vmx.c 109 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include <linux/ftrace_event.h>
  27. #include "kvm_cache_regs.h"
  28. #include "x86.h"
  29. #include <asm/io.h>
  30. #include <asm/desc.h>
  31. #include <asm/vmx.h>
  32. #include <asm/virtext.h>
  33. #include <asm/mce.h>
  34. #include "trace.h"
  35. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  36. MODULE_AUTHOR("Qumranet");
  37. MODULE_LICENSE("GPL");
  38. static int __read_mostly bypass_guest_pf = 1;
  39. module_param(bypass_guest_pf, bool, S_IRUGO);
  40. static int __read_mostly enable_vpid = 1;
  41. module_param_named(vpid, enable_vpid, bool, 0444);
  42. static int __read_mostly flexpriority_enabled = 1;
  43. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  44. static int __read_mostly enable_ept = 1;
  45. module_param_named(ept, enable_ept, bool, S_IRUGO);
  46. static int __read_mostly enable_unrestricted_guest = 1;
  47. module_param_named(unrestricted_guest,
  48. enable_unrestricted_guest, bool, S_IRUGO);
  49. static int __read_mostly emulate_invalid_guest_state = 0;
  50. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  51. #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
  52. (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
  53. #define KVM_GUEST_CR0_MASK \
  54. (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  55. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
  56. (X86_CR0_WP | X86_CR0_NE)
  57. #define KVM_VM_CR0_ALWAYS_ON \
  58. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  59. #define KVM_CR4_GUEST_OWNED_BITS \
  60. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  61. | X86_CR4_OSXMMEXCPT)
  62. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  63. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  64. /*
  65. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  66. * ple_gap: upper bound on the amount of time between two successive
  67. * executions of PAUSE in a loop. Also indicate if ple enabled.
  68. * According to test, this time is usually small than 41 cycles.
  69. * ple_window: upper bound on the amount of time a guest is allowed to execute
  70. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  71. * less than 2^12 cycles
  72. * Time is measured based on a counter that runs at the same rate as the TSC,
  73. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  74. */
  75. #define KVM_VMX_DEFAULT_PLE_GAP 41
  76. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  77. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  78. module_param(ple_gap, int, S_IRUGO);
  79. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  80. module_param(ple_window, int, S_IRUGO);
  81. struct vmcs {
  82. u32 revision_id;
  83. u32 abort;
  84. char data[0];
  85. };
  86. struct shared_msr_entry {
  87. unsigned index;
  88. u64 data;
  89. u64 mask;
  90. };
  91. struct vcpu_vmx {
  92. struct kvm_vcpu vcpu;
  93. struct list_head local_vcpus_link;
  94. unsigned long host_rsp;
  95. int launched;
  96. u8 fail;
  97. u32 idt_vectoring_info;
  98. struct shared_msr_entry *guest_msrs;
  99. int nmsrs;
  100. int save_nmsrs;
  101. #ifdef CONFIG_X86_64
  102. u64 msr_host_kernel_gs_base;
  103. u64 msr_guest_kernel_gs_base;
  104. #endif
  105. struct vmcs *vmcs;
  106. struct {
  107. int loaded;
  108. u16 fs_sel, gs_sel, ldt_sel;
  109. int gs_ldt_reload_needed;
  110. int fs_reload_needed;
  111. } host_state;
  112. struct {
  113. int vm86_active;
  114. u8 save_iopl;
  115. struct kvm_save_segment {
  116. u16 selector;
  117. unsigned long base;
  118. u32 limit;
  119. u32 ar;
  120. } tr, es, ds, fs, gs;
  121. struct {
  122. bool pending;
  123. u8 vector;
  124. unsigned rip;
  125. } irq;
  126. } rmode;
  127. int vpid;
  128. bool emulation_required;
  129. /* Support for vnmi-less CPUs */
  130. int soft_vnmi_blocked;
  131. ktime_t entry_time;
  132. s64 vnmi_blocked_time;
  133. u32 exit_reason;
  134. bool rdtscp_enabled;
  135. };
  136. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  137. {
  138. return container_of(vcpu, struct vcpu_vmx, vcpu);
  139. }
  140. static int init_rmode(struct kvm *kvm);
  141. static u64 construct_eptp(unsigned long root_hpa);
  142. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  143. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  144. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  145. static unsigned long *vmx_io_bitmap_a;
  146. static unsigned long *vmx_io_bitmap_b;
  147. static unsigned long *vmx_msr_bitmap_legacy;
  148. static unsigned long *vmx_msr_bitmap_longmode;
  149. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  150. static DEFINE_SPINLOCK(vmx_vpid_lock);
  151. static struct vmcs_config {
  152. int size;
  153. int order;
  154. u32 revision_id;
  155. u32 pin_based_exec_ctrl;
  156. u32 cpu_based_exec_ctrl;
  157. u32 cpu_based_2nd_exec_ctrl;
  158. u32 vmexit_ctrl;
  159. u32 vmentry_ctrl;
  160. } vmcs_config;
  161. static struct vmx_capability {
  162. u32 ept;
  163. u32 vpid;
  164. } vmx_capability;
  165. #define VMX_SEGMENT_FIELD(seg) \
  166. [VCPU_SREG_##seg] = { \
  167. .selector = GUEST_##seg##_SELECTOR, \
  168. .base = GUEST_##seg##_BASE, \
  169. .limit = GUEST_##seg##_LIMIT, \
  170. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  171. }
  172. static struct kvm_vmx_segment_field {
  173. unsigned selector;
  174. unsigned base;
  175. unsigned limit;
  176. unsigned ar_bytes;
  177. } kvm_vmx_segment_fields[] = {
  178. VMX_SEGMENT_FIELD(CS),
  179. VMX_SEGMENT_FIELD(DS),
  180. VMX_SEGMENT_FIELD(ES),
  181. VMX_SEGMENT_FIELD(FS),
  182. VMX_SEGMENT_FIELD(GS),
  183. VMX_SEGMENT_FIELD(SS),
  184. VMX_SEGMENT_FIELD(TR),
  185. VMX_SEGMENT_FIELD(LDTR),
  186. };
  187. static u64 host_efer;
  188. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  189. /*
  190. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  191. * away by decrementing the array size.
  192. */
  193. static const u32 vmx_msr_index[] = {
  194. #ifdef CONFIG_X86_64
  195. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  196. #endif
  197. MSR_EFER, MSR_TSC_AUX, MSR_K6_STAR,
  198. };
  199. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  200. static inline int is_page_fault(u32 intr_info)
  201. {
  202. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  203. INTR_INFO_VALID_MASK)) ==
  204. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  205. }
  206. static inline int is_no_device(u32 intr_info)
  207. {
  208. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  209. INTR_INFO_VALID_MASK)) ==
  210. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  211. }
  212. static inline int is_invalid_opcode(u32 intr_info)
  213. {
  214. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  215. INTR_INFO_VALID_MASK)) ==
  216. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  217. }
  218. static inline int is_external_interrupt(u32 intr_info)
  219. {
  220. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  221. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  222. }
  223. static inline int is_machine_check(u32 intr_info)
  224. {
  225. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  226. INTR_INFO_VALID_MASK)) ==
  227. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  228. }
  229. static inline int cpu_has_vmx_msr_bitmap(void)
  230. {
  231. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  232. }
  233. static inline int cpu_has_vmx_tpr_shadow(void)
  234. {
  235. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  236. }
  237. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  238. {
  239. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  240. }
  241. static inline int cpu_has_secondary_exec_ctrls(void)
  242. {
  243. return vmcs_config.cpu_based_exec_ctrl &
  244. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  245. }
  246. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  247. {
  248. return vmcs_config.cpu_based_2nd_exec_ctrl &
  249. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  250. }
  251. static inline bool cpu_has_vmx_flexpriority(void)
  252. {
  253. return cpu_has_vmx_tpr_shadow() &&
  254. cpu_has_vmx_virtualize_apic_accesses();
  255. }
  256. static inline bool cpu_has_vmx_ept_execute_only(void)
  257. {
  258. return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
  259. }
  260. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  261. {
  262. return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
  263. }
  264. static inline bool cpu_has_vmx_eptp_writeback(void)
  265. {
  266. return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
  267. }
  268. static inline bool cpu_has_vmx_ept_2m_page(void)
  269. {
  270. return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
  271. }
  272. static inline bool cpu_has_vmx_ept_1g_page(void)
  273. {
  274. return !!(vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT);
  275. }
  276. static inline int cpu_has_vmx_invept_individual_addr(void)
  277. {
  278. return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
  279. }
  280. static inline int cpu_has_vmx_invept_context(void)
  281. {
  282. return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
  283. }
  284. static inline int cpu_has_vmx_invept_global(void)
  285. {
  286. return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
  287. }
  288. static inline int cpu_has_vmx_ept(void)
  289. {
  290. return vmcs_config.cpu_based_2nd_exec_ctrl &
  291. SECONDARY_EXEC_ENABLE_EPT;
  292. }
  293. static inline int cpu_has_vmx_unrestricted_guest(void)
  294. {
  295. return vmcs_config.cpu_based_2nd_exec_ctrl &
  296. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  297. }
  298. static inline int cpu_has_vmx_ple(void)
  299. {
  300. return vmcs_config.cpu_based_2nd_exec_ctrl &
  301. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  302. }
  303. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  304. {
  305. return flexpriority_enabled &&
  306. (cpu_has_vmx_virtualize_apic_accesses()) &&
  307. (irqchip_in_kernel(kvm));
  308. }
  309. static inline int cpu_has_vmx_vpid(void)
  310. {
  311. return vmcs_config.cpu_based_2nd_exec_ctrl &
  312. SECONDARY_EXEC_ENABLE_VPID;
  313. }
  314. static inline int cpu_has_vmx_rdtscp(void)
  315. {
  316. return vmcs_config.cpu_based_2nd_exec_ctrl &
  317. SECONDARY_EXEC_RDTSCP;
  318. }
  319. static inline int cpu_has_virtual_nmis(void)
  320. {
  321. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  322. }
  323. static inline bool report_flexpriority(void)
  324. {
  325. return flexpriority_enabled;
  326. }
  327. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  328. {
  329. int i;
  330. for (i = 0; i < vmx->nmsrs; ++i)
  331. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  332. return i;
  333. return -1;
  334. }
  335. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  336. {
  337. struct {
  338. u64 vpid : 16;
  339. u64 rsvd : 48;
  340. u64 gva;
  341. } operand = { vpid, 0, gva };
  342. asm volatile (__ex(ASM_VMX_INVVPID)
  343. /* CF==1 or ZF==1 --> rc = -1 */
  344. "; ja 1f ; ud2 ; 1:"
  345. : : "a"(&operand), "c"(ext) : "cc", "memory");
  346. }
  347. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  348. {
  349. struct {
  350. u64 eptp, gpa;
  351. } operand = {eptp, gpa};
  352. asm volatile (__ex(ASM_VMX_INVEPT)
  353. /* CF==1 or ZF==1 --> rc = -1 */
  354. "; ja 1f ; ud2 ; 1:\n"
  355. : : "a" (&operand), "c" (ext) : "cc", "memory");
  356. }
  357. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  358. {
  359. int i;
  360. i = __find_msr_index(vmx, msr);
  361. if (i >= 0)
  362. return &vmx->guest_msrs[i];
  363. return NULL;
  364. }
  365. static void vmcs_clear(struct vmcs *vmcs)
  366. {
  367. u64 phys_addr = __pa(vmcs);
  368. u8 error;
  369. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  370. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  371. : "cc", "memory");
  372. if (error)
  373. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  374. vmcs, phys_addr);
  375. }
  376. static void __vcpu_clear(void *arg)
  377. {
  378. struct vcpu_vmx *vmx = arg;
  379. int cpu = raw_smp_processor_id();
  380. if (vmx->vcpu.cpu == cpu)
  381. vmcs_clear(vmx->vmcs);
  382. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  383. per_cpu(current_vmcs, cpu) = NULL;
  384. rdtscll(vmx->vcpu.arch.host_tsc);
  385. list_del(&vmx->local_vcpus_link);
  386. vmx->vcpu.cpu = -1;
  387. vmx->launched = 0;
  388. }
  389. static void vcpu_clear(struct vcpu_vmx *vmx)
  390. {
  391. if (vmx->vcpu.cpu == -1)
  392. return;
  393. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  394. }
  395. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  396. {
  397. if (vmx->vpid == 0)
  398. return;
  399. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  400. }
  401. static inline void ept_sync_global(void)
  402. {
  403. if (cpu_has_vmx_invept_global())
