ste_dma40.c 74 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971
  1. /*
  2. * Copyright (C) Ericsson AB 2007-2008
  3. * Copyright (C) ST-Ericsson SA 2008-2010
  4. * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
  5. * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  6. * License terms: GNU General Public License (GPL) version 2
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/slab.h>
  10. #include <linux/dmaengine.h>
  11. #include <linux/platform_device.h>
  12. #include <linux/clk.h>
  13. #include <linux/delay.h>
  14. #include <linux/err.h>
  15. #include <plat/ste_dma40.h>
  16. #include "ste_dma40_ll.h"
  17. #define D40_NAME "dma40"
  18. #define D40_PHY_CHAN -1
  19. /* For masking out/in 2 bit channel positions */
  20. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  21. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  22. /* Maximum iterations taken before giving up suspending a channel */
  23. #define D40_SUSPEND_MAX_IT 500
  24. /* Hardware requirement on LCLA alignment */
  25. #define LCLA_ALIGNMENT 0x40000
  26. /* Max number of links per event group */
  27. #define D40_LCLA_LINK_PER_EVENT_GRP 128
  28. #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  29. /* Attempts before giving up to trying to get pages that are aligned */
  30. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  31. /* Bit markings for allocation map */
  32. #define D40_ALLOC_FREE (1 << 31)
  33. #define D40_ALLOC_PHY (1 << 30)
  34. #define D40_ALLOC_LOG_FREE 0
  35. /* Hardware designer of the block */
  36. #define D40_HW_DESIGNER 0x8
  37. /**
  38. * enum 40_command - The different commands and/or statuses.
  39. *
  40. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  41. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  42. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  43. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  44. */
  45. enum d40_command {
  46. D40_DMA_STOP = 0,
  47. D40_DMA_RUN = 1,
  48. D40_DMA_SUSPEND_REQ = 2,
  49. D40_DMA_SUSPENDED = 3
  50. };
  51. /**
  52. * struct d40_lli_pool - Structure for keeping LLIs in memory
  53. *
  54. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  55. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  56. * pre_alloc_lli is used.
  57. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  58. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  59. * one buffer to one buffer.
  60. */
  61. struct d40_lli_pool {
  62. void *base;
  63. int size;
  64. /* Space for dst and src, plus an extra for padding */
  65. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  66. };
  67. /**
  68. * struct d40_desc - A descriptor is one DMA job.
  69. *
  70. * @lli_phy: LLI settings for physical channel. Both src and dst=
  71. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  72. * lli_len equals one.
  73. * @lli_log: Same as above but for logical channels.
  74. * @lli_pool: The pool with two entries pre-allocated.
  75. * @lli_len: Number of llis of current descriptor.
  76. * @lli_current: Number of transfered llis.
  77. * @lcla_alloc: Number of LCLA entries allocated.
  78. * @txd: DMA engine struct. Used for among other things for communication
  79. * during a transfer.
  80. * @node: List entry.
  81. * @is_in_client_list: true if the client owns this descriptor.
  82. * the previous one.
  83. *
  84. * This descriptor is used for both logical and physical transfers.
  85. */
  86. struct d40_desc {
  87. /* LLI physical */
  88. struct d40_phy_lli_bidir lli_phy;
  89. /* LLI logical */
  90. struct d40_log_lli_bidir lli_log;
  91. struct d40_lli_pool lli_pool;
  92. int lli_len;
  93. int lli_current;
  94. int lcla_alloc;
  95. struct dma_async_tx_descriptor txd;
  96. struct list_head node;
  97. bool is_in_client_list;
  98. };
  99. /**
  100. * struct d40_lcla_pool - LCLA pool settings and data.
  101. *
  102. * @base: The virtual address of LCLA. 18 bit aligned.
  103. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  104. * This pointer is only there for clean-up on error.
  105. * @pages: The number of pages needed for all physical channels.
  106. * Only used later for clean-up on error
  107. * @lock: Lock to protect the content in this struct.
  108. * @alloc_map: big map over which LCLA entry is own by which job.
  109. */
  110. struct d40_lcla_pool {
  111. void *base;
  112. void *base_unaligned;
  113. int pages;
  114. spinlock_t lock;
  115. struct d40_desc **alloc_map;
  116. };
  117. /**
  118. * struct d40_phy_res - struct for handling eventlines mapped to physical
  119. * channels.
  120. *
  121. * @lock: A lock protection this entity.
  122. * @num: The physical channel number of this entity.
  123. * @allocated_src: Bit mapped to show which src event line's are mapped to
  124. * this physical channel. Can also be free or physically allocated.
  125. * @allocated_dst: Same as for src but is dst.
  126. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  127. * event line number.
  128. */
  129. struct d40_phy_res {
  130. spinlock_t lock;
  131. int num;
  132. u32 allocated_src;
  133. u32 allocated_dst;
  134. };
  135. struct d40_base;
  136. /**
  137. * struct d40_chan - Struct that describes a channel.
  138. *
  139. * @lock: A spinlock to protect this struct.
  140. * @log_num: The logical number, if any of this channel.
  141. * @completed: Starts with 1, after first interrupt it is set to dma engine's
  142. * current cookie.
  143. * @pending_tx: The number of pending transfers. Used between interrupt handler
  144. * and tasklet.
  145. * @busy: Set to true when transfer is ongoing on this channel.
  146. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  147. * point is NULL, then the channel is not allocated.
  148. * @chan: DMA engine handle.
  149. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  150. * transfer and call client callback.
  151. * @client: Cliented owned descriptor list.
  152. * @active: Active descriptor.
  153. * @queue: Queued jobs.
  154. * @dma_cfg: The client configuration of this dma channel.
  155. * @configured: whether the dma_cfg configuration is valid
  156. * @base: Pointer to the device instance struct.
  157. * @src_def_cfg: Default cfg register setting for src.
  158. * @dst_def_cfg: Default cfg register setting for dst.
  159. * @log_def: Default logical channel settings.
  160. * @lcla: Space for one dst src pair for logical channel transfers.
  161. * @lcpa: Pointer to dst and src lcpa settings.
  162. *
  163. * This struct can either "be" a logical or a physical channel.
  164. */
  165. struct d40_chan {
  166. spinlock_t lock;
  167. int log_num;
  168. /* ID of the most recent completed transfer */
  169. int completed;
  170. int pending_tx;
  171. bool busy;
  172. struct d40_phy_res *phy_chan;
  173. struct dma_chan chan;
  174. struct tasklet_struct tasklet;
  175. struct list_head client;
  176. struct list_head active;
  177. struct list_head queue;
  178. struct stedma40_chan_cfg dma_cfg;
  179. bool configured;
  180. struct d40_base *base;
  181. /* Default register configurations */
  182. u32 src_def_cfg;
  183. u32 dst_def_cfg;
  184. struct d40_def_lcsp log_def;
  185. struct d40_log_lli_full *lcpa;
  186. /* Runtime reconfiguration */
  187. dma_addr_t runtime_addr;
  188. enum dma_data_direction runtime_direction;
  189. };
  190. /**
  191. * struct d40_base - The big global struct, one for each probe'd instance.
  192. *
  193. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  194. * @execmd_lock: Lock for execute command usage since several channels share
  195. * the same physical register.
  196. * @dev: The device structure.
  197. * @virtbase: The virtual base address of the DMA's register.
  198. * @rev: silicon revision detected.
  199. * @clk: Pointer to the DMA clock structure.
  200. * @phy_start: Physical memory start of the DMA registers.
  201. * @phy_size: Size of the DMA register map.
  202. * @irq: The IRQ number.
  203. * @num_phy_chans: The number of physical channels. Read from HW. This
  204. * is the number of available channels for this driver, not counting "Secure
  205. * mode" allocated physical channels.
  206. * @num_log_chans: The number of logical channels. Calculated from
  207. * num_phy_chans.
  208. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  209. * @dma_slave: dma_device channels that can do only do slave transfers.
  210. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  211. * @log_chans: Room for all possible logical channels in system.
  212. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  213. * to log_chans entries.
  214. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  215. * to phy_chans entries.
  216. * @plat_data: Pointer to provided platform_data which is the driver
  217. * configuration.
  218. * @phy_res: Vector containing all physical channels.
  219. * @lcla_pool: lcla pool settings and data.
  220. * @lcpa_base: The virtual mapped address of LCPA.
  221. * @phy_lcpa: The physical address of the LCPA.
  222. * @lcpa_size: The size of the LCPA area.
  223. * @desc_slab: cache for descriptors.
  224. */
  225. struct d40_base {
  226. spinlock_t interrupt_lock;
  227. spinlock_t execmd_lock;
  228. struct device *dev;
  229. void __iomem *virtbase;
  230. u8 rev:4;
  231. struct clk *clk;
  232. phys_addr_t phy_start;
  233. resource_size_t phy_size;
  234. int irq;
  235. int num_phy_chans;
  236. int num_log_chans;
  237. struct dma_device dma_both;
  238. struct dma_device dma_slave;
  239. struct dma_device dma_memcpy;
  240. struct d40_chan *phy_chans;
  241. struct d40_chan *log_chans;
  242. struct d40_chan **lookup_log_chans;
  243. struct d40_chan **lookup_phy_chans;
  244. struct stedma40_platform_data *plat_data;
  245. /* Physical half channels */
  246. struct d40_phy_res *phy_res;
  247. struct d40_lcla_pool lcla_pool;
  248. void *lcpa_base;
  249. dma_addr_t phy_lcpa;
  250. resource_size_t lcpa_size;
  251. struct kmem_cache *desc_slab;
  252. };
  253. /**
  254. * struct d40_interrupt_lookup - lookup table for interrupt handler
  255. *
  256. * @src: Interrupt mask register.
  257. * @clr: Interrupt clear register.
  258. * @is_error: true if this is an error interrupt.
  259. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  260. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  261. */
  262. struct d40_interrupt_lookup {
  263. u32 src;
  264. u32 clr;
  265. bool is_error;
  266. int offset;
  267. };
  268. /**
  269. * struct d40_reg_val - simple lookup struct
  270. *
  271. * @reg: The register.
  272. * @val: The value that belongs to the register in reg.
