t4_hw.c 110 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603
  1. /*
  2. * This file is part of the Chelsio T4 Ethernet driver for Linux.
  3. *
  4. * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
  5. *
  6. * This software is available to you under a choice of one of two
  7. * licenses. You may choose to be licensed under the terms of the GNU
  8. * General Public License (GPL) Version 2, available from the file
  9. * COPYING in the main directory of this source tree, or the
  10. * OpenIB.org BSD license below:
  11. *
  12. * Redistribution and use in source and binary forms, with or
  13. * without modification, are permitted provided that the following
  14. * conditions are met:
  15. *
  16. * - Redistributions of source code must retain the above
  17. * copyright notice, this list of conditions and the following
  18. * disclaimer.
  19. *
  20. * - Redistributions in binary form must reproduce the above
  21. * copyright notice, this list of conditions and the following
  22. * disclaimer in the documentation and/or other materials
  23. * provided with the distribution.
  24. *
  25. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32. * SOFTWARE.
  33. */
  34. #include <linux/init.h>
  35. #include <linux/delay.h>
  36. #include "cxgb4.h"
  37. #include "t4_regs.h"
  38. #include "t4fw_api.h"
  39. /**
  40. * t4_wait_op_done_val - wait until an operation is completed
  41. * @adapter: the adapter performing the operation
  42. * @reg: the register to check for completion
  43. * @mask: a single-bit field within @reg that indicates completion
  44. * @polarity: the value of the field when the operation is completed
  45. * @attempts: number of check iterations
  46. * @delay: delay in usecs between iterations
  47. * @valp: where to store the value of the register at completion time
  48. *
  49. * Wait until an operation is completed by checking a bit in a register
  50. * up to @attempts times. If @valp is not NULL the value of the register
  51. * at the time it indicated completion is stored there. Returns 0 if the
  52. * operation completes and -EAGAIN otherwise.
  53. */
  54. static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  55. int polarity, int attempts, int delay, u32 *valp)
  56. {
  57. while (1) {
  58. u32 val = t4_read_reg(adapter, reg);
  59. if (!!(val & mask) == polarity) {
  60. if (valp)
  61. *valp = val;
  62. return 0;
  63. }
  64. if (--attempts == 0)
  65. return -EAGAIN;
  66. if (delay)
  67. udelay(delay);
  68. }
  69. }
  70. static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
  71. int polarity, int attempts, int delay)
  72. {
  73. return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
  74. delay, NULL);
  75. }
  76. /**
  77. * t4_set_reg_field - set a register field to a value
  78. * @adapter: the adapter to program
  79. * @addr: the register address
  80. * @mask: specifies the portion of the register to modify
  81. * @val: the new value for the register field
  82. *
  83. * Sets a register field specified by the supplied mask to the
  84. * given value.
  85. */
  86. void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  87. u32 val)
  88. {
  89. u32 v = t4_read_reg(adapter, addr) & ~mask;
  90. t4_write_reg(adapter, addr, v | val);
  91. (void) t4_read_reg(adapter, addr); /* flush */
  92. }
  93. /**
  94. * t4_read_indirect - read indirectly addressed registers
  95. * @adap: the adapter
  96. * @addr_reg: register holding the indirect address
  97. * @data_reg: register holding the value of the indirect register
  98. * @vals: where the read register values are stored
  99. * @nregs: how many indirect registers to read
  100. * @start_idx: index of first indirect register to read
  101. *
  102. * Reads registers that are accessed indirectly through an address/data
  103. * register pair.
  104. */
  105. static void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
  106. unsigned int data_reg, u32 *vals,
  107. unsigned int nregs, unsigned int start_idx)
  108. {
  109. while (nregs--) {
  110. t4_write_reg(adap, addr_reg, start_idx);
  111. *vals++ = t4_read_reg(adap, data_reg);
  112. start_idx++;
  113. }
  114. }
  115. /**
  116. * t4_write_indirect - write indirectly addressed registers
  117. * @adap: the adapter
  118. * @addr_reg: register holding the indirect addresses
  119. * @data_reg: register holding the value for the indirect registers
  120. * @vals: values to write
  121. * @nregs: how many indirect registers to write
  122. * @start_idx: address of first indirect register to write
  123. *
  124. * Writes a sequential block of registers that are accessed indirectly
  125. * through an address/data register pair.
  126. */
  127. void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
  128. unsigned int data_reg, const u32 *vals,
  129. unsigned int nregs, unsigned int start_idx)
  130. {
  131. while (nregs--) {
  132. t4_write_reg(adap, addr_reg, start_idx++);
  133. t4_write_reg(adap, data_reg, *vals++);
  134. }
  135. }
  136. /*
  137. * Get the reply to a mailbox command and store it in @rpl in big-endian order.
  138. */
  139. static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
  140. u32 mbox_addr)
  141. {
  142. for ( ; nflit; nflit--, mbox_addr += 8)
  143. *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
  144. }
  145. /*
  146. * Handle a FW assertion reported in a mailbox.
  147. */
  148. static void fw_asrt(struct adapter *adap, u32 mbox_addr)
  149. {
  150. struct fw_debug_cmd asrt;
  151. get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
  152. dev_alert(adap->pdev_dev,
  153. "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
  154. asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line),
  155. ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y));
  156. }
  157. static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
  158. {
  159. dev_err(adap->pdev_dev,
  160. "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
  161. (unsigned long long)t4_read_reg64(adap, data_reg),
  162. (unsigned long long)t4_read_reg64(adap, data_reg + 8),
  163. (unsigned long long)t4_read_reg64(adap, data_reg + 16),
  164. (unsigned long long)t4_read_reg64(adap, data_reg + 24),
  165. (unsigned long long)t4_read_reg64(adap, data_reg + 32),
  166. (unsigned long long)t4_read_reg64(adap, data_reg + 40),
  167. (unsigned long long)t4_read_reg64(adap, data_reg + 48),
  168. (unsigned long long)t4_read_reg64(adap, data_reg + 56));
  169. }
  170. /**
  171. * t4_wr_mbox_meat - send a command to FW through the given mailbox
  172. * @adap: the adapter
  173. * @mbox: index of the mailbox to use
  174. * @cmd: the command to write
  175. * @size: command length in bytes
  176. * @rpl: where to optionally store the reply
  177. * @sleep_ok: if true we may sleep while awaiting command completion
  178. *
  179. * Sends the given command to FW through the selected mailbox and waits
  180. * for the FW to execute the command. If @rpl is not %NULL it is used to
  181. * store the FW's reply to the command. The command and its optional
  182. * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
  183. * to respond. @sleep_ok determines whether we may sleep while awaiting
  184. * the response. If sleeping is allowed we use progressive backoff
  185. * otherwise we spin.
  186. *
  187. * The return value is 0 on success or a negative errno on failure. A
  188. * failure can happen either because we are not able to execute the
  189. * command or FW executes it but signals an error. In the latter case
  190. * the return value is the error code indicated by FW (negated).
  191. */
  192. int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
  193. void *rpl, bool sleep_ok)
  194. {
  195. static const int delay[] = {
  196. 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
  197. };
  198. u32 v;
  199. u64 res;
  200. int i, ms, delay_idx;
  201. const __be64 *p = cmd;
  202. u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA);
  203. u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL);
  204. if ((size & 15) || size > MBOX_LEN)
  205. return -EINVAL;
  206. /*
  207. * If the device is off-line, as in EEH, commands will time out.
  208. * Fail them early so we don't waste time waiting.
  209. */
  210. if (adap->pdev->error_state != pci_channel_io_normal)
  211. return -EIO;
  212. v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
  213. for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
  214. v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
  215. if (v != MBOX_OWNER_DRV)
  216. return v ? -EBUSY : -ETIMEDOUT;
  217. for (i = 0; i < size; i += 8)
  218. t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
  219. t4_write_reg(adap, ctl_reg, MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
  220. t4_read_reg(adap, ctl_reg); /* flush write */
  221. delay_idx = 0;
  222. ms = delay[0];
  223. for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
  224. if (sleep_ok) {
  225. ms = delay[delay_idx]; /* last element may repeat */
  226. if (delay_idx < ARRAY_SIZE(delay) - 1)
  227. delay_idx++;
  228. msleep(ms);
  229. } else
  230. mdelay(ms);
  231. v = t4_read_reg(adap, ctl_reg);
  232. if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
  233. if (!(v & MBMSGVALID)) {
  234. t4_write_reg(adap, ctl_reg, 0);
  235. continue;
  236. }
  237. res = t4_read_reg64(adap, data_reg);
  238. if (FW_CMD_OP_GET(res >> 32) == FW_DEBUG_CMD) {
  239. fw_asrt(adap, data_reg);
  240. res = FW_CMD_RETVAL(EIO);
  241. } else if (rpl)
  242. get_mbox_rpl(adap, rpl, size / 8, data_reg);
  243. if (FW_CMD_RETVAL_GET((int)res))
  244. dump_mbox(adap, mbox, data_reg);
  245. t4_write_reg(adap, ctl_reg, 0);
  246. return -FW_CMD_RETVAL_GET((int)res);
  247. }
  248. }
  249. dump_mbox(adap, mbox, data_reg);
  250. dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
  251. *(const u8 *)cmd, mbox);
  252. return -ETIMEDOUT;
  253. }
  254. /**
  255. * t4_mc_read - read from MC through backdoor accesses
  256. * @adap: the adapter
  257. * @addr: address of first byte requested
  258. * @data: 64 bytes of data containing the requested address
  259. * @ecc: where to store the corresponding 64-bit ECC word
  260. *
  261. * Read 64 bytes of data from MC starting at a 64-byte-aligned address
  262. * that covers the requested address @addr. If @parity is not %NULL it
  263. * is assigned the 64-bit ECC word for the read data.
  264. */
  265. int t4_mc_read(struct adapter *adap, u32 addr, __be32 *data, u64 *ecc)
  266. {
  267. int i;
  268. if (t4_read_reg(adap, MC_BIST_CMD) & START_BIST)
  269. return -EBUSY;
  270. t4_write_reg(adap, MC_BIST_CMD_ADDR, addr & ~0x3fU);
  271. t4_write_reg(adap, MC_BIST_CMD_LEN, 64);
  272. t4_write_reg(adap, MC_BIST_DATA_PATTERN, 0xc);
  273. t4_write_reg(adap, MC_BIST_CMD, BIST_OPCODE(1) | START_BIST |
  274. BIST_CMD_GAP(1));
  275. i = t4_wait_op_done(adap, MC_BIST_CMD, START_BIST, 0, 10, 1);
  276. if (i)
  277. return i;
  278. #define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA, i)
  279. for (i = 15; i >= 0; i--)
  280. *data++ = htonl(t4_read_reg(adap, MC_DATA(i)));
  281. if (ecc)
  282. *ecc = t4_read_reg64(adap, MC_DATA(16));
  283. #undef MC_DATA
  284. return 0;
  285. }
  286. /**
  287. * t4_edc_read - read from EDC through backdoor accesses
  288. * @adap: the adapter
  289. * @idx: which EDC to access
  290. * @addr: address of first byte requested
  291. * @data: 64 bytes of data containing the requested address
  292. * @ecc: where to store the corresponding 64-bit ECC word
  293. *
  294. * Read 64 bytes of data from EDC starting at a 64-byte-aligned address
  295. * that covers the requested address @addr. If @parity is not %NULL it
  296. * is assigned the 64-bit ECC word for the read data.
  297. */
  298. int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
  299. {
  300. int i;
  301. idx *= EDC_STRIDE;
  302. if (t4_read_reg(adap, EDC_BIST_CMD + idx) & START_BIST)
  303. return -EBUSY;
  304. t4_write_reg(adap, EDC_BIST_CMD_ADDR + idx, addr & ~0x3fU);
  305. t4_write_reg(adap, EDC_BIST_CMD_LEN + idx, 64);
  306. t4_write_reg(adap, EDC_BIST_DATA_PATTERN + idx, 0xc);
  307. t4_write_reg(adap, EDC_BIST_CMD + idx,
  308. BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST);
  309. i = t4_wait_op_done(adap, EDC_BIST_CMD + idx, START_BIST, 0, 10, 1);
  310. if (i)
  311. return i;
  312. #define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA, i) + idx)
  313. for (i = 15; i >= 0; i--)
  314. *data++ = htonl(t4_read_reg(adap, EDC_DATA(i)));
  315. if (ecc)
  316. *ecc = t4_read_reg64(adap, EDC_DATA(16));
  317. #undef EDC_DATA
  318. return 0;
  319. }
  320. /*
  321. * t4_mem_win_rw - read/write memory through PCIE memory window
  322. * @adap: the adapter
  323. * @addr: address of first byte requested
  324. * @data: MEMWIN0_APERTURE bytes of data containing the requested address
  325. * @dir: direction of transfer 1 => read, 0 => write
  326. *
  327. * Read/write MEMWIN0_APERTURE bytes of data from MC starting at a
  328. * MEMWIN0_APERTURE-byte-aligned address that covers the requested
  329. * address @addr.
  330. */
  331. static int t4_mem_win_rw(struct adapter *adap, u32 addr, __be32 *data, int dir)
  332. {
  333. int i;
  334. /*
  335. * Setup offset into PCIE memory window. Address must be a
  336. * MEMWIN0_APERTURE-byte-aligned address. (Read back MA register to
  337. * ensure that changes propagate before we attempt to use the new
  338. * values.)
  339. */
  340. t4_write_reg(adap, PCIE_MEM_ACCESS_OFFSET,
  341. addr & ~(MEMWIN0_APERTURE - 1));
  342. t4_read_reg(adap, PCIE_MEM_ACCESS_OFFSET);
  343. /* Collecting data 4 bytes at a time upto MEMWIN0_APERTURE */
  344. for (i = 0; i < MEMWIN0_APERTURE; i = i+0x4) {
  345. if (dir)
  346. *data++ = t4_read_reg(adap, (MEMWIN0_BASE + i));
  347. else
  348. t4_write_reg(adap, (MEMWIN0_BASE + i), *data++);
  349. }
  350. return 0;
  351. }
  352. /**
  353. * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
  354. * @adap: the adapter
  355. * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
  356. * @addr: address within indicated memory type
  357. * @len: amount of memory to transfer
  358. * @buf: host memory buffer
  359. * @dir: direction of transfer 1 => read, 0 => write
  360. *
  361. * Reads/writes an [almost] arbitrary memory region in the firmware: the
  362. * firmware memory address, length and host buffer must be aligned on
  363. * 32-bit boudaries. The memory is transferred as a raw byte sequence
  364. * from/to the firmware's memory. If this memory contains data
  365. * structures which contain multi-byte integers, it's the callers
  366. * responsibility to perform appropriate byte order conversions.
  367. */
  368. static int t4_memory_rw(struct adapter *adap, int mtype, u32 addr, u32 len,
  369. __be32 *buf, int dir)
  370. {
  371. u32 pos, start, end, offset, memoffset;
  372. int ret = 0;
  373. __be32 *data;
  374. /*
  375. * Argument sanity checks ...
  376. */
  377. if ((addr & 0x3) || (len & 0x3))
  378. return -EINVAL;
  379. data = vmalloc(MEMWIN0_APERTURE);
  380. if (!data)
  381. return -ENOMEM;
  382. /*
  383. * Offset into the region of memory which is being accessed
  384. * MEM_EDC0 = 0
  385. * MEM_EDC1 = 1
  386. * MEM_MC = 2
  387. */
  388. memoffset = (mtype * (5 * 1024 * 1024));
  389. /* Determine the PCIE_MEM_ACCESS_OFFSET */
  390. addr = addr + memoffset;
  391. /*
  392. * The underlaying EDC/MC read routines read MEMWIN0_APERTURE bytes
  393. * at a time so we need to round down the start and round up the end.
  394. * We'll start copying out of the first line at (addr - start) a word
  395. * at a time.
  396. */
  397. start = addr & ~(MEMWIN0_APERTURE-1);
  398. end = (addr + len + MEMWIN0_APERTURE-1) & ~(MEMWIN0_APERTURE-1);
  399. offset = (addr - start)/sizeof(__be32);
  400. for (pos = start; pos < end; pos += MEMWIN0_APERTURE, offset = 0) {
  401. /*
  402. * If we're writing, copy the data from the caller's memory
  403. * buffer
  404. */
  405. if (!dir) {
  406. /*
  407. * If we're doing a partial write, then we need to do
  408. * a read-modify-write ...