  404. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  405. }
  406. static inline void ept_sync_context(u64 eptp)
  407. {
  408. if (enable_ept) {
  409. if (cpu_has_vmx_invept_context())
  410. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  411. else
  412. ept_sync_global();
  413. }
  414. }
  415. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  416. {
  417. if (enable_ept) {
  418. if (cpu_has_vmx_invept_individual_addr())
  419. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  420. eptp, gpa);
  421. else
  422. ept_sync_context(eptp);
  423. }
  424. }
  425. static unsigned long vmcs_readl(unsigned long field)
  426. {
  427. unsigned long value;
  428. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  429. : "=a"(value) : "d"(field) : "cc");
  430. return value;
  431. }
  432. static u16 vmcs_read16(unsigned long field)
  433. {
  434. return vmcs_readl(field);
  435. }
  436. static u32 vmcs_read32(unsigned long field)
  437. {
  438. return vmcs_readl(field);
  439. }
  440. static u64 vmcs_read64(unsigned long field)
  441. {
  442. #ifdef CONFIG_X86_64
  443. return vmcs_readl(field);
  444. #else
  445. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  446. #endif
  447. }
  448. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  449. {
  450. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  451. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  452. dump_stack();
  453. }
  454. static void vmcs_writel(unsigned long field, unsigned long value)
  455. {
  456. u8 error;
  457. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  458. : "=q"(error) : "a"(value), "d"(field) : "cc");
  459. if (unlikely(error))
  460. vmwrite_error(field, value);
  461. }
  462. static void vmcs_write16(unsigned long field, u16 value)
  463. {
  464. vmcs_writel(field, value);
  465. }
  466. static void vmcs_write32(unsigned long field, u32 value)
  467. {
  468. vmcs_writel(field, value);
  469. }
  470. static void vmcs_write64(unsigned long field, u64 value)
  471. {
  472. vmcs_writel(field, value);
  473. #ifndef CONFIG_X86_64
  474. asm volatile ("");
  475. vmcs_writel(field+1, value >> 32);
  476. #endif
  477. }
  478. static void vmcs_clear_bits(unsigned long field, u32 mask)
  479. {
  480. vmcs_writel(field, vmcs_readl(field) & ~mask);
  481. }
  482. static void vmcs_set_bits(unsigned long field, u32 mask)
  483. {
  484. vmcs_writel(field, vmcs_readl(field) | mask);
  485. }
  486. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  487. {
  488. u32 eb;
  489. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  490. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  491. if ((vcpu->guest_debug &
  492. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  493. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  494. eb |= 1u << BP_VECTOR;
  495. if (to_vmx(vcpu)->rmode.vm86_active)
  496. eb = ~0;
  497. if (enable_ept)
  498. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  499. if (vcpu->fpu_active)
  500. eb &= ~(1u << NM_VECTOR);
  501. vmcs_write32(EXCEPTION_BITMAP, eb);
  502. }
  503. static void reload_tss(void)
  504. {
  505. /*
  506. * VT restores TR but not its size. Useless.
  507. */
  508. struct descriptor_table gdt;
  509. struct desc_struct *descs;
  510. kvm_get_gdt(&gdt);
  511. descs = (void *)gdt.base;
  512. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  513. load_TR_desc();
  514. }
  515. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  516. {
  517. u64 guest_efer;
  518. u64 ignore_bits;
  519. guest_efer = vmx->vcpu.arch.efer;
  520. /*
  521. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  522. * outside long mode
  523. */
  524. ignore_bits = EFER_NX | EFER_SCE;
  525. #ifdef CONFIG_X86_64
  526. ignore_bits |= EFER_LMA | EFER_LME;
  527. /* SCE is meaningful only in long mode on Intel */
  528. if (guest_efer & EFER_LMA)
  529. ignore_bits &= ~(u64)EFER_SCE;
  530. #endif
  531. guest_efer &= ~ignore_bits;
  532. guest_efer |= host_efer & ignore_bits;
  533. vmx->guest_msrs[efer_offset].data = guest_efer;
  534. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  535. return true;
  536. }
  537. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  538. {
  539. struct vcpu_vmx *vmx = to_vmx(vcpu);
  540. int i;
  541. if (vmx->host_state.loaded)
  542. return;
  543. vmx->host_state.loaded = 1;
  544. /*
  545. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  546. * allow segment selectors with cpl > 0 or ti == 1.
  547. */
  548. vmx->host_state.ldt_sel = kvm_read_ldt();
  549. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  550. vmx->host_state.fs_sel = kvm_read_fs();
  551. if (!(vmx->host_state.fs_sel & 7)) {
  552. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  553. vmx->host_state.fs_reload_needed = 0;
  554. } else {
  555. vmcs_write16(HOST_FS_SELECTOR, 0);
  556. vmx->host_state.fs_reload_needed = 1;
  557. }
  558. vmx->host_state.gs_sel = kvm_read_gs();
  559. if (!(vmx->host_state.gs_sel & 7))
  560. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  561. else {
  562. vmcs_write16(HOST_GS_SELECTOR, 0);
  563. vmx->host_state.gs_ldt_reload_needed = 1;
  564. }
  565. #ifdef CONFIG_X86_64
  566. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  567. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  568. #else
  569. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  570. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  571. #endif
  572. #ifdef CONFIG_X86_64
  573. if (is_long_mode(&vmx->vcpu)) {
  574. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  575. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  576. }
  577. #endif
  578. for (i = 0; i < vmx->save_nmsrs; ++i)
  579. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  580. vmx->guest_msrs[i].data,
  581. vmx->guest_msrs[i].mask);
  582. }
  583. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  584. {
  585. unsigned long flags;
  586. if (!vmx->host_state.loaded)
  587. return;
  588. ++vmx->vcpu.stat.host_state_reload;
  589. vmx->host_state.loaded = 0;
  590. if (vmx->host_state.fs_reload_needed)
  591. kvm_load_fs(vmx->host_state.fs_sel);
  592. if (vmx->host_state.gs_ldt_reload_needed) {
  593. kvm_load_ldt(vmx->host_state.ldt_sel);
  594. /*
  595. * If we have to reload gs, we must take care to
  596. * preserve our gs base.
  597. */
  598. local_irq_save(flags);
  599. kvm_load_gs(vmx->host_state.gs_sel);
  600. #ifdef CONFIG_X86_64
  601. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  602. #endif
  603. local_irq_restore(flags);
  604. }
  605. reload_tss();
  606. #ifdef CONFIG_X86_64
  607. if (is_long_mode(&vmx->vcpu)) {
  608. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  609. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  610. }
  611. #endif
  612. }
  613. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  614. {
  615. preempt_disable();
  616. __vmx_load_host_state(vmx);
  617. preempt_enable();
  618. }
  619. /*
  620. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  621. * vcpu mutex is already taken.
  622. */
  623. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  624. {
  625. struct vcpu_vmx *vmx = to_vmx(vcpu);
  626. u64 phys_addr = __pa(vmx->vmcs);
  627. u64 tsc_this, delta, new_offset;
  628. if (vcpu->cpu != cpu) {
  629. vcpu_clear(vmx);
  630. kvm_migrate_timers(vcpu);
  631. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  632. local_irq_disable();
  633. list_add(&vmx->local_vcpus_link,
  634. &per_cpu(vcpus_on_cpu, cpu));
  635. local_irq_enable();
  636. }
  637. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  638. u8 error;
  639. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  640. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  641. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  642. : "cc");
  643. if (error)
  644. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  645. vmx->vmcs, phys_addr);
  646. }
  647. if (vcpu->cpu != cpu) {
  648. struct descriptor_table dt;
  649. unsigned long sysenter_esp;
  650. vcpu->cpu = cpu;
  651. /*
  652. * Linux uses per-cpu TSS and GDT, so set these when switching
  653. * processors.
  654. */
  655. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  656. kvm_get_gdt(&dt);
  657. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  658. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  659. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  660. /*
  661. * Make sure the time stamp counter is monotonous.
  662. */
  663. rdtscll(tsc_this);
  664. if (tsc_this < vcpu->arch.host_tsc) {
  665. delta = vcpu->arch.host_tsc - tsc_this;
  666. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  667. vmcs_write64(TSC_OFFSET, new_offset);
  668. }
  669. }
  670. }
  671. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  672. {
  673. __vmx_load_host_state(to_vmx(vcpu));
  674. }
  675. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  676. {
  677. ulong cr0;
  678. if (vcpu->fpu_active)
  679. return;
  680. vcpu->fpu_active = 1;
  681. cr0 = vmcs_readl(GUEST_CR0);
  682. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  683. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  684. vmcs_writel(GUEST_CR0, cr0);
  685. update_exception_bitmap(vcpu);
  686. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  687. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  688. }
  689. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  690. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  691. {
  692. vmx_decache_cr0_guest_bits(vcpu);
  693. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  694. update_exception_bitmap(vcpu);
  695. vcpu->arch.cr0_guest_owned_bits = 0;
  696. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  697. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  698. }
  699. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  700. {
  701. unsigned long rflags;
  702. rflags = vmcs_readl(GUEST_RFLAGS);
  703. if (to_vmx(vcpu)->rmode.vm86_active)
  704. rflags &= ~(unsigned long)(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  705. return rflags;
  706. }
  707. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  708. {
  709. if (to_vmx(vcpu)->rmode.vm86_active)
  710. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  711. vmcs_writel(GUEST_RFLAGS, rflags);
  712. }
  713. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  714. {
  715. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  716. int ret = 0;
  717. if (interruptibility & GUEST_INTR_STATE_STI)
  718. ret |= X86_SHADOW_INT_STI;
  719. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  720. ret |= X86_SHADOW_INT_MOV_SS;
  721. return ret & mask;
  722. }
  723. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  724. {
  725. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  726. u32 interruptibility = interruptibility_old;
  727. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  728. if (mask & X86_SHADOW_INT_MOV_SS)
  729. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  730. if (mask & X86_SHADOW_INT_STI)
  731. interruptibility |= GUEST_INTR_STATE_STI;
  732. if ((interruptibility != interruptibility_old))
  733. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  734. }
  735. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  736. {
  737. unsigned long rip;
  738. rip = kvm_rip_read(vcpu);
  739. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  740. kvm_rip_write(vcpu, rip);
  741. /* skipping an emulated instruction also counts */
  742. vmx_set_interrupt_shadow(vcpu, 0);
  743. }
  744. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  745. bool has_error_code, u32 error_code)
  746. {
  747. struct vcpu_vmx *vmx = to_vmx(vcpu);
  748. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  749. if (has_error_code) {
  750. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  751. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  752. }
  753. if (vmx->rmode.vm86_active) {
  754. vmx->rmode.irq.pending = true;
  755. vmx->rmode.irq.vector = nr;
  756. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  757. if (kvm_exception_is_soft(nr))
  758. vmx->rmode.irq.rip +=
  759. vmx->vcpu.arch.event_exit_inst_len;
  760. intr_info |= INTR_TYPE_SOFT_INTR;
  761. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  762. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  763. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  764. return;
  765. }
  766. if (kvm_exception_is_soft(nr)) {
  767. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  768. vmx->vcpu.arch.event_exit_inst_len);
  769. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  770. } else
  771. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  772. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  773. }
  774. static bool vmx_rdtscp_supported(void)
  775. {
  776. return cpu_has_vmx_rdtscp();
  777. }
  778. /*
  779. * Swap MSR entry in host/guest MSR entry array.