  273. */
  274. struct d40_reg_val {
  275. unsigned int reg;
  276. unsigned int val;
  277. };
  278. static struct device *chan2dev(struct d40_chan *d40c)
  279. {
  280. return &d40c->chan.dev->device;
  281. }
  282. static bool chan_is_physical(struct d40_chan *chan)
  283. {
  284. return chan->log_num == D40_PHY_CHAN;
  285. }
  286. static bool chan_is_logical(struct d40_chan *chan)
  287. {
  288. return !chan_is_physical(chan);
  289. }
  290. static void __iomem *chan_base(struct d40_chan *chan)
  291. {
  292. return chan->base->virtbase + D40_DREG_PCBASE +
  293. chan->phy_chan->num * D40_DREG_PCDELTA;
  294. }
  295. #define d40_err(dev, format, arg...) \
  296. dev_err(dev, "[%s] " format, __func__, ## arg)
  297. #define chan_err(d40c, format, arg...) \
  298. d40_err(chan2dev(d40c), format, ## arg)
  299. static int d40_pool_lli_alloc(struct d40_desc *d40d,
  300. int lli_len, bool is_log)
  301. {
  302. u32 align;
  303. void *base;
  304. if (is_log)
  305. align = sizeof(struct d40_log_lli);
  306. else
  307. align = sizeof(struct d40_phy_lli);
  308. if (lli_len == 1) {
  309. base = d40d->lli_pool.pre_alloc_lli;
  310. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  311. d40d->lli_pool.base = NULL;
  312. } else {
  313. d40d->lli_pool.size = lli_len * 2 * align;
  314. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  315. d40d->lli_pool.base = base;
  316. if (d40d->lli_pool.base == NULL)
  317. return -ENOMEM;
  318. }
  319. if (is_log) {
  320. d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
  321. align);
  322. d40d->lli_log.dst = d40d->lli_log.src + lli_len;
  323. } else {
  324. d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
  325. align);
  326. d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
  327. }
  328. return 0;
  329. }
  330. static void d40_pool_lli_free(struct d40_desc *d40d)
  331. {
  332. kfree(d40d->lli_pool.base);
  333. d40d->lli_pool.base = NULL;
  334. d40d->lli_pool.size = 0;
  335. d40d->lli_log.src = NULL;
  336. d40d->lli_log.dst = NULL;
  337. d40d->lli_phy.src = NULL;
  338. d40d->lli_phy.dst = NULL;
  339. }
  340. static int d40_lcla_alloc_one(struct d40_chan *d40c,
  341. struct d40_desc *d40d)
  342. {
  343. unsigned long flags;
  344. int i;
  345. int ret = -EINVAL;
  346. int p;
  347. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  348. p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
  349. /*
  350. * Allocate both src and dst at the same time, therefore the half
  351. * start on 1 since 0 can't be used since zero is used as end marker.
  352. */
  353. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  354. if (!d40c->base->lcla_pool.alloc_map[p + i]) {
  355. d40c->base->lcla_pool.alloc_map[p + i] = d40d;
  356. d40d->lcla_alloc++;
  357. ret = i;
  358. break;
  359. }
  360. }
  361. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  362. return ret;
  363. }
  364. static int d40_lcla_free_all(struct d40_chan *d40c,
  365. struct d40_desc *d40d)
  366. {
  367. unsigned long flags;
  368. int i;
  369. int ret = -EINVAL;
  370. if (chan_is_physical(d40c))
  371. return 0;
  372. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  373. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  374. if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  375. D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
  376. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  377. D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
  378. d40d->lcla_alloc--;
  379. if (d40d->lcla_alloc == 0) {
  380. ret = 0;
  381. break;
  382. }
  383. }
  384. }
  385. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  386. return ret;
  387. }
  388. static void d40_desc_remove(struct d40_desc *d40d)
  389. {
  390. list_del(&d40d->node);
  391. }
  392. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  393. {
  394. struct d40_desc *desc = NULL;
  395. if (!list_empty(&d40c->client)) {
  396. struct d40_desc *d;
  397. struct d40_desc *_d;
  398. list_for_each_entry_safe(d, _d, &d40c->client, node)
  399. if (async_tx_test_ack(&d->txd)) {
  400. d40_pool_lli_free(d);
  401. d40_desc_remove(d);
  402. desc = d;
  403. memset(desc, 0, sizeof(*desc));
  404. break;
  405. }
  406. }
  407. if (!desc)
  408. desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
  409. if (desc)
  410. INIT_LIST_HEAD(&desc->node);
  411. return desc;
  412. }
  413. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  414. {
  415. d40_lcla_free_all(d40c, d40d);
  416. kmem_cache_free(d40c->base->desc_slab, d40d);
  417. }
  418. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  419. {
  420. list_add_tail(&desc->node, &d40c->active);
  421. }
  422. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  423. {
  424. int curr_lcla = -EINVAL, next_lcla;
  425. if (chan_is_physical(d40c)) {
  426. d40_phy_lli_write(d40c->base->virtbase,
  427. d40c->phy_chan->num,
  428. d40d->lli_phy.dst,
  429. d40d->lli_phy.src);
  430. d40d->lli_current = d40d->lli_len;
  431. } else {
  432. if ((d40d->lli_len - d40d->lli_current) > 1)
  433. curr_lcla = d40_lcla_alloc_one(d40c, d40d);
  434. d40_log_lli_lcpa_write(d40c->lcpa,
  435. &d40d->lli_log.dst[d40d->lli_current],
  436. &d40d->lli_log.src[d40d->lli_current],
  437. curr_lcla);
  438. d40d->lli_current++;
  439. for (; d40d->lli_current < d40d->lli_len; d40d->lli_current++) {
  440. struct d40_log_lli *lcla;
  441. if (d40d->lli_current + 1 < d40d->lli_len)
  442. next_lcla = d40_lcla_alloc_one(d40c, d40d);
  443. else
  444. next_lcla = -EINVAL;
  445. lcla = d40c->base->lcla_pool.base +
  446. d40c->phy_chan->num * 1024 +
  447. 8 * curr_lcla * 2;
  448. d40_log_lli_lcla_write(lcla,
  449. &d40d->lli_log.dst[d40d->lli_current],
  450. &d40d->lli_log.src[d40d->lli_current],
  451. next_lcla);
  452. (void) dma_map_single(d40c->base->dev, lcla,
  453. 2 * sizeof(struct d40_log_lli),
  454. DMA_TO_DEVICE);
  455. curr_lcla = next_lcla;
  456. if (curr_lcla == -EINVAL) {
  457. d40d->lli_current++;
  458. break;
  459. }
  460. }
  461. }
  462. }
  463. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  464. {
  465. struct d40_desc *d;
  466. if (list_empty(&d40c->active))
  467. return NULL;
  468. d = list_first_entry(&d40c->active,
  469. struct d40_desc,
  470. node);
  471. return d;
  472. }
  473. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  474. {
  475. list_add_tail(&desc->node, &d40c->queue);
  476. }
  477. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  478. {
  479. struct d40_desc *d;
  480. if (list_empty(&d40c->queue))
  481. return NULL;
  482. d = list_first_entry(&d40c->queue,
  483. struct d40_desc,
  484. node);
  485. return d;
  486. }
  487. static int d40_psize_2_burst_size(bool is_log, int psize)
  488. {
  489. if (is_log) {
  490. if (psize == STEDMA40_PSIZE_LOG_1)
  491. return 1;
  492. } else {
  493. if (psize == STEDMA40_PSIZE_PHY_1)
  494. return 1;
  495. }
  496. return 2 << psize;
  497. }
  498. /*
  499. * The dma only supports transmitting packages up to
  500. * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
  501. * dma elements required to send the entire sg list
  502. */
  503. static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
  504. {
  505. int dmalen;
  506. u32 max_w = max(data_width1, data_width2);
  507. u32 min_w = min(data_width1, data_width2);
  508. u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
  509. if (seg_max > STEDMA40_MAX_SEG_SIZE)
  510. seg_max -= (1 << max_w);
  511. if (!IS_ALIGNED(size, 1 << max_w))
  512. return -EINVAL;
  513. if (size <= seg_max)
  514. dmalen = 1;
  515. else {
  516. dmalen = size / seg_max;
  517. if (dmalen * seg_max < size)
  518. dmalen++;
  519. }
  520. return dmalen;
  521. }
  522. static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
  523. u32 data_width1, u32 data_width2)
  524. {
  525. struct scatterlist *sg;
  526. int i;
  527. int len = 0;
  528. int ret;
  529. for_each_sg(sgl, sg, sg_len, i) {
  530. ret = d40_size_2_dmalen(sg_dma_len(sg),
  531. data_width1, data_width2);
  532. if (ret < 0)
  533. return ret;
  534. len += ret;
  535. }
  536. return len;
  537. }
  538. /* Support functions for logical channels */
  539. static int d40_channel_execute_command(struct d40_chan *d40c,
  540. enum d40_command command)
  541. {
  542. u32 status;
  543. int i;
  544. void __iomem *active_reg;
  545. int ret = 0;
  546. unsigned long flags;
  547. u32 wmask;
  548. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  549. if (d40c->phy_chan->num % 2 == 0)
  550. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  551. else
  552. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  553. if (command == D40_DMA_SUSPEND_REQ) {
  554. status = (readl(active_reg) &
  555. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  556. D40_CHAN_POS(d40c->phy_chan->num);
  557. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  558. goto done;
  559. }
  560. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  561. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  562. active_reg);
  563. if (command == D40_DMA_SUSPEND_REQ) {
  564. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  565. status = (readl(active_reg) &
  566. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  567. D40_CHAN_POS(d40c->phy_chan->num);
  568. cpu_relax();
  569. /*
  570. * Reduce the number of bus accesses while
  571. * waiting for the DMA to suspend.
  572. */
  573. udelay(3);
  574. if (status == D40_DMA_STOP ||
  575. status == D40_DMA_SUSPENDED)
  576. break;
  577. }
  578. if (i == D40_SUSPEND_MAX_IT) {
  579. chan_err(d40c,
  580. "unable to suspend the chl %d (log: %d) status %x\n",
  581. d40c->phy_chan->num, d40c->log_num,
  582. status);
  583. dump_stack();
  584. ret = -EBUSY;
  585. }
  586. }
  587. done:
  588. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  589. return ret;
  590. }
  591. static void d40_term_all(struct d40_chan *d40c)
  592. {
  593. struct d40_desc *d40d;
  594. /* Release active descriptors */
  595. while ((d40d = d40_first_active_get(d40c))) {
  596. d40_desc_remove(d40d);
  597. d40_desc_free(d40c, d40d);
  598. }
  599. /* Release queued descriptors waiting for transfer */
  600. while ((d40d = d40_first_queued(d40c))) {
  601. d40_desc_remove(d40d);
  602. d40_desc_free(d40c, d40d);
  603. }
  604. d40c->pending_tx = 0;
  605. d40c->busy = false;
  606. }
  607. static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
  608. u32 event, int reg)
  609. {
  610. void __iomem *addr = chan_base(d40c) + reg;
  611. int tries;
  612. if (!enable) {
  613. writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  614. | ~D40_EVENTLINE_MASK(event), addr);
  615. return;
  616. }
  617. /*
  618. * The hardware sometimes doesn't register the enable when src and dst
  619. * event lines are active on the same logical channel. Retry to ensure
  620. * it does. Usually only one retry is sufficient.