  409. */
  410. if (offset || len < MEMWIN0_APERTURE) {
  411. ret = t4_mem_win_rw(adap, pos, data, 1);
  412. if (ret)
  413. break;
  414. }
  415. while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) &&
  416. len > 0) {
  417. data[offset++] = *buf++;
  418. len -= sizeof(__be32);
  419. }
  420. }
  421. /*
  422. * Transfer a block of memory and bail if there's an error.
  423. */
  424. ret = t4_mem_win_rw(adap, pos, data, dir);
  425. if (ret)
  426. break;
  427. /*
  428. * If we're reading, copy the data into the caller's memory
  429. * buffer.
  430. */
  431. if (dir)
  432. while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) &&
  433. len > 0) {
  434. *buf++ = data[offset++];
  435. len -= sizeof(__be32);
  436. }
  437. }
  438. vfree(data);
  439. return ret;
  440. }
  441. int t4_memory_write(struct adapter *adap, int mtype, u32 addr, u32 len,
  442. __be32 *buf)
  443. {
  444. return t4_memory_rw(adap, mtype, addr, len, buf, 0);
  445. }
  446. #define EEPROM_STAT_ADDR 0x7bfc
  447. #define VPD_BASE 0
  448. #define VPD_LEN 512
  449. /**
  450. * t4_seeprom_wp - enable/disable EEPROM write protection
  451. * @adapter: the adapter
  452. * @enable: whether to enable or disable write protection
  453. *
  454. * Enables or disables write protection on the serial EEPROM.
  455. */
  456. int t4_seeprom_wp(struct adapter *adapter, bool enable)
  457. {
  458. unsigned int v = enable ? 0xc : 0;
  459. int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
  460. return ret < 0 ? ret : 0;
  461. }
  462. /**
  463. * get_vpd_params - read VPD parameters from VPD EEPROM
  464. * @adapter: adapter to read
  465. * @p: where to store the parameters
  466. *
  467. * Reads card parameters stored in VPD EEPROM.
  468. */
  469. int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
  470. {
  471. u32 cclk_param, cclk_val;
  472. int i, ret;
  473. int ec, sn;
  474. u8 *vpd, csum;
  475. unsigned int vpdr_len, kw_offset, id_len;
  476. vpd = vmalloc(VPD_LEN);
  477. if (!vpd)
  478. return -ENOMEM;
  479. ret = pci_read_vpd(adapter->pdev, VPD_BASE, VPD_LEN, vpd);
  480. if (ret < 0)
  481. goto out;
  482. if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
  483. dev_err(adapter->pdev_dev, "missing VPD ID string\n");
  484. ret = -EINVAL;
  485. goto out;
  486. }
  487. id_len = pci_vpd_lrdt_size(vpd);
  488. if (id_len > ID_LEN)
  489. id_len = ID_LEN;
  490. i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
  491. if (i < 0) {
  492. dev_err(adapter->pdev_dev, "missing VPD-R section\n");
  493. ret = -EINVAL;
  494. goto out;
  495. }
  496. vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
  497. kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
  498. if (vpdr_len + kw_offset > VPD_LEN) {
  499. dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
  500. ret = -EINVAL;
  501. goto out;
  502. }
  503. #define FIND_VPD_KW(var, name) do { \
  504. var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
  505. if (var < 0) { \
  506. dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
  507. ret = -EINVAL; \
  508. goto out; \
  509. } \
  510. var += PCI_VPD_INFO_FLD_HDR_SIZE; \
  511. } while (0)
  512. FIND_VPD_KW(i, "RV");
  513. for (csum = 0; i >= 0; i--)
  514. csum += vpd[i];
  515. if (csum) {
  516. dev_err(adapter->pdev_dev,
  517. "corrupted VPD EEPROM, actual csum %u\n", csum);
  518. ret = -EINVAL;
  519. goto out;
  520. }
  521. FIND_VPD_KW(ec, "EC");
  522. FIND_VPD_KW(sn, "SN");
  523. #undef FIND_VPD_KW
  524. memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
  525. strim(p->id);
  526. memcpy(p->ec, vpd + ec, EC_LEN);
  527. strim(p->ec);
  528. i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
  529. memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
  530. strim(p->sn);
  531. /*
  532. * Ask firmware for the Core Clock since it knows how to translate the
  533. * Reference Clock ('V2') VPD field into a Core Clock value ...
  534. */
  535. cclk_param = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
  536. FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
  537. ret = t4_query_params(adapter, adapter->mbox, 0, 0,
  538. 1, &cclk_param, &cclk_val);
  539. out:
  540. vfree(vpd);
  541. if (ret)
  542. return ret;
  543. p->cclk = cclk_val;
  544. return 0;
  545. }
  546. /* serial flash and firmware constants */
  547. enum {
  548. SF_ATTEMPTS = 10, /* max retries for SF operations */
  549. /* flash command opcodes */
  550. SF_PROG_PAGE = 2, /* program page */
  551. SF_WR_DISABLE = 4, /* disable writes */
  552. SF_RD_STATUS = 5, /* read status register */
  553. SF_WR_ENABLE = 6, /* enable writes */
  554. SF_RD_DATA_FAST = 0xb, /* read flash */
  555. SF_RD_ID = 0x9f, /* read ID */
  556. SF_ERASE_SECTOR = 0xd8, /* erase sector */
  557. FW_MAX_SIZE = 512 * 1024,
  558. };
  559. /**
  560. * sf1_read - read data from the serial flash
  561. * @adapter: the adapter
  562. * @byte_cnt: number of bytes to read
  563. * @cont: whether another operation will be chained
  564. * @lock: whether to lock SF for PL access only
  565. * @valp: where to store the read data
  566. *
  567. * Reads up to 4 bytes of data from the serial flash. The location of
  568. * the read needs to be specified prior to calling this by issuing the
  569. * appropriate commands to the serial flash.
  570. */
  571. static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
  572. int lock, u32 *valp)
  573. {
  574. int ret;
  575. if (!byte_cnt || byte_cnt > 4)
  576. return -EINVAL;
  577. if (t4_read_reg(adapter, SF_OP) & BUSY)
  578. return -EBUSY;
  579. cont = cont ? SF_CONT : 0;
  580. lock = lock ? SF_LOCK : 0;
  581. t4_write_reg(adapter, SF_OP, lock | cont | BYTECNT(byte_cnt - 1));
  582. ret = t4_wait_op_done(adapter, SF_OP, BUSY, 0, SF_ATTEMPTS, 5);
  583. if (!ret)
  584. *valp = t4_read_reg(adapter, SF_DATA);
  585. return ret;
  586. }
  587. /**
  588. * sf1_write - write data to the serial flash
  589. * @adapter: the adapter
  590. * @byte_cnt: number of bytes to write
  591. * @cont: whether another operation will be chained
  592. * @lock: whether to lock SF for PL access only
  593. * @val: value to write
  594. *
  595. * Writes up to 4 bytes of data to the serial flash. The location of
  596. * the write needs to be specified prior to calling this by issuing the
  597. * appropriate commands to the serial flash.
  598. */
  599. static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
  600. int lock, u32 val)
  601. {
  602. if (!byte_cnt || byte_cnt > 4)
  603. return -EINVAL;
  604. if (t4_read_reg(adapter, SF_OP) & BUSY)
  605. return -EBUSY;
  606. cont = cont ? SF_CONT : 0;
  607. lock = lock ? SF_LOCK : 0;
  608. t4_write_reg(adapter, SF_DATA, val);
  609. t4_write_reg(adapter, SF_OP, lock |
  610. cont | BYTECNT(byte_cnt - 1) | OP_WR);
  611. return t4_wait_op_done(adapter, SF_OP, BUSY, 0, SF_ATTEMPTS, 5);
  612. }
  613. /**
  614. * flash_wait_op - wait for a flash operation to complete
  615. * @adapter: the adapter
  616. * @attempts: max number of polls of the status register
  617. * @delay: delay between polls in ms
  618. *
  619. * Wait for a flash operation to complete by polling the status register.
  620. */
  621. static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
  622. {
  623. int ret;
  624. u32 status;
  625. while (1) {
  626. if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
  627. (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
  628. return ret;
  629. if (!(status & 1))
  630. return 0;
  631. if (--attempts == 0)
  632. return -EAGAIN;
  633. if (delay)
  634. msleep(delay);
  635. }
  636. }
  637. /**
  638. * t4_read_flash - read words from serial flash
  639. * @adapter: the adapter
  640. * @addr: the start address for the read
  641. * @nwords: how many 32-bit words to read
  642. * @data: where to store the read data
  643. * @byte_oriented: whether to store data as bytes or as words
  644. *
  645. * Read the specified number of 32-bit words from the serial flash.
  646. * If @byte_oriented is set the read data is stored as a byte array
  647. * (i.e., big-endian), otherwise as 32-bit words in the platform's
  648. * natural endianess.
  649. */
  650. static int t4_read_flash(struct adapter *adapter, unsigned int addr,
  651. unsigned int nwords, u32 *data, int byte_oriented)
  652. {
  653. int ret;
  654. if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
  655. return -EINVAL;
  656. addr = swab32(addr) | SF_RD_DATA_FAST;
  657. if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
  658. (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
  659. return ret;
  660. for ( ; nwords; nwords--, data++) {
  661. ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
  662. if (nwords == 1)
  663. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  664. if (ret)
  665. return ret;
  666. if (byte_oriented)
  667. *data = htonl(*data);
  668. }
  669. return 0;
  670. }
  671. /**
  672. * t4_write_flash - write up to a page of data to the serial flash
  673. * @adapter: the adapter
  674. * @addr: the start address to write
  675. * @n: length of data to write in bytes
  676. * @data: the data to write
  677. *
  678. * Writes up to a page of data (256 bytes) to the serial flash starting
  679. * at the given address. All the data must be written to the same page.
  680. */
  681. static int t4_write_flash(struct adapter *adapter, unsigned int addr,
  682. unsigned int n, const u8 *data)
  683. {
  684. int ret;
  685. u32 buf[64];
  686. unsigned int i, c, left, val, offset = addr & 0xff;
  687. if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
  688. return -EINVAL;
  689. val = swab32(addr) | SF_PROG_PAGE;
  690. if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
  691. (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
  692. goto unlock;
  693. for (left = n; left; left -= c) {
  694. c = min(left, 4U);
  695. for (val = 0, i = 0; i < c; ++i)
  696. val = (val << 8) + *data++;
  697. ret = sf1_write(adapter, c, c != left, 1, val);
  698. if (ret)
  699. goto unlock;
  700. }
  701. ret = flash_wait_op(adapter, 8, 1);
  702. if (ret)
  703. goto unlock;
  704. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  705. /* Read the page to verify the write succeeded */
  706. ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
  707. if (ret)
  708. return ret;
  709. if (memcmp(data - n, (u8 *)buf + offset, n)) {
  710. dev_err(adapter->pdev_dev,
  711. "failed to correctly write the flash page at %#x\n",
  712. addr);
  713. return -EIO;
  714. }
  715. return 0;
  716. unlock:
  717. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  718. return ret;
  719. }
  720. /**
  721. * get_fw_version - read the firmware version
  722. * @adapter: the adapter
  723. * @vers: where to place the version
  724. *
  725. * Reads the FW version from flash.
  726. */
  727. static int get_fw_version(struct adapter *adapter, u32 *vers)
  728. {
  729. return t4_read_flash(adapter, adapter->params.sf_fw_start +
  730. offsetof(struct fw_hdr, fw_ver), 1, vers, 0);
  731. }
  732. /**
  733. * get_tp_version - read the TP microcode version
  734. * @adapter: the adapter
  735. * @vers: where to place the version
  736. *
  737. * Reads the TP microcode version from flash.
  738. */
  739. static int get_tp_version(struct adapter *adapter, u32 *vers)
  740. {
  741. return t4_read_flash(adapter, adapter->params.sf_fw_start +
  742. offsetof(struct fw_hdr, tp_microcode_ver),
  743. 1, vers, 0);
  744. }
  745. /**
  746. * t4_check_fw_version - check if the FW is compatible with this driver
  747. * @adapter: the adapter
  748. *
  749. * Checks if an adapter's FW is compatible with the driver. Returns 0
  750. * if there's exact match, a negative error if the version could not be
  751. * read or there's a major version mismatch, and a positive value if the
  752. * expected major version is found but there's a minor version mismatch.
  753. */
  754. int t4_check_fw_version(struct adapter *adapter)
  755. {
  756. u32 api_vers[2];
  757. int ret, major, minor, micro;
  758. ret = get_fw_version(adapter, &adapter->params.fw_vers);
  759. if (!ret)
  760. ret = get_tp_version(adapter, &adapter->params.tp_vers);
  761. if (!ret)
  762. ret = t4_read_flash(adapter, adapter->params.sf_fw_start +
  763. offsetof(struct fw_hdr, intfver_nic),
  764. 2, api_vers, 1);
  765. if (ret)
  766. return ret;
  767. major = FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers);
  768. minor = FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers);
  769. micro = FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers);
  770. memcpy(adapter->params.api_vers, api_vers,
  771. sizeof(adapter->params.api_vers));
  772. if (major != FW_VERSION_MAJOR) { /* major mismatch - fail */
  773. dev_err(adapter->pdev_dev,
  774. "card FW has major version %u, driver wants %u\n",
  775. major, FW_VERSION_MAJOR);
  776. return -EINVAL;
  777. }
  778. if (minor == FW_VERSION_MINOR && micro == FW_VERSION_MICRO)
  779. return 0; /* perfect match */
  780. /* Minor/micro version mismatch. Report it but often it's OK. */
  781. return 1;
  782. }
  783. /**
  784. * t4_flash_erase_sectors - erase a range of flash sectors
  785. * @adapter: the adapter
  786. * @start: the first sector to erase
  787. * @end: the last sector to erase
  788. *
  789. * Erases the sectors in the given inclusive range.
  790. */
  791. static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
  792. {
  793. int ret = 0;
  794. while (start <= end) {
  795. if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
  796. (ret = sf1_write(adapter, 4, 0, 1,
  797. SF_ERASE_SECTOR | (start << 8))) != 0 ||
  798. (ret = flash_wait_op(adapter, 14, 500)) != 0) {
  799. dev_err(adapter->pdev_dev,
  800. "erase of flash sector %d failed, error %d\n",
  801. start, ret);
  802. break;
  803. }
  804. start++;
  805. }
  806. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  807. return ret;
  808. }
  809. /**
  810. * t4_flash_cfg_addr - return the address of the flash configuration file
  811. * @adapter: the adapter
  812. *
  813. * Return the address within the flash where the Firmware Configuration
  814. * File is stored.
  815. */
  816. unsigned int t4_flash_cfg_addr(struct adapter *adapter)
  817. {
  818. if (adapter->params.sf_size == 0x100000)
  819. return FLASH_FPGA_CFG_START;
  820. else
  821. return FLASH_CFG_START;
  822. }
  823. /**
  824. * t4_load_cfg - download config file
  825. * @adap: the adapter
  826. * @cfg_data: the cfg text file to write
  827. * @size: text file size
  828. *
  829. * Write the supplied config text file to the card's serial flash.
  830. */
  831. int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
  832. {
  833. int ret, i, n;
  834. unsigned int addr;
  835. unsigned int flash_cfg_start_sec;
  836. unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
  837. addr = t4_flash_cfg_addr(adap);
  838. flash_cfg_start_sec = addr / SF_SEC_SIZE;
  839. if (size > FLASH_CFG_MAX_SIZE) {
  840. dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
  841. FLASH_CFG_MAX_SIZE);
  842. return -EFBIG;
  843. }
  844. i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */
  845. sf_sec_size);
  846. ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
  847. flash_cfg_start_sec + i - 1);
  848. /*
  849. * If size == 0 then we're simply erasing the FLASH sectors associated
  850. * with the on-adapter Firmware Configuration File.