  780. */
  781. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  782. {
  783. struct shared_msr_entry tmp;
  784. tmp = vmx->guest_msrs[to];
  785. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  786. vmx->guest_msrs[from] = tmp;
  787. }
  788. /*
  789. * Set up the vmcs to automatically save and restore system
  790. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  791. * mode, as fiddling with msrs is very expensive.
  792. */
  793. static void setup_msrs(struct vcpu_vmx *vmx)
  794. {
  795. int save_nmsrs, index;
  796. unsigned long *msr_bitmap;
  797. vmx_load_host_state(vmx);
  798. save_nmsrs = 0;
  799. #ifdef CONFIG_X86_64
  800. if (is_long_mode(&vmx->vcpu)) {
  801. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  802. if (index >= 0)
  803. move_msr_up(vmx, index, save_nmsrs++);
  804. index = __find_msr_index(vmx, MSR_LSTAR);
  805. if (index >= 0)
  806. move_msr_up(vmx, index, save_nmsrs++);
  807. index = __find_msr_index(vmx, MSR_CSTAR);
  808. if (index >= 0)
  809. move_msr_up(vmx, index, save_nmsrs++);
  810. index = __find_msr_index(vmx, MSR_TSC_AUX);
  811. if (index >= 0 && vmx->rdtscp_enabled)
  812. move_msr_up(vmx, index, save_nmsrs++);
  813. /*
  814. * MSR_K6_STAR is only needed on long mode guests, and only
  815. * if efer.sce is enabled.
  816. */
  817. index = __find_msr_index(vmx, MSR_K6_STAR);
  818. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  819. move_msr_up(vmx, index, save_nmsrs++);
  820. }
  821. #endif
  822. index = __find_msr_index(vmx, MSR_EFER);
  823. if (index >= 0 && update_transition_efer(vmx, index))
  824. move_msr_up(vmx, index, save_nmsrs++);
  825. vmx->save_nmsrs = save_nmsrs;
  826. if (cpu_has_vmx_msr_bitmap()) {
  827. if (is_long_mode(&vmx->vcpu))
  828. msr_bitmap = vmx_msr_bitmap_longmode;
  829. else
  830. msr_bitmap = vmx_msr_bitmap_legacy;
  831. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  832. }
  833. }
  834. /*
  835. * reads and returns guest's timestamp counter "register"
  836. * guest_tsc = host_tsc + tsc_offset -- 21.3
  837. */
  838. static u64 guest_read_tsc(void)
  839. {
  840. u64 host_tsc, tsc_offset;
  841. rdtscll(host_tsc);
  842. tsc_offset = vmcs_read64(TSC_OFFSET);
  843. return host_tsc + tsc_offset;
  844. }
  845. /*
  846. * writes 'guest_tsc' into guest's timestamp counter "register"
  847. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  848. */
  849. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  850. {
  851. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  852. }
  853. /*
  854. * Reads an msr value (of 'msr_index') into 'pdata'.
  855. * Returns 0 on success, non-0 otherwise.
  856. * Assumes vcpu_load() was already called.
  857. */
  858. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  859. {
  860. u64 data;
  861. struct shared_msr_entry *msr;
  862. if (!pdata) {
  863. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  864. return -EINVAL;
  865. }
  866. switch (msr_index) {
  867. #ifdef CONFIG_X86_64
  868. case MSR_FS_BASE:
  869. data = vmcs_readl(GUEST_FS_BASE);
  870. break;
  871. case MSR_GS_BASE:
  872. data = vmcs_readl(GUEST_GS_BASE);
  873. break;
  874. case MSR_KERNEL_GS_BASE:
  875. vmx_load_host_state(to_vmx(vcpu));
  876. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  877. break;
  878. #endif
  879. case MSR_EFER:
  880. return kvm_get_msr_common(vcpu, msr_index, pdata);
  881. case MSR_IA32_TSC:
  882. data = guest_read_tsc();
  883. break;
  884. case MSR_IA32_SYSENTER_CS:
  885. data = vmcs_read32(GUEST_SYSENTER_CS);
  886. break;
  887. case MSR_IA32_SYSENTER_EIP:
  888. data = vmcs_readl(GUEST_SYSENTER_EIP);
  889. break;
  890. case MSR_IA32_SYSENTER_ESP:
  891. data = vmcs_readl(GUEST_SYSENTER_ESP);
  892. break;
  893. case MSR_TSC_AUX:
  894. if (!to_vmx(vcpu)->rdtscp_enabled)
  895. return 1;
  896. /* Otherwise falls through */
  897. default:
  898. vmx_load_host_state(to_vmx(vcpu));
  899. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  900. if (msr) {
  901. vmx_load_host_state(to_vmx(vcpu));
  902. data = msr->data;
  903. break;
  904. }
  905. return kvm_get_msr_common(vcpu, msr_index, pdata);
  906. }
  907. *pdata = data;
  908. return 0;
  909. }
  910. /*
  911. * Writes msr value into into the appropriate "register".
  912. * Returns 0 on success, non-0 otherwise.
  913. * Assumes vcpu_load() was already called.
  914. */
  915. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  916. {
  917. struct vcpu_vmx *vmx = to_vmx(vcpu);
  918. struct shared_msr_entry *msr;
  919. u64 host_tsc;
  920. int ret = 0;
  921. switch (msr_index) {
  922. case MSR_EFER:
  923. vmx_load_host_state(vmx);
  924. ret = kvm_set_msr_common(vcpu, msr_index, data);
  925. break;
  926. #ifdef CONFIG_X86_64
  927. case MSR_FS_BASE:
  928. vmcs_writel(GUEST_FS_BASE, data);
  929. break;
  930. case MSR_GS_BASE:
  931. vmcs_writel(GUEST_GS_BASE, data);
  932. break;
  933. case MSR_KERNEL_GS_BASE:
  934. vmx_load_host_state(vmx);
  935. vmx->msr_guest_kernel_gs_base = data;
  936. break;
  937. #endif
  938. case MSR_IA32_SYSENTER_CS:
  939. vmcs_write32(GUEST_SYSENTER_CS, data);
  940. break;
  941. case MSR_IA32_SYSENTER_EIP:
  942. vmcs_writel(GUEST_SYSENTER_EIP, data);
  943. break;
  944. case MSR_IA32_SYSENTER_ESP:
  945. vmcs_writel(GUEST_SYSENTER_ESP, data);
  946. break;
  947. case MSR_IA32_TSC:
  948. rdtscll(host_tsc);
  949. guest_write_tsc(data, host_tsc);
  950. break;
  951. case MSR_IA32_CR_PAT:
  952. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  953. vmcs_write64(GUEST_IA32_PAT, data);
  954. vcpu->arch.pat = data;
  955. break;
  956. }
  957. ret = kvm_set_msr_common(vcpu, msr_index, data);
  958. break;
  959. case MSR_TSC_AUX:
  960. if (!vmx->rdtscp_enabled)
  961. return 1;
  962. /* Check reserved bit, higher 32 bits should be zero */
  963. if ((data >> 32) != 0)
  964. return 1;
  965. /* Otherwise falls through */
  966. default:
  967. msr = find_msr_entry(vmx, msr_index);
  968. if (msr) {
  969. vmx_load_host_state(vmx);
  970. msr->data = data;
  971. break;
  972. }
  973. ret = kvm_set_msr_common(vcpu, msr_index, data);
  974. }
  975. return ret;
  976. }
  977. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  978. {
  979. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  980. switch (reg) {
  981. case VCPU_REGS_RSP:
  982. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  983. break;
  984. case VCPU_REGS_RIP:
  985. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  986. break;
  987. case VCPU_EXREG_PDPTR:
  988. if (enable_ept)
  989. ept_save_pdptrs(vcpu);
  990. break;
  991. default:
  992. break;
  993. }
  994. }
  995. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  996. {
  997. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  998. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  999. else
  1000. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  1001. update_exception_bitmap(vcpu);
  1002. }
  1003. static __init int cpu_has_kvm_support(void)
  1004. {
  1005. return cpu_has_vmx();
  1006. }
  1007. static __init int vmx_disabled_by_bios(void)
  1008. {
  1009. u64 msr;
  1010. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  1011. return (msr & (FEATURE_CONTROL_LOCKED |
  1012. FEATURE_CONTROL_VMXON_ENABLED))
  1013. == FEATURE_CONTROL_LOCKED;
  1014. /* locked but not enabled */
  1015. }
  1016. static int hardware_enable(void *garbage)
  1017. {
  1018. int cpu = raw_smp_processor_id();
  1019. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1020. u64 old;
  1021. if (read_cr4() & X86_CR4_VMXE)
  1022. return -EBUSY;
  1023. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  1024. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  1025. if ((old & (FEATURE_CONTROL_LOCKED |
  1026. FEATURE_CONTROL_VMXON_ENABLED))
  1027. != (FEATURE_CONTROL_LOCKED |
  1028. FEATURE_CONTROL_VMXON_ENABLED))
  1029. /* enable and lock */
  1030. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  1031. FEATURE_CONTROL_LOCKED |
  1032. FEATURE_CONTROL_VMXON_ENABLED);
  1033. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  1034. asm volatile (ASM_VMX_VMXON_RAX
  1035. : : "a"(&phys_addr), "m"(phys_addr)
  1036. : "memory", "cc");
  1037. ept_sync_global();
  1038. return 0;
  1039. }
  1040. static void vmclear_local_vcpus(void)
  1041. {
  1042. int cpu = raw_smp_processor_id();
  1043. struct vcpu_vmx *vmx, *n;
  1044. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  1045. local_vcpus_link)
  1046. __vcpu_clear(vmx);
  1047. }
  1048. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  1049. * tricks.