  621. */
  622. tries = 100;
  623. while (--tries) {
  624. writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  625. | ~D40_EVENTLINE_MASK(event), addr);
  626. if (readl(addr) & D40_EVENTLINE_MASK(event))
  627. break;
  628. }
  629. if (tries != 99)
  630. dev_dbg(chan2dev(d40c),
  631. "[%s] workaround enable S%cLNK (%d tries)\n",
  632. __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
  633. 100 - tries);
  634. WARN_ON(!tries);
  635. }
  636. static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
  637. {
  638. unsigned long flags;
  639. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  640. /* Enable event line connected to device (or memcpy) */
  641. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  642. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
  643. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  644. __d40_config_set_event(d40c, do_enable, event,
  645. D40_CHAN_REG_SSLNK);
  646. }
  647. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
  648. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  649. __d40_config_set_event(d40c, do_enable, event,
  650. D40_CHAN_REG_SDLNK);
  651. }
  652. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  653. }
  654. static u32 d40_chan_has_events(struct d40_chan *d40c)
  655. {
  656. void __iomem *chanbase = chan_base(d40c);
  657. u32 val;
  658. val = readl(chanbase + D40_CHAN_REG_SSLNK);
  659. val |= readl(chanbase + D40_CHAN_REG_SDLNK);
  660. return val;
  661. }
  662. static u32 d40_get_prmo(struct d40_chan *d40c)
  663. {
  664. static const unsigned int phy_map[] = {
  665. [STEDMA40_PCHAN_BASIC_MODE]
  666. = D40_DREG_PRMO_PCHAN_BASIC,
  667. [STEDMA40_PCHAN_MODULO_MODE]
  668. = D40_DREG_PRMO_PCHAN_MODULO,
  669. [STEDMA40_PCHAN_DOUBLE_DST_MODE]
  670. = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
  671. };
  672. static const unsigned int log_map[] = {
  673. [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
  674. = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
  675. [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
  676. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
  677. [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
  678. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
  679. };
  680. if (chan_is_physical(d40c))
  681. return phy_map[d40c->dma_cfg.mode_opt];
  682. else
  683. return log_map[d40c->dma_cfg.mode_opt];
  684. }
  685. static void d40_config_write(struct d40_chan *d40c)
  686. {
  687. u32 addr_base;
  688. u32 var;
  689. /* Odd addresses are even addresses + 4 */
  690. addr_base = (d40c->phy_chan->num % 2) * 4;
  691. /* Setup channel mode to logical or physical */
  692. var = ((u32)(chan_is_logical(d40c)) + 1) <<
  693. D40_CHAN_POS(d40c->phy_chan->num);
  694. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  695. /* Setup operational mode option register */
  696. var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
  697. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  698. if (chan_is_logical(d40c)) {
  699. int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
  700. & D40_SREG_ELEM_LOG_LIDX_MASK;
  701. void __iomem *chanbase = chan_base(d40c);
  702. /* Set default config for CFG reg */
  703. writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
  704. writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
  705. /* Set LIDX for lcla */
  706. writel(lidx, chanbase + D40_CHAN_REG_SSELT);
  707. writel(lidx, chanbase + D40_CHAN_REG_SDELT);
  708. }
  709. }
  710. static u32 d40_residue(struct d40_chan *d40c)
  711. {
  712. u32 num_elt;
  713. if (chan_is_logical(d40c))
  714. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  715. >> D40_MEM_LCSP2_ECNT_POS;
  716. else {
  717. u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
  718. num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
  719. >> D40_SREG_ELEM_PHY_ECNT_POS;
  720. }
  721. return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
  722. }
  723. static bool d40_tx_is_linked(struct d40_chan *d40c)
  724. {
  725. bool is_link;
  726. if (chan_is_logical(d40c))
  727. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  728. else
  729. is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
  730. & D40_SREG_LNK_PHYS_LNK_MASK;
  731. return is_link;
  732. }
  733. static int d40_pause(struct dma_chan *chan)
  734. {
  735. struct d40_chan *d40c =
  736. container_of(chan, struct d40_chan, chan);
  737. int res = 0;
  738. unsigned long flags;
  739. if (!d40c->busy)
  740. return 0;
  741. spin_lock_irqsave(&d40c->lock, flags);
  742. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  743. if (res == 0) {
  744. if (chan_is_logical(d40c)) {
  745. d40_config_set_event(d40c, false);
  746. /* Resume the other logical channels if any */
  747. if (d40_chan_has_events(d40c))
  748. res = d40_channel_execute_command(d40c,
  749. D40_DMA_RUN);
  750. }
  751. }
  752. spin_unlock_irqrestore(&d40c->lock, flags);
  753. return res;
  754. }
  755. static int d40_resume(struct dma_chan *chan)
  756. {
  757. struct d40_chan *d40c =
  758. container_of(chan, struct d40_chan, chan);
  759. int res = 0;
  760. unsigned long flags;
  761. if (!d40c->busy)
  762. return 0;
  763. spin_lock_irqsave(&d40c->lock, flags);
  764. if (d40c->base->rev == 0)
  765. if (chan_is_logical(d40c)) {
  766. res = d40_channel_execute_command(d40c,
  767. D40_DMA_SUSPEND_REQ);
  768. goto no_suspend;
  769. }
  770. /* If bytes left to transfer or linked tx resume job */
  771. if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
  772. if (chan_is_logical(d40c))
  773. d40_config_set_event(d40c, true);
  774. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  775. }
  776. no_suspend:
  777. spin_unlock_irqrestore(&d40c->lock, flags);
  778. return res;
  779. }
  780. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  781. {
  782. struct d40_chan *d40c = container_of(tx->chan,
  783. struct d40_chan,
  784. chan);
  785. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  786. unsigned long flags;
  787. spin_lock_irqsave(&d40c->lock, flags);
  788. d40c->chan.cookie++;
  789. if (d40c->chan.cookie < 0)
  790. d40c->chan.cookie = 1;
  791. d40d->txd.cookie = d40c->chan.cookie;
  792. d40_desc_queue(d40c, d40d);
  793. spin_unlock_irqrestore(&d40c->lock, flags);
  794. return tx->cookie;
  795. }
  796. static int d40_start(struct d40_chan *d40c)
  797. {
  798. if (d40c->base->rev == 0) {
  799. int err;
  800. if (chan_is_logical(d40c)) {
  801. err = d40_channel_execute_command(d40c,
  802. D40_DMA_SUSPEND_REQ);
  803. if (err)
  804. return err;
  805. }
  806. }
  807. if (chan_is_logical(d40c))
  808. d40_config_set_event(d40c, true);
  809. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  810. }
  811. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  812. {
  813. struct d40_desc *d40d;
  814. int err;
  815. /* Start queued jobs, if any */
  816. d40d = d40_first_queued(d40c);
  817. if (d40d != NULL) {
  818. d40c->busy = true;
  819. /* Remove from queue */
  820. d40_desc_remove(d40d);
  821. /* Add to active queue */
  822. d40_desc_submit(d40c, d40d);
  823. /* Initiate DMA job */
  824. d40_desc_load(d40c, d40d);
  825. /* Start dma job */
  826. err = d40_start(d40c);
  827. if (err)
  828. return NULL;
  829. }
  830. return d40d;
  831. }
  832. /* called from interrupt context */
  833. static void dma_tc_handle(struct d40_chan *d40c)
  834. {
  835. struct d40_desc *d40d;
  836. /* Get first active entry from list */
  837. d40d = d40_first_active_get(d40c);
  838. if (d40d == NULL)
  839. return;
  840. d40_lcla_free_all(d40c, d40d);
  841. if (d40d->lli_current < d40d->lli_len) {
  842. d40_desc_load(d40c, d40d);
  843. /* Start dma job */
  844. (void) d40_start(d40c);
  845. return;
  846. }
  847. if (d40_queue_start(d40c) == NULL)
  848. d40c->busy = false;
  849. d40c->pending_tx++;
  850. tasklet_schedule(&d40c->tasklet);
  851. }
  852. static void dma_tasklet(unsigned long data)
  853. {
  854. struct d40_chan *d40c = (struct d40_chan *) data;
  855. struct d40_desc *d40d;
  856. unsigned long flags;
  857. dma_async_tx_callback callback;
  858. void *callback_param;
  859. spin_lock_irqsave(&d40c->lock, flags);
  860. /* Get first active entry from list */
  861. d40d = d40_first_active_get(d40c);
  862. if (d40d == NULL)
  863. goto err;
  864. d40c->completed = d40d->txd.cookie;
  865. /*
  866. * If terminating a channel pending_tx is set to zero.
  867. * This prevents any finished active jobs to return to the client.
  868. */
  869. if (d40c->pending_tx == 0) {
  870. spin_unlock_irqrestore(&d40c->lock, flags);
  871. return;
  872. }
  873. /* Callback to client */
  874. callback = d40d->txd.callback;
  875. callback_param = d40d->txd.callback_param;
  876. if (async_tx_test_ack(&d40d->txd)) {
  877. d40_pool_lli_free(d40d);
  878. d40_desc_remove(d40d);
  879. d40_desc_free(d40c, d40d);
  880. } else {
  881. if (!d40d->is_in_client_list) {
  882. d40_desc_remove(d40d);
  883. d40_lcla_free_all(d40c, d40d);
  884. list_add_tail(&d40d->node, &d40c->client);
  885. d40d->is_in_client_list = true;
  886. }
  887. }
  888. d40c->pending_tx--;
  889. if (d40c->pending_tx)
  890. tasklet_schedule(&d40c->tasklet);
  891. spin_unlock_irqrestore(&d40c->lock, flags);
  892. if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
  893. callback(callback_param);
  894. return;
  895. err:
  896. /* Rescue manouver if receiving double interrupts */
  897. if (d40c->pending_tx > 0)
  898. d40c->pending_tx--;
  899. spin_unlock_irqrestore(&d40c->lock, flags);
  900. }
  901. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  902. {
  903. static const struct d40_interrupt_lookup il[] = {
  904. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  905. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  906. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  907. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  908. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  909. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  910. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  911. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  912. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  913. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  914. };
  915. int i;
  916. u32 regs[ARRAY_SIZE(il)];
  917. u32 idx;
  918. u32 row;
  919. long chan = -1;
  920. struct d40_chan *d40c;
  921. unsigned long flags;
  922. struct d40_base *base = data;
  923. spin_lock_irqsave(&base->interrupt_lock, flags);
  924. /* Read interrupt status of both logical and physical channels */
  925. for (i = 0; i < ARRAY_SIZE(il); i++)
  926. regs[i] = readl(base->virtbase + il[i].src);
  927. for (;;) {
  928. chan = find_next_bit((unsigned long *)regs,
  929. BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
  930. /* No more set bits found? */
  931. if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
  932. break;
  933. row = chan / BITS_PER_LONG;
  934. idx = chan & (BITS_PER_LONG - 1);
  935. /* ACK interrupt */
  936. writel(1 << idx, base->virtbase + il[row].clr);
  937. if (il[row].offset == D40_PHY_CHAN)
  938. d40c = base->lookup_phy_chans[idx];
  939. else
  940. d40c = base->lookup_log_chans[il[row].offset + idx];
  941. spin_lock(&d40c->lock);
  942. if (!il[row].is_error)
  943. dma_tc_handle(d40c);
  944. else
  945. d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
  946. chan, il[row].offset, idx);
  947. spin_unlock(&d40c->lock);
  948. }
  949. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  950. return IRQ_HANDLED;
  951. }
  952. static int d40_validate_conf(struct d40_chan *d40c,
  953. struct stedma40_chan_cfg *conf)
  954. {
  955. int res = 0;
  956. u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
  957. u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
  958. bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
  959. if (!conf->dir) {
  960. chan_err(d40c, "Invalid direction.\n");
  961. res = -EINVAL;
  962. }
  963. if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
  964. d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
  965. d40c->runtime_addr == 0) {
  966. chan_err(d40c, "Invalid TX channel address (%d)\n",
  967. conf->dst_dev_type);
  968. res = -EINVAL;
  969. }
  970. if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
  971. d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
  972. d40c->runtime_addr == 0) {
  973. chan_err(d40c, "Invalid RX channel address (%d)\n",
  974. conf->src_dev_type);
  975. res = -EINVAL;
  976. }
  977. if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
  978. dst_event_group == STEDMA40_DEV_DST_MEMORY) {
  979. chan_err(d40c, "Invalid dst\n");
  980. res = -EINVAL;
  981. }
  982. if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
  983. src_event_group == STEDMA40_DEV_SRC_MEMORY) {
  984. chan_err(d40c, "Invalid src\n");
  985. res = -EINVAL;
  986. }
  987. if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
  988. dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
  989. chan_err(d40c, "No event line\n");
  990. res = -EINVAL;
  991. }
  992. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
  993. (src_event_group != dst_event_group)) {
  994. chan_err(d40c, "Invalid event group\n");
  995. res = -EINVAL;
  996. }
  997. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
  998. /*
  999. * DMAC HW supports it. Will be added to this driver,
  1000. * in case any dma client requires it.