  851. */
  852. if (ret || size == 0)
  853. goto out;
  854. /* this will write to the flash up to SF_PAGE_SIZE at a time */
  855. for (i = 0; i < size; i += SF_PAGE_SIZE) {
  856. if ((size - i) < SF_PAGE_SIZE)
  857. n = size - i;
  858. else
  859. n = SF_PAGE_SIZE;
  860. ret = t4_write_flash(adap, addr, n, cfg_data);
  861. if (ret)
  862. goto out;
  863. addr += SF_PAGE_SIZE;
  864. cfg_data += SF_PAGE_SIZE;
  865. }
  866. out:
  867. if (ret)
  868. dev_err(adap->pdev_dev, "config file %s failed %d\n",
  869. (size == 0 ? "clear" : "download"), ret);
  870. return ret;
  871. }
  872. /**
  873. * t4_load_fw - download firmware
  874. * @adap: the adapter
  875. * @fw_data: the firmware image to write
  876. * @size: image size
  877. *
  878. * Write the supplied firmware image to the card's serial flash.
  879. */
  880. int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
  881. {
  882. u32 csum;
  883. int ret, addr;
  884. unsigned int i;
  885. u8 first_page[SF_PAGE_SIZE];
  886. const u32 *p = (const u32 *)fw_data;
  887. const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
  888. unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
  889. unsigned int fw_img_start = adap->params.sf_fw_start;
  890. unsigned int fw_start_sec = fw_img_start / sf_sec_size;
  891. if (!size) {
  892. dev_err(adap->pdev_dev, "FW image has no data\n");
  893. return -EINVAL;
  894. }
  895. if (size & 511) {
  896. dev_err(adap->pdev_dev,
  897. "FW image size not multiple of 512 bytes\n");
  898. return -EINVAL;
  899. }
  900. if (ntohs(hdr->len512) * 512 != size) {
  901. dev_err(adap->pdev_dev,
  902. "FW image size differs from size in FW header\n");
  903. return -EINVAL;
  904. }
  905. if (size > FW_MAX_SIZE) {
  906. dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
  907. FW_MAX_SIZE);
  908. return -EFBIG;
  909. }
  910. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  911. csum += ntohl(p[i]);
  912. if (csum != 0xffffffff) {
  913. dev_err(adap->pdev_dev,
  914. "corrupted firmware image, checksum %#x\n", csum);
  915. return -EINVAL;
  916. }
  917. i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
  918. ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
  919. if (ret)
  920. goto out;
  921. /*
  922. * We write the correct version at the end so the driver can see a bad
  923. * version if the FW write fails. Start by writing a copy of the
  924. * first page with a bad version.
  925. */
  926. memcpy(first_page, fw_data, SF_PAGE_SIZE);
  927. ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
  928. ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
  929. if (ret)
  930. goto out;
  931. addr = fw_img_start;
  932. for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
  933. addr += SF_PAGE_SIZE;
  934. fw_data += SF_PAGE_SIZE;
  935. ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
  936. if (ret)
  937. goto out;
  938. }
  939. ret = t4_write_flash(adap,
  940. fw_img_start + offsetof(struct fw_hdr, fw_ver),
  941. sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
  942. out:
  943. if (ret)
  944. dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
  945. ret);
  946. return ret;
  947. }
  948. #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
  949. FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_ANEG)
  950. /**
  951. * t4_link_start - apply link configuration to MAC/PHY
  952. * @phy: the PHY to setup
  953. * @mac: the MAC to setup
  954. * @lc: the requested link configuration
  955. *
  956. * Set up a port's MAC and PHY according to a desired link configuration.
  957. * - If the PHY can auto-negotiate first decide what to advertise, then
  958. * enable/disable auto-negotiation as desired, and reset.
  959. * - If the PHY does not auto-negotiate just reset it.
  960. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
  961. * otherwise do it later based on the outcome of auto-negotiation.
  962. */
  963. int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
  964. struct link_config *lc)
  965. {
  966. struct fw_port_cmd c;
  967. unsigned int fc = 0, mdi = FW_PORT_MDI(FW_PORT_MDI_AUTO);
  968. lc->link_ok = 0;
  969. if (lc->requested_fc & PAUSE_RX)
  970. fc |= FW_PORT_CAP_FC_RX;
  971. if (lc->requested_fc & PAUSE_TX)
  972. fc |= FW_PORT_CAP_FC_TX;
  973. memset(&c, 0, sizeof(c));
  974. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
  975. FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
  976. c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
  977. FW_LEN16(c));
  978. if (!(lc->supported & FW_PORT_CAP_ANEG)) {
  979. c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc);
  980. lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  981. } else if (lc->autoneg == AUTONEG_DISABLE) {
  982. c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi);
  983. lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  984. } else
  985. c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi);
  986. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  987. }
  988. /**
  989. * t4_restart_aneg - restart autonegotiation
  990. * @adap: the adapter
  991. * @mbox: mbox to use for the FW command
  992. * @port: the port id
  993. *
  994. * Restarts autonegotiation for the selected port.
  995. */
  996. int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
  997. {
  998. struct fw_port_cmd c;
  999. memset(&c, 0, sizeof(c));
  1000. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
  1001. FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
  1002. c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
  1003. FW_LEN16(c));
  1004. c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG);
  1005. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  1006. }
  1007. typedef void (*int_handler_t)(struct adapter *adap);
  1008. struct intr_info {
  1009. unsigned int mask; /* bits to check in interrupt status */
  1010. const char *msg; /* message to print or NULL */
  1011. short stat_idx; /* stat counter to increment or -1 */
  1012. unsigned short fatal; /* whether the condition reported is fatal */
  1013. int_handler_t int_handler; /* platform-specific int handler */
  1014. };
  1015. /**
  1016. * t4_handle_intr_status - table driven interrupt handler
  1017. * @adapter: the adapter that generated the interrupt
  1018. * @reg: the interrupt status register to process
  1019. * @acts: table of interrupt actions
  1020. *
  1021. * A table driven interrupt handler that applies a set of masks to an
  1022. * interrupt status word and performs the corresponding actions if the
  1023. * interrupts described by the mask have occurred. The actions include
  1024. * optionally emitting a warning or alert message. The table is terminated
  1025. * by an entry specifying mask 0. Returns the number of fatal interrupt
  1026. * conditions.
  1027. */
  1028. static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
  1029. const struct intr_info *acts)
  1030. {
  1031. int fatal = 0;
  1032. unsigned int mask = 0;
  1033. unsigned int status = t4_read_reg(adapter, reg);
  1034. for ( ; acts->mask; ++acts) {
  1035. if (!(status & acts->mask))
  1036. continue;
  1037. if (acts->fatal) {
  1038. fatal++;
  1039. dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
  1040. status & acts->mask);
  1041. } else if (acts->msg && printk_ratelimit())
  1042. dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
  1043. status & acts->mask);
  1044. if (acts->int_handler)
  1045. acts->int_handler(adapter);
  1046. mask |= acts->mask;
  1047. }
  1048. status &= mask;
  1049. if (status) /* clear processed interrupts */
  1050. t4_write_reg(adapter, reg, status);
  1051. return fatal;
  1052. }
  1053. /*
  1054. * Interrupt handler for the PCIE module.
  1055. */
  1056. static void pcie_intr_handler(struct adapter *adapter)
  1057. {
  1058. static const struct intr_info sysbus_intr_info[] = {
  1059. { RNPP, "RXNP array parity error", -1, 1 },
  1060. { RPCP, "RXPC array parity error", -1, 1 },
  1061. { RCIP, "RXCIF array parity error", -1, 1 },
  1062. { RCCP, "Rx completions control array parity error", -1, 1 },
  1063. { RFTP, "RXFT array parity error", -1, 1 },
  1064. { 0 }
  1065. };
  1066. static const struct intr_info pcie_port_intr_info[] = {
  1067. { TPCP, "TXPC array parity error", -1, 1 },
  1068. { TNPP, "TXNP array parity error", -1, 1 },
  1069. { TFTP, "TXFT array parity error", -1, 1 },
  1070. { TCAP, "TXCA array parity error", -1, 1 },
  1071. { TCIP, "TXCIF array parity error", -1, 1 },
  1072. { RCAP, "RXCA array parity error", -1, 1 },
  1073. { OTDD, "outbound request TLP discarded", -1, 1 },
  1074. { RDPE, "Rx data parity error", -1, 1 },
  1075. { TDUE, "Tx uncorrectable data error", -1, 1 },
  1076. { 0 }
  1077. };
  1078. static const struct intr_info pcie_intr_info[] = {
  1079. { MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
  1080. { MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
  1081. { MSIDATAPERR, "MSI data parity error", -1, 1 },
  1082. { MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
  1083. { MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
  1084. { MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
  1085. { MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
  1086. { PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
  1087. { PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
  1088. { TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
  1089. { CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
  1090. { CREQPERR, "PCI CMD channel request parity error", -1, 1 },
  1091. { CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
  1092. { DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
  1093. { DREQPERR, "PCI DMA channel request parity error", -1, 1 },
  1094. { DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
  1095. { HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
  1096. { HREQPERR, "PCI HMA channel request parity error", -1, 1 },
  1097. { HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
  1098. { CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
  1099. { FIDPERR, "PCI FID parity error", -1, 1 },
  1100. { INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
  1101. { MATAGPERR, "PCI MA tag parity error", -1, 1 },
  1102. { PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
  1103. { RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
  1104. { RXWRPERR, "PCI Rx write parity error", -1, 1 },
  1105. { RPLPERR, "PCI replay buffer parity error", -1, 1 },
  1106. { PCIESINT, "PCI core secondary fault", -1, 1 },
  1107. { PCIEPINT, "PCI core primary fault", -1, 1 },
  1108. { UNXSPLCPLERR, "PCI unexpected split completion error", -1, 0 },
  1109. { 0 }
  1110. };
  1111. int fat;
  1112. fat = t4_handle_intr_status(adapter,
  1113. PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
  1114. sysbus_intr_info) +
  1115. t4_handle_intr_status(adapter,
  1116. PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
  1117. pcie_port_intr_info) +
  1118. t4_handle_intr_status(adapter, PCIE_INT_CAUSE, pcie_intr_info);
  1119. if (fat)
  1120. t4_fatal_err(adapter);
  1121. }
  1122. /*
  1123. * TP interrupt handler.
  1124. */
  1125. static void tp_intr_handler(struct adapter *adapter)
  1126. {
  1127. static const struct intr_info tp_intr_info[] = {
  1128. { 0x3fffffff, "TP parity error", -1, 1 },
  1129. { FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
  1130. { 0 }
  1131. };
  1132. if (t4_handle_intr_status(adapter, TP_INT_CAUSE, tp_intr_info))
  1133. t4_fatal_err(adapter);
  1134. }
  1135. /*
  1136. * SGE interrupt handler.
  1137. */
  1138. static void sge_intr_handler(struct adapter *adapter)
  1139. {
  1140. u64 v;
  1141. static const struct intr_info sge_intr_info[] = {
  1142. { ERR_CPL_EXCEED_IQE_SIZE,
  1143. "SGE received CPL exceeding IQE size", -1, 1 },
  1144. { ERR_INVALID_CIDX_INC,
  1145. "SGE GTS CIDX increment too large", -1, 0 },
  1146. { ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
  1147. { DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
  1148. { DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
  1149. { ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
  1150. { ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0,
  1151. "SGE IQID > 1023 received CPL for FL", -1, 0 },
  1152. { ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
  1153. 0 },
  1154. { ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
  1155. 0 },
  1156. { ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
  1157. 0 },
  1158. { ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
  1159. 0 },
  1160. { ERR_ING_CTXT_PRIO,
  1161. "SGE too many priority ingress contexts", -1, 0 },
  1162. { ERR_EGR_CTXT_PRIO,
  1163. "SGE too many priority egress contexts", -1, 0 },
  1164. { INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
  1165. { EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
  1166. { 0 }
  1167. };
  1168. v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1) |
  1169. ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2) << 32);
  1170. if (v) {
  1171. dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
  1172. (unsigned long long)v);
  1173. t4_write_reg(adapter, SGE_INT_CAUSE1, v);
  1174. t4_write_reg(adapter, SGE_INT_CAUSE2, v >> 32);
  1175. }
  1176. if (t4_handle_intr_status(adapter, SGE_INT_CAUSE3, sge_intr_info) ||
  1177. v != 0)
  1178. t4_fatal_err(adapter);
  1179. }
  1180. /*
  1181. * CIM interrupt handler.
  1182. */
  1183. static void cim_intr_handler(struct adapter *adapter)
  1184. {
  1185. static const struct intr_info cim_intr_info[] = {
  1186. { PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
  1187. { OBQPARERR, "CIM OBQ parity error", -1, 1 },
  1188. { IBQPARERR, "CIM IBQ parity error", -1, 1 },
  1189. { MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
  1190. { MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
  1191. { TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
  1192. { TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
  1193. { 0 }
  1194. };
  1195. static const struct intr_info cim_upintr_info[] = {
  1196. { RSVDSPACEINT, "CIM reserved space access", -1, 1 },
  1197. { ILLTRANSINT, "CIM illegal transaction", -1, 1 },
  1198. { ILLWRINT, "CIM illegal write", -1, 1 },
  1199. { ILLRDINT, "CIM illegal read", -1, 1 },
  1200. { ILLRDBEINT, "CIM illegal read BE", -1, 1 },
  1201. { ILLWRBEINT, "CIM illegal write BE", -1, 1 },
  1202. { SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
  1203. { SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
  1204. { BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
  1205. { SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
  1206. { SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
  1207. { BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
  1208. { SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
  1209. { SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
  1210. { BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
  1211. { BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
  1212. { SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
  1213. { SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
  1214. { BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
  1215. { BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
  1216. { SGLRDPLINT , "CIM single read from PL space", -1, 1 },
  1217. { SGLWRPLINT , "CIM single write to PL space", -1, 1 },
  1218. { BLKRDPLINT , "CIM block read from PL space", -1, 1 },
  1219. { BLKWRPLINT , "CIM block write to PL space", -1, 1 },
  1220. { REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
  1221. { RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
  1222. { TIMEOUTINT , "CIM PIF timeout", -1, 1 },
  1223. { TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
  1224. { 0 }
  1225. };
  1226. int fat;
  1227. fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE,
  1228. cim_intr_info) +
  1229. t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE,
  1230. cim_upintr_info);
  1231. if (fat)
  1232. t4_fatal_err(adapter);
  1233. }
  1234. /*
  1235. * ULP RX interrupt handler.
  1236. */
  1237. static void ulprx_intr_handler(struct adapter *adapter)
  1238. {
  1239. static const struct intr_info ulprx_intr_info[] = {
  1240. { 0x1800000, "ULPRX context error", -1, 1 },
  1241. { 0x7fffff, "ULPRX parity error", -1, 1 },
  1242. { 0 }
  1243. };
  1244. if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE, ulprx_intr_info))
  1245. t4_fatal_err(adapter);
  1246. }
  1247. /*
  1248. * ULP TX interrupt handler.
  1249. */
  1250. static void ulptx_intr_handler(struct adapter *adapter)
  1251. {
  1252. static const struct intr_info ulptx_intr_info[] = {
  1253. { PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
  1254. 0 },
  1255. { PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
  1256. 0 },
  1257. { PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
  1258. 0 },
  1259. { PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
  1260. 0 },
  1261. { 0xfffffff, "ULPTX parity error", -1, 1 },
  1262. { 0 }
  1263. };
  1264. if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE, ulptx_intr_info))
  1265. t4_fatal_err(adapter);
  1266. }
  1267. /*
  1268. * PM TX interrupt handler.
  1269. */
  1270. static void pmtx_intr_handler(struct adapter *adapter)
  1271. {
  1272. static const struct intr_info pmtx_intr_info[] = {
  1273. { PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
  1274. { PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
  1275. { PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
  1276. { ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
  1277. { PMTX_FRAMING_ERROR, "PMTX framing error", -1, 1 },
  1278. { OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
  1279. { DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1, 1 },
  1280. { ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
  1281. { C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
  1282. { 0 }
  1283. };
  1284. if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE, pmtx_intr_info))
  1285. t4_fatal_err(adapter);
  1286. }
  1287. /*
  1288. * PM RX interrupt handler.
