl->se_lun = lun;
  1304. if (core_update_device_list_for_node(lun, lacl, lacl->mapped_lun,
  1305. lun_access, nacl, tpg, 1) < 0)
  1306. return -EINVAL;
  1307. spin_lock(&lun->lun_acl_lock);
  1308. list_add_tail(&lacl->lacl_list, &lun->lun_acl_list);
  1309. atomic_inc(&lun->lun_acl_count);
  1310. smp_mb__after_atomic_inc();
  1311. spin_unlock(&lun->lun_acl_lock);
  1312. printk(KERN_INFO "%s_TPG[%hu]_LUN[%u->%u] - Added %s ACL for "
  1313. " InitiatorNode: %s\n", tpg->se_tpg_tfo->get_fabric_name(),
  1314. tpg->se_tpg_tfo->tpg_get_tag(tpg), unpacked_lun, lacl->mapped_lun,
  1315. (lun_access & TRANSPORT_LUNFLAGS_READ_WRITE) ? "RW" : "RO",
  1316. lacl->initiatorname);
  1317. /*
  1318. * Check to see if there are any existing persistent reservation APTPL
  1319. * pre-registrations that need to be enabled for this LUN ACL..
  1320. */
  1321. core_scsi3_check_aptpl_registration(lun->lun_se_dev, tpg, lun, lacl);
  1322. return 0;
  1323. }
  1324. /* core_dev_del_initiator_node_lun_acl():
  1325. *
  1326. *
  1327. */
  1328. int core_dev_del_initiator_node_lun_acl(
  1329. struct se_portal_group *tpg,
  1330. struct se_lun *lun,
  1331. struct se_lun_acl *lacl)
  1332. {
  1333. struct se_node_acl *nacl;
  1334. nacl = lacl->se_lun_nacl;
  1335. if (!(nacl))
  1336. return -EINVAL;
  1337. spin_lock(&lun->lun_acl_lock);
  1338. list_del(&lacl->lacl_list);
  1339. atomic_dec(&lun->lun_acl_count);
  1340. smp_mb__after_atomic_dec();
  1341. spin_unlock(&lun->lun_acl_lock);
  1342. core_update_device_list_for_node(lun, NULL, lacl->mapped_lun,
  1343. TRANSPORT_LUNFLAGS_NO_ACCESS, nacl, tpg, 0);
  1344. lacl->se_lun = NULL;
  1345. printk(KERN_INFO "%s_TPG[%hu]_LUN[%u] - Removed ACL for"
  1346. " InitiatorNode: %s Mapped LUN: %u\n",
  1347. tpg->se_tpg_tfo->get_fabric_name(),
  1348. tpg->se_tpg_tfo->tpg_get_tag(tpg), lun->unpacked_lun,
  1349. lacl->initiatorname, lacl->mapped_lun);
  1350. return 0;
  1351. }
  1352. void core_dev_free_initiator_node_lun_acl(
  1353. struct se_portal_group *tpg,
  1354. struct se_lun_acl *lacl)
  1355. {
  1356. printk("%s_TPG[%hu] - Freeing ACL for %s InitiatorNode: %s"
  1357. " Mapped LUN: %u\n", tpg->se_tpg_tfo->get_fabric_name(),
  1358. tpg->se_tpg_tfo->tpg_get_tag(tpg),
  1359. tpg->se_tpg_tfo->get_fabric_name(),
  1360. lacl->initiatorname, lacl->mapped_lun);
  1361. kfree(lacl);
  1362. }
  1363. int core_dev_setup_virtual_lun0(void)
  1364. {
  1365. struct se_hba *hba;
  1366. struct se_device *dev;
  1367. struct se_subsystem_dev *se_dev = NULL;
  1368. struct se_subsystem_api *t;
  1369. char buf[16];
  1370. int ret;
  1371. hba = core_alloc_hba("rd_dr", 0, HBA_FLAGS_INTERNAL_USE);
  1372. if (IS_ERR(hba))
  1373. return PTR_ERR(hba);
  1374. lun0_hba = hba;
  1375. t = hba->transport;
  1376. se_dev = kzalloc(sizeof(struct se_subsystem_dev), GFP_KERNEL);
  1377. if (!(se_dev)) {
  1378. printk(KERN_ERR "Unable to allocate memory for"
  1379. " struct se_subsystem_dev\n");
  1380. ret = -ENOMEM;
  1381. goto out;
  1382. }
  1383. INIT_LIST_HEAD(&se_dev->se_dev_node);
  1384. INIT_LIST_HEAD(&se_dev->t10_wwn.t10_vpd_list);
  1385. spin_lock_init(&se_dev->t10_wwn.t10_vpd_lock);
  1386. INIT_LIST_HEAD(&se_dev->t10_pr.registration_list);
  1387. INIT_LIST_HEAD(&se_dev->t10_pr.aptpl_reg_list);
  1388. spin_lock_init(&se_dev->t10_pr.registration_lock);
  1389. spin_lock_init(&se_dev->t10_pr.aptpl_reg_lock);
  1390. INIT_LIST_HEAD(&se_dev->t10_alua.tg_pt_gps_list);
  1391. spin_lock_init(&se_dev->t10_alua.tg_pt_gps_lock);
  1392. spin_lock_init(&se_dev->se_dev_lock);
  1393. se_dev->t10_pr.pr_aptpl_buf_len = PR_APTPL_BUF_LEN;
  1394. se_dev->t10_wwn.t10_sub_dev = se_dev;
  1395. se_dev->t10_alua.t10_sub_dev = se_dev;
  1396. se_dev->se_dev_attrib.da_sub_dev = se_dev;
  1397. se_dev->se_dev_hba = hba;
  1398. se_dev->se_dev_su_ptr = t->allocate_virtdevice(hba, "virt_lun0");
  1399. if (!(se_dev->se_dev_su_ptr)) {
  1400. printk(KERN_ERR "Unable to locate subsystem dependent pointer"
  1401. " from allocate_virtdevice()\n");
  1402. ret = -ENOMEM;
  1403. goto out;
  1404. }
  1405. lun0_su_dev = se_dev;
  1406. memset(buf, 0, 16);
  1407. sprintf(buf, "rd_pages=8");
  1408. t->set_configfs_dev_params(hba, se_dev, buf, sizeof(buf));
  1409. dev = t->create_virtdevice(hba, se_dev, se_dev->se_dev_su_ptr);
  1410. if (IS_ERR(dev)) {
  1411. ret = PTR_ERR(dev);
  1412. goto out;
  1413. }
  1414. se_dev->se_dev_ptr = dev;
  1415. g_lun0_dev = dev;
  1416. return 0;
  1417. out:
  1418. lun0_su_dev = NULL;
  1419. kfree(se_dev);
  1420. if (lun0_hba) {
  1421. core_delete_hba(lun0_hba);
  1422. lun0_hba = NULL;
  1423. }
  1424. return ret;
  1425. }
  1426. void core_dev_release_virtual_lun0(void)
  1427. {
  1428. struct se_hba *hba = lun0_hba;
  1429. struct se_subsystem_dev *su_dev = lun0_su_dev;
  1430. if (!(hba))
  1431. return;
  1432. if (g_lun0_dev)
  1433. se_free_virtual_device(g_lun0_dev, hba);
  1434. kfree(su_dev);
  1435. core_delete_hba(hba);
  1436. }