  1001. */
  1002. chan_err(d40c, "periph to periph not supported\n");
  1003. res = -EINVAL;
  1004. }
  1005. if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
  1006. (1 << conf->src_info.data_width) !=
  1007. d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
  1008. (1 << conf->dst_info.data_width)) {
  1009. /*
  1010. * The DMAC hardware only supports
  1011. * src (burst x width) == dst (burst x width)
  1012. */
  1013. chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
  1014. res = -EINVAL;
  1015. }
  1016. return res;
  1017. }
  1018. static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
  1019. int log_event_line, bool is_log)
  1020. {
  1021. unsigned long flags;
  1022. spin_lock_irqsave(&phy->lock, flags);
  1023. if (!is_log) {
  1024. /* Physical interrupts are masked per physical full channel */
  1025. if (phy->allocated_src == D40_ALLOC_FREE &&
  1026. phy->allocated_dst == D40_ALLOC_FREE) {
  1027. phy->allocated_dst = D40_ALLOC_PHY;
  1028. phy->allocated_src = D40_ALLOC_PHY;
  1029. goto found;
  1030. } else
  1031. goto not_found;
  1032. }
  1033. /* Logical channel */
  1034. if (is_src) {
  1035. if (phy->allocated_src == D40_ALLOC_PHY)
  1036. goto not_found;
  1037. if (phy->allocated_src == D40_ALLOC_FREE)
  1038. phy->allocated_src = D40_ALLOC_LOG_FREE;
  1039. if (!(phy->allocated_src & (1 << log_event_line))) {
  1040. phy->allocated_src |= 1 << log_event_line;
  1041. goto found;
  1042. } else
  1043. goto not_found;
  1044. } else {
  1045. if (phy->allocated_dst == D40_ALLOC_PHY)
  1046. goto not_found;
  1047. if (phy->allocated_dst == D40_ALLOC_FREE)
  1048. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  1049. if (!(phy->allocated_dst & (1 << log_event_line))) {
  1050. phy->allocated_dst |= 1 << log_event_line;
  1051. goto found;
  1052. } else
  1053. goto not_found;
  1054. }
  1055. not_found:
  1056. spin_unlock_irqrestore(&phy->lock, flags);
  1057. return false;
  1058. found:
  1059. spin_unlock_irqrestore(&phy->lock, flags);
  1060. return true;
  1061. }
  1062. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  1063. int log_event_line)
  1064. {
  1065. unsigned long flags;
  1066. bool is_free = false;
  1067. spin_lock_irqsave(&phy->lock, flags);
  1068. if (!log_event_line) {
  1069. phy->allocated_dst = D40_ALLOC_FREE;
  1070. phy->allocated_src = D40_ALLOC_FREE;
  1071. is_free = true;
  1072. goto out;
  1073. }
  1074. /* Logical channel */
  1075. if (is_src) {
  1076. phy->allocated_src &= ~(1 << log_event_line);
  1077. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  1078. phy->allocated_src = D40_ALLOC_FREE;
  1079. } else {
  1080. phy->allocated_dst &= ~(1 << log_event_line);
  1081. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  1082. phy->allocated_dst = D40_ALLOC_FREE;
  1083. }
  1084. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  1085. D40_ALLOC_FREE);
  1086. out:
  1087. spin_unlock_irqrestore(&phy->lock, flags);
  1088. return is_free;
  1089. }
  1090. static int d40_allocate_channel(struct d40_chan *d40c)
  1091. {
  1092. int dev_type;
  1093. int event_group;
  1094. int event_line;
  1095. struct d40_phy_res *phys;
  1096. int i;
  1097. int j;
  1098. int log_num;
  1099. bool is_src;
  1100. bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
  1101. phys = d40c->base->phy_res;
  1102. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1103. dev_type = d40c->dma_cfg.src_dev_type;
  1104. log_num = 2 * dev_type;
  1105. is_src = true;
  1106. } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1107. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1108. /* dst event lines are used for logical memcpy */
  1109. dev_type = d40c->dma_cfg.dst_dev_type;
  1110. log_num = 2 * dev_type + 1;
  1111. is_src = false;
  1112. } else
  1113. return -EINVAL;
  1114. event_group = D40_TYPE_TO_GROUP(dev_type);
  1115. event_line = D40_TYPE_TO_EVENT(dev_type);
  1116. if (!is_log) {
  1117. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1118. /* Find physical half channel */
  1119. for (i = 0; i < d40c->base->num_phy_chans; i++) {
  1120. if (d40_alloc_mask_set(&phys[i], is_src,
  1121. 0, is_log))
  1122. goto found_phy;
  1123. }
  1124. } else
  1125. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1126. int phy_num = j + event_group * 2;
  1127. for (i = phy_num; i < phy_num + 2; i++) {
  1128. if (d40_alloc_mask_set(&phys[i],
  1129. is_src,
  1130. 0,
  1131. is_log))
  1132. goto found_phy;
  1133. }
  1134. }
  1135. return -EINVAL;
  1136. found_phy:
  1137. d40c->phy_chan = &phys[i];
  1138. d40c->log_num = D40_PHY_CHAN;
  1139. goto out;
  1140. }
  1141. if (dev_type == -1)
  1142. return -EINVAL;
  1143. /* Find logical channel */
  1144. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1145. int phy_num = j + event_group * 2;
  1146. /*
  1147. * Spread logical channels across all available physical rather
  1148. * than pack every logical channel at the first available phy
  1149. * channels.
  1150. */
  1151. if (is_src) {
  1152. for (i = phy_num; i < phy_num + 2; i++) {
  1153. if (d40_alloc_mask_set(&phys[i], is_src,
  1154. event_line, is_log))
  1155. goto found_log;
  1156. }
  1157. } else {
  1158. for (i = phy_num + 1; i >= phy_num; i--) {
  1159. if (d40_alloc_mask_set(&phys[i], is_src,
  1160. event_line, is_log))
  1161. goto found_log;
  1162. }
  1163. }
  1164. }
  1165. return -EINVAL;
  1166. found_log:
  1167. d40c->phy_chan = &phys[i];
  1168. d40c->log_num = log_num;
  1169. out:
  1170. if (is_log)
  1171. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1172. else
  1173. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1174. return 0;
  1175. }
  1176. static int d40_config_memcpy(struct d40_chan *d40c)
  1177. {
  1178. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1179. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1180. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
  1181. d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
  1182. d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
  1183. memcpy[d40c->chan.chan_id];
  1184. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1185. dma_has_cap(DMA_SLAVE, cap)) {
  1186. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
  1187. } else {
  1188. chan_err(d40c, "No memcpy\n");
  1189. return -EINVAL;
  1190. }
  1191. return 0;
  1192. }
  1193. static int d40_free_dma(struct d40_chan *d40c)
  1194. {
  1195. int res = 0;
  1196. u32 event;
  1197. struct d40_phy_res *phy = d40c->phy_chan;
  1198. bool is_src;
  1199. struct d40_desc *d;
  1200. struct d40_desc *_d;
  1201. /* Terminate all queued and active transfers */
  1202. d40_term_all(d40c);
  1203. /* Release client owned descriptors */
  1204. if (!list_empty(&d40c->client))
  1205. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  1206. d40_pool_lli_free(d);
  1207. d40_desc_remove(d);
  1208. d40_desc_free(d40c, d);
  1209. }
  1210. if (phy == NULL) {
  1211. chan_err(d40c, "phy == null\n");
  1212. return -EINVAL;
  1213. }
  1214. if (phy->allocated_src == D40_ALLOC_FREE &&
  1215. phy->allocated_dst == D40_ALLOC_FREE) {
  1216. chan_err(d40c, "channel already free\n");
  1217. return -EINVAL;
  1218. }
  1219. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1220. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1221. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1222. is_src = false;
  1223. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1224. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1225. is_src = true;
  1226. } else {
  1227. chan_err(d40c, "Unknown direction\n");
  1228. return -EINVAL;
  1229. }
  1230. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1231. if (res) {
  1232. chan_err(d40c, "suspend failed\n");
  1233. return res;
  1234. }
  1235. if (chan_is_logical(d40c)) {
  1236. /* Release logical channel, deactivate the event line */
  1237. d40_config_set_event(d40c, false);
  1238. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1239. /*
  1240. * Check if there are more logical allocation
  1241. * on this phy channel.