  1289. */
  1290. static void pmrx_intr_handler(struct adapter *adapter)
  1291. {
  1292. static const struct intr_info pmrx_intr_info[] = {
  1293. { ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
  1294. { PMRX_FRAMING_ERROR, "PMRX framing error", -1, 1 },
  1295. { OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
  1296. { DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1, 1 },
  1297. { IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
  1298. { E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
  1299. { 0 }
  1300. };
  1301. if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE, pmrx_intr_info))
  1302. t4_fatal_err(adapter);
  1303. }
  1304. /*
  1305. * CPL switch interrupt handler.
  1306. */
  1307. static void cplsw_intr_handler(struct adapter *adapter)
  1308. {
  1309. static const struct intr_info cplsw_intr_info[] = {
  1310. { CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
  1311. { CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
  1312. { TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
  1313. { SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
  1314. { CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
  1315. { ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
  1316. { 0 }
  1317. };
  1318. if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE, cplsw_intr_info))
  1319. t4_fatal_err(adapter);
  1320. }
  1321. /*
  1322. * LE interrupt handler.
  1323. */
  1324. static void le_intr_handler(struct adapter *adap)
  1325. {
  1326. static const struct intr_info le_intr_info[] = {
  1327. { LIPMISS, "LE LIP miss", -1, 0 },
  1328. { LIP0, "LE 0 LIP error", -1, 0 },
  1329. { PARITYERR, "LE parity error", -1, 1 },
  1330. { UNKNOWNCMD, "LE unknown command", -1, 1 },
  1331. { REQQPARERR, "LE request queue parity error", -1, 1 },
  1332. { 0 }
  1333. };
  1334. if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE, le_intr_info))
  1335. t4_fatal_err(adap);
  1336. }
  1337. /*
  1338. * MPS interrupt handler.
  1339. */
  1340. static void mps_intr_handler(struct adapter *adapter)
  1341. {
  1342. static const struct intr_info mps_rx_intr_info[] = {
  1343. { 0xffffff, "MPS Rx parity error", -1, 1 },
  1344. { 0 }
  1345. };
  1346. static const struct intr_info mps_tx_intr_info[] = {
  1347. { TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 },
  1348. { NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
  1349. { TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 },
  1350. { TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 },
  1351. { BUBBLE, "MPS Tx underflow", -1, 1 },
  1352. { SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
  1353. { FRMERR, "MPS Tx framing error", -1, 1 },
  1354. { 0 }
  1355. };
  1356. static const struct intr_info mps_trc_intr_info[] = {
  1357. { FILTMEM, "MPS TRC filter parity error", -1, 1 },
  1358. { PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 },
  1359. { MISCPERR, "MPS TRC misc parity error", -1, 1 },
  1360. { 0 }
  1361. };
  1362. static const struct intr_info mps_stat_sram_intr_info[] = {
  1363. { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
  1364. { 0 }
  1365. };
  1366. static const struct intr_info mps_stat_tx_intr_info[] = {
  1367. { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
  1368. { 0 }
  1369. };
  1370. static const struct intr_info mps_stat_rx_intr_info[] = {
  1371. { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
  1372. { 0 }
  1373. };
  1374. static const struct intr_info mps_cls_intr_info[] = {
  1375. { MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
  1376. { MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
  1377. { HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
  1378. { 0 }
  1379. };
  1380. int fat;
  1381. fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE,
  1382. mps_rx_intr_info) +
  1383. t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE,
  1384. mps_tx_intr_info) +
  1385. t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE,
  1386. mps_trc_intr_info) +
  1387. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM,
  1388. mps_stat_sram_intr_info) +
  1389. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
  1390. mps_stat_tx_intr_info) +
  1391. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
  1392. mps_stat_rx_intr_info) +
  1393. t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE,
  1394. mps_cls_intr_info);
  1395. t4_write_reg(adapter, MPS_INT_CAUSE, CLSINT | TRCINT |
  1396. RXINT | TXINT | STATINT);
  1397. t4_read_reg(adapter, MPS_INT_CAUSE); /* flush */
  1398. if (fat)
  1399. t4_fatal_err(adapter);
  1400. }
  1401. #define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE)
  1402. /*
  1403. * EDC/MC interrupt handler.
  1404. */
  1405. static void mem_intr_handler(struct adapter *adapter, int idx)
  1406. {
  1407. static const char name[3][5] = { "EDC0", "EDC1", "MC" };
  1408. unsigned int addr, cnt_addr, v;
  1409. if (idx <= MEM_EDC1) {
  1410. addr = EDC_REG(EDC_INT_CAUSE, idx);
  1411. cnt_addr = EDC_REG(EDC_ECC_STATUS, idx);
  1412. } else {
  1413. addr = MC_INT_CAUSE;
  1414. cnt_addr = MC_ECC_STATUS;
  1415. }
  1416. v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
  1417. if (v & PERR_INT_CAUSE)
  1418. dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
  1419. name[idx]);
  1420. if (v & ECC_CE_INT_CAUSE) {
  1421. u32 cnt = ECC_CECNT_GET(t4_read_reg(adapter, cnt_addr));
  1422. t4_write_reg(adapter, cnt_addr, ECC_CECNT_MASK);
  1423. if (printk_ratelimit())
  1424. dev_warn(adapter->pdev_dev,
  1425. "%u %s correctable ECC data error%s\n",
  1426. cnt, name[idx], cnt > 1 ? "s" : "");
  1427. }
  1428. if (v & ECC_UE_INT_CAUSE)
  1429. dev_alert(adapter->pdev_dev,
  1430. "%s uncorrectable ECC data error\n", name[idx]);
  1431. t4_write_reg(adapter, addr, v);
  1432. if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE))
  1433. t4_fatal_err(adapter);
  1434. }
  1435. /*
  1436. * MA interrupt handler.
  1437. */
  1438. static void ma_intr_handler(struct adapter *adap)
  1439. {
  1440. u32 v, status = t4_read_reg(adap, MA_INT_CAUSE);
  1441. if (status & MEM_PERR_INT_CAUSE)
  1442. dev_alert(adap->pdev_dev,
  1443. "MA parity error, parity status %#x\n",
  1444. t4_read_reg(adap, MA_PARITY_ERROR_STATUS));
  1445. if (status & MEM_WRAP_INT_CAUSE) {
  1446. v = t4_read_reg(adap, MA_INT_WRAP_STATUS);
  1447. dev_alert(adap->pdev_dev, "MA address wrap-around error by "
  1448. "client %u to address %#x\n",
  1449. MEM_WRAP_CLIENT_NUM_GET(v),
  1450. MEM_WRAP_ADDRESS_GET(v) << 4);
  1451. }
  1452. t4_write_reg(adap, MA_INT_CAUSE, status);
  1453. t4_fatal_err(adap);
  1454. }
  1455. /*
  1456. * SMB interrupt handler.
  1457. */
  1458. static void smb_intr_handler(struct adapter *adap)
  1459. {
  1460. static const struct intr_info smb_intr_info[] = {
  1461. { MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
  1462. { MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
  1463. { SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
  1464. { 0 }
  1465. };
  1466. if (t4_handle_intr_status(adap, SMB_INT_CAUSE, smb_intr_info))
  1467. t4_fatal_err(adap);
  1468. }
  1469. /*
  1470. * NC-SI interrupt handler.
  1471. */
  1472. static void ncsi_intr_handler(struct adapter *adap)
  1473. {
  1474. static const struct intr_info ncsi_intr_info[] = {
  1475. { CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
  1476. { MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
  1477. { TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
  1478. { RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
  1479. { 0 }
  1480. };
  1481. if (t4_handle_intr_status(adap, NCSI_INT_CAUSE, ncsi_intr_info))
  1482. t4_fatal_err(adap);
  1483. }
  1484. /*
  1485. * XGMAC interrupt handler.
  1486. */
  1487. static void xgmac_intr_handler(struct adapter *adap, int port)
  1488. {
  1489. u32 v = t4_read_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE));
  1490. v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR;
  1491. if (!v)
  1492. return;
  1493. if (v & TXFIFO_PRTY_ERR)
  1494. dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
  1495. port);
  1496. if (v & RXFIFO_PRTY_ERR)
  1497. dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
  1498. port);
  1499. t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE), v);
  1500. t4_fatal_err(adap);
  1501. }
  1502. /*
  1503. * PL interrupt handler.
  1504. */
  1505. static void pl_intr_handler(struct adapter *adap)
  1506. {
  1507. static const struct intr_info pl_intr_info[] = {
  1508. { FATALPERR, "T4 fatal parity error", -1, 1 },
  1509. { PERRVFID, "PL VFID_MAP parity error", -1, 1 },
  1510. { 0 }
  1511. };
  1512. if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE, pl_intr_info))
  1513. t4_fatal_err(adap);
  1514. }
  1515. #define PF_INTR_MASK (PFSW)
  1516. #define GLBL_INTR_MASK (CIM | MPS | PL | PCIE | MC | EDC0 | \
  1517. EDC1 | LE | TP | MA | PM_TX | PM_RX | ULP_RX | \
  1518. CPL_SWITCH | SGE | ULP_TX)
  1519. /**
  1520. * t4_slow_intr_handler - control path interrupt handler
  1521. * @adapter: the adapter
  1522. *
  1523. * T4 interrupt handler for non-data global interrupt events, e.g., errors.
  1524. * The designation 'slow' is because it involves register reads, while
  1525. * data interrupts typically don't involve any MMIOs.
  1526. */
  1527. int t4_slow_intr_handler(struct adapter *adapter)
  1528. {
  1529. u32 cause = t4_read_reg(adapter, PL_INT_CAUSE);
  1530. if (!(cause & GLBL_INTR_MASK))
  1531. return 0;
  1532. if (cause & CIM)
  1533. cim_intr_handler(adapter);
  1534. if (cause & MPS)
  1535. mps_intr_handler(adapter);
  1536. if (cause & NCSI)
  1537. ncsi_intr_handler(adapter);
  1538. if (cause & PL)
  1539. pl_intr_handler(adapter);
  1540. if (cause & SMB)
  1541. smb_intr_handler(adapter);
  1542. if (cause & XGMAC0)
  1543. xgmac_intr_handler(adapter, 0);
  1544. if (cause & XGMAC1)
  1545. xgmac_intr_handler(adapter, 1);
  1546. if (cause & XGMAC_KR0)
  1547. xgmac_intr_handler(adapter, 2);
  1548. if (cause & XGMAC_KR1)
  1549. xgmac_intr_handler(adapter, 3);
  1550. if (cause & PCIE)
  1551. pcie_intr_handler(adapter);
  1552. if (cause & MC)
  1553. mem_intr_handler(adapter, MEM_MC);
  1554. if (cause & EDC0)
  1555. mem_intr_handler(adapter, MEM_EDC0);
  1556. if (cause & EDC1)
  1557. mem_intr_handler(adapter, MEM_EDC1);
  1558. if (cause & LE)
  1559. le_intr_handler(adapter);
  1560. if (cause & TP)
  1561. tp_intr_handler(adapter);
  1562. if (cause & MA)
  1563. ma_intr_handler(adapter);
  1564. if (cause & PM_TX)
  1565. pmtx_intr_handler(adapter);
  1566. if (cause & PM_RX)
  1567. pmrx_intr_handler(adapter);
  1568. if (cause & ULP_RX)
  1569. ulprx_intr_handler(adapter);
  1570. if (cause & CPL_SWITCH)
  1571. cplsw_intr_handler(adapter);
  1572. if (cause & SGE)
  1573. sge_intr_handler(adapter);
  1574. if (cause & ULP_TX)
  1575. ulptx_intr_handler(adapter);
  1576. /* Clear the interrupts just processed for which we are the master. */
  1577. t4_write_reg(adapter, PL_INT_CAUSE, cause & GLBL_INTR_MASK);
  1578. (void) t4_read_reg(adapter, PL_INT_CAUSE); /* flush */
  1579. return 1;
  1580. }
  1581. /**
  1582. * t4_intr_enable - enable interrupts
  1583. * @adapter: the adapter whose interrupts should be enabled
  1584. *
  1585. * Enable PF-specific interrupts for the calling function and the top-level
  1586. * interrupt concentrator for global interrupts. Interrupts are already
  1587. * enabled at each module, here we just enable the roots of the interrupt
  1588. * hierarchies.
  1589. *
  1590. * Note: this function should be called only when the driver manages
  1591. * non PF-specific interrupts from the various HW modules. Only one PCI
  1592. * function at a time should be doing this.
  1593. */
  1594. void t4_intr_enable(struct adapter *adapter)
  1595. {
  1596. u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
  1597. t4_write_reg(adapter, SGE_INT_ENABLE3, ERR_CPL_EXCEED_IQE_SIZE |
  1598. ERR_INVALID_CIDX_INC | ERR_CPL_OPCODE_0 |
  1599. ERR_DROPPED_DB | ERR_DATA_CPL_ON_HIGH_QID1 |
  1600. ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 |
  1601. ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 |
  1602. ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO |
  1603. ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR |
  1604. DBFIFO_HP_INT | DBFIFO_LP_INT |
  1605. EGRESS_SIZE_ERR);
  1606. t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), PF_INTR_MASK);
  1607. t4_set_reg_field(adapter, PL_INT_MAP0, 0, 1 << pf);
  1608. }
  1609. /**
  1610. * t4_intr_disable - disable interrupts
  1611. * @adapter: the adapter whose interrupts should be disabled
  1612. *
  1613. * Disable interrupts. We only disable the top-level interrupt
  1614. * concentrators. The caller must be a PCI function managing global
  1615. * interrupts.
  1616. */
  1617. void t4_intr_disable(struct adapter *adapter)
  1618. {
  1619. u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
  1620. t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), 0);
  1621. t4_set_reg_field(adapter, PL_INT_MAP0, 1 << pf, 0);
  1622. }
  1623. /**
  1624. * hash_mac_addr - return the hash value of a MAC address
  1625. * @addr: the 48-bit Ethernet MAC address
  1626. *
  1627. * Hashes a MAC address according to the hash function used by HW inexact
  1628. * (hash) address matching.
  1629. */
  1630. static int hash_mac_addr(const u8 *addr)
  1631. {
  1632. u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
  1633. u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
  1634. a ^= b;
  1635. a ^= (a >> 12);
  1636. a ^= (a >> 6);
  1637. return a & 0x3f;
  1638. }
  1639. /**
  1640. * t4_config_rss_range - configure a portion of the RSS mapping table
  1641. * @adapter: the adapter
  1642. * @mbox: mbox to use for the FW command
  1643. * @viid: virtual interface whose RSS subtable is to be written
  1644. * @start: start entry in the table to write
  1645. * @n: how many table entries to write
  1646. * @rspq: values for the response queue lookup table
  1647. * @nrspq: number of values in @rspq
  1648. *
  1649. * Programs the selected part of the VI's RSS mapping table with the
  1650. * provided values. If @nrspq < @n the supplied values are used repeatedly
  1651. * until the full table range is populated.
  1652. *
  1653. * The caller must ensure the values in @rspq are in the range allowed for
  1654. * @viid.
  1655. */
  1656. int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
  1657. int start, int n, const u16 *rspq, unsigned int nrspq)
  1658. {
  1659. int ret;
  1660. const u16 *rsp = rspq;
  1661. const u16 *rsp_end = rspq + nrspq;
  1662. struct fw_rss_ind_tbl_cmd cmd;
  1663. memset(&cmd, 0, sizeof(cmd));
  1664. cmd.op_to_viid = htonl(FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
  1665. FW_CMD_REQUEST | FW_CMD_WRITE |
  1666. FW_RSS_IND_TBL_CMD_VIID(viid));
  1667. cmd.retval_len16 = htonl(FW_LEN16(cmd));
  1668. /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
  1669. while (n > 0) {
  1670. int nq = min(n, 32);
  1671. __be32 *qp = &cmd.iq0_to_iq2;
  1672. cmd.niqid = htons(nq);
  1673. cmd.startidx = htons(start);
  1674. start += nq;
  1675. n -= nq;
  1676. while (nq > 0) {
  1677. unsigned int v;
  1678. v = FW_RSS_IND_TBL_CMD_IQ0(*rsp);
  1679. if (++rsp >= rsp_end)
  1680. rsp = rspq;
  1681. v |= FW_RSS_IND_TBL_CMD_IQ1(*rsp);
  1682. if (++rsp >= rsp_end)
  1683. rsp = rspq;
  1684. v |= FW_RSS_IND_TBL_CMD_IQ2(*rsp);
  1685. if (++rsp >= rsp_end)
  1686. rsp = rspq;
  1687. *qp++ = htonl(v);
  1688. nq -= 3;
  1689. }
  1690. ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
  1691. if (ret)
  1692. return ret;
  1693. }
  1694. return 0;
  1695. }
  1696. /**
  1697. * t4_config_glbl_rss - configure the global RSS mode
  1698. * @adapter: the adapter
  1699. * @mbox: mbox to use for the FW command
  1700. * @mode: global RSS mode
  1701. * @flags: mode-specific flags
  1702. *
  1703. * Sets the global RSS mode.