  1050. */
  1051. static void kvm_cpu_vmxoff(void)
  1052. {
  1053. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  1054. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  1055. }
  1056. static void hardware_disable(void *garbage)
  1057. {
  1058. vmclear_local_vcpus();
  1059. kvm_cpu_vmxoff();
  1060. }
  1061. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  1062. u32 msr, u32 *result)
  1063. {
  1064. u32 vmx_msr_low, vmx_msr_high;
  1065. u32 ctl = ctl_min | ctl_opt;
  1066. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1067. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  1068. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  1069. /* Ensure minimum (required) set of control bits are supported. */
  1070. if (ctl_min & ~ctl)
  1071. return -EIO;
  1072. *result = ctl;
  1073. return 0;
  1074. }
  1075. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  1076. {
  1077. u32 vmx_msr_low, vmx_msr_high;
  1078. u32 min, opt, min2, opt2;
  1079. u32 _pin_based_exec_control = 0;
  1080. u32 _cpu_based_exec_control = 0;
  1081. u32 _cpu_based_2nd_exec_control = 0;
  1082. u32 _vmexit_control = 0;
  1083. u32 _vmentry_control = 0;
  1084. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1085. opt = PIN_BASED_VIRTUAL_NMIS;
  1086. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1087. &_pin_based_exec_control) < 0)
  1088. return -EIO;
  1089. min = CPU_BASED_HLT_EXITING |
  1090. #ifdef CONFIG_X86_64
  1091. CPU_BASED_CR8_LOAD_EXITING |
  1092. CPU_BASED_CR8_STORE_EXITING |
  1093. #endif
  1094. CPU_BASED_CR3_LOAD_EXITING |
  1095. CPU_BASED_CR3_STORE_EXITING |
  1096. CPU_BASED_USE_IO_BITMAPS |
  1097. CPU_BASED_MOV_DR_EXITING |
  1098. CPU_BASED_USE_TSC_OFFSETING |
  1099. CPU_BASED_MWAIT_EXITING |
  1100. CPU_BASED_MONITOR_EXITING |
  1101. CPU_BASED_INVLPG_EXITING;
  1102. opt = CPU_BASED_TPR_SHADOW |
  1103. CPU_BASED_USE_MSR_BITMAPS |
  1104. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1105. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1106. &_cpu_based_exec_control) < 0)
  1107. return -EIO;
  1108. #ifdef CONFIG_X86_64
  1109. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1110. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1111. ~CPU_BASED_CR8_STORE_EXITING;
  1112. #endif
  1113. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1114. min2 = 0;
  1115. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1116. SECONDARY_EXEC_WBINVD_EXITING |
  1117. SECONDARY_EXEC_ENABLE_VPID |
  1118. SECONDARY_EXEC_ENABLE_EPT |
  1119. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  1120. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  1121. SECONDARY_EXEC_RDTSCP;
  1122. if (adjust_vmx_controls(min2, opt2,
  1123. MSR_IA32_VMX_PROCBASED_CTLS2,
  1124. &_cpu_based_2nd_exec_control) < 0)
  1125. return -EIO;
  1126. }
  1127. #ifndef CONFIG_X86_64
  1128. if (!(_cpu_based_2nd_exec_control &
  1129. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1130. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1131. #endif
  1132. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1133. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1134. enabled */
  1135. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1136. CPU_BASED_CR3_STORE_EXITING |
  1137. CPU_BASED_INVLPG_EXITING);
  1138. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1139. vmx_capability.ept, vmx_capability.vpid);
  1140. }
  1141. min = 0;
  1142. #ifdef CONFIG_X86_64
  1143. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1144. #endif
  1145. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1146. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1147. &_vmexit_control) < 0)
  1148. return -EIO;
  1149. min = 0;
  1150. opt = VM_ENTRY_LOAD_IA32_PAT;
  1151. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1152. &_vmentry_control) < 0)
  1153. return -EIO;
  1154. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1155. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1156. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1157. return -EIO;
  1158. #ifdef CONFIG_X86_64
  1159. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1160. if (vmx_msr_high & (1u<<16))
  1161. return -EIO;
  1162. #endif
  1163. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1164. if (((vmx_msr_high >> 18) & 15) != 6)
  1165. return -EIO;
  1166. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1167. vmcs_conf->order = get_order(vmcs_config.size);
  1168. vmcs_conf->revision_id = vmx_msr_low;
  1169. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1170. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1171. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1172. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1173. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1174. return 0;
  1175. }
  1176. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1177. {
  1178. int node = cpu_to_node(cpu);
  1179. struct page *pages;
  1180. struct vmcs *vmcs;
  1181. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  1182. if (!pages)
  1183. return NULL;
  1184. vmcs = page_address(pages);
  1185. memset(vmcs, 0, vmcs_config.size);
  1186. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1187. return vmcs;
  1188. }
  1189. static struct vmcs *alloc_vmcs(void)
  1190. {
  1191. return alloc_vmcs_cpu(raw_smp_processor_id());
  1192. }
  1193. static void free_vmcs(struct vmcs *vmcs)
  1194. {
  1195. free_pages((unsigned long)vmcs, vmcs_config.order);
  1196. }
  1197. static void free_kvm_area(void)
  1198. {
  1199. int cpu;
  1200. for_each_possible_cpu(cpu) {
  1201. free_vmcs(per_cpu(vmxarea, cpu));
  1202. per_cpu(vmxarea, cpu) = NULL;
  1203. }
  1204. }
  1205. static __init int alloc_kvm_area(void)
  1206. {
  1207. int cpu;
  1208. for_each_possible_cpu(cpu) {
  1209. struct vmcs *vmcs;
  1210. vmcs = alloc_vmcs_cpu(cpu);
  1211. if (!vmcs) {
  1212. free_kvm_area();
  1213. return -ENOMEM;
  1214. }
  1215. per_cpu(vmxarea, cpu) = vmcs;
  1216. }
  1217. return 0;
  1218. }
  1219. static __init int hardware_setup(void)
  1220. {
  1221. if (setup_vmcs_config(&vmcs_config) < 0)
  1222. return -EIO;
  1223. if (boot_cpu_has(X86_FEATURE_NX))
  1224. kvm_enable_efer_bits(EFER_NX);
  1225. if (!cpu_has_vmx_vpid())
  1226. enable_vpid = 0;
  1227. if (!cpu_has_vmx_ept()) {
  1228. enable_ept = 0;
  1229. enable_unrestricted_guest = 0;
  1230. }
  1231. if (!cpu_has_vmx_unrestricted_guest())
  1232. enable_unrestricted_guest = 0;
  1233. if (!cpu_has_vmx_flexpriority())
  1234. flexpriority_enabled = 0;
  1235. if (!cpu_has_vmx_tpr_shadow())
  1236. kvm_x86_ops->update_cr8_intercept = NULL;
  1237. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  1238. kvm_disable_largepages();
  1239. if (!cpu_has_vmx_ple())
  1240. ple_gap = 0;
  1241. return alloc_kvm_area();
  1242. }
  1243. static __exit void hardware_unsetup(void)
  1244. {
  1245. free_kvm_area();
  1246. }
  1247. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1248. {
  1249. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1250. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1251. vmcs_write16(sf->selector, save->selector);
  1252. vmcs_writel(sf->base, save->base);
  1253. vmcs_write32(sf->limit, save->limit);
  1254. vmcs_write32(sf->ar_bytes, save->ar);
  1255. } else {
  1256. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1257. << AR_DPL_SHIFT;
  1258. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1259. }
  1260. }
  1261. static void enter_pmode(struct kvm_vcpu *vcpu)
  1262. {
  1263. unsigned long flags;
  1264. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1265. vmx->emulation_required = 1;
  1266. vmx->rmode.vm86_active = 0;
  1267. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  1268. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  1269. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  1270. flags = vmcs_readl(GUEST_RFLAGS);
  1271. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1272. flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
  1273. vmcs_writel(GUEST_RFLAGS, flags);
  1274. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1275. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1276. update_exception_bitmap(vcpu);
  1277. if (emulate_invalid_guest_state)
  1278. return;
  1279. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  1280. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  1281. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  1282. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  1283. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1284. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1285. vmcs_write16(GUEST_CS_SELECTOR,
  1286. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1287. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1288. }
  1289. static gva_t rmode_tss_base(struct kvm *kvm)
  1290. {
  1291. if (!kvm->arch.tss_addr) {
  1292. struct kvm_memslots *slots;
  1293. gfn_t base_gfn;
  1294. slots = rcu_dereference(kvm->memslots);
  1295. base_gfn = kvm->memslots->memslots[0].base_gfn +
  1296. kvm->memslots->memslots[0].npages - 3;
  1297. return base_gfn << PAGE_SHIFT;
  1298. }
  1299. return kvm->arch.tss_addr;
  1300. }
  1301. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1302. {
  1303. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1304. save->selector = vmcs_read16(sf->selector);
  1305. save->base = vmcs_readl(sf->base);
  1306. save->limit = vmcs_read32(sf->limit);
  1307. save->ar = vmcs_read32(sf->ar_bytes);
  1308. vmcs_write16(sf->selector, save->base >> 4);
  1309. vmcs_write32(sf->base, save->base & 0xfffff);
  1310. vmcs_write32(sf->limit, 0xffff);
  1311. vmcs_write32(sf->ar_bytes, 0xf3);
  1312. }
  1313. static void enter_rmode(struct kvm_vcpu *vcpu)
  1314. {
  1315. unsigned long flags;
  1316. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1317. if (enable_unrestricted_guest)
  1318. return;
  1319. vmx->emulation_required = 1;
  1320. vmx->rmode.vm86_active = 1;
  1321. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1322. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1323. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1324. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1325. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1326. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1327. flags = vmcs_readl(GUEST_RFLAGS);
  1328. vmx->rmode.save_iopl
  1329. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1330. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1331. vmcs_writel(GUEST_RFLAGS, flags);
  1332. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1333. update_exception_bitmap(vcpu);
  1334. if (emulate_invalid_guest_state)
  1335. goto continue_rmode;
  1336. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1337. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1338. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1339. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1340. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1341. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1342. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1343. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1344. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  1345. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  1346. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  1347. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  1348. continue_rmode:
  1349. kvm_mmu_reset_context(vcpu);
  1350. init_rmode(vcpu->kvm);
  1351. }
  1352. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1353. {
  1354. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1355. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1356. if (!msr)
  1357. return;
  1358. /*
  1359. * Force kernel_gs_base reloading before EFER changes, as control
  1360. * of this msr depends on is_long_mode().