  1242. */
  1243. if (!d40_alloc_mask_free(phy, is_src, event)) {
  1244. /* Resume the other logical channels if any */
  1245. if (d40_chan_has_events(d40c)) {
  1246. res = d40_channel_execute_command(d40c,
  1247. D40_DMA_RUN);
  1248. if (res) {
  1249. chan_err(d40c,
  1250. "Executing RUN command\n");
  1251. return res;
  1252. }
  1253. }
  1254. return 0;
  1255. }
  1256. } else {
  1257. (void) d40_alloc_mask_free(phy, is_src, 0);
  1258. }
  1259. /* Release physical channel */
  1260. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1261. if (res) {
  1262. chan_err(d40c, "Failed to stop channel\n");
  1263. return res;
  1264. }
  1265. d40c->phy_chan = NULL;
  1266. d40c->configured = false;
  1267. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1268. return 0;
  1269. }
  1270. static bool d40_is_paused(struct d40_chan *d40c)
  1271. {
  1272. void __iomem *chanbase = chan_base(d40c);
  1273. bool is_paused = false;
  1274. unsigned long flags;
  1275. void __iomem *active_reg;
  1276. u32 status;
  1277. u32 event;
  1278. spin_lock_irqsave(&d40c->lock, flags);
  1279. if (chan_is_physical(d40c)) {
  1280. if (d40c->phy_chan->num % 2 == 0)
  1281. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1282. else
  1283. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1284. status = (readl(active_reg) &
  1285. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1286. D40_CHAN_POS(d40c->phy_chan->num);
  1287. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1288. is_paused = true;
  1289. goto _exit;
  1290. }
  1291. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1292. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1293. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1294. status = readl(chanbase + D40_CHAN_REG_SDLNK);
  1295. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1296. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1297. status = readl(chanbase + D40_CHAN_REG_SSLNK);
  1298. } else {
  1299. chan_err(d40c, "Unknown direction\n");
  1300. goto _exit;
  1301. }
  1302. status = (status & D40_EVENTLINE_MASK(event)) >>
  1303. D40_EVENTLINE_POS(event);
  1304. if (status != D40_DMA_RUN)
  1305. is_paused = true;
  1306. _exit:
  1307. spin_unlock_irqrestore(&d40c->lock, flags);
  1308. return is_paused;
  1309. }
  1310. static u32 stedma40_residue(struct dma_chan *chan)
  1311. {
  1312. struct d40_chan *d40c =
  1313. container_of(chan, struct d40_chan, chan);
  1314. u32 bytes_left;
  1315. unsigned long flags;
  1316. spin_lock_irqsave(&d40c->lock, flags);
  1317. bytes_left = d40_residue(d40c);
  1318. spin_unlock_irqrestore(&d40c->lock, flags);
  1319. return bytes_left;
  1320. }
  1321. struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
  1322. struct scatterlist *sgl_dst,
  1323. struct scatterlist *sgl_src,
  1324. unsigned int sgl_len,
  1325. unsigned long dma_flags)
  1326. {
  1327. int res;
  1328. struct d40_desc *d40d;
  1329. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1330. chan);
  1331. unsigned long flags;
  1332. if (d40c->phy_chan == NULL) {
  1333. chan_err(d40c, "Unallocated channel.\n");
  1334. return ERR_PTR(-EINVAL);
  1335. }
  1336. spin_lock_irqsave(&d40c->lock, flags);
  1337. d40d = d40_desc_get(d40c);
  1338. if (d40d == NULL)
  1339. goto err;
  1340. d40d->lli_len = d40_sg_2_dmalen(sgl_dst, sgl_len,
  1341. d40c->dma_cfg.src_info.data_width,
  1342. d40c->dma_cfg.dst_info.data_width);
  1343. if (d40d->lli_len < 0) {
  1344. chan_err(d40c, "Unaligned size\n");
  1345. goto err;
  1346. }
  1347. d40d->lli_current = 0;
  1348. d40d->txd.flags = dma_flags;
  1349. if (chan_is_logical(d40c)) {
  1350. if (d40_pool_lli_alloc(d40d, d40d->lli_len, true) < 0) {
  1351. chan_err(d40c, "Out of memory\n");
  1352. goto err;
  1353. }
  1354. (void) d40_log_sg_to_lli(sgl_src,
  1355. sgl_len,
  1356. d40d->lli_log.src,
  1357. d40c->log_def.lcsp1,
  1358. d40c->dma_cfg.src_info.data_width,
  1359. d40c->dma_cfg.dst_info.data_width);
  1360. (void) d40_log_sg_to_lli(sgl_dst,
  1361. sgl_len,
  1362. d40d->lli_log.dst,
  1363. d40c->log_def.lcsp3,
  1364. d40c->dma_cfg.dst_info.data_width,
  1365. d40c->dma_cfg.src_info.data_width);
  1366. } else {
  1367. if (d40_pool_lli_alloc(d40d, d40d->lli_len, false) < 0) {
  1368. chan_err(d40c, "Out of memory\n");
  1369. goto err;
  1370. }
  1371. res = d40_phy_sg_to_lli(sgl_src,
  1372. sgl_len,
  1373. 0,
  1374. d40d->lli_phy.src,
  1375. virt_to_phys(d40d->lli_phy.src),
  1376. d40c->src_def_cfg,
  1377. d40c->dma_cfg.src_info.data_width,
  1378. d40c->dma_cfg.dst_info.data_width,
  1379. d40c->dma_cfg.src_info.psize);
  1380. if (res < 0)
  1381. goto err;
  1382. res = d40_phy_sg_to_lli(sgl_dst,
  1383. sgl_len,
  1384. 0,
  1385. d40d->lli_phy.dst,
  1386. virt_to_phys(d40d->lli_phy.dst),
  1387. d40c->dst_def_cfg,
  1388. d40c->dma_cfg.dst_info.data_width,
  1389. d40c->dma_cfg.src_info.data_width,
  1390. d40c->dma_cfg.dst_info.psize);
  1391. if (res < 0)
  1392. goto err;
  1393. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1394. d40d->lli_pool.size, DMA_TO_DEVICE);
  1395. }
  1396. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1397. d40d->txd.tx_submit = d40_tx_submit;
  1398. spin_unlock_irqrestore(&d40c->lock, flags);
  1399. return &d40d->txd;
  1400. err:
  1401. if (d40d)
  1402. d40_desc_free(d40c, d40d);
  1403. spin_unlock_irqrestore(&d40c->lock, flags);
  1404. return NULL;
  1405. }
  1406. EXPORT_SYMBOL(stedma40_memcpy_sg);
  1407. bool stedma40_filter(struct dma_chan *chan, void *data)
  1408. {
  1409. struct stedma40_chan_cfg *info = data;
  1410. struct d40_chan *d40c =
  1411. container_of(chan, struct d40_chan, chan);
  1412. int err;
  1413. if (data) {
  1414. err = d40_validate_conf(d40c, info);
  1415. if (!err)
  1416. d40c->dma_cfg = *info;
  1417. } else
  1418. err = d40_config_memcpy(d40c);
  1419. if (!err)
  1420. d40c->configured = true;
  1421. return err == 0;
  1422. }
  1423. EXPORT_SYMBOL(stedma40_filter);
  1424. static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
  1425. {
  1426. bool realtime = d40c->dma_cfg.realtime;
  1427. bool highprio = d40c->dma_cfg.high_priority;
  1428. u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
  1429. u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
  1430. u32 event = D40_TYPE_TO_EVENT(dev_type);
  1431. u32 group = D40_TYPE_TO_GROUP(dev_type);
  1432. u32 bit = 1 << event;
  1433. /* Destination event lines are stored in the upper halfword */
  1434. if (!src)
  1435. bit <<= 16;
  1436. writel(bit, d40c->base->virtbase + prioreg + group * 4);
  1437. writel(bit, d40c->base->virtbase + rtreg + group * 4);
  1438. }
  1439. static void d40_set_prio_realtime(struct d40_chan *d40c)
  1440. {
  1441. if (d40c->base->rev < 3)
  1442. return;
  1443. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  1444. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1445. __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
  1446. if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) ||
  1447. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1448. __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
  1449. }
  1450. /* DMA ENGINE functions */
  1451. static int d40_alloc_chan_resources(struct dma_chan *chan)
  1452. {
  1453. int err;
  1454. unsigned long flags;
  1455. struct d40_chan *d40c =
  1456. container_of(chan, struct d40_chan, chan);
  1457. bool is_free_phy;
  1458. spin_lock_irqsave(&d40c->lock, flags);
  1459. d40c->completed = chan->cookie = 1;
  1460. /* If no dma configuration is set use default configuration (memcpy) */
  1461. if (!d40c->configured) {
  1462. err = d40_config_memcpy(d40c);
  1463. if (err) {
  1464. chan_err(d40c, "Failed to configure memcpy channel\n");
  1465. goto fail;
  1466. }
  1467. }
  1468. is_free_phy = (d40c->phy_chan == NULL);
  1469. err = d40_allocate_channel(d40c);
  1470. if (err) {
  1471. chan_err(d40c, "Failed to allocate channel\n");
  1472. goto fail;
  1473. }
  1474. /* Fill in basic CFG register values */
  1475. d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
  1476. &d40c->dst_def_cfg, chan_is_logical(d40c));
  1477. d40_set_prio_realtime(d40c);
  1478. if (chan_is_logical(d40c)) {
  1479. d40_log_cfg(&d40c->dma_cfg,
  1480. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1481. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  1482. d40c->lcpa = d40c->base->lcpa_base +
  1483. d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
  1484. else
  1485. d40c->lcpa = d40c->base->lcpa_base +
  1486. d40c->dma_cfg.dst_dev_type *
  1487. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  1488. }
  1489. /*
  1490. * Only write channel configuration to the DMA if the physical
  1491. * resource is free. In case of multiple logical channels
  1492. * on the same physical resource, only the first write is necessary.
  1493. */
  1494. if (is_free_phy)
  1495. d40_config_write(d40c);
  1496. fail:
  1497. spin_unlock_irqrestore(&d40c->lock, flags);
  1498. return err;
  1499. }
  1500. static void d40_free_chan_resources(struct dma_chan *chan)
  1501. {
  1502. struct d40_chan *d40c =
  1503. container_of(chan, struct d40_chan, chan);
  1504. int err;
  1505. unsigned long flags;
  1506. if (d40c->phy_chan == NULL) {
  1507. chan_err(d40c, "Cannot free unallocated channel\n");
  1508. return;
  1509. }
  1510. spin_lock_irqsave(&d40c->lock, flags);
  1511. err = d40_free_dma(d40c);
  1512. if (err)
  1513. chan_err(d40c, "Failed to free channel\n");
  1514. spin_unlock_irqrestore(&d40c->lock, flags);
  1515. }
  1516. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  1517. dma_addr_t dst,
  1518. dma_addr_t src,
  1519. size_t size,
  1520. unsigned long dma_flags)
  1521. {
  1522. struct d40_desc *d40d;
  1523. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1524. chan);
  1525. unsigned long flags;
  1526. if (d40c->phy_chan == NULL) {
  1527. chan_err(d40c, "Channel is not allocated.\n");
  1528. return ERR_PTR(-EINVAL);
  1529. }
  1530. spin_lock_irqsave(&d40c->lock, flags);
  1531. d40d = d40_desc_get(d40c);
  1532. if (d40d == NULL) {
  1533. chan_err(d40c, "Descriptor is NULL\n");
  1534. goto err;
  1535. }
  1536. d40d->txd.flags = dma_flags;
  1537. d40d->lli_len = d40_size_2_dmalen(size,
  1538. d40c->dma_cfg.src_info.data_width,
  1539. d40c->dma_cfg.dst_info.data_width);
  1540. if (d40d->lli_len < 0) {
  1541. chan_err(d40c, "Unaligned size\n");
  1542. goto err;
  1543. }
  1544. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1545. d40d->txd.tx_submit = d40_tx_submit;
  1546. if (chan_is_logical(d40c)) {
  1547. if (d40_pool_lli_alloc(d40d, d40d->lli_len, true) < 0) {
  1548. chan_err(d40c, "Out of memory\n");
  1549. goto err;
  1550. }
  1551. d40d->lli_current = 0;
  1552. if (d40_log_buf_to_lli(d40d->lli_log.src,
  1553. src,
  1554. size,
  1555. d40c->log_def.lcsp1,
  1556. d40c->dma_cfg.src_info.data_width,