  1704. */
  1705. int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
  1706. unsigned int flags)
  1707. {
  1708. struct fw_rss_glb_config_cmd c;
  1709. memset(&c, 0, sizeof(c));
  1710. c.op_to_write = htonl(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
  1711. FW_CMD_REQUEST | FW_CMD_WRITE);
  1712. c.retval_len16 = htonl(FW_LEN16(c));
  1713. if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
  1714. c.u.manual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
  1715. } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
  1716. c.u.basicvirtual.mode_pkd =
  1717. htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
  1718. c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags);
  1719. } else
  1720. return -EINVAL;
  1721. return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
  1722. }
  1723. /**
  1724. * t4_tp_get_tcp_stats - read TP's TCP MIB counters
  1725. * @adap: the adapter
  1726. * @v4: holds the TCP/IP counter values
  1727. * @v6: holds the TCP/IPv6 counter values
  1728. *
  1729. * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
  1730. * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
  1731. */
  1732. void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
  1733. struct tp_tcp_stats *v6)
  1734. {
  1735. u32 val[TP_MIB_TCP_RXT_SEG_LO - TP_MIB_TCP_OUT_RST + 1];
  1736. #define STAT_IDX(x) ((TP_MIB_TCP_##x) - TP_MIB_TCP_OUT_RST)
  1737. #define STAT(x) val[STAT_IDX(x)]
  1738. #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
  1739. if (v4) {
  1740. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
  1741. ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST);
  1742. v4->tcpOutRsts = STAT(OUT_RST);
  1743. v4->tcpInSegs = STAT64(IN_SEG);
  1744. v4->tcpOutSegs = STAT64(OUT_SEG);
  1745. v4->tcpRetransSegs = STAT64(RXT_SEG);
  1746. }
  1747. if (v6) {
  1748. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
  1749. ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST);
  1750. v6->tcpOutRsts = STAT(OUT_RST);
  1751. v6->tcpInSegs = STAT64(IN_SEG);
  1752. v6->tcpOutSegs = STAT64(OUT_SEG);
  1753. v6->tcpRetransSegs = STAT64(RXT_SEG);
  1754. }
  1755. #undef STAT64
  1756. #undef STAT
  1757. #undef STAT_IDX
  1758. }
  1759. /**
  1760. * t4_read_mtu_tbl - returns the values in the HW path MTU table
  1761. * @adap: the adapter
  1762. * @mtus: where to store the MTU values
  1763. * @mtu_log: where to store the MTU base-2 log (may be %NULL)
  1764. *
  1765. * Reads the HW path MTU table.
  1766. */
  1767. void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
  1768. {
  1769. u32 v;
  1770. int i;
  1771. for (i = 0; i < NMTUS; ++i) {
  1772. t4_write_reg(adap, TP_MTU_TABLE,
  1773. MTUINDEX(0xff) | MTUVALUE(i));
  1774. v = t4_read_reg(adap, TP_MTU_TABLE);
  1775. mtus[i] = MTUVALUE_GET(v);
  1776. if (mtu_log)
  1777. mtu_log[i] = MTUWIDTH_GET(v);
  1778. }
  1779. }
  1780. /**
  1781. * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
  1782. * @adap: the adapter
  1783. * @addr: the indirect TP register address
  1784. * @mask: specifies the field within the register to modify
  1785. * @val: new value for the field
  1786. *
  1787. * Sets a field of an indirect TP register to the given value.
  1788. */
  1789. void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
  1790. unsigned int mask, unsigned int val)
  1791. {
  1792. t4_write_reg(adap, TP_PIO_ADDR, addr);
  1793. val |= t4_read_reg(adap, TP_PIO_DATA) & ~mask;
  1794. t4_write_reg(adap, TP_PIO_DATA, val);
  1795. }
  1796. /**
  1797. * init_cong_ctrl - initialize congestion control parameters
  1798. * @a: the alpha values for congestion control
  1799. * @b: the beta values for congestion control
  1800. *
  1801. * Initialize the congestion control parameters.
  1802. */
  1803. static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b)
  1804. {
  1805. a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
  1806. a[9] = 2;
  1807. a[10] = 3;
  1808. a[11] = 4;
  1809. a[12] = 5;
  1810. a[13] = 6;
  1811. a[14] = 7;
  1812. a[15] = 8;
  1813. a[16] = 9;
  1814. a[17] = 10;
  1815. a[18] = 14;
  1816. a[19] = 17;
  1817. a[20] = 21;
  1818. a[21] = 25;
  1819. a[22] = 30;
  1820. a[23] = 35;
  1821. a[24] = 45;
  1822. a[25] = 60;
  1823. a[26] = 80;
  1824. a[27] = 100;
  1825. a[28] = 200;
  1826. a[29] = 300;
  1827. a[30] = 400;
  1828. a[31] = 500;
  1829. b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
  1830. b[9] = b[10] = 1;
  1831. b[11] = b[12] = 2;
  1832. b[13] = b[14] = b[15] = b[16] = 3;
  1833. b[17] = b[18] = b[19] = b[20] = b[21] = 4;
  1834. b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
  1835. b[28] = b[29] = 6;
  1836. b[30] = b[31] = 7;
  1837. }
  1838. /* The minimum additive increment value for the congestion control table */
  1839. #define CC_MIN_INCR 2U
  1840. /**
  1841. * t4_load_mtus - write the MTU and congestion control HW tables
  1842. * @adap: the adapter
  1843. * @mtus: the values for the MTU table
  1844. * @alpha: the values for the congestion control alpha parameter
  1845. * @beta: the values for the congestion control beta parameter
  1846. *
  1847. * Write the HW MTU table with the supplied MTUs and the high-speed
  1848. * congestion control table with the supplied alpha, beta, and MTUs.
  1849. * We write the two tables together because the additive increments
  1850. * depend on the MTUs.
  1851. */
  1852. void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
  1853. const unsigned short *alpha, const unsigned short *beta)
  1854. {
  1855. static const unsigned int avg_pkts[NCCTRL_WIN] = {
  1856. 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
  1857. 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
  1858. 28672, 40960, 57344, 81920, 114688, 163840, 229376
  1859. };
  1860. unsigned int i, w;
  1861. for (i = 0; i < NMTUS; ++i) {
  1862. unsigned int mtu = mtus[i];
  1863. unsigned int log2 = fls(mtu);
  1864. if (!(mtu & ((1 << log2) >> 2))) /* round */
  1865. log2--;
  1866. t4_write_reg(adap, TP_MTU_TABLE, MTUINDEX(i) |
  1867. MTUWIDTH(log2) | MTUVALUE(mtu));
  1868. for (w = 0; w < NCCTRL_WIN; ++w) {
  1869. unsigned int inc;
  1870. inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
  1871. CC_MIN_INCR);
  1872. t4_write_reg(adap, TP_CCTRL_TABLE, (i << 21) |
  1873. (w << 16) | (beta[w] << 13) | inc);
  1874. }
  1875. }
  1876. }
  1877. /**
  1878. * get_mps_bg_map - return the buffer groups associated with a port
  1879. * @adap: the adapter
  1880. * @idx: the port index
  1881. *
  1882. * Returns a bitmap indicating which MPS buffer groups are associated
  1883. * with the given port. Bit i is set if buffer group i is used by the
  1884. * port.
  1885. */
  1886. static unsigned int get_mps_bg_map(struct adapter *adap, int idx)
  1887. {
  1888. u32 n = NUMPORTS_GET(t4_read_reg(adap, MPS_CMN_CTL));
  1889. if (n == 0)
  1890. return idx == 0 ? 0xf : 0;
  1891. if (n == 1)
  1892. return idx < 2 ? (3 << (2 * idx)) : 0;
  1893. return 1 << idx;
  1894. }
  1895. /**
  1896. * t4_get_port_stats - collect port statistics
  1897. * @adap: the adapter
  1898. * @idx: the port index
  1899. * @p: the stats structure to fill
  1900. *
  1901. * Collect statistics related to the given port from HW.
  1902. */
  1903. void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
  1904. {
  1905. u32 bgmap = get_mps_bg_map(adap, idx);
  1906. #define GET_STAT(name) \
  1907. t4_read_reg64(adap, PORT_REG(idx, MPS_PORT_STAT_##name##_L))
  1908. #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
  1909. p->tx_octets = GET_STAT(TX_PORT_BYTES);
  1910. p->tx_frames = GET_STAT(TX_PORT_FRAMES);
  1911. p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
  1912. p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
  1913. p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
  1914. p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
  1915. p->tx_frames_64 = GET_STAT(TX_PORT_64B);
  1916. p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
  1917. p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
  1918. p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
  1919. p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
  1920. p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
  1921. p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
  1922. p->tx_drop = GET_STAT(TX_PORT_DROP);
  1923. p->tx_pause = GET_STAT(TX_PORT_PAUSE);
  1924. p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
  1925. p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
  1926. p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
  1927. p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
  1928. p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
  1929. p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
  1930. p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
  1931. p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
  1932. p->rx_octets = GET_STAT(RX_PORT_BYTES);
  1933. p->rx_frames = GET_STAT(RX_PORT_FRAMES);
  1934. p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
  1935. p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
  1936. p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
  1937. p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
  1938. p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
  1939. p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
  1940. p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
  1941. p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
  1942. p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
  1943. p->rx_frames_64 = GET_STAT(RX_PORT_64B);
  1944. p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
  1945. p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
  1946. p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
  1947. p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
  1948. p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
  1949. p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
  1950. p->rx_pause = GET_STAT(RX_PORT_PAUSE);
  1951. p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
  1952. p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
  1953. p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
  1954. p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
  1955. p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
  1956. p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
  1957. p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
  1958. p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
  1959. p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
  1960. p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
  1961. p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
  1962. p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
  1963. p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
  1964. p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
  1965. p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
  1966. p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
  1967. #undef GET_STAT
  1968. #undef GET_STAT_COM
  1969. }
  1970. /**
  1971. * t4_wol_magic_enable - enable/disable magic packet WoL
  1972. * @adap: the adapter
  1973. * @port: the physical port index
  1974. * @addr: MAC address expected in magic packets, %NULL to disable
  1975. *
  1976. * Enables/disables magic packet wake-on-LAN for the selected port.
  1977. */
  1978. void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
  1979. const u8 *addr)
  1980. {
  1981. if (addr) {
  1982. t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_MAGIC_MACID_LO),
  1983. (addr[2] << 24) | (addr[3] << 16) |
  1984. (addr[4] << 8) | addr[5]);
  1985. t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_MAGIC_MACID_HI),
  1986. (addr[0] << 8) | addr[1]);
  1987. }
  1988. t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), MAGICEN,
  1989. addr ? MAGICEN : 0);
  1990. }
  1991. /**
  1992. * t4_wol_pat_enable - enable/disable pattern-based WoL
  1993. * @adap: the adapter
  1994. * @port: the physical port index
  1995. * @map: bitmap of which HW pattern filters to set
  1996. * @mask0: byte mask for bytes 0-63 of a packet
  1997. * @mask1: byte mask for bytes 64-127 of a packet
  1998. * @crc: Ethernet CRC for selected bytes
  1999. * @enable: enable/disable switch
  2000. *
  2001. * Sets the pattern filters indicated in @map to mask out the bytes
  2002. * specified in @mask0/@mask1 in received packets and compare the CRC of
  2003. * the resulting packet against @crc. If @enable is %true pattern-based
  2004. * WoL is enabled, otherwise disabled.
  2005. */
  2006. int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
  2007. u64 mask0, u64 mask1, unsigned int crc, bool enable)
  2008. {
  2009. int i;
  2010. if (!enable) {
  2011. t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2),
  2012. PATEN, 0);
  2013. return 0;
  2014. }
  2015. if (map > 0xff)
  2016. return -EINVAL;
  2017. #define EPIO_REG(name) PORT_REG(port, XGMAC_PORT_EPIO_##name)
  2018. t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
  2019. t4_write_reg(adap, EPIO_REG(DATA2), mask1);
  2020. t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
  2021. for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
  2022. if (!(map & 1))
  2023. continue;
  2024. /* write byte masks */
  2025. t4_write_reg(adap, EPIO_REG(DATA0), mask0);
  2026. t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i) | EPIOWR);
  2027. t4_read_reg(adap, EPIO_REG(OP)); /* flush */
  2028. if (t4_read_reg(adap, EPIO_REG(OP)) & BUSY)
  2029. return -ETIMEDOUT;
  2030. /* write CRC */
  2031. t4_write_reg(adap, EPIO_REG(DATA0), crc);
  2032. t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i + 32) | EPIOWR);
  2033. t4_read_reg(adap, EPIO_REG(OP)); /* flush */
  2034. if (t4_read_reg(adap, EPIO_REG(OP)) & BUSY)
  2035. return -ETIMEDOUT;
  2036. }
  2037. #undef EPIO_REG
  2038. t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), 0, PATEN);
  2039. return 0;
  2040. }
  2041. #define INIT_CMD(var, cmd, rd_wr) do { \
  2042. (var).op_to_write = htonl(FW_CMD_OP(FW_##cmd##_CMD) | \
  2043. FW_CMD_REQUEST | FW_CMD_##rd_wr); \
  2044. (var).retval_len16 = htonl(FW_LEN16(var)); \
  2045. } while (0)
  2046. int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
  2047. u32 addr, u32 val)
  2048. {
  2049. struct fw_ldst_cmd c;
  2050. memset(&c, 0, sizeof(c));
  2051. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  2052. FW_CMD_WRITE |
  2053. FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE));
  2054. c.cycles_to_len16 = htonl(FW_LEN16(c));
  2055. c.u.addrval.addr = htonl(addr);
  2056. c.u.addrval.val = htonl(val);
  2057. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2058. }
  2059. /**
  2060. * t4_mem_win_read_len - read memory through PCIE memory window
  2061. * @adap: the adapter
  2062. * @addr: address of first byte requested aligned on 32b.
  2063. * @data: len bytes to hold the data read
  2064. * @len: amount of data to read from window. Must be <=
  2065. * MEMWIN0_APERATURE after adjusting for 16B alignment
  2066. * requirements of the the memory window.
  2067. *
  2068. * Read len bytes of data from MC starting at @addr.
  2069. */
  2070. int t4_mem_win_read_len(struct adapter *adap, u32 addr, __be32 *data, int len)
  2071. {
  2072. int i;
  2073. int off;
  2074. /*
  2075. * Align on a 16B boundary.
  2076. */
  2077. off = addr & 15;
  2078. if ((addr & 3) || (len + off) > MEMWIN0_APERTURE)
  2079. return -EINVAL;
  2080. t4_write_reg(adap, PCIE_MEM_ACCESS_OFFSET, addr & ~15);
  2081. t4_read_reg(adap, PCIE_MEM_ACCESS_OFFSET);
  2082. for (i = 0; i < len; i += 4)
  2083. *data++ = t4_read_reg(adap, (MEMWIN0_BASE + off + i));
  2084. return 0;
  2085. }
  2086. /**
  2087. * t4_mdio_rd - read a PHY register through MDIO
  2088. * @adap: the adapter
  2089. * @mbox: mailbox to use for the FW command
  2090. * @phy_addr: the PHY address
  2091. * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
  2092. * @reg: the register to read
  2093. * @valp: where to store the value
  2094. *
  2095. * Issues a FW command through the given mailbox to read a PHY register.