  1361. */
  1362. vmx_load_host_state(to_vmx(vcpu));
  1363. vcpu->arch.efer = efer;
  1364. if (!msr)
  1365. return;
  1366. if (efer & EFER_LMA) {
  1367. vmcs_write32(VM_ENTRY_CONTROLS,
  1368. vmcs_read32(VM_ENTRY_CONTROLS) |
  1369. VM_ENTRY_IA32E_MODE);
  1370. msr->data = efer;
  1371. } else {
  1372. vmcs_write32(VM_ENTRY_CONTROLS,
  1373. vmcs_read32(VM_ENTRY_CONTROLS) &
  1374. ~VM_ENTRY_IA32E_MODE);
  1375. msr->data = efer & ~EFER_LME;
  1376. }
  1377. setup_msrs(vmx);
  1378. }
  1379. #ifdef CONFIG_X86_64
  1380. static void enter_lmode(struct kvm_vcpu *vcpu)
  1381. {
  1382. u32 guest_tr_ar;
  1383. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1384. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1385. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1386. __func__);
  1387. vmcs_write32(GUEST_TR_AR_BYTES,
  1388. (guest_tr_ar & ~AR_TYPE_MASK)
  1389. | AR_TYPE_BUSY_64_TSS);
  1390. }
  1391. vcpu->arch.efer |= EFER_LMA;
  1392. vmx_set_efer(vcpu, vcpu->arch.efer);
  1393. }
  1394. static void exit_lmode(struct kvm_vcpu *vcpu)
  1395. {
  1396. vcpu->arch.efer &= ~EFER_LMA;
  1397. vmcs_write32(VM_ENTRY_CONTROLS,
  1398. vmcs_read32(VM_ENTRY_CONTROLS)
  1399. & ~VM_ENTRY_IA32E_MODE);
  1400. }
  1401. #endif
  1402. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1403. {
  1404. vpid_sync_vcpu_all(to_vmx(vcpu));
  1405. if (enable_ept)
  1406. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1407. }
  1408. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  1409. {
  1410. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  1411. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  1412. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  1413. }
  1414. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1415. {
  1416. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  1417. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  1418. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  1419. }
  1420. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1421. {
  1422. if (!test_bit(VCPU_EXREG_PDPTR,
  1423. (unsigned long *)&vcpu->arch.regs_dirty))
  1424. return;
  1425. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1426. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1427. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1428. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1429. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1430. }
  1431. }
  1432. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  1433. {
  1434. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1435. vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  1436. vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  1437. vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  1438. vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  1439. }
  1440. __set_bit(VCPU_EXREG_PDPTR,
  1441. (unsigned long *)&vcpu->arch.regs_avail);
  1442. __set_bit(VCPU_EXREG_PDPTR,
  1443. (unsigned long *)&vcpu->arch.regs_dirty);
  1444. }
  1445. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1446. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1447. unsigned long cr0,
  1448. struct kvm_vcpu *vcpu)
  1449. {
  1450. if (!(cr0 & X86_CR0_PG)) {
  1451. /* From paging/starting to nonpaging */
  1452. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1453. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1454. (CPU_BASED_CR3_LOAD_EXITING |
  1455. CPU_BASED_CR3_STORE_EXITING));
  1456. vcpu->arch.cr0 = cr0;
  1457. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1458. } else if (!is_paging(vcpu)) {
  1459. /* From nonpaging to paging */
  1460. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1461. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1462. ~(CPU_BASED_CR3_LOAD_EXITING |
  1463. CPU_BASED_CR3_STORE_EXITING));
  1464. vcpu->arch.cr0 = cr0;
  1465. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1466. }
  1467. if (!(cr0 & X86_CR0_WP))
  1468. *hw_cr0 &= ~X86_CR0_WP;
  1469. }
  1470. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1471. {
  1472. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1473. unsigned long hw_cr0;
  1474. if (enable_unrestricted_guest)
  1475. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  1476. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  1477. else
  1478. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  1479. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  1480. enter_pmode(vcpu);
  1481. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  1482. enter_rmode(vcpu);
  1483. #ifdef CONFIG_X86_64
  1484. if (vcpu->arch.efer & EFER_LME) {
  1485. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1486. enter_lmode(vcpu);
  1487. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1488. exit_lmode(vcpu);
  1489. }
  1490. #endif
  1491. if (enable_ept)
  1492. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1493. if (!vcpu->fpu_active)
  1494. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  1495. vmcs_writel(CR0_READ_SHADOW, cr0);
  1496. vmcs_writel(GUEST_CR0, hw_cr0);
  1497. vcpu->arch.cr0 = cr0;
  1498. }
  1499. static u64 construct_eptp(unsigned long root_hpa)
  1500. {
  1501. u64 eptp;
  1502. /* TODO write the value reading from MSR */
  1503. eptp = VMX_EPT_DEFAULT_MT |
  1504. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1505. eptp |= (root_hpa & PAGE_MASK);
  1506. return eptp;
  1507. }
  1508. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1509. {
  1510. unsigned long guest_cr3;
  1511. u64 eptp;
  1512. guest_cr3 = cr3;
  1513. if (enable_ept) {
  1514. eptp = construct_eptp(cr3);
  1515. vmcs_write64(EPT_POINTER, eptp);
  1516. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1517. vcpu->kvm->arch.ept_identity_map_addr;
  1518. ept_load_pdptrs(vcpu);
  1519. }
  1520. vmx_flush_tlb(vcpu);
  1521. vmcs_writel(GUEST_CR3, guest_cr3);
  1522. }
  1523. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1524. {
  1525. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  1526. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1527. vcpu->arch.cr4 = cr4;
  1528. if (enable_ept) {
  1529. if (!is_paging(vcpu)) {
  1530. hw_cr4 &= ~X86_CR4_PAE;
  1531. hw_cr4 |= X86_CR4_PSE;
  1532. } else if (!(cr4 & X86_CR4_PAE)) {
  1533. hw_cr4 &= ~X86_CR4_PAE;
  1534. }
  1535. }
  1536. vmcs_writel(CR4_READ_SHADOW, cr4);
  1537. vmcs_writel(GUEST_CR4, hw_cr4);
  1538. }
  1539. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1540. {
  1541. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1542. return vmcs_readl(sf->base);
  1543. }
  1544. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1545. struct kvm_segment *var, int seg)
  1546. {
  1547. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1548. u32 ar;
  1549. var->base = vmcs_readl(sf->base);
  1550. var->limit = vmcs_read32(sf->limit);
  1551. var->selector = vmcs_read16(sf->selector);
  1552. ar = vmcs_read32(sf->ar_bytes);
  1553. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1554. ar = 0;
  1555. var->type = ar & 15;
  1556. var->s = (ar >> 4) & 1;
  1557. var->dpl = (ar >> 5) & 3;
  1558. var->present = (ar >> 7) & 1;
  1559. var->avl = (ar >> 12) & 1;
  1560. var->l = (ar >> 13) & 1;
  1561. var->db = (ar >> 14) & 1;
  1562. var->g = (ar >> 15) & 1;
  1563. var->unusable = (ar >> 16) & 1;
  1564. }
  1565. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1566. {
  1567. if (!is_protmode(vcpu))
  1568. return 0;
  1569. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1570. return 3;
  1571. return vmcs_read16(GUEST_CS_SELECTOR) & 3;
  1572. }
  1573. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1574. {
  1575. u32 ar;
  1576. if (var->unusable)
  1577. ar = 1 << 16;
  1578. else {
  1579. ar = var->type & 15;
  1580. ar |= (var->s & 1) << 4;
  1581. ar |= (var->dpl & 3) << 5;
  1582. ar |= (var->present & 1) << 7;
  1583. ar |= (var->avl & 1) << 12;
  1584. ar |= (var->l & 1) << 13;
  1585. ar |= (var->db & 1) << 14;
  1586. ar |= (var->g & 1) << 15;
  1587. }
  1588. if (ar == 0) /* a 0 value means unusable */
  1589. ar = AR_UNUSABLE_MASK;
  1590. return ar;
  1591. }
  1592. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1593. struct kvm_segment *var, int seg)
  1594. {
  1595. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1596. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1597. u32 ar;
  1598. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  1599. vmx->rmode.tr.selector = var->selector;
  1600. vmx->rmode.tr.base = var->base;
  1601. vmx->rmode.tr.limit = var->limit;
  1602. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  1603. return;
  1604. }
  1605. vmcs_writel(sf->base, var->base);
  1606. vmcs_write32(sf->limit, var->limit);
  1607. vmcs_write16(sf->selector, var->selector);
  1608. if (vmx->rmode.vm86_active && var->s) {
  1609. /*
  1610. * Hack real-mode segments into vm86 compatibility.
  1611. */
  1612. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1613. vmcs_writel(sf->base, 0xf0000);
  1614. ar = 0xf3;
  1615. } else
  1616. ar = vmx_segment_access_rights(var);
  1617. /*
  1618. * Fix the "Accessed" bit in AR field of segment registers for older
  1619. * qemu binaries.
  1620. * IA32 arch specifies that at the time of processor reset the
  1621. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  1622. * is setting it to 0 in the usedland code. This causes invalid guest
  1623. * state vmexit when "unrestricted guest" mode is turned on.
  1624. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  1625. * tree. Newer qemu binaries with that qemu fix would not need this
  1626. * kvm hack.
  1627. */
  1628. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  1629. ar |= 0x1; /* Accessed */
  1630. vmcs_write32(sf->ar_bytes, ar);
  1631. }
  1632. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1633. {
  1634. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1635. *db = (ar >> 14) & 1;
  1636. *l = (ar >> 13) & 1;
  1637. }
  1638. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1639. {
  1640. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1641. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1642. }
  1643. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1644. {
  1645. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1646. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1647. }
  1648. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1649. {
  1650. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1651. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1652. }
  1653. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1654. {
  1655. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1656. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1657. }
  1658. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1659. {
  1660. struct kvm_segment var;
  1661. u32 ar;
  1662. vmx_get_segment(vcpu, &var, seg);
  1663. ar = vmx_segment_access_rights(&var);
  1664. if (var.base != (var.selector << 4))
  1665. return false;
  1666. if (var.limit != 0xffff)
  1667. return false;
  1668. if (ar != 0xf3)
  1669. return false;
  1670. return true;
  1671. }
  1672. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1673. {
  1674. struct kvm_segment cs;
  1675. unsigned int cs_rpl;
  1676. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1677. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1678. if (cs.unusable)
  1679. return false;
  1680. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1681. return false;
  1682. if (!cs.s)
  1683. return false;
  1684. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1685. if (cs.dpl > cs_rpl)
  1686. return false;
  1687. } else {
  1688. if (cs.dpl != cs_rpl)
  1689. return false;
  1690. }
  1691. if (!cs.present)
  1692. return false;
  1693. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1694. return true;
  1695. }
  1696. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1697. {
  1698. struct kvm_segment ss;
  1699. unsigned int ss_rpl;
  1700. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1701. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1702. if (ss.unusable)
  1703. return true;
  1704. if (ss.type != 3 && ss.type != 7)
  1705. return false;
  1706. if (!ss.s)
  1707. return false;
  1708. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1709. return false;
  1710. if (!ss.present)
  1711. return false;
  1712. return true;
  1713. }
  1714. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1715. {
  1716. struct kvm_segment var;
  1717. unsigned int rpl;
  1718. vmx_get_segment(vcpu, &var, seg);
  1719. rpl = var.selector & SELECTOR_RPL_MASK;
  1720. if (var.unusable)
  1721. return true;
  1722. if (!var.s)
  1723. return false;
  1724. if (!var.present)
  1725. return false;
  1726. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1727. if (var.dpl < rpl) /* DPL < RPL */
  1728. return false;
  1729. }
  1730. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1731. * rights flags
  1732. */
  1733. return true;
  1734. }
  1735. static bool tr_valid(struct kvm_vcpu *vcpu)
  1736. {
  1737. struct kvm_segment tr;
  1738. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1739. if (tr.unusable)
  1740. return false;
  1741. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1742. return false;
  1743. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1744. return false;
  1745. if (!tr.present)
  1746. return false;
  1747. return true;
  1748. }
  1749. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1750. {
  1751. struct kvm_segment ldtr;
  1752. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1753. if (ldtr.unusable)
  1754. return true;
  1755. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1756. return false;
  1757. if (ldtr.type != 2)
  1758. return false;
  1759. if (!ldtr.present)
  1760. return false;
  1761. return true;
  1762. }
  1763. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1764. {
  1765. struct kvm_segment cs, ss;
  1766. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1767. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1768. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1769. (ss.selector & SELECTOR_RPL_MASK));
  1770. }
  1771. /*
  1772. * Check if guest state is valid. Returns true if valid, false if
  1773. * not.