  1557. d40c->dma_cfg.dst_info.data_width,
  1558. true) == NULL)
  1559. goto err;
  1560. if (d40_log_buf_to_lli(d40d->lli_log.dst,
  1561. dst,
  1562. size,
  1563. d40c->log_def.lcsp3,
  1564. d40c->dma_cfg.dst_info.data_width,
  1565. d40c->dma_cfg.src_info.data_width,
  1566. true) == NULL)
  1567. goto err;
  1568. } else {
  1569. if (d40_pool_lli_alloc(d40d, d40d->lli_len, false) < 0) {
  1570. chan_err(d40c, "Out of memory\n");
  1571. goto err;
  1572. }
  1573. if (d40_phy_buf_to_lli(d40d->lli_phy.src,
  1574. src,
  1575. size,
  1576. d40c->dma_cfg.src_info.psize,
  1577. 0,
  1578. d40c->src_def_cfg,
  1579. true,
  1580. d40c->dma_cfg.src_info.data_width,
  1581. d40c->dma_cfg.dst_info.data_width,
  1582. false) == NULL)
  1583. goto err;
  1584. if (d40_phy_buf_to_lli(d40d->lli_phy.dst,
  1585. dst,
  1586. size,
  1587. d40c->dma_cfg.dst_info.psize,
  1588. 0,
  1589. d40c->dst_def_cfg,
  1590. true,
  1591. d40c->dma_cfg.dst_info.data_width,
  1592. d40c->dma_cfg.src_info.data_width,
  1593. false) == NULL)
  1594. goto err;
  1595. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1596. d40d->lli_pool.size, DMA_TO_DEVICE);
  1597. }
  1598. spin_unlock_irqrestore(&d40c->lock, flags);
  1599. return &d40d->txd;
  1600. err:
  1601. if (d40d)
  1602. d40_desc_free(d40c, d40d);
  1603. spin_unlock_irqrestore(&d40c->lock, flags);
  1604. return NULL;
  1605. }
  1606. static struct dma_async_tx_descriptor *
  1607. d40_prep_sg(struct dma_chan *chan,
  1608. struct scatterlist *dst_sg, unsigned int dst_nents,
  1609. struct scatterlist *src_sg, unsigned int src_nents,
  1610. unsigned long dma_flags)
  1611. {
  1612. if (dst_nents != src_nents)
  1613. return NULL;
  1614. return stedma40_memcpy_sg(chan, dst_sg, src_sg, dst_nents, dma_flags);
  1615. }
  1616. static int d40_prep_slave_sg_log(struct d40_desc *d40d,
  1617. struct d40_chan *d40c,
  1618. struct scatterlist *sgl,
  1619. unsigned int sg_len,
  1620. enum dma_data_direction direction,
  1621. unsigned long dma_flags)
  1622. {
  1623. dma_addr_t dev_addr = 0;
  1624. int total_size;
  1625. d40d->lli_len = d40_sg_2_dmalen(sgl, sg_len,
  1626. d40c->dma_cfg.src_info.data_width,
  1627. d40c->dma_cfg.dst_info.data_width);
  1628. if (d40d->lli_len < 0) {
  1629. chan_err(d40c, "Unaligned size\n");
  1630. return -EINVAL;
  1631. }
  1632. if (d40_pool_lli_alloc(d40d, d40d->lli_len, true) < 0) {
  1633. chan_err(d40c, "Out of memory\n");
  1634. return -ENOMEM;
  1635. }
  1636. d40d->lli_current = 0;
  1637. if (direction == DMA_FROM_DEVICE)
  1638. if (d40c->runtime_addr)
  1639. dev_addr = d40c->runtime_addr;
  1640. else
  1641. dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
  1642. else if (direction == DMA_TO_DEVICE)
  1643. if (d40c->runtime_addr)
  1644. dev_addr = d40c->runtime_addr;
  1645. else
  1646. dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
  1647. else
  1648. return -EINVAL;
  1649. total_size = d40_log_sg_to_dev(sgl, sg_len,
  1650. &d40d->lli_log,
  1651. &d40c->log_def,
  1652. d40c->dma_cfg.src_info.data_width,
  1653. d40c->dma_cfg.dst_info.data_width,
  1654. direction,
  1655. dev_addr);
  1656. if (total_size < 0)
  1657. return -EINVAL;
  1658. return 0;
  1659. }
  1660. static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
  1661. struct d40_chan *d40c,
  1662. struct scatterlist *sgl,
  1663. unsigned int sgl_len,
  1664. enum dma_data_direction direction,
  1665. unsigned long dma_flags)
  1666. {
  1667. dma_addr_t src_dev_addr;
  1668. dma_addr_t dst_dev_addr;
  1669. int res;
  1670. d40d->lli_len = d40_sg_2_dmalen(sgl, sgl_len,
  1671. d40c->dma_cfg.src_info.data_width,
  1672. d40c->dma_cfg.dst_info.data_width);
  1673. if (d40d->lli_len < 0) {
  1674. chan_err(d40c, "Unaligned size\n");
  1675. return -EINVAL;
  1676. }
  1677. if (d40_pool_lli_alloc(d40d, d40d->lli_len, false) < 0) {
  1678. chan_err(d40c, "Out of memory\n");
  1679. return -ENOMEM;
  1680. }
  1681. d40d->lli_current = 0;
  1682. if (direction == DMA_FROM_DEVICE) {
  1683. dst_dev_addr = 0;
  1684. if (d40c->runtime_addr)
  1685. src_dev_addr = d40c->runtime_addr;
  1686. else
  1687. src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
  1688. } else if (direction == DMA_TO_DEVICE) {
  1689. if (d40c->runtime_addr)
  1690. dst_dev_addr = d40c->runtime_addr;
  1691. else
  1692. dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
  1693. src_dev_addr = 0;
  1694. } else
  1695. return -EINVAL;
  1696. res = d40_phy_sg_to_lli(sgl,
  1697. sgl_len,
  1698. src_dev_addr,
  1699. d40d->lli_phy.src,
  1700. virt_to_phys(d40d->lli_phy.src),
  1701. d40c->src_def_cfg,
  1702. d40c->dma_cfg.src_info.data_width,
  1703. d40c->dma_cfg.dst_info.data_width,
  1704. d40c->dma_cfg.src_info.psize);
  1705. if (res < 0)
  1706. return res;
  1707. res = d40_phy_sg_to_lli(sgl,
  1708. sgl_len,
  1709. dst_dev_addr,
  1710. d40d->lli_phy.dst,
  1711. virt_to_phys(d40d->lli_phy.dst),
  1712. d40c->dst_def_cfg,
  1713. d40c->dma_cfg.dst_info.data_width,
  1714. d40c->dma_cfg.src_info.data_width,
  1715. d40c->dma_cfg.dst_info.psize);
  1716. if (res < 0)
  1717. return res;
  1718. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1719. d40d->lli_pool.size, DMA_TO_DEVICE);
  1720. return 0;
  1721. }
  1722. static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
  1723. struct scatterlist *sgl,
  1724. unsigned int sg_len,
  1725. enum dma_data_direction direction,
  1726. unsigned long dma_flags)
  1727. {
  1728. struct d40_desc *d40d;
  1729. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1730. chan);
  1731. unsigned long flags;
  1732. int err;
  1733. if (d40c->phy_chan == NULL) {
  1734. chan_err(d40c, "Cannot prepare unallocated channel\n");
  1735. return ERR_PTR(-EINVAL);
  1736. }
  1737. spin_lock_irqsave(&d40c->lock, flags);
  1738. d40d = d40_desc_get(d40c);
  1739. if (d40d == NULL)
  1740. goto err;
  1741. if (chan_is_logical(d40c))
  1742. err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
  1743. direction, dma_flags);
  1744. else
  1745. err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
  1746. direction, dma_flags);
  1747. if (err) {
  1748. chan_err(d40c, "Failed to prepare %s slave sg job: %d\n",
  1749. chan_is_logical(d40c) ? "log" : "phy", err);
  1750. goto err;
  1751. }
  1752. d40d->txd.flags = dma_flags;
  1753. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1754. d40d->txd.tx_submit = d40_tx_submit;
  1755. spin_unlock_irqrestore(&d40c->lock, flags);
  1756. return &d40d->txd;
  1757. err:
  1758. if (d40d)
  1759. d40_desc_free(d40c, d40d);
  1760. spin_unlock_irqrestore(&d40c->lock, flags);
  1761. return NULL;
  1762. }
  1763. static enum dma_status d40_tx_status(struct dma_chan *chan,
  1764. dma_cookie_t cookie,
  1765. struct dma_tx_state *txstate)
  1766. {
  1767. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1768. dma_cookie_t last_used;
  1769. dma_cookie_t last_complete;
  1770. int ret;
  1771. if (d40c->phy_chan == NULL) {
  1772. chan_err(d40c, "Cannot read status of unallocated channel\n");
  1773. return -EINVAL;
  1774. }
  1775. last_complete = d40c->completed;
  1776. last_used = chan->cookie;
  1777. if (d40_is_paused(d40c))
  1778. ret = DMA_PAUSED;
  1779. else
  1780. ret = dma_async_is_complete(cookie, last_complete, last_used);
  1781. dma_set_tx_state(txstate, last_complete, last_used,
  1782. stedma40_residue(chan));
  1783. return ret;
  1784. }
  1785. static void d40_issue_pending(struct dma_chan *chan)
  1786. {
  1787. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1788. unsigned long flags;
  1789. if (d40c->phy_chan == NULL) {
  1790. chan_err(d40c, "Channel is not allocated!\n");
  1791. return;
  1792. }
  1793. spin_lock_irqsave(&d40c->lock, flags);
  1794. /* Busy means that pending jobs are already being processed */
  1795. if (!d40c->busy)
  1796. (void) d40_queue_start(d40c);
  1797. spin_unlock_irqrestore(&d40c->lock, flags);
  1798. }
  1799. /* Runtime reconfiguration extension */
  1800. static void d40_set_runtime_config(struct dma_chan *chan,
  1801. struct dma_slave_config *config)
  1802. {
  1803. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1804. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  1805. enum dma_slave_buswidth config_addr_width;
  1806. dma_addr_t config_addr;
  1807. u32 config_maxburst;
  1808. enum stedma40_periph_data_width addr_width;
  1809. int psize;
  1810. if (config->direction == DMA_FROM_DEVICE) {
  1811. dma_addr_t dev_addr_rx =
  1812. d40c->base->plat_data->dev_rx[cfg->src_dev_type];
  1813. config_addr = config->src_addr;
  1814. if (dev_addr_rx)
  1815. dev_dbg(d40c->base->dev,
  1816. "channel has a pre-wired RX address %08x "
  1817. "overriding with %08x\n",
  1818. dev_addr_rx, config_addr);
  1819. if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
  1820. dev_dbg(d40c->base->dev,
  1821. "channel was not configured for peripheral "
  1822. "to memory transfer (%d) overriding\n",
  1823. cfg->dir);
  1824. cfg->dir = STEDMA40_PERIPH_TO_MEM;
  1825. config_addr_width = config->src_addr_width;
  1826. config_maxburst = config->src_maxburst;
  1827. } else if (config->direction == DMA_TO_DEVICE) {
  1828. dma_addr_t dev_addr_tx =
  1829. d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
  1830. config_addr = config->dst_addr;
  1831. if (dev_addr_tx)
  1832. dev_dbg(d40c->base->dev,
  1833. "channel has a pre-wired TX address %08x "
  1834. "overriding with %08x\n",
  1835. dev_addr_tx, config_addr);
  1836. if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
  1837. dev_dbg(d40c->base->dev,
  1838. "channel was not configured for memory "
  1839. "to peripheral transfer (%d) overriding\n",
  1840. cfg->dir);
  1841. cfg->dir = STEDMA40_MEM_TO_PERIPH;
  1842. config_addr_width = config->dst_addr_width;
  1843. config_maxburst = config->dst_maxburst;
  1844. } else {
  1845. dev_err(d40c->base->dev,
  1846. "unrecognized channel direction %d\n",
  1847. config->direction);
  1848. return;
  1849. }
  1850. switch (config_addr_width) {
  1851. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  1852. addr_width = STEDMA40_BYTE_WIDTH;
  1853. break;
  1854. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  1855. addr_width = STEDMA40_HALFWORD_WIDTH;
  1856. break;
  1857. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  1858. addr_width = STEDMA40_WORD_WIDTH;
  1859. break;
  1860. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  1861. addr_width = STEDMA40_DOUBLEWORD_WIDTH;
  1862. break;
  1863. default:
  1864. dev_err(d40c->base->dev,
  1865. "illegal peripheral address width "
  1866. "requested (%d)\n",
  1867. config->src_addr_width);
  1868. return;
  1869. }
  1870. if (chan_is_logical(d40c)) {
  1871. if (config_maxburst >= 16)
  1872. psize = STEDMA40_PSIZE_LOG_16;
  1873. else if (config_maxburst >= 8)
  1874. psize = STEDMA40_PSIZE_LOG_8;