  2096. */
  2097. int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
  2098. unsigned int mmd, unsigned int reg, u16 *valp)
  2099. {
  2100. int ret;
  2101. struct fw_ldst_cmd c;
  2102. memset(&c, 0, sizeof(c));
  2103. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  2104. FW_CMD_READ | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
  2105. c.cycles_to_len16 = htonl(FW_LEN16(c));
  2106. c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
  2107. FW_LDST_CMD_MMD(mmd));
  2108. c.u.mdio.raddr = htons(reg);
  2109. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2110. if (ret == 0)
  2111. *valp = ntohs(c.u.mdio.rval);
  2112. return ret;
  2113. }
  2114. /**
  2115. * t4_mdio_wr - write a PHY register through MDIO
  2116. * @adap: the adapter
  2117. * @mbox: mailbox to use for the FW command
  2118. * @phy_addr: the PHY address
  2119. * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
  2120. * @reg: the register to write
  2121. * @valp: value to write
  2122. *
  2123. * Issues a FW command through the given mailbox to write a PHY register.
  2124. */
  2125. int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
  2126. unsigned int mmd, unsigned int reg, u16 val)
  2127. {
  2128. struct fw_ldst_cmd c;
  2129. memset(&c, 0, sizeof(c));
  2130. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  2131. FW_CMD_WRITE | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
  2132. c.cycles_to_len16 = htonl(FW_LEN16(c));
  2133. c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
  2134. FW_LDST_CMD_MMD(mmd));
  2135. c.u.mdio.raddr = htons(reg);
  2136. c.u.mdio.rval = htons(val);
  2137. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2138. }
  2139. /**
  2140. * t4_fw_hello - establish communication with FW
  2141. * @adap: the adapter
  2142. * @mbox: mailbox to use for the FW command
  2143. * @evt_mbox: mailbox to receive async FW events
  2144. * @master: specifies the caller's willingness to be the device master
  2145. * @state: returns the current device state (if non-NULL)
  2146. *
  2147. * Issues a command to establish communication with FW. Returns either
  2148. * an error (negative integer) or the mailbox of the Master PF.
  2149. */
  2150. int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
  2151. enum dev_master master, enum dev_state *state)
  2152. {
  2153. int ret;
  2154. struct fw_hello_cmd c;
  2155. u32 v;
  2156. unsigned int master_mbox;
  2157. int retries = FW_CMD_HELLO_RETRIES;
  2158. retry:
  2159. memset(&c, 0, sizeof(c));
  2160. INIT_CMD(c, HELLO, WRITE);
  2161. c.err_to_mbasyncnot = htonl(
  2162. FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
  2163. FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
  2164. FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox :
  2165. FW_HELLO_CMD_MBMASTER_MASK) |
  2166. FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
  2167. FW_HELLO_CMD_STAGE(fw_hello_cmd_stage_os) |
  2168. FW_HELLO_CMD_CLEARINIT);
  2169. /*
  2170. * Issue the HELLO command to the firmware. If it's not successful
  2171. * but indicates that we got a "busy" or "timeout" condition, retry
  2172. * the HELLO until we exhaust our retry limit.
  2173. */
  2174. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2175. if (ret < 0) {
  2176. if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
  2177. goto retry;
  2178. return ret;
  2179. }
  2180. v = ntohl(c.err_to_mbasyncnot);
  2181. master_mbox = FW_HELLO_CMD_MBMASTER_GET(v);
  2182. if (state) {
  2183. if (v & FW_HELLO_CMD_ERR)
  2184. *state = DEV_STATE_ERR;
  2185. else if (v & FW_HELLO_CMD_INIT)
  2186. *state = DEV_STATE_INIT;
  2187. else
  2188. *state = DEV_STATE_UNINIT;
  2189. }
  2190. /*
  2191. * If we're not the Master PF then we need to wait around for the
  2192. * Master PF Driver to finish setting up the adapter.
  2193. *
  2194. * Note that we also do this wait if we're a non-Master-capable PF and
  2195. * there is no current Master PF; a Master PF may show up momentarily
  2196. * and we wouldn't want to fail pointlessly. (This can happen when an
  2197. * OS loads lots of different drivers rapidly at the same time). In
  2198. * this case, the Master PF returned by the firmware will be
  2199. * FW_PCIE_FW_MASTER_MASK so the test below will work ...
  2200. */
  2201. if ((v & (FW_HELLO_CMD_ERR|FW_HELLO_CMD_INIT)) == 0 &&
  2202. master_mbox != mbox) {
  2203. int waiting = FW_CMD_HELLO_TIMEOUT;
  2204. /*
  2205. * Wait for the firmware to either indicate an error or
  2206. * initialized state. If we see either of these we bail out
  2207. * and report the issue to the caller. If we exhaust the
  2208. * "hello timeout" and we haven't exhausted our retries, try
  2209. * again. Otherwise bail with a timeout error.
  2210. */
  2211. for (;;) {
  2212. u32 pcie_fw;
  2213. msleep(50);
  2214. waiting -= 50;
  2215. /*
  2216. * If neither Error nor Initialialized are indicated
  2217. * by the firmware keep waiting till we exaust our
  2218. * timeout ... and then retry if we haven't exhausted
  2219. * our retries ...
  2220. */
  2221. pcie_fw = t4_read_reg(adap, MA_PCIE_FW);
  2222. if (!(pcie_fw & (FW_PCIE_FW_ERR|FW_PCIE_FW_INIT))) {
  2223. if (waiting <= 0) {
  2224. if (retries-- > 0)
  2225. goto retry;
  2226. return -ETIMEDOUT;
  2227. }
  2228. continue;
  2229. }
  2230. /*
  2231. * We either have an Error or Initialized condition
  2232. * report errors preferentially.
  2233. */
  2234. if (state) {
  2235. if (pcie_fw & FW_PCIE_FW_ERR)
  2236. *state = DEV_STATE_ERR;
  2237. else if (pcie_fw & FW_PCIE_FW_INIT)
  2238. *state = DEV_STATE_INIT;
  2239. }
  2240. /*
  2241. * If we arrived before a Master PF was selected and
  2242. * there's not a valid Master PF, grab its identity
  2243. * for our caller.
  2244. */
  2245. if (master_mbox == FW_PCIE_FW_MASTER_MASK &&
  2246. (pcie_fw & FW_PCIE_FW_MASTER_VLD))
  2247. master_mbox = FW_PCIE_FW_MASTER_GET(pcie_fw);
  2248. break;
  2249. }
  2250. }
  2251. return master_mbox;
  2252. }
  2253. /**
  2254. * t4_fw_bye - end communication with FW
  2255. * @adap: the adapter
  2256. * @mbox: mailbox to use for the FW command
  2257. *
  2258. * Issues a command to terminate communication with FW.
  2259. */
  2260. int t4_fw_bye(struct adapter *adap, unsigned int mbox)
  2261. {
  2262. struct fw_bye_cmd c;
  2263. INIT_CMD(c, BYE, WRITE);
  2264. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2265. }
  2266. /**
  2267. * t4_init_cmd - ask FW to initialize the device
  2268. * @adap: the adapter
  2269. * @mbox: mailbox to use for the FW command
  2270. *
  2271. * Issues a command to FW to partially initialize the device. This
  2272. * performs initialization that generally doesn't depend on user input.
  2273. */
  2274. int t4_early_init(struct adapter *adap, unsigned int mbox)
  2275. {
  2276. struct fw_initialize_cmd c;
  2277. INIT_CMD(c, INITIALIZE, WRITE);
  2278. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2279. }
  2280. /**
  2281. * t4_fw_reset - issue a reset to FW
  2282. * @adap: the adapter
  2283. * @mbox: mailbox to use for the FW command
  2284. * @reset: specifies the type of reset to perform
  2285. *
  2286. * Issues a reset command of the specified type to FW.
  2287. */
  2288. int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
  2289. {
  2290. struct fw_reset_cmd c;
  2291. INIT_CMD(c, RESET, WRITE);
  2292. c.val = htonl(reset);
  2293. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2294. }
  2295. /**
  2296. * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
  2297. * @adap: the adapter
  2298. * @mbox: mailbox to use for the FW RESET command (if desired)
  2299. * @force: force uP into RESET even if FW RESET command fails
  2300. *
  2301. * Issues a RESET command to firmware (if desired) with a HALT indication
  2302. * and then puts the microprocessor into RESET state. The RESET command
  2303. * will only be issued if a legitimate mailbox is provided (mbox <=
  2304. * FW_PCIE_FW_MASTER_MASK).
  2305. *
  2306. * This is generally used in order for the host to safely manipulate the
  2307. * adapter without fear of conflicting with whatever the firmware might
  2308. * be doing. The only way out of this state is to RESTART the firmware
  2309. * ...
  2310. */
  2311. int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
  2312. {
  2313. int ret = 0;
  2314. /*
  2315. * If a legitimate mailbox is provided, issue a RESET command
  2316. * with a HALT indication.
  2317. */
  2318. if (mbox <= FW_PCIE_FW_MASTER_MASK) {
  2319. struct fw_reset_cmd c;
  2320. memset(&c, 0, sizeof(c));
  2321. INIT_CMD(c, RESET, WRITE);
  2322. c.val = htonl(PIORST | PIORSTMODE);
  2323. c.halt_pkd = htonl(FW_RESET_CMD_HALT(1U));
  2324. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2325. }
  2326. /*
  2327. * Normally we won't complete the operation if the firmware RESET
  2328. * command fails but if our caller insists we'll go ahead and put the
  2329. * uP into RESET. This can be useful if the firmware is hung or even
  2330. * missing ... We'll have to take the risk of putting the uP into
  2331. * RESET without the cooperation of firmware in that case.
  2332. *
  2333. * We also force the firmware's HALT flag to be on in case we bypassed
  2334. * the firmware RESET command above or we're dealing with old firmware
  2335. * which doesn't have the HALT capability. This will serve as a flag
  2336. * for the incoming firmware to know that it's coming out of a HALT
  2337. * rather than a RESET ... if it's new enough to understand that ...
  2338. */
  2339. if (ret == 0 || force) {
  2340. t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, UPCRST);
  2341. t4_set_reg_field(adap, PCIE_FW, FW_PCIE_FW_HALT,
  2342. FW_PCIE_FW_HALT);
  2343. }
  2344. /*
  2345. * And we always return the result of the firmware RESET command
  2346. * even when we force the uP into RESET ...
  2347. */
  2348. return ret;
  2349. }
  2350. /**
  2351. * t4_fw_restart - restart the firmware by taking the uP out of RESET
  2352. * @adap: the adapter
  2353. * @reset: if we want to do a RESET to restart things
  2354. *
  2355. * Restart firmware previously halted by t4_fw_halt(). On successful
  2356. * return the previous PF Master remains as the new PF Master and there
  2357. * is no need to issue a new HELLO command, etc.
  2358. *
  2359. * We do this in two ways:
  2360. *
  2361. * 1. If we're dealing with newer firmware we'll simply want to take
  2362. * the chip's microprocessor out of RESET. This will cause the
  2363. * firmware to start up from its start vector. And then we'll loop
  2364. * until the firmware indicates it's started again (PCIE_FW.HALT
  2365. * reset to 0) or we timeout.
  2366. *
  2367. * 2. If we're dealing with older firmware then we'll need to RESET
  2368. * the chip since older firmware won't recognize the PCIE_FW.HALT
  2369. * flag and automatically RESET itself on startup.
  2370. */
  2371. int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
  2372. {
  2373. if (reset) {
  2374. /*
  2375. * Since we're directing the RESET instead of the firmware
  2376. * doing it automatically, we need to clear the PCIE_FW.HALT
  2377. * bit.
  2378. */
  2379. t4_set_reg_field(adap, PCIE_FW, FW_PCIE_FW_HALT, 0);
  2380. /*
  2381. * If we've been given a valid mailbox, first try to get the
  2382. * firmware to do the RESET. If that works, great and we can
  2383. * return success. Otherwise, if we haven't been given a
  2384. * valid mailbox or the RESET command failed, fall back to
  2385. * hitting the chip with a hammer.
  2386. */
  2387. if (mbox <= FW_PCIE_FW_MASTER_MASK) {
  2388. t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0);
  2389. msleep(100);
  2390. if (t4_fw_reset(adap, mbox,
  2391. PIORST | PIORSTMODE) == 0)
  2392. return 0;
  2393. }
  2394. t4_write_reg(adap, PL_RST, PIORST | PIORSTMODE);
  2395. msleep(2000);
  2396. } else {
  2397. int ms;
  2398. t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0);
  2399. for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
  2400. if (!(t4_read_reg(adap, PCIE_FW) & FW_PCIE_FW_HALT))
  2401. return 0;
  2402. msleep(100);
  2403. ms += 100;
  2404. }
  2405. return -ETIMEDOUT;
  2406. }
  2407. return 0;
  2408. }
  2409. /**
  2410. * t4_fw_upgrade - perform all of the steps necessary to upgrade FW
  2411. * @adap: the adapter
  2412. * @mbox: mailbox to use for the FW RESET command (if desired)
  2413. * @fw_data: the firmware image to write
  2414. * @size: image size
  2415. * @force: force upgrade even if firmware doesn't cooperate
  2416. *
  2417. * Perform all of the steps necessary for upgrading an adapter's
  2418. * firmware image. Normally this requires the cooperation of the
  2419. * existing firmware in order to halt all existing activities
  2420. * but if an invalid mailbox token is passed in we skip that step
  2421. * (though we'll still put the adapter microprocessor into RESET in
  2422. * that case).
  2423. *
  2424. * On successful return the new firmware will have been loaded and
  2425. * the adapter will have been fully RESET losing all previous setup
  2426. * state. On unsuccessful return the adapter may be completely hosed ...
  2427. * positive errno indicates that the adapter is ~probably~ intact, a
  2428. * negative errno indicates that things are looking bad ...
  2429. */
  2430. int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
  2431. const u8 *fw_data, unsigned int size, int force)
  2432. {
  2433. const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
  2434. int reset, ret;
  2435. ret = t4_fw_halt(adap, mbox, force);
  2436. if (ret < 0 && !force)
  2437. return ret;
  2438. ret = t4_load_fw(adap, fw_data, size);
  2439. if (ret < 0)
  2440. return ret;
  2441. /*
  2442. * Older versions of the firmware don't understand the new
  2443. * PCIE_FW.HALT flag and so won't know to perform a RESET when they
  2444. * restart. So for newly loaded older firmware we'll have to do the
  2445. * RESET for it so it starts up on a clean slate. We can tell if
  2446. * the newly loaded firmware will handle this right by checking
  2447. * its header flags to see if it advertises the capability.
  2448. */
  2449. reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
  2450. return t4_fw_restart(adap, mbox, reset);
  2451. }
  2452. /**
  2453. * t4_fw_config_file - setup an adapter via a Configuration File
  2454. * @adap: the adapter
  2455. * @mbox: mailbox to use for the FW command
  2456. * @mtype: the memory type where the Configuration File is located
  2457. * @maddr: the memory address where the Configuration File is located
  2458. * @finiver: return value for CF [fini] version
  2459. * @finicsum: return value for CF [fini] checksum
  2460. * @cfcsum: return value for CF computed checksum
  2461. *
  2462. * Issue a command to get the firmware to process the Configuration
  2463. * File located at the specified mtype/maddress. If the Configuration
  2464. * File is processed successfully and return value pointers are
  2465. * provided, the Configuration File "[fini] section version and
  2466. * checksum values will be returned along with the computed checksum.
  2467. * It's up to the caller to decide how it wants to respond to the
  2468. * checksums not matching but it recommended that a prominant warning
  2469. * be emitted in order to help people rapidly identify changed or
  2470. * corrupted Configuration Files.
  2471. *
  2472. * Also note that it's possible to modify things like "niccaps",
  2473. * "toecaps",etc. between processing the Configuration File and telling
  2474. * the firmware to use the new configuration. Callers which want to
  2475. * do this will need to "hand-roll" their own CAPS_CONFIGS commands for
  2476. * Configuration Files if they want to do this.
  2477. */
  2478. int t4_fw_config_file(struct adapter *adap, unsigned int mbox,
  2479. unsigned int mtype, unsigned int maddr,
  2480. u32 *finiver, u32 *finicsum, u32 *cfcsum)
  2481. {
  2482. struct fw_caps_config_cmd caps_cmd;
  2483. int ret;
  2484. /*
  2485. * Tell the firmware to process the indicated Configuration File.