  1774. * We assume that registers are always usable
  1775. */
  1776. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1777. {
  1778. /* real mode guest state checks */
  1779. if (!is_protmode(vcpu)) {
  1780. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1781. return false;
  1782. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1783. return false;
  1784. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1785. return false;
  1786. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1787. return false;
  1788. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1789. return false;
  1790. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1791. return false;
  1792. } else {
  1793. /* protected mode guest state checks */
  1794. if (!cs_ss_rpl_check(vcpu))
  1795. return false;
  1796. if (!code_segment_valid(vcpu))
  1797. return false;
  1798. if (!stack_segment_valid(vcpu))
  1799. return false;
  1800. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1801. return false;
  1802. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1803. return false;
  1804. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1805. return false;
  1806. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1807. return false;
  1808. if (!tr_valid(vcpu))
  1809. return false;
  1810. if (!ldtr_valid(vcpu))
  1811. return false;
  1812. }
  1813. /* TODO:
  1814. * - Add checks on RIP
  1815. * - Add checks on RFLAGS
  1816. */
  1817. return true;
  1818. }
  1819. static int init_rmode_tss(struct kvm *kvm)
  1820. {
  1821. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1822. u16 data = 0;
  1823. int ret = 0;
  1824. int r;
  1825. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1826. if (r < 0)
  1827. goto out;
  1828. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1829. r = kvm_write_guest_page(kvm, fn++, &data,
  1830. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1831. if (r < 0)
  1832. goto out;
  1833. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1834. if (r < 0)
  1835. goto out;
  1836. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1837. if (r < 0)
  1838. goto out;
  1839. data = ~0;
  1840. r = kvm_write_guest_page(kvm, fn, &data,
  1841. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1842. sizeof(u8));
  1843. if (r < 0)
  1844. goto out;
  1845. ret = 1;
  1846. out:
  1847. return ret;
  1848. }
  1849. static int init_rmode_identity_map(struct kvm *kvm)
  1850. {
  1851. int i, r, ret;
  1852. pfn_t identity_map_pfn;
  1853. u32 tmp;
  1854. if (!enable_ept)
  1855. return 1;
  1856. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1857. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1858. "haven't been allocated!\n");
  1859. return 0;
  1860. }
  1861. if (likely(kvm->arch.ept_identity_pagetable_done))
  1862. return 1;
  1863. ret = 0;
  1864. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  1865. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1866. if (r < 0)
  1867. goto out;
  1868. /* Set up identity-mapping pagetable for EPT in real mode */
  1869. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1870. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1871. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1872. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1873. &tmp, i * sizeof(tmp), sizeof(tmp));
  1874. if (r < 0)
  1875. goto out;
  1876. }
  1877. kvm->arch.ept_identity_pagetable_done = true;
  1878. ret = 1;
  1879. out:
  1880. return ret;
  1881. }
  1882. static void seg_setup(int seg)
  1883. {
  1884. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1885. unsigned int ar;
  1886. vmcs_write16(sf->selector, 0);
  1887. vmcs_writel(sf->base, 0);
  1888. vmcs_write32(sf->limit, 0xffff);
  1889. if (enable_unrestricted_guest) {
  1890. ar = 0x93;
  1891. if (seg == VCPU_SREG_CS)
  1892. ar |= 0x08; /* code segment */
  1893. } else
  1894. ar = 0xf3;
  1895. vmcs_write32(sf->ar_bytes, ar);
  1896. }
  1897. static int alloc_apic_access_page(struct kvm *kvm)
  1898. {
  1899. struct kvm_userspace_memory_region kvm_userspace_mem;
  1900. int r = 0;
  1901. mutex_lock(&kvm->slots_lock);
  1902. if (kvm->arch.apic_access_page)
  1903. goto out;
  1904. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1905. kvm_userspace_mem.flags = 0;
  1906. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1907. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1908. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1909. if (r)
  1910. goto out;
  1911. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1912. out:
  1913. mutex_unlock(&kvm->slots_lock);
  1914. return r;
  1915. }
  1916. static int alloc_identity_pagetable(struct kvm *kvm)
  1917. {
  1918. struct kvm_userspace_memory_region kvm_userspace_mem;
  1919. int r = 0;
  1920. mutex_lock(&kvm->slots_lock);
  1921. if (kvm->arch.ept_identity_pagetable)
  1922. goto out;
  1923. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1924. kvm_userspace_mem.flags = 0;
  1925. kvm_userspace_mem.guest_phys_addr =
  1926. kvm->arch.ept_identity_map_addr;
  1927. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1928. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1929. if (r)
  1930. goto out;
  1931. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1932. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  1933. out:
  1934. mutex_unlock(&kvm->slots_lock);
  1935. return r;
  1936. }
  1937. static void allocate_vpid(struct vcpu_vmx *vmx)
  1938. {
  1939. int vpid;
  1940. vmx->vpid = 0;
  1941. if (!enable_vpid)
  1942. return;
  1943. spin_lock(&vmx_vpid_lock);
  1944. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1945. if (vpid < VMX_NR_VPIDS) {
  1946. vmx->vpid = vpid;
  1947. __set_bit(vpid, vmx_vpid_bitmap);
  1948. }
  1949. spin_unlock(&vmx_vpid_lock);
  1950. }
  1951. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  1952. {
  1953. int f = sizeof(unsigned long);
  1954. if (!cpu_has_vmx_msr_bitmap())
  1955. return;
  1956. /*
  1957. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1958. * have the write-low and read-high bitmap offsets the wrong way round.
  1959. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1960. */
  1961. if (msr <= 0x1fff) {
  1962. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  1963. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  1964. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1965. msr &= 0x1fff;
  1966. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  1967. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  1968. }
  1969. }
  1970. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  1971. {
  1972. if (!longmode_only)
  1973. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  1974. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  1975. }
  1976. /*
  1977. * Sets up the vmcs for emulated real mode.
  1978. */
  1979. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1980. {
  1981. u32 host_sysenter_cs, msr_low, msr_high;
  1982. u32 junk;
  1983. u64 host_pat, tsc_this, tsc_base;
  1984. unsigned long a;
  1985. struct descriptor_table dt;
  1986. int i;
  1987. unsigned long kvm_vmx_return;
  1988. u32 exec_control;
  1989. /* I/O */
  1990. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  1991. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  1992. if (cpu_has_vmx_msr_bitmap())
  1993. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  1994. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1995. /* Control */
  1996. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1997. vmcs_config.pin_based_exec_ctrl);
  1998. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1999. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  2000. exec_control &= ~CPU_BASED_TPR_SHADOW;
  2001. #ifdef CONFIG_X86_64
  2002. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  2003. CPU_BASED_CR8_LOAD_EXITING;
  2004. #endif
  2005. }
  2006. if (!enable_ept)
  2007. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  2008. CPU_BASED_CR3_LOAD_EXITING |
  2009. CPU_BASED_INVLPG_EXITING;
  2010. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  2011. if (cpu_has_secondary_exec_ctrls()) {
  2012. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  2013. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2014. exec_control &=
  2015. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  2016. if (vmx->vpid == 0)
  2017. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  2018. if (!enable_ept) {
  2019. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  2020. enable_unrestricted_guest = 0;
  2021. }
  2022. if (!enable_unrestricted_guest)
  2023. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  2024. if (!ple_gap)
  2025. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  2026. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  2027. }
  2028. if (ple_gap) {
  2029. vmcs_write32(PLE_GAP, ple_gap);
  2030. vmcs_write32(PLE_WINDOW, ple_window);
  2031. }
  2032. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  2033. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  2034. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  2035. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  2036. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  2037. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  2038. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  2039. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2040. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2041. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  2042. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  2043. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2044. #ifdef CONFIG_X86_64
  2045. rdmsrl(MSR_FS_BASE, a);
  2046. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  2047. rdmsrl(MSR_GS_BASE, a);
  2048. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  2049. #else
  2050. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  2051. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  2052. #endif
  2053. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  2054. kvm_get_idt(&dt);
  2055. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  2056. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  2057. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  2058. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  2059. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  2060. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  2061. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  2062. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  2063. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  2064. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  2065. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  2066. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  2067. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  2068. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2069. host_pat = msr_low | ((u64) msr_high << 32);
  2070. vmcs_write64(HOST_IA32_PAT, host_pat);
  2071. }
  2072. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2073. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2074. host_pat = msr_low | ((u64) msr_high << 32);
  2075. /* Write the default value follow host pat */
  2076. vmcs_write64(GUEST_IA32_PAT, host_pat);
  2077. /* Keep arch.pat sync with GUEST_IA32_PAT */
  2078. vmx->vcpu.arch.pat = host_pat;
  2079. }
  2080. for (i = 0; i < NR_VMX_MSR; ++i) {
  2081. u32 index = vmx_msr_index[i];
  2082. u32 data_low, data_high;
  2083. int j = vmx->nmsrs;
  2084. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  2085. continue;
  2086. if (wrmsr_safe(index, data_low, data_high) < 0)
  2087. continue;
  2088. vmx->guest_msrs[j].index = i;
  2089. vmx->guest_msrs[j].data = 0;
  2090. vmx->guest_msrs[j].mask = -1ull;
  2091. ++vmx->nmsrs;
  2092. }
  2093. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  2094. /* 22.2.1, 20.8.1 */
  2095. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  2096. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  2097. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  2098. if (enable_ept)
  2099. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  2100. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  2101. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  2102. rdtscll(tsc_this);
  2103. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  2104. tsc_base = tsc_this;
  2105. guest_write_tsc(0, tsc_base);
  2106. return 0;
  2107. }
  2108. static int init_rmode(struct kvm *kvm)
  2109. {
  2110. if (!init_rmode_tss(kvm))
  2111. return 0;
  2112. if (!init_rmode_identity_map(kvm))
  2113. return 0;
  2114. return 1;
  2115. }
  2116. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  2117. {
  2118. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2119. u64 msr;
  2120. int ret, idx;
  2121. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2122. idx = srcu_read_lock(&vcpu->kvm->srcu);
  2123. if (!init_rmode(vmx->vcpu.kvm)) {
  2124. ret = -ENOMEM;
  2125. goto out;
  2126. }
  2127. vmx->rmode.vm86_active = 0;
  2128. vmx->soft_vnmi_blocked = 0;
  2129. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  2130. kvm_set_cr8(&vmx->vcpu, 0);
  2131. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  2132. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2133. msr |= MSR_IA32_APICBASE_BSP;
  2134. kvm_set_apic_base(&vmx->vcpu, msr);
  2135. fx_init(&vmx->vcpu);
  2136. seg_setup(VCPU_SREG_CS);
  2137. /*
  2138. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  2139. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  2140. */
  2141. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  2142. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  2143. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  2144. } else {
  2145. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  2146. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  2147. }
  2148. seg_setup(VCPU_SREG_DS);
  2149. seg_setup(VCPU_SREG_ES);
  2150. seg_setup(VCPU_SREG_FS);
  2151. seg_setup(VCPU_SREG_GS);
  2152. seg_setup(VCPU_SREG_SS);
  2153. vmcs_write16(GUEST_TR_SELECTOR, 0);
  2154. vmcs_writel(GUEST_TR_BASE, 0);
  2155. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  2156. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2157. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  2158. vmcs_writel(GUEST_LDTR_BASE, 0);
  2159. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  2160. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  2161. vmcs_write32(GUEST_SYSENTER_CS, 0);
  2162. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  2163. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2164. vmcs_writel(GUEST_RFLAGS, 0x02);
  2165. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2166. kvm_rip_write(vcpu, 0xfff0);
  2167. else
  2168. kvm_rip_write(vcpu, 0);
  2169. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2170. vmcs_writel(GUEST_DR7, 0x400);
  2171. vmcs_writel(GUEST_GDTR_BASE, 0);
  2172. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2173. vmcs_writel(GUEST_IDTR_BASE, 0);
  2174. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2175. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2176. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2177. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2178. /* Special registers */
  2179. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2180. setup_msrs(vmx);
  2181. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2182. if (cpu_has_vmx_tpr_shadow()) {
  2183. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2184. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2185. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2186. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2187. vmcs_write32(TPR_THRESHOLD, 0);
  2188. }
  2189. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2190. vmcs_write64(APIC_ACCESS_ADDR,
  2191. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2192. if (vmx->vpid != 0)
  2193. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2194. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  2195. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  2196. vmx_set_cr4(&vmx->vcpu, 0);
  2197. vmx_set_efer(&vmx->vcpu, 0);
  2198. vmx_fpu_activate(&vmx->vcpu);
  2199. update_exception_bitmap(&vmx->vcpu);
  2200. vpid_sync_vcpu_all(vmx);
  2201. ret = 0;
  2202. /* HACK: Don't enable emulation on guest boot/reset */
  2203. vmx->emulation_required = 0;
  2204. out:
  2205. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  2206. return ret;
  2207. }
  2208. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2209. {
  2210. u32 cpu_based_vm_exec_control;
  2211. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2212. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2213. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2214. }
  2215. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2216. {
  2217. u32 cpu_based_vm_exec_control;
  2218. if (!cpu_has_virtual_nmis()) {
  2219. enable_irq_window(vcpu);
  2220. return;
  2221. }
  2222. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2223. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2224. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2225. }
  2226. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  2227. {
  2228. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2229. uint32_t intr;
  2230. int irq = vcpu->arch.interrupt.nr;
  2231. trace_kvm_inj_virq(irq);
  2232. ++vcpu->stat.irq_injections;
  2233. if (vmx->rmode.vm86_active) {
  2234. vmx->rmode.irq.pending = true;
  2235. vmx->rmode.irq.vector = irq;
  2236. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2237. if (vcpu->arch.interrupt.soft)
  2238. vmx->rmode.irq.rip +=
  2239. vmx->vcpu.arch.event_exit_inst_len;
  2240. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2241. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2242. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2243. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2244. return;
  2245. }
  2246. intr = irq | INTR_INFO_VALID_MASK;
  2247. if (vcpu->arch.interrupt.soft) {
  2248. intr |= INTR_TYPE_SOFT_INTR;
  2249. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2250. vmx->vcpu.arch.event_exit_inst_len);
  2251. } else
  2252. intr |= INTR_TYPE_EXT_INTR;
  2253. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  2254. }
  2255. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2256. {
  2257. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2258. if (!cpu_has_virtual_nmis()) {
  2259. /*
  2260. * Tracking the NMI-blocked state in software is built upon
  2261. * finding the next open IRQ window. This, in turn, depends on
  2262. * well-behaving guests: They have to keep IRQs disabled at
  2263. * least as long as the NMI handler runs. Otherwise we may
  2264. * cause NMI nesting, maybe breaking the guest. But as this is
  2265. * highly unlikely, we can live with the residual risk.