  1875. else if (config_maxburst >= 4)
  1876. psize = STEDMA40_PSIZE_LOG_4;
  1877. else
  1878. psize = STEDMA40_PSIZE_LOG_1;
  1879. } else {
  1880. if (config_maxburst >= 16)
  1881. psize = STEDMA40_PSIZE_PHY_16;
  1882. else if (config_maxburst >= 8)
  1883. psize = STEDMA40_PSIZE_PHY_8;
  1884. else if (config_maxburst >= 4)
  1885. psize = STEDMA40_PSIZE_PHY_4;
  1886. else if (config_maxburst >= 2)
  1887. psize = STEDMA40_PSIZE_PHY_2;
  1888. else
  1889. psize = STEDMA40_PSIZE_PHY_1;
  1890. }
  1891. /* Set up all the endpoint configs */
  1892. cfg->src_info.data_width = addr_width;
  1893. cfg->src_info.psize = psize;
  1894. cfg->src_info.big_endian = false;
  1895. cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1896. cfg->dst_info.data_width = addr_width;
  1897. cfg->dst_info.psize = psize;
  1898. cfg->dst_info.big_endian = false;
  1899. cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1900. /* Fill in register values */
  1901. if (chan_is_logical(d40c))
  1902. d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1903. else
  1904. d40_phy_cfg(cfg, &d40c->src_def_cfg,
  1905. &d40c->dst_def_cfg, false);
  1906. /* These settings will take precedence later */
  1907. d40c->runtime_addr = config_addr;
  1908. d40c->runtime_direction = config->direction;
  1909. dev_dbg(d40c->base->dev,
  1910. "configured channel %s for %s, data width %d, "
  1911. "maxburst %d bytes, LE, no flow control\n",
  1912. dma_chan_name(chan),
  1913. (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
  1914. config_addr_width,
  1915. config_maxburst);
  1916. }
  1917. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  1918. unsigned long arg)
  1919. {
  1920. unsigned long flags;
  1921. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1922. if (d40c->phy_chan == NULL) {
  1923. chan_err(d40c, "Channel is not allocated!\n");
  1924. return -EINVAL;
  1925. }
  1926. switch (cmd) {
  1927. case DMA_TERMINATE_ALL:
  1928. spin_lock_irqsave(&d40c->lock, flags);
  1929. d40_term_all(d40c);
  1930. spin_unlock_irqrestore(&d40c->lock, flags);
  1931. return 0;
  1932. case DMA_PAUSE:
  1933. return d40_pause(chan);
  1934. case DMA_RESUME:
  1935. return d40_resume(chan);
  1936. case DMA_SLAVE_CONFIG:
  1937. d40_set_runtime_config(chan,
  1938. (struct dma_slave_config *) arg);
  1939. return 0;
  1940. default:
  1941. break;
  1942. }
  1943. /* Other commands are unimplemented */
  1944. return -ENXIO;
  1945. }
  1946. /* Initialization functions */
  1947. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  1948. struct d40_chan *chans, int offset,
  1949. int num_chans)
  1950. {
  1951. int i = 0;
  1952. struct d40_chan *d40c;
  1953. INIT_LIST_HEAD(&dma->channels);
  1954. for (i = offset; i < offset + num_chans; i++) {
  1955. d40c = &chans[i];
  1956. d40c->base = base;
  1957. d40c->chan.device = dma;
  1958. spin_lock_init(&d40c->lock);
  1959. d40c->log_num = D40_PHY_CHAN;
  1960. INIT_LIST_HEAD(&d40c->active);
  1961. INIT_LIST_HEAD(&d40c->queue);
  1962. INIT_LIST_HEAD(&d40c->client);
  1963. tasklet_init(&d40c->tasklet, dma_tasklet,
  1964. (unsigned long) d40c);
  1965. list_add_tail(&d40c->chan.device_node,
  1966. &dma->channels);
  1967. }
  1968. }
  1969. static int __init d40_dmaengine_init(struct d40_base *base,
  1970. int num_reserved_chans)
  1971. {
  1972. int err ;
  1973. d40_chan_init(base, &base->dma_slave, base->log_chans,
  1974. 0, base->num_log_chans);
  1975. dma_cap_zero(base->dma_slave.cap_mask);
  1976. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  1977. base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
  1978. base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
  1979. base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
  1980. base->dma_slave.device_prep_dma_sg = d40_prep_sg;
  1981. base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
  1982. base->dma_slave.device_tx_status = d40_tx_status;
  1983. base->dma_slave.device_issue_pending = d40_issue_pending;
  1984. base->dma_slave.device_control = d40_control;
  1985. base->dma_slave.dev = base->dev;
  1986. err = dma_async_device_register(&base->dma_slave);
  1987. if (err) {
  1988. d40_err(base->dev, "Failed to register slave channels\n");
  1989. goto failure1;
  1990. }
  1991. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  1992. base->num_log_chans, base->plat_data->memcpy_len);
  1993. dma_cap_zero(base->dma_memcpy.cap_mask);
  1994. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  1995. dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
  1996. base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
  1997. base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
  1998. base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
  1999. base->dma_slave.device_prep_dma_sg = d40_prep_sg;
  2000. base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
  2001. base->dma_memcpy.device_tx_status = d40_tx_status;
  2002. base->dma_memcpy.device_issue_pending = d40_issue_pending;
  2003. base->dma_memcpy.device_control = d40_control;
  2004. base->dma_memcpy.dev = base->dev;
  2005. /*
  2006. * This controller can only access address at even
  2007. * 32bit boundaries, i.e. 2^2
  2008. */
  2009. base->dma_memcpy.copy_align = 2;
  2010. err = dma_async_device_register(&base->dma_memcpy);
  2011. if (err) {
  2012. d40_err(base->dev,
  2013. "Failed to regsiter memcpy only channels\n");
  2014. goto failure2;
  2015. }
  2016. d40_chan_init(base, &base->dma_both, base->phy_chans,
  2017. 0, num_reserved_chans);
  2018. dma_cap_zero(base->dma_both.cap_mask);
  2019. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  2020. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  2021. dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
  2022. base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
  2023. base->dma_both.device_free_chan_resources = d40_free_chan_resources;
  2024. base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
  2025. base->dma_slave.device_prep_dma_sg = d40_prep_sg;
  2026. base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
  2027. base->dma_both.device_tx_status = d40_tx_status;
  2028. base->dma_both.device_issue_pending = d40_issue_pending;
  2029. base->dma_both.device_control = d40_control;
  2030. base->dma_both.dev = base->dev;
  2031. base->dma_both.copy_align = 2;
  2032. err = dma_async_device_register(&base->dma_both);
  2033. if (err) {
  2034. d40_err(base->dev,
  2035. "Failed to register logical and physical capable channels\n");
  2036. goto failure3;
  2037. }
  2038. return 0;
  2039. failure3:
  2040. dma_async_device_unregister(&base->dma_memcpy);
  2041. failure2:
  2042. dma_async_device_unregister(&base->dma_slave);
  2043. failure1:
  2044. return err;
  2045. }
  2046. /* Initialization functions. */
  2047. static int __init d40_phy_res_init(struct d40_base *base)
  2048. {
  2049. int i;
  2050. int num_phy_chans_avail = 0;
  2051. u32 val[2];
  2052. int odd_even_bit = -2;
  2053. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  2054. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2055. for (i = 0; i < base->num_phy_chans; i++) {
  2056. base->phy_res[i].num = i;
  2057. odd_even_bit += 2 * ((i % 2) == 0);
  2058. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2059. /* Mark security only channels as occupied */
  2060. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2061. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2062. } else {
  2063. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2064. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2065. num_phy_chans_avail++;
  2066. }
  2067. spin_lock_init(&base->phy_res[i].lock);
  2068. }
  2069. /* Mark disabled channels as occupied */
  2070. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2071. int chan = base->plat_data->disabled_channels[i];
  2072. base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
  2073. base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
  2074. num_phy_chans_avail--;
  2075. }
  2076. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2077. num_phy_chans_avail, base->num_phy_chans);
  2078. /* Verify settings extended vs standard */
  2079. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2080. for (i = 0; i < base->num_phy_chans; i++) {
  2081. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2082. (val[0] & 0x3) != 1)
  2083. dev_info(base->dev,
  2084. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2085. __func__, i, val[0] & 0x3);
  2086. val[0] = val[0] >> 2;
  2087. }
  2088. return num_phy_chans_avail;
  2089. }
  2090. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2091. {
  2092. static const struct d40_reg_val dma_id_regs[] = {
  2093. /* Peripheral Id */
  2094. { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
  2095. { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
  2096. /*
  2097. * D40_DREG_PERIPHID2 Depends on HW revision:
  2098. * DB8500ed has 0x0008,
  2099. * ? has 0x0018,
  2100. * DB8500v1 has 0x0028
  2101. * DB8500v2 has 0x0038
  2102. */
  2103. { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
  2104. /* PCell Id */
  2105. { .reg = D40_DREG_CELLID0, .val = 0x000d},
  2106. { .reg = D40_DREG_CELLID1, .val = 0x00f0},
  2107. { .reg = D40_DREG_CELLID2, .val = 0x0005},
  2108. { .reg = D40_DREG_CELLID3, .val = 0x00b1}
  2109. };
  2110. struct stedma40_platform_data *plat_data;
  2111. struct clk *clk = NULL;
  2112. void __iomem *virtbase = NULL;
  2113. struct resource *res = NULL;
  2114. struct d40_base *base = NULL;
  2115. int num_log_chans = 0;
  2116. int num_phy_chans;
  2117. int i;
  2118. u32 val;
  2119. u32 rev;
  2120. clk = clk_get(&pdev->dev, NULL);
  2121. if (IS_ERR(clk)) {
  2122. d40_err(&pdev->dev, "No matching clock found\n");
  2123. goto failure;
  2124. }
  2125. clk_enable(clk);
  2126. /* Get IO for DMAC base address */
  2127. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2128. if (!res)
  2129. goto failure;
  2130. if (request_mem_region(res->start, resource_size(res),
  2131. D40_NAME " I/O base") == NULL)
  2132. goto failure;
  2133. virtbase = ioremap(res->start, resource_size(res));
  2134. if (!virtbase)
  2135. goto failure;
  2136. /* HW version check */
  2137. for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
  2138. if (dma_id_regs[i].val !=
  2139. readl(virtbase + dma_id_regs[i].reg)) {
  2140. d40_err(&pdev->dev,
  2141. "Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
  2142. dma_id_regs[i].val,
  2143. dma_id_regs[i].reg,
  2144. readl(virtbase + dma_id_regs[i].reg));
  2145. goto failure;
  2146. }
  2147. }
  2148. /* Get silicon revision and designer */
  2149. val = readl(virtbase + D40_DREG_PERIPHID2);
  2150. if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
  2151. D40_HW_DESIGNER) {
  2152. d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
  2153. val & D40_DREG_PERIPHID2_DESIGNER_MASK,