  2486. * If there are no errors and the caller has provided return value
  2487. * pointers for the [fini] section version, checksum and computed
  2488. * checksum, pass those back to the caller.
  2489. */
  2490. memset(&caps_cmd, 0, sizeof(caps_cmd));
  2491. caps_cmd.op_to_write =
  2492. htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
  2493. FW_CMD_REQUEST |
  2494. FW_CMD_READ);
  2495. caps_cmd.retval_len16 =
  2496. htonl(FW_CAPS_CONFIG_CMD_CFVALID |
  2497. FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
  2498. FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
  2499. FW_LEN16(caps_cmd));
  2500. ret = t4_wr_mbox(adap, mbox, &caps_cmd, sizeof(caps_cmd), &caps_cmd);
  2501. if (ret < 0)
  2502. return ret;
  2503. if (finiver)
  2504. *finiver = ntohl(caps_cmd.finiver);
  2505. if (finicsum)
  2506. *finicsum = ntohl(caps_cmd.finicsum);
  2507. if (cfcsum)
  2508. *cfcsum = ntohl(caps_cmd.cfcsum);
  2509. /*
  2510. * And now tell the firmware to use the configuration we just loaded.
  2511. */
  2512. caps_cmd.op_to_write =
  2513. htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
  2514. FW_CMD_REQUEST |
  2515. FW_CMD_WRITE);
  2516. caps_cmd.retval_len16 = htonl(FW_LEN16(caps_cmd));
  2517. return t4_wr_mbox(adap, mbox, &caps_cmd, sizeof(caps_cmd), NULL);
  2518. }
  2519. /**
  2520. * t4_fixup_host_params - fix up host-dependent parameters
  2521. * @adap: the adapter
  2522. * @page_size: the host's Base Page Size
  2523. * @cache_line_size: the host's Cache Line Size
  2524. *
  2525. * Various registers in T4 contain values which are dependent on the
  2526. * host's Base Page and Cache Line Sizes. This function will fix all of
  2527. * those registers with the appropriate values as passed in ...
  2528. */
  2529. int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
  2530. unsigned int cache_line_size)
  2531. {
  2532. unsigned int page_shift = fls(page_size) - 1;
  2533. unsigned int sge_hps = page_shift - 10;
  2534. unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
  2535. unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
  2536. unsigned int fl_align_log = fls(fl_align) - 1;
  2537. t4_write_reg(adap, SGE_HOST_PAGE_SIZE,
  2538. HOSTPAGESIZEPF0(sge_hps) |
  2539. HOSTPAGESIZEPF1(sge_hps) |
  2540. HOSTPAGESIZEPF2(sge_hps) |
  2541. HOSTPAGESIZEPF3(sge_hps) |
  2542. HOSTPAGESIZEPF4(sge_hps) |
  2543. HOSTPAGESIZEPF5(sge_hps) |
  2544. HOSTPAGESIZEPF6(sge_hps) |
  2545. HOSTPAGESIZEPF7(sge_hps));
  2546. t4_set_reg_field(adap, SGE_CONTROL,
  2547. INGPADBOUNDARY(INGPADBOUNDARY_MASK) |
  2548. EGRSTATUSPAGESIZE_MASK,
  2549. INGPADBOUNDARY(fl_align_log - 5) |
  2550. EGRSTATUSPAGESIZE(stat_len != 64));
  2551. /*
  2552. * Adjust various SGE Free List Host Buffer Sizes.
  2553. *
  2554. * This is something of a crock since we're using fixed indices into
  2555. * the array which are also known by the sge.c code and the T4
  2556. * Firmware Configuration File. We need to come up with a much better
  2557. * approach to managing this array. For now, the first four entries
  2558. * are:
  2559. *
  2560. * 0: Host Page Size
  2561. * 1: 64KB
  2562. * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
  2563. * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
  2564. *
  2565. * For the single-MTU buffers in unpacked mode we need to include
  2566. * space for the SGE Control Packet Shift, 14 byte Ethernet header,
  2567. * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
  2568. * Padding boundry. All of these are accommodated in the Factory
  2569. * Default Firmware Configuration File but we need to adjust it for
  2570. * this host's cache line size.
  2571. */
  2572. t4_write_reg(adap, SGE_FL_BUFFER_SIZE0, page_size);
  2573. t4_write_reg(adap, SGE_FL_BUFFER_SIZE2,
  2574. (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2) + fl_align-1)
  2575. & ~(fl_align-1));
  2576. t4_write_reg(adap, SGE_FL_BUFFER_SIZE3,
  2577. (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3) + fl_align-1)
  2578. & ~(fl_align-1));
  2579. t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(page_shift - 12));
  2580. return 0;
  2581. }
  2582. /**
  2583. * t4_fw_initialize - ask FW to initialize the device
  2584. * @adap: the adapter
  2585. * @mbox: mailbox to use for the FW command
  2586. *
  2587. * Issues a command to FW to partially initialize the device. This
  2588. * performs initialization that generally doesn't depend on user input.
  2589. */
  2590. int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
  2591. {
  2592. struct fw_initialize_cmd c;
  2593. memset(&c, 0, sizeof(c));
  2594. INIT_CMD(c, INITIALIZE, WRITE);
  2595. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2596. }
  2597. /**
  2598. * t4_query_params - query FW or device parameters
  2599. * @adap: the adapter
  2600. * @mbox: mailbox to use for the FW command
  2601. * @pf: the PF
  2602. * @vf: the VF
  2603. * @nparams: the number of parameters
  2604. * @params: the parameter names
  2605. * @val: the parameter values
  2606. *
  2607. * Reads the value of FW or device parameters. Up to 7 parameters can be
  2608. * queried at once.
  2609. */
  2610. int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2611. unsigned int vf, unsigned int nparams, const u32 *params,
  2612. u32 *val)
  2613. {
  2614. int i, ret;
  2615. struct fw_params_cmd c;
  2616. __be32 *p = &c.param[0].mnem;
  2617. if (nparams > 7)
  2618. return -EINVAL;
  2619. memset(&c, 0, sizeof(c));
  2620. c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
  2621. FW_CMD_READ | FW_PARAMS_CMD_PFN(pf) |
  2622. FW_PARAMS_CMD_VFN(vf));
  2623. c.retval_len16 = htonl(FW_LEN16(c));
  2624. for (i = 0; i < nparams; i++, p += 2)
  2625. *p = htonl(*params++);
  2626. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2627. if (ret == 0)
  2628. for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
  2629. *val++ = ntohl(*p);
  2630. return ret;
  2631. }
  2632. /**
  2633. * t4_set_params - sets FW or device parameters
  2634. * @adap: the adapter
  2635. * @mbox: mailbox to use for the FW command
  2636. * @pf: the PF
  2637. * @vf: the VF
  2638. * @nparams: the number of parameters
  2639. * @params: the parameter names
  2640. * @val: the parameter values
  2641. *
  2642. * Sets the value of FW or device parameters. Up to 7 parameters can be
  2643. * specified at once.
  2644. */
  2645. int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2646. unsigned int vf, unsigned int nparams, const u32 *params,
  2647. const u32 *val)
  2648. {
  2649. struct fw_params_cmd c;
  2650. __be32 *p = &c.param[0].mnem;
  2651. if (nparams > 7)
  2652. return -EINVAL;
  2653. memset(&c, 0, sizeof(c));
  2654. c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
  2655. FW_CMD_WRITE | FW_PARAMS_CMD_PFN(pf) |
  2656. FW_PARAMS_CMD_VFN(vf));
  2657. c.retval_len16 = htonl(FW_LEN16(c));
  2658. while (nparams--) {
  2659. *p++ = htonl(*params++);
  2660. *p++ = htonl(*val++);
  2661. }
  2662. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2663. }
  2664. /**
  2665. * t4_cfg_pfvf - configure PF/VF resource limits
  2666. * @adap: the adapter
  2667. * @mbox: mailbox to use for the FW command
  2668. * @pf: the PF being configured
  2669. * @vf: the VF being configured
  2670. * @txq: the max number of egress queues
  2671. * @txq_eth_ctrl: the max number of egress Ethernet or control queues
  2672. * @rxqi: the max number of interrupt-capable ingress queues
  2673. * @rxq: the max number of interruptless ingress queues
  2674. * @tc: the PCI traffic class
  2675. * @vi: the max number of virtual interfaces
  2676. * @cmask: the channel access rights mask for the PF/VF
  2677. * @pmask: the port access rights mask for the PF/VF
  2678. * @nexact: the maximum number of exact MPS filters
  2679. * @rcaps: read capabilities
  2680. * @wxcaps: write/execute capabilities
  2681. *
  2682. * Configures resource limits and capabilities for a physical or virtual
  2683. * function.
  2684. */
  2685. int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2686. unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
  2687. unsigned int rxqi, unsigned int rxq, unsigned int tc,
  2688. unsigned int vi, unsigned int cmask, unsigned int pmask,
  2689. unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
  2690. {
  2691. struct fw_pfvf_cmd c;
  2692. memset(&c, 0, sizeof(c));
  2693. c.op_to_vfn = htonl(FW_CMD_OP(FW_PFVF_CMD) | FW_CMD_REQUEST |
  2694. FW_CMD_WRITE | FW_PFVF_CMD_PFN(pf) |
  2695. FW_PFVF_CMD_VFN(vf));
  2696. c.retval_len16 = htonl(FW_LEN16(c));
  2697. c.niqflint_niq = htonl(FW_PFVF_CMD_NIQFLINT(rxqi) |
  2698. FW_PFVF_CMD_NIQ(rxq));
  2699. c.type_to_neq = htonl(FW_PFVF_CMD_CMASK(cmask) |
  2700. FW_PFVF_CMD_PMASK(pmask) |
  2701. FW_PFVF_CMD_NEQ(txq));
  2702. c.tc_to_nexactf = htonl(FW_PFVF_CMD_TC(tc) | FW_PFVF_CMD_NVI(vi) |
  2703. FW_PFVF_CMD_NEXACTF(nexact));
  2704. c.r_caps_to_nethctrl = htonl(FW_PFVF_CMD_R_CAPS(rcaps) |
  2705. FW_PFVF_CMD_WX_CAPS(wxcaps) |
  2706. FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
  2707. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2708. }
  2709. /**
  2710. * t4_alloc_vi - allocate a virtual interface
  2711. * @adap: the adapter
  2712. * @mbox: mailbox to use for the FW command
  2713. * @port: physical port associated with the VI
  2714. * @pf: the PF owning the VI
  2715. * @vf: the VF owning the VI
  2716. * @nmac: number of MAC addresses needed (1 to 5)
  2717. * @mac: the MAC addresses of the VI
  2718. * @rss_size: size of RSS table slice associated with this VI
  2719. *
  2720. * Allocates a virtual interface for the given physical port. If @mac is
  2721. * not %NULL it contains the MAC addresses of the VI as assigned by FW.
  2722. * @mac should be large enough to hold @nmac Ethernet addresses, they are
  2723. * stored consecutively so the space needed is @nmac * 6 bytes.
  2724. * Returns a negative error number or the non-negative VI id.
  2725. */
  2726. int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
  2727. unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
  2728. unsigned int *rss_size)
  2729. {
  2730. int ret;
  2731. struct fw_vi_cmd c;
  2732. memset(&c, 0, sizeof(c));
  2733. c.op_to_vfn = htonl(FW_CMD_OP(FW_VI_CMD) | FW_CMD_REQUEST |
  2734. FW_CMD_WRITE | FW_CMD_EXEC |
  2735. FW_VI_CMD_PFN(pf) | FW_VI_CMD_VFN(vf));
  2736. c.alloc_to_len16 = htonl(FW_VI_CMD_ALLOC | FW_LEN16(c));
  2737. c.portid_pkd = FW_VI_CMD_PORTID(port);
  2738. c.nmac = nmac - 1;
  2739. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2740. if (ret)
  2741. return ret;
  2742. if (mac) {
  2743. memcpy(mac, c.mac, sizeof(c.mac));
  2744. switch (nmac) {
  2745. case 5:
  2746. memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
  2747. case 4:
  2748. memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
  2749. case 3:
  2750. memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
  2751. case 2:
  2752. memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
  2753. }
  2754. }
  2755. if (rss_size)
  2756. *rss_size = FW_VI_CMD_RSSSIZE_GET(ntohs(c.rsssize_pkd));
  2757. return FW_VI_CMD_VIID_GET(ntohs(c.type_viid));
  2758. }
  2759. /**
  2760. * t4_set_rxmode - set Rx properties of a virtual interface
  2761. * @adap: the adapter
  2762. * @mbox: mailbox to use for the FW command
  2763. * @viid: the VI id
  2764. * @mtu: the new MTU or -1
  2765. * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
  2766. * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
  2767. * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
  2768. * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
  2769. * @sleep_ok: if true we may sleep while awaiting command completion
  2770. *
  2771. * Sets Rx properties of a virtual interface.
  2772. */
  2773. int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2774. int mtu, int promisc, int all_multi, int bcast, int vlanex,
  2775. bool sleep_ok)
  2776. {
  2777. struct fw_vi_rxmode_cmd c;
  2778. /* convert to FW values */
  2779. if (mtu < 0)
  2780. mtu = FW_RXMODE_MTU_NO_CHG;
  2781. if (promisc < 0)
  2782. promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK;
  2783. if (all_multi < 0)
  2784. all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK;
  2785. if (bcast < 0)
  2786. bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK;
  2787. if (vlanex < 0)
  2788. vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK;
  2789. memset(&c, 0, sizeof(c));
  2790. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST |
  2791. FW_CMD_WRITE | FW_VI_RXMODE_CMD_VIID(viid));
  2792. c.retval_len16 = htonl(FW_LEN16(c));
  2793. c.mtu_to_vlanexen = htonl(FW_VI_RXMODE_CMD_MTU(mtu) |
  2794. FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
  2795. FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
  2796. FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
  2797. FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
  2798. return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
  2799. }
  2800. /**
  2801. * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
  2802. * @adap: the adapter
  2803. * @mbox: mailbox to use for the FW command
  2804. * @viid: the VI id
  2805. * @free: if true any existing filters for this VI id are first removed
  2806. * @naddr: the number of MAC addresses to allocate filters for (up to 7)
  2807. * @addr: the MAC address(es)
  2808. * @idx: where to store the index of each allocated filter
  2809. * @hash: pointer to hash address filter bitmap
  2810. * @sleep_ok: call is allowed to sleep
  2811. *
  2812. * Allocates an exact-match filter for each of the supplied addresses and
  2813. * sets it to the corresponding address. If @idx is not %NULL it should
  2814. * have at least @naddr entries, each of which will be set to the index of
  2815. * the filter allocated for the corresponding MAC address. If a filter
  2816. * could not be allocated for an address its index is set to 0xffff.
  2817. * If @hash is not %NULL addresses that fail to allocate an exact filter
  2818. * are hashed and update the hash filter bitmap pointed at by @hash.
  2819. *
  2820. * Returns a negative error number or the number of filters allocated.
  2821. */
  2822. int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
  2823. unsigned int viid, bool free, unsigned int naddr,
  2824. const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
  2825. {
  2826. int i, ret;
  2827. struct fw_vi_mac_cmd c;
  2828. struct fw_vi_mac_exact *p;
  2829. if (naddr > 7)
  2830. return -EINVAL;
  2831. memset(&c, 0, sizeof(c));
  2832. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  2833. FW_CMD_WRITE | (free ? FW_CMD_EXEC : 0) |
  2834. FW_VI_MAC_CMD_VIID(viid));
  2835. c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_FREEMACS(free) |
  2836. FW_CMD_LEN16((naddr + 2) / 2));
  2837. for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
  2838. p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
  2839. FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
  2840. memcpy(p->macaddr, addr[i], sizeof(p->macaddr));
  2841. }
  2842. ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
  2843. if (ret)
  2844. return ret;
  2845. for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
  2846. u16 index = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
  2847. if (idx)
  2848. idx[i] = index >= NEXACT_MAC ? 0xffff : index;
  2849. if (index < NEXACT_MAC)
  2850. ret++;
  2851. else if (hash)
  2852. *hash |= (1ULL << hash_mac_addr(addr[i]));
  2853. }
  2854. return ret;
  2855. }
  2856. /**
  2857. * t4_change_mac - modifies the exact-match filter for a MAC address
  2858. * @adap: the adapter
  2859. * @mbox: mailbox to use for the FW command
  2860. * @viid: the VI id
  2861. * @idx: index of existing filter for old value of MAC address, or -1
  2862. * @addr: the new MAC address value
  2863. * @persist: whether a new MAC allocation should be persistent
  2864. * @add_smt: if true also add the address to the HW SMT
  2865. *
  2866. * Modifies an exact-match filter and sets it to the new MAC address.