  2266. */
  2267. vmx->soft_vnmi_blocked = 1;
  2268. vmx->vnmi_blocked_time = 0;
  2269. }
  2270. ++vcpu->stat.nmi_injections;
  2271. if (vmx->rmode.vm86_active) {
  2272. vmx->rmode.irq.pending = true;
  2273. vmx->rmode.irq.vector = NMI_VECTOR;
  2274. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2275. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2276. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2277. INTR_INFO_VALID_MASK);
  2278. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2279. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2280. return;
  2281. }
  2282. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2283. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2284. }
  2285. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2286. {
  2287. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2288. return 0;
  2289. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2290. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
  2291. GUEST_INTR_STATE_NMI));
  2292. }
  2293. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  2294. {
  2295. if (!cpu_has_virtual_nmis())
  2296. return to_vmx(vcpu)->soft_vnmi_blocked;
  2297. else
  2298. return !!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2299. GUEST_INTR_STATE_NMI);
  2300. }
  2301. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  2302. {
  2303. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2304. if (!cpu_has_virtual_nmis()) {
  2305. if (vmx->soft_vnmi_blocked != masked) {
  2306. vmx->soft_vnmi_blocked = masked;
  2307. vmx->vnmi_blocked_time = 0;
  2308. }
  2309. } else {
  2310. if (masked)
  2311. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2312. GUEST_INTR_STATE_NMI);
  2313. else
  2314. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2315. GUEST_INTR_STATE_NMI);
  2316. }
  2317. }
  2318. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2319. {
  2320. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2321. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2322. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2323. }
  2324. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2325. {
  2326. int ret;
  2327. struct kvm_userspace_memory_region tss_mem = {
  2328. .slot = TSS_PRIVATE_MEMSLOT,
  2329. .guest_phys_addr = addr,
  2330. .memory_size = PAGE_SIZE * 3,
  2331. .flags = 0,
  2332. };
  2333. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2334. if (ret)
  2335. return ret;
  2336. kvm->arch.tss_addr = addr;
  2337. return 0;
  2338. }
  2339. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2340. int vec, u32 err_code)
  2341. {
  2342. /*
  2343. * Instruction with address size override prefix opcode 0x67
  2344. * Cause the #SS fault with 0 error code in VM86 mode.
  2345. */
  2346. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2347. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
  2348. return 1;
  2349. /*
  2350. * Forward all other exceptions that are valid in real mode.
  2351. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2352. * the required debugging infrastructure rework.
  2353. */
  2354. switch (vec) {
  2355. case DB_VECTOR:
  2356. if (vcpu->guest_debug &
  2357. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2358. return 0;
  2359. kvm_queue_exception(vcpu, vec);
  2360. return 1;
  2361. case BP_VECTOR:
  2362. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2363. return 0;
  2364. /* fall through */
  2365. case DE_VECTOR:
  2366. case OF_VECTOR:
  2367. case BR_VECTOR:
  2368. case UD_VECTOR:
  2369. case DF_VECTOR:
  2370. case SS_VECTOR:
  2371. case GP_VECTOR:
  2372. case MF_VECTOR:
  2373. kvm_queue_exception(vcpu, vec);
  2374. return 1;
  2375. }
  2376. return 0;
  2377. }
  2378. /*
  2379. * Trigger machine check on the host. We assume all the MSRs are already set up
  2380. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  2381. * We pass a fake environment to the machine check handler because we want
  2382. * the guest to be always treated like user space, no matter what context
  2383. * it used internally.
  2384. */
  2385. static void kvm_machine_check(void)
  2386. {
  2387. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  2388. struct pt_regs regs = {
  2389. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  2390. .flags = X86_EFLAGS_IF,
  2391. };
  2392. do_machine_check(&regs, 0);
  2393. #endif
  2394. }
  2395. static int handle_machine_check(struct kvm_vcpu *vcpu)
  2396. {
  2397. /* already handled by vcpu_run */
  2398. return 1;
  2399. }
  2400. static int handle_exception(struct kvm_vcpu *vcpu)
  2401. {
  2402. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2403. struct kvm_run *kvm_run = vcpu->run;
  2404. u32 intr_info, ex_no, error_code;
  2405. unsigned long cr2, rip, dr6;
  2406. u32 vect_info;
  2407. enum emulation_result er;
  2408. vect_info = vmx->idt_vectoring_info;
  2409. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2410. if (is_machine_check(intr_info))
  2411. return handle_machine_check(vcpu);
  2412. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2413. !is_page_fault(intr_info)) {
  2414. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2415. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  2416. vcpu->run->internal.ndata = 2;
  2417. vcpu->run->internal.data[0] = vect_info;
  2418. vcpu->run->internal.data[1] = intr_info;
  2419. return 0;
  2420. }
  2421. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2422. return 1; /* already handled by vmx_vcpu_run() */
  2423. if (is_no_device(intr_info)) {
  2424. vmx_fpu_activate(vcpu);
  2425. return 1;
  2426. }
  2427. if (is_invalid_opcode(intr_info)) {
  2428. er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
  2429. if (er != EMULATE_DONE)
  2430. kvm_queue_exception(vcpu, UD_VECTOR);
  2431. return 1;
  2432. }
  2433. error_code = 0;
  2434. rip = kvm_rip_read(vcpu);
  2435. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2436. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2437. if (is_page_fault(intr_info)) {
  2438. /* EPT won't cause page fault directly */
  2439. if (enable_ept)
  2440. BUG();
  2441. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2442. trace_kvm_page_fault(cr2, error_code);
  2443. if (kvm_event_needs_reinjection(vcpu))
  2444. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2445. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2446. }
  2447. if (vmx->rmode.vm86_active &&
  2448. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2449. error_code)) {
  2450. if (vcpu->arch.halt_request) {
  2451. vcpu->arch.halt_request = 0;
  2452. return kvm_emulate_halt(vcpu);
  2453. }
  2454. return 1;
  2455. }
  2456. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2457. switch (ex_no) {
  2458. case DB_VECTOR:
  2459. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2460. if (!(vcpu->guest_debug &
  2461. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2462. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2463. kvm_queue_exception(vcpu, DB_VECTOR);
  2464. return 1;
  2465. }
  2466. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2467. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2468. /* fall through */
  2469. case BP_VECTOR:
  2470. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2471. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2472. kvm_run->debug.arch.exception = ex_no;
  2473. break;
  2474. default:
  2475. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2476. kvm_run->ex.exception = ex_no;
  2477. kvm_run->ex.error_code = error_code;
  2478. break;
  2479. }
  2480. return 0;
  2481. }
  2482. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  2483. {
  2484. ++vcpu->stat.irq_exits;
  2485. return 1;
  2486. }
  2487. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  2488. {
  2489. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  2490. return 0;
  2491. }
  2492. static int handle_io(struct kvm_vcpu *vcpu)
  2493. {
  2494. unsigned long exit_qualification;
  2495. int size, in, string;
  2496. unsigned port;
  2497. ++vcpu->stat.io_exits;
  2498. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2499. string = (exit_qualification & 16) != 0;
  2500. if (string) {
  2501. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DO_MMIO)
  2502. return 0;
  2503. return 1;
  2504. }
  2505. size = (exit_qualification & 7) + 1;
  2506. in = (exit_qualification & 8) != 0;
  2507. port = exit_qualification >> 16;
  2508. skip_emulated_instruction(vcpu);
  2509. return kvm_emulate_pio(vcpu, in, size, port);
  2510. }
  2511. static void
  2512. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2513. {
  2514. /*
  2515. * Patch in the VMCALL instruction:
  2516. */
  2517. hypercall[0] = 0x0f;
  2518. hypercall[1] = 0x01;
  2519. hypercall[2] = 0xc1;
  2520. }
  2521. static int handle_cr(struct kvm_vcpu *vcpu)
  2522. {
  2523. unsigned long exit_qualification, val;
  2524. int cr;
  2525. int reg;
  2526. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2527. cr = exit_qualification & 15;
  2528. reg = (exit_qualification >> 8) & 15;
  2529. switch ((exit_qualification >> 4) & 3) {
  2530. case 0: /* mov to cr */
  2531. val = kvm_register_read(vcpu, reg);
  2532. trace_kvm_cr_write(cr, val);
  2533. switch (cr) {
  2534. case 0:
  2535. kvm_set_cr0(vcpu, val);
  2536. skip_emulated_instruction(vcpu);
  2537. return 1;
  2538. case 3:
  2539. kvm_set_cr3(vcpu, val);
  2540. skip_emulated_instruction(vcpu);
  2541. return 1;
  2542. case 4:
  2543. kvm_set_cr4(vcpu, val);
  2544. skip_emulated_instruction(vcpu);
  2545. return 1;
  2546. case 8: {
  2547. u8 cr8_prev = kvm_get_cr8(vcpu);
  2548. u8 cr8 = kvm_register_read(vcpu, reg);
  2549. kvm_set_cr8(vcpu, cr8);
  2550. skip_emulated_instruction(vcpu);
  2551. if (irqchip_in_kernel(vcpu->kvm))
  2552. return 1;
  2553. if (cr8_prev <= cr8)
  2554. return 1;
  2555. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  2556. return 0;
  2557. }
  2558. };
  2559. break;
  2560. case 2: /* clts */
  2561. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  2562. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  2563. skip_emulated_instruction(vcpu);
  2564. vmx_fpu_activate(vcpu);
  2565. return 1;
  2566. case 1: /*mov from cr*/
  2567. switch (cr) {
  2568. case 3:
  2569. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2570. trace_kvm_cr_read(cr, vcpu->arch.cr3);
  2571. skip_emulated_instruction(vcpu);
  2572. return 1;
  2573. case 8:
  2574. val = kvm_get_cr8(vcpu);
  2575. kvm_register_write(vcpu, reg, val);
  2576. trace_kvm_cr_read(cr, val);
  2577. skip_emulated_instruction(vcpu);
  2578. return 1;
  2579. }
  2580. break;
  2581. case 3: /* lmsw */
  2582. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  2583. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  2584. kvm_lmsw(vcpu, val);
  2585. skip_emulated_instruction(vcpu);
  2586. return 1;
  2587. default:
  2588. break;
  2589. }
  2590. vcpu->run->exit_reason = 0;
  2591. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2592. (int)(exit_qualification >> 4) & 3, cr);
  2593. return 0;
  2594. }
  2595. static int check_dr_alias(struct kvm_vcpu *vcpu)
  2596. {
  2597. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) {
  2598. kvm_queue_exception(vcpu, UD_VECTOR);
  2599. return -1;
  2600. }
  2601. return 0;
  2602. }
  2603. static int handle_dr(struct kvm_vcpu *vcpu)
  2604. {
  2605. unsigned long exit_qualification;
  2606. unsigned long val;
  2607. int dr, reg;
  2608. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  2609. if (!kvm_require_cpl(vcpu, 0))
  2610. return 1;
  2611. dr = vmcs_readl(GUEST_DR7);
  2612. if (dr & DR7_GD) {
  2613. /*
  2614. * As the vm-exit takes precedence over the debug trap, we
  2615. * need to emulate the latter, either for the host or the
  2616. * guest debugging itself.