  2154. D40_HW_DESIGNER);
  2155. goto failure;
  2156. }
  2157. rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
  2158. D40_DREG_PERIPHID2_REV_POS;
  2159. /* The number of physical channels on this HW */
  2160. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2161. dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
  2162. rev, res->start);
  2163. plat_data = pdev->dev.platform_data;
  2164. /* Count the number of logical channels in use */
  2165. for (i = 0; i < plat_data->dev_len; i++)
  2166. if (plat_data->dev_rx[i] != 0)
  2167. num_log_chans++;
  2168. for (i = 0; i < plat_data->dev_len; i++)
  2169. if (plat_data->dev_tx[i] != 0)
  2170. num_log_chans++;
  2171. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2172. (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
  2173. sizeof(struct d40_chan), GFP_KERNEL);
  2174. if (base == NULL) {
  2175. d40_err(&pdev->dev, "Out of memory\n");
  2176. goto failure;
  2177. }
  2178. base->rev = rev;
  2179. base->clk = clk;
  2180. base->num_phy_chans = num_phy_chans;
  2181. base->num_log_chans = num_log_chans;
  2182. base->phy_start = res->start;
  2183. base->phy_size = resource_size(res);
  2184. base->virtbase = virtbase;
  2185. base->plat_data = plat_data;
  2186. base->dev = &pdev->dev;
  2187. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2188. base->log_chans = &base->phy_chans[num_phy_chans];
  2189. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2190. GFP_KERNEL);
  2191. if (!base->phy_res)
  2192. goto failure;
  2193. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2194. sizeof(struct d40_chan *),
  2195. GFP_KERNEL);
  2196. if (!base->lookup_phy_chans)
  2197. goto failure;
  2198. if (num_log_chans + plat_data->memcpy_len) {
  2199. /*
  2200. * The max number of logical channels are event lines for all
  2201. * src devices and dst devices
  2202. */
  2203. base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
  2204. sizeof(struct d40_chan *),
  2205. GFP_KERNEL);
  2206. if (!base->lookup_log_chans)
  2207. goto failure;
  2208. }
  2209. base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
  2210. sizeof(struct d40_desc *) *
  2211. D40_LCLA_LINK_PER_EVENT_GRP,
  2212. GFP_KERNEL);
  2213. if (!base->lcla_pool.alloc_map)
  2214. goto failure;
  2215. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2216. 0, SLAB_HWCACHE_ALIGN,
  2217. NULL);
  2218. if (base->desc_slab == NULL)
  2219. goto failure;
  2220. return base;
  2221. failure:
  2222. if (!IS_ERR(clk)) {
  2223. clk_disable(clk);
  2224. clk_put(clk);
  2225. }
  2226. if (virtbase)
  2227. iounmap(virtbase);
  2228. if (res)
  2229. release_mem_region(res->start,
  2230. resource_size(res));
  2231. if (virtbase)
  2232. iounmap(virtbase);
  2233. if (base) {
  2234. kfree(base->lcla_pool.alloc_map);
  2235. kfree(base->lookup_log_chans);
  2236. kfree(base->lookup_phy_chans);
  2237. kfree(base->phy_res);
  2238. kfree(base);
  2239. }
  2240. return NULL;
  2241. }
  2242. static void __init d40_hw_init(struct d40_base *base)
  2243. {
  2244. static const struct d40_reg_val dma_init_reg[] = {
  2245. /* Clock every part of the DMA block from start */
  2246. { .reg = D40_DREG_GCC, .val = 0x0000ff01},
  2247. /* Interrupts on all logical channels */
  2248. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  2249. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  2250. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  2251. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  2252. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  2253. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  2254. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  2255. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  2256. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  2257. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  2258. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  2259. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  2260. };
  2261. int i;
  2262. u32 prmseo[2] = {0, 0};
  2263. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2264. u32 pcmis = 0;
  2265. u32 pcicr = 0;
  2266. for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
  2267. writel(dma_init_reg[i].val,
  2268. base->virtbase + dma_init_reg[i].reg);
  2269. /* Configure all our dma channels to default settings */
  2270. for (i = 0; i < base->num_phy_chans; i++) {
  2271. activeo[i % 2] = activeo[i % 2] << 2;
  2272. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2273. == D40_ALLOC_PHY) {
  2274. activeo[i % 2] |= 3;
  2275. continue;
  2276. }
  2277. /* Enable interrupt # */
  2278. pcmis = (pcmis << 1) | 1;
  2279. /* Clear interrupt # */
  2280. pcicr = (pcicr << 1) | 1;
  2281. /* Set channel to physical mode */
  2282. prmseo[i % 2] = prmseo[i % 2] << 2;
  2283. prmseo[i % 2] |= 1;
  2284. }
  2285. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2286. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2287. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2288. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2289. /* Write which interrupt to enable */
  2290. writel(pcmis, base->virtbase + D40_DREG_PCMIS);
  2291. /* Write which interrupt to clear */
  2292. writel(pcicr, base->virtbase + D40_DREG_PCICR);
  2293. }
  2294. static int __init d40_lcla_allocate(struct d40_base *base)
  2295. {
  2296. unsigned long *page_list;
  2297. int i, j;
  2298. int ret = 0;
  2299. /*
  2300. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2301. * To full fill this hardware requirement without wasting 256 kb
  2302. * we allocate pages until we get an aligned one.
  2303. */
  2304. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2305. GFP_KERNEL);
  2306. if (!page_list) {
  2307. ret = -ENOMEM;
  2308. goto failure;
  2309. }
  2310. /* Calculating how many pages that are required */
  2311. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2312. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2313. page_list[i] = __get_free_pages(GFP_KERNEL,
  2314. base->lcla_pool.pages);
  2315. if (!page_list[i]) {
  2316. d40_err(base->dev, "Failed to allocate %d pages.\n",
  2317. base->lcla_pool.pages);
  2318. for (j = 0; j < i; j++)
  2319. free_pages(page_list[j], base->lcla_pool.pages);
  2320. goto failure;
  2321. }
  2322. if ((virt_to_phys((void *)page_list[i]) &
  2323. (LCLA_ALIGNMENT - 1)) == 0)
  2324. break;
  2325. }
  2326. for (j = 0; j < i; j++)
  2327. free_pages(page_list[j], base->lcla_pool.pages);
  2328. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2329. base->lcla_pool.base = (void *)page_list[i];
  2330. } else {
  2331. /*
  2332. * After many attempts and no succees with finding the correct
  2333. * alignment, try with allocating a big buffer.
  2334. */
  2335. dev_warn(base->dev,
  2336. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2337. __func__, base->lcla_pool.pages);
  2338. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2339. base->num_phy_chans +
  2340. LCLA_ALIGNMENT,
  2341. GFP_KERNEL);
  2342. if (!base->lcla_pool.base_unaligned) {
  2343. ret = -ENOMEM;
  2344. goto failure;
  2345. }
  2346. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2347. LCLA_ALIGNMENT);
  2348. }
  2349. writel(virt_to_phys(base->lcla_pool.base),
  2350. base->virtbase + D40_DREG_LCLA);
  2351. failure:
  2352. kfree(page_list);
  2353. return ret;
  2354. }
  2355. static int __init d40_probe(struct platform_device *pdev)
  2356. {
  2357. int err;
  2358. int ret = -ENOENT;
  2359. struct d40_base *base;
  2360. struct resource *res = NULL;
  2361. int num_reserved_chans;
  2362. u32 val;
  2363. base = d40_hw_detect_init(pdev);
  2364. if (!base)
  2365. goto failure;
  2366. num_reserved_chans = d40_phy_res_init(base);
  2367. platform_set_drvdata(pdev, base);
  2368. spin_lock_init(&base->interrupt_lock);
  2369. spin_lock_init(&base->execmd_lock);
  2370. /* Get IO for logical channel parameter address */
  2371. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2372. if (!res) {
  2373. ret = -ENOENT;
  2374. d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
  2375. goto failure;
  2376. }
  2377. base->lcpa_size = resource_size(res);
  2378. base->phy_lcpa = res->start;
  2379. if (request_mem_region(res->start, resource_size(res),
  2380. D40_NAME " I/O lcpa") == NULL) {
  2381. ret = -EBUSY;
  2382. d40_err(&pdev->dev,
  2383. "Failed to request LCPA region 0x%x-0x%x\n",
  2384. res->start, res->end);
  2385. goto failure;
  2386. }
  2387. /* We make use of ESRAM memory for this. */
  2388. val = readl(base->virtbase + D40_DREG_LCPA);
  2389. if (res->start != val && val != 0) {
  2390. dev_warn(&pdev->dev,
  2391. "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
  2392. __func__, val, res->start);
  2393. } else
  2394. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2395. base->lcpa_base = ioremap(res->start, resource_size(res));
  2396. if (!base->lcpa_base) {
  2397. ret = -ENOMEM;
  2398. d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
  2399. goto failure;
  2400. }
  2401. ret = d40_lcla_allocate(base);
  2402. if (ret) {
  2403. d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
  2404. goto failure;
  2405. }
  2406. spin_lock_init(&base->lcla_pool.lock);
  2407. base->irq = platform_get_irq(pdev, 0);
  2408. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  2409. if (ret) {
  2410. d40_err(&pdev->dev, "No IRQ defined\n");
  2411. goto failure;
  2412. }
  2413. err = d40_dmaengine_init(base, num_reserved_chans);
  2414. if (err)
  2415. goto failure;
  2416. d40_hw_init(base);
  2417. dev_info(base->dev, "initialized\n");
  2418. return 0;
  2419. failure:
  2420. if (base) {
  2421. if (base->desc_slab)
  2422. kmem_cache_destroy(base->desc_slab);
  2423. if (base->virtbase)
  2424. iounmap(base->virtbase);
  2425. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  2426. free_pages((unsigned long)base->lcla_pool.base,
  2427. base->lcla_pool.pages);
  2428. kfree(base->lcla_pool.base_unaligned);
  2429. if (base->phy_lcpa)
  2430. release_mem_region(base->phy_lcpa,
  2431. base->lcpa_size);
  2432. if (base->phy_start)
  2433. release_mem_region(base->phy_start,
  2434. base->phy_size);
  2435. if (base->clk) {
  2436. clk_disable(base->clk);
  2437. clk_put(base->clk);
  2438. }
  2439. kfree(base->lcla_pool.alloc_map);
  2440. kfree(base->lookup_log_chans);
  2441. kfree(base->lookup_phy_chans);
  2442. kfree(base->phy_res);
  2443. kfree(base);
  2444. }
  2445. d40_err(&pdev->dev, "probe failed\n");
  2446. return ret;
  2447. }
  2448. static struct platform_driver d40_driver = {
  2449. .driver = {
  2450. .owner = THIS_MODULE,
  2451. .name = D40_NAME,
  2452. },
  2453. };
  2454. static int __init stedma40_init(void)
  2455. {
  2456. return platform_driver_probe(&d40_driver, d40_probe);
  2457. }
  2458. arch_initcall(stedma40_init);