  2867. * Note that in general it is not possible to modify the value of a given
  2868. * filter so the generic way to modify an address filter is to free the one
  2869. * being used by the old address value and allocate a new filter for the
  2870. * new address value. @idx can be -1 if the address is a new addition.
  2871. *
  2872. * Returns a negative error number or the index of the filter with the new
  2873. * MAC value.
  2874. */
  2875. int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2876. int idx, const u8 *addr, bool persist, bool add_smt)
  2877. {
  2878. int ret, mode;
  2879. struct fw_vi_mac_cmd c;
  2880. struct fw_vi_mac_exact *p = c.u.exact;
  2881. if (idx < 0) /* new allocation */
  2882. idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
  2883. mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
  2884. memset(&c, 0, sizeof(c));
  2885. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  2886. FW_CMD_WRITE | FW_VI_MAC_CMD_VIID(viid));
  2887. c.freemacs_to_len16 = htonl(FW_CMD_LEN16(1));
  2888. p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
  2889. FW_VI_MAC_CMD_SMAC_RESULT(mode) |
  2890. FW_VI_MAC_CMD_IDX(idx));
  2891. memcpy(p->macaddr, addr, sizeof(p->macaddr));
  2892. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2893. if (ret == 0) {
  2894. ret = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
  2895. if (ret >= NEXACT_MAC)
  2896. ret = -ENOMEM;
  2897. }
  2898. return ret;
  2899. }
  2900. /**
  2901. * t4_set_addr_hash - program the MAC inexact-match hash filter
  2902. * @adap: the adapter
  2903. * @mbox: mailbox to use for the FW command
  2904. * @viid: the VI id
  2905. * @ucast: whether the hash filter should also match unicast addresses
  2906. * @vec: the value to be written to the hash filter
  2907. * @sleep_ok: call is allowed to sleep
  2908. *
  2909. * Sets the 64-bit inexact-match hash filter for a virtual interface.
  2910. */
  2911. int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2912. bool ucast, u64 vec, bool sleep_ok)
  2913. {
  2914. struct fw_vi_mac_cmd c;
  2915. memset(&c, 0, sizeof(c));
  2916. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  2917. FW_CMD_WRITE | FW_VI_ENABLE_CMD_VIID(viid));
  2918. c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_HASHVECEN |
  2919. FW_VI_MAC_CMD_HASHUNIEN(ucast) |
  2920. FW_CMD_LEN16(1));
  2921. c.u.hash.hashvec = cpu_to_be64(vec);
  2922. return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
  2923. }
  2924. /**
  2925. * t4_enable_vi - enable/disable a virtual interface
  2926. * @adap: the adapter
  2927. * @mbox: mailbox to use for the FW command
  2928. * @viid: the VI id
  2929. * @rx_en: 1=enable Rx, 0=disable Rx
  2930. * @tx_en: 1=enable Tx, 0=disable Tx
  2931. *
  2932. * Enables/disables a virtual interface.
  2933. */
  2934. int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2935. bool rx_en, bool tx_en)
  2936. {
  2937. struct fw_vi_enable_cmd c;
  2938. memset(&c, 0, sizeof(c));
  2939. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
  2940. FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
  2941. c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_IEN(rx_en) |
  2942. FW_VI_ENABLE_CMD_EEN(tx_en) | FW_LEN16(c));
  2943. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2944. }
  2945. /**
  2946. * t4_identify_port - identify a VI's port by blinking its LED
  2947. * @adap: the adapter
  2948. * @mbox: mailbox to use for the FW command
  2949. * @viid: the VI id
  2950. * @nblinks: how many times to blink LED at 2.5 Hz
  2951. *
  2952. * Identifies a VI's port by blinking its LED.
  2953. */
  2954. int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2955. unsigned int nblinks)
  2956. {
  2957. struct fw_vi_enable_cmd c;
  2958. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
  2959. FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
  2960. c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
  2961. c.blinkdur = htons(nblinks);
  2962. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2963. }
  2964. /**
  2965. * t4_iq_free - free an ingress queue and its FLs
  2966. * @adap: the adapter
  2967. * @mbox: mailbox to use for the FW command
  2968. * @pf: the PF owning the queues
  2969. * @vf: the VF owning the queues
  2970. * @iqtype: the ingress queue type
  2971. * @iqid: ingress queue id
  2972. * @fl0id: FL0 queue id or 0xffff if no attached FL0
  2973. * @fl1id: FL1 queue id or 0xffff if no attached FL1
  2974. *
  2975. * Frees an ingress queue and its associated FLs, if any.
  2976. */
  2977. int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2978. unsigned int vf, unsigned int iqtype, unsigned int iqid,
  2979. unsigned int fl0id, unsigned int fl1id)
  2980. {
  2981. struct fw_iq_cmd c;
  2982. memset(&c, 0, sizeof(c));
  2983. c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
  2984. FW_CMD_EXEC | FW_IQ_CMD_PFN(pf) |
  2985. FW_IQ_CMD_VFN(vf));
  2986. c.alloc_to_len16 = htonl(FW_IQ_CMD_FREE | FW_LEN16(c));
  2987. c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(iqtype));
  2988. c.iqid = htons(iqid);
  2989. c.fl0id = htons(fl0id);
  2990. c.fl1id = htons(fl1id);
  2991. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2992. }
  2993. /**
  2994. * t4_eth_eq_free - free an Ethernet egress queue
  2995. * @adap: the adapter
  2996. * @mbox: mailbox to use for the FW command
  2997. * @pf: the PF owning the queue
  2998. * @vf: the VF owning the queue
  2999. * @eqid: egress queue id
  3000. *
  3001. * Frees an Ethernet egress queue.
  3002. */
  3003. int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3004. unsigned int vf, unsigned int eqid)
  3005. {
  3006. struct fw_eq_eth_cmd c;
  3007. memset(&c, 0, sizeof(c));
  3008. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST |
  3009. FW_CMD_EXEC | FW_EQ_ETH_CMD_PFN(pf) |
  3010. FW_EQ_ETH_CMD_VFN(vf));
  3011. c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
  3012. c.eqid_pkd = htonl(FW_EQ_ETH_CMD_EQID(eqid));
  3013. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3014. }
  3015. /**
  3016. * t4_ctrl_eq_free - free a control egress queue
  3017. * @adap: the adapter
  3018. * @mbox: mailbox to use for the FW command
  3019. * @pf: the PF owning the queue
  3020. * @vf: the VF owning the queue
  3021. * @eqid: egress queue id
  3022. *
  3023. * Frees a control egress queue.
  3024. */
  3025. int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3026. unsigned int vf, unsigned int eqid)
  3027. {
  3028. struct fw_eq_ctrl_cmd c;
  3029. memset(&c, 0, sizeof(c));
  3030. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST |
  3031. FW_CMD_EXEC | FW_EQ_CTRL_CMD_PFN(pf) |
  3032. FW_EQ_CTRL_CMD_VFN(vf));
  3033. c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
  3034. c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_EQID(eqid));
  3035. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3036. }
  3037. /**
  3038. * t4_ofld_eq_free - free an offload egress queue
  3039. * @adap: the adapter
  3040. * @mbox: mailbox to use for the FW command
  3041. * @pf: the PF owning the queue
  3042. * @vf: the VF owning the queue
  3043. * @eqid: egress queue id
  3044. *
  3045. * Frees a control egress queue.
  3046. */
  3047. int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3048. unsigned int vf, unsigned int eqid)
  3049. {
  3050. struct fw_eq_ofld_cmd c;
  3051. memset(&c, 0, sizeof(c));
  3052. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST |
  3053. FW_CMD_EXEC | FW_EQ_OFLD_CMD_PFN(pf) |
  3054. FW_EQ_OFLD_CMD_VFN(vf));
  3055. c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
  3056. c.eqid_pkd = htonl(FW_EQ_OFLD_CMD_EQID(eqid));
  3057. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3058. }
  3059. /**
  3060. * t4_handle_fw_rpl - process a FW reply message
  3061. * @adap: the adapter
  3062. * @rpl: start of the FW message
  3063. *
  3064. * Processes a FW message, such as link state change messages.
  3065. */
  3066. int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
  3067. {
  3068. u8 opcode = *(const u8 *)rpl;
  3069. if (opcode == FW_PORT_CMD) { /* link/module state change message */
  3070. int speed = 0, fc = 0;
  3071. const struct fw_port_cmd *p = (void *)rpl;
  3072. int chan = FW_PORT_CMD_PORTID_GET(ntohl(p->op_to_portid));
  3073. int port = adap->chan_map[chan];
  3074. struct port_info *pi = adap2pinfo(adap, port);
  3075. struct link_config *lc = &pi->link_cfg;
  3076. u32 stat = ntohl(p->u.info.lstatus_to_modtype);
  3077. int link_ok = (stat & FW_PORT_CMD_LSTATUS) != 0;
  3078. u32 mod = FW_PORT_CMD_MODTYPE_GET(stat);
  3079. if (stat & FW_PORT_CMD_RXPAUSE)
  3080. fc |= PAUSE_RX;
  3081. if (stat & FW_PORT_CMD_TXPAUSE)
  3082. fc |= PAUSE_TX;
  3083. if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
  3084. speed = SPEED_100;
  3085. else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
  3086. speed = SPEED_1000;
  3087. else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
  3088. speed = SPEED_10000;
  3089. if (link_ok != lc->link_ok || speed != lc->speed ||
  3090. fc != lc->fc) { /* something changed */
  3091. lc->link_ok = link_ok;
  3092. lc->speed = speed;
  3093. lc->fc = fc;
  3094. t4_os_link_changed(adap, port, link_ok);
  3095. }
  3096. if (mod != pi->mod_type) {
  3097. pi->mod_type = mod;
  3098. t4_os_portmod_changed(adap, port);
  3099. }
  3100. }
  3101. return 0;
  3102. }
  3103. static void __devinit get_pci_mode(struct adapter *adapter,
  3104. struct pci_params *p)
  3105. {
  3106. u16 val;
  3107. if (pci_is_pcie(adapter->pdev)) {
  3108. pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
  3109. p->speed = val & PCI_EXP_LNKSTA_CLS;
  3110. p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
  3111. }
  3112. }
  3113. /**
  3114. * init_link_config - initialize a link's SW state
  3115. * @lc: structure holding the link state
  3116. * @caps: link capabilities
  3117. *
  3118. * Initializes the SW state maintained for each link, including the link's
  3119. * capabilities and default speed/flow-control/autonegotiation settings.
  3120. */
  3121. static void __devinit init_link_config(struct link_config *lc,
  3122. unsigned int caps)
  3123. {
  3124. lc->supported = caps;
  3125. lc->requested_speed = 0;
  3126. lc->speed = 0;
  3127. lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
  3128. if (lc->supported & FW_PORT_CAP_ANEG) {
  3129. lc->advertising = lc->supported & ADVERT_MASK;
  3130. lc->autoneg = AUTONEG_ENABLE;
  3131. lc->requested_fc |= PAUSE_AUTONEG;
  3132. } else {
  3133. lc->advertising = 0;
  3134. lc->autoneg = AUTONEG_DISABLE;
  3135. }
  3136. }
  3137. int t4_wait_dev_ready(struct adapter *adap)
  3138. {
  3139. if (t4_read_reg(adap, PL_WHOAMI) != 0xffffffff)
  3140. return 0;
  3141. msleep(500);
  3142. return t4_read_reg(adap, PL_WHOAMI) != 0xffffffff ? 0 : -EIO;
  3143. }
  3144. static int __devinit get_flash_params(struct adapter *adap)
  3145. {
  3146. int ret;
  3147. u32 info;
  3148. ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
  3149. if (!ret)
  3150. ret = sf1_read(adap, 3, 0, 1, &info);
  3151. t4_write_reg(adap, SF_OP, 0); /* unlock SF */
  3152. if (ret)
  3153. return ret;
  3154. if ((info & 0xff) != 0x20) /* not a Numonix flash */
  3155. return -EINVAL;
  3156. info >>= 16; /* log2 of size */
  3157. if (info >= 0x14 && info < 0x18)
  3158. adap->params.sf_nsec = 1 << (info - 16);
  3159. else if (info == 0x18)
  3160. adap->params.sf_nsec = 64;
  3161. else
  3162. return -EINVAL;
  3163. adap->params.sf_size = 1 << info;
  3164. adap->params.sf_fw_start =
  3165. t4_read_reg(adap, CIM_BOOT_CFG) & BOOTADDR_MASK;
  3166. return 0;
  3167. }
  3168. /**
  3169. * t4_prep_adapter - prepare SW and HW for operation
  3170. * @adapter: the adapter
  3171. * @reset: if true perform a HW reset
  3172. *
  3173. * Initialize adapter SW state for the various HW modules, set initial
  3174. * values for some adapter tunables, take PHYs out of reset, and
  3175. * initialize the MDIO interface.
  3176. */
  3177. int __devinit t4_prep_adapter(struct adapter *adapter)
  3178. {
  3179. int ret;
  3180. ret = t4_wait_dev_ready(adapter);
  3181. if (ret < 0)
  3182. return ret;
  3183. get_pci_mode(adapter, &adapter->params.pci);
  3184. adapter->params.rev = t4_read_reg(adapter, PL_REV);
  3185. ret = get_flash_params(adapter);
  3186. if (ret < 0) {
  3187. dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
  3188. return ret;
  3189. }
  3190. init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
  3191. /*
  3192. * Default port for debugging in case we can't reach FW.
  3193. */
  3194. adapter->params.nports = 1;
  3195. adapter->params.portvec = 1;
  3196. adapter->params.vpd.cclk = 50000;
  3197. return 0;
  3198. }
  3199. int __devinit t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
  3200. {
  3201. u8 addr[6];
  3202. int ret, i, j = 0;
  3203. struct fw_port_cmd c;
  3204. struct fw_rss_vi_config_cmd rvc;
  3205. memset(&c, 0, sizeof(c));
  3206. memset(&rvc, 0, sizeof(rvc));
  3207. for_each_port(adap, i) {
  3208. unsigned int rss_size;
  3209. struct port_info *p = adap2pinfo(adap, i);
  3210. while ((adap->params.portvec & (1 << j)) == 0)
  3211. j++;
  3212. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) |
  3213. FW_CMD_REQUEST | FW_CMD_READ |
  3214. FW_PORT_CMD_PORTID(j));
  3215. c.action_to_len16 = htonl(
  3216. FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
  3217. FW_LEN16(c));
  3218. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  3219. if (ret)
  3220. return ret;
  3221. ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
  3222. if (ret < 0)
  3223. return ret;
  3224. p->viid = ret;
  3225. p->tx_chan = j;
  3226. p->lport = j;
  3227. p->rss_size = rss_size;
  3228. memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
  3229. memcpy(adap->port[i]->perm_addr, addr, ETH_ALEN);
  3230. adap->port[i]->dev_id = j;
  3231. ret = ntohl(c.u.info.lstatus_to_modtype);
  3232. p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP) ?
  3233. FW_PORT_CMD_MDIOADDR_GET(ret) : -1;
  3234. p->port_type = FW_PORT_CMD_PTYPE_GET(ret);
  3235. p->mod_type = FW_PORT_MOD_TYPE_NA;
  3236. rvc.op_to_viid = htonl(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
  3237. FW_CMD_REQUEST | FW_CMD_READ |
  3238. FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
  3239. rvc.retval_len16 = htonl(FW_LEN16(rvc));
  3240. ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
  3241. if (ret)
  3242. return ret;
  3243. p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);
  3244. init_link_config(&p->link_cfg, ntohs(c.u.info.pcap));
  3245. j++;
  3246. }
  3247. return 0;
  3248. }