  2617. */
  2618. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2619. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  2620. vcpu->run->debug.arch.dr7 = dr;
  2621. vcpu->run->debug.arch.pc =
  2622. vmcs_readl(GUEST_CS_BASE) +
  2623. vmcs_readl(GUEST_RIP);
  2624. vcpu->run->debug.arch.exception = DB_VECTOR;
  2625. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  2626. return 0;
  2627. } else {
  2628. vcpu->arch.dr7 &= ~DR7_GD;
  2629. vcpu->arch.dr6 |= DR6_BD;
  2630. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2631. kvm_queue_exception(vcpu, DB_VECTOR);
  2632. return 1;
  2633. }
  2634. }
  2635. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2636. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2637. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2638. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2639. switch (dr) {
  2640. case 0 ... 3:
  2641. val = vcpu->arch.db[dr];
  2642. break;
  2643. case 4:
  2644. if (check_dr_alias(vcpu) < 0)
  2645. return 1;
  2646. /* fall through */
  2647. case 6:
  2648. val = vcpu->arch.dr6;
  2649. break;
  2650. case 5:
  2651. if (check_dr_alias(vcpu) < 0)
  2652. return 1;
  2653. /* fall through */
  2654. default: /* 7 */
  2655. val = vcpu->arch.dr7;
  2656. break;
  2657. }
  2658. kvm_register_write(vcpu, reg, val);
  2659. } else {
  2660. val = vcpu->arch.regs[reg];
  2661. switch (dr) {
  2662. case 0 ... 3:
  2663. vcpu->arch.db[dr] = val;
  2664. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  2665. vcpu->arch.eff_db[dr] = val;
  2666. break;
  2667. case 4:
  2668. if (check_dr_alias(vcpu) < 0)
  2669. return 1;
  2670. /* fall through */
  2671. case 6:
  2672. if (val & 0xffffffff00000000ULL) {
  2673. kvm_inject_gp(vcpu, 0);
  2674. return 1;
  2675. }
  2676. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  2677. break;
  2678. case 5:
  2679. if (check_dr_alias(vcpu) < 0)
  2680. return 1;
  2681. /* fall through */
  2682. default: /* 7 */
  2683. if (val & 0xffffffff00000000ULL) {
  2684. kvm_inject_gp(vcpu, 0);
  2685. return 1;
  2686. }
  2687. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  2688. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  2689. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2690. vcpu->arch.switch_db_regs =
  2691. (val & DR7_BP_EN_MASK);
  2692. }
  2693. break;
  2694. }
  2695. }
  2696. skip_emulated_instruction(vcpu);
  2697. return 1;
  2698. }
  2699. static int handle_cpuid(struct kvm_vcpu *vcpu)
  2700. {
  2701. kvm_emulate_cpuid(vcpu);
  2702. return 1;
  2703. }
  2704. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  2705. {
  2706. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2707. u64 data;
  2708. if (vmx_get_msr(vcpu, ecx, &data)) {
  2709. trace_kvm_msr_read_ex(ecx);
  2710. kvm_inject_gp(vcpu, 0);
  2711. return 1;
  2712. }
  2713. trace_kvm_msr_read(ecx, data);
  2714. /* FIXME: handling of bits 32:63 of rax, rdx */
  2715. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2716. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2717. skip_emulated_instruction(vcpu);
  2718. return 1;
  2719. }
  2720. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  2721. {
  2722. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2723. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2724. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2725. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2726. trace_kvm_msr_write_ex(ecx, data);
  2727. kvm_inject_gp(vcpu, 0);
  2728. return 1;
  2729. }
  2730. trace_kvm_msr_write(ecx, data);
  2731. skip_emulated_instruction(vcpu);
  2732. return 1;
  2733. }
  2734. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  2735. {
  2736. return 1;
  2737. }
  2738. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  2739. {
  2740. u32 cpu_based_vm_exec_control;
  2741. /* clear pending irq */
  2742. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2743. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2744. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2745. ++vcpu->stat.irq_window_exits;
  2746. /*
  2747. * If the user space waits to inject interrupts, exit as soon as
  2748. * possible
  2749. */
  2750. if (!irqchip_in_kernel(vcpu->kvm) &&
  2751. vcpu->run->request_interrupt_window &&
  2752. !kvm_cpu_has_interrupt(vcpu)) {
  2753. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2754. return 0;
  2755. }
  2756. return 1;
  2757. }
  2758. static int handle_halt(struct kvm_vcpu *vcpu)
  2759. {
  2760. skip_emulated_instruction(vcpu);
  2761. return kvm_emulate_halt(vcpu);
  2762. }
  2763. static int handle_vmcall(struct kvm_vcpu *vcpu)
  2764. {
  2765. skip_emulated_instruction(vcpu);
  2766. kvm_emulate_hypercall(vcpu);
  2767. return 1;
  2768. }
  2769. static int handle_vmx_insn(struct kvm_vcpu *vcpu)
  2770. {
  2771. kvm_queue_exception(vcpu, UD_VECTOR);
  2772. return 1;
  2773. }
  2774. static int handle_invlpg(struct kvm_vcpu *vcpu)
  2775. {
  2776. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2777. kvm_mmu_invlpg(vcpu, exit_qualification);
  2778. skip_emulated_instruction(vcpu);
  2779. return 1;
  2780. }
  2781. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  2782. {
  2783. skip_emulated_instruction(vcpu);
  2784. /* TODO: Add support for VT-d/pass-through device */
  2785. return 1;
  2786. }
  2787. static int handle_apic_access(struct kvm_vcpu *vcpu)
  2788. {
  2789. unsigned long exit_qualification;
  2790. enum emulation_result er;
  2791. unsigned long offset;
  2792. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2793. offset = exit_qualification & 0xffful;
  2794. er = emulate_instruction(vcpu, 0, 0, 0);
  2795. if (er != EMULATE_DONE) {
  2796. printk(KERN_ERR
  2797. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2798. offset);
  2799. return -ENOEXEC;
  2800. }
  2801. return 1;
  2802. }
  2803. static int handle_task_switch(struct kvm_vcpu *vcpu)
  2804. {
  2805. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2806. unsigned long exit_qualification;
  2807. u16 tss_selector;
  2808. int reason, type, idt_v;
  2809. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  2810. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  2811. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2812. reason = (u32)exit_qualification >> 30;
  2813. if (reason == TASK_SWITCH_GATE && idt_v) {
  2814. switch (type) {
  2815. case INTR_TYPE_NMI_INTR:
  2816. vcpu->arch.nmi_injected = false;
  2817. if (cpu_has_virtual_nmis())
  2818. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2819. GUEST_INTR_STATE_NMI);
  2820. break;
  2821. case INTR_TYPE_EXT_INTR:
  2822. case INTR_TYPE_SOFT_INTR:
  2823. kvm_clear_interrupt_queue(vcpu);
  2824. break;
  2825. case INTR_TYPE_HARD_EXCEPTION:
  2826. case INTR_TYPE_SOFT_EXCEPTION:
  2827. kvm_clear_exception_queue(vcpu);
  2828. break;
  2829. default:
  2830. break;
  2831. }
  2832. }
  2833. tss_selector = exit_qualification;
  2834. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  2835. type != INTR_TYPE_EXT_INTR &&
  2836. type != INTR_TYPE_NMI_INTR))
  2837. skip_emulated_instruction(vcpu);
  2838. if (!kvm_task_switch(vcpu, tss_selector, reason))
  2839. return 0;
  2840. /* clear all local breakpoint enable flags */
  2841. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2842. /*
  2843. * TODO: What about debug traps on tss switch?
  2844. * Are we supposed to inject them and update dr6?
  2845. */
  2846. return 1;
  2847. }
  2848. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  2849. {
  2850. unsigned long exit_qualification;
  2851. gpa_t gpa;
  2852. int gla_validity;
  2853. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2854. if (exit_qualification & (1 << 6)) {
  2855. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2856. return -EINVAL;
  2857. }
  2858. gla_validity = (exit_qualification >> 7) & 0x3;
  2859. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2860. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2861. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2862. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2863. vmcs_readl(GUEST_LINEAR_ADDRESS));
  2864. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2865. (long unsigned int)exit_qualification);
  2866. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2867. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  2868. return 0;
  2869. }
  2870. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2871. trace_kvm_page_fault(gpa, exit_qualification);
  2872. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2873. }
  2874. static u64 ept_rsvd_mask(u64 spte, int level)
  2875. {
  2876. int i;
  2877. u64 mask = 0;
  2878. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  2879. mask |= (1ULL << i);
  2880. if (level > 2)
  2881. /* bits 7:3 reserved */
  2882. mask |= 0xf8;
  2883. else if (level == 2) {
  2884. if (spte & (1ULL << 7))
  2885. /* 2MB ref, bits 20:12 reserved */
  2886. mask |= 0x1ff000;
  2887. else
  2888. /* bits 6:3 reserved */
  2889. mask |= 0x78;
  2890. }
  2891. return mask;
  2892. }
  2893. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  2894. int level)
  2895. {
  2896. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  2897. /* 010b (write-only) */
  2898. WARN_ON((spte & 0x7) == 0x2);
  2899. /* 110b (write/execute) */
  2900. WARN_ON((spte & 0x7) == 0x6);
  2901. /* 100b (execute-only) and value not supported by logical processor */
  2902. if (!cpu_has_vmx_ept_execute_only())
  2903. WARN_ON((spte & 0x7) == 0x4);
  2904. /* not 000b */
  2905. if ((spte & 0x7)) {
  2906. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  2907. if (rsvd_bits != 0) {
  2908. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  2909. __func__, rsvd_bits);
  2910. WARN_ON(1);
  2911. }
  2912. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  2913. u64 ept_mem_type = (spte & 0x38) >> 3;
  2914. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  2915. ept_mem_type == 7) {
  2916. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  2917. __func__, ept_mem_type);
  2918. WARN_ON(1);
  2919. }
  2920. }
  2921. }
  2922. }
  2923. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  2924. {
  2925. u64 sptes[4];
  2926. int nr_sptes, i;
  2927. gpa_t gpa;
  2928. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2929. printk(KERN_ERR "EPT: Misconfiguration.\n");
  2930. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  2931. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  2932. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  2933. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  2934. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2935. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  2936. return 0;
  2937. }
  2938. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  2939. {
  2940. u32 cpu_based_vm_exec_control;
  2941. /* clear pending NMI */
  2942. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2943. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2944. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2945. ++vcpu->stat.nmi_window_exits;
  2946. return 1;
  2947. }
  2948. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  2949. {
  2950. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2951. enum emulation_result err = EMULATE_DONE;
  2952. int ret = 1;
  2953. while (!guest_state_valid(vcpu)) {
  2954. err = emulate_instruction(vcpu, 0, 0, 0);
  2955. if (err == EMULATE_DO_MMIO) {
  2956. ret = 0;
  2957. goto out;
  2958. }
  2959. if (err != EMULATE_DONE) {
  2960. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2961. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2962. vcpu->run->internal.ndata = 0;
  2963. ret = 0;
  2964. goto out;
  2965. }
  2966. if (signal_pending(current))
  2967. goto out;
  2968. if (need_resched())
  2969. schedule();
  2970. }
  2971. vmx->emulation_required = 0;
  2972. out:
  2973. return ret;
  2974. }
  2975. /*
  2976. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  2977. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  2978. */
  2979. static int handle_pause(struct kvm_vcpu *vcpu)
  2980. {
  2981. skip_emulated_instruction(vcpu);
  2982. kvm_vcpu_on_spin(vcpu);
  2983. return 1;
  2984. }
  2985. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  2986. {
  2987. kvm_queue_exception(vcpu, UD_VECTOR);
  2988. return 1;
  2989. }
  2990. /*
  2991. * The exit handlers return 1 if the exit was handled fully and guest execution
  2992. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2993. * to be done to userspace and return 0.
  2994. */
  2995. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  2996. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2997. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2998. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2999. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  3000. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  3001. [EXIT_REASON_CR_ACCESS] = handle_cr,
  3002. [EXIT_REASON_DR_ACCESS] = handle_dr,
  3003. [EXIT_REASON_CPUID] = handle_cpuid,
  3004. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  3005. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  3006. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  3007. [EXIT_REASON_HLT] = handle_halt,
  3008. [EXIT_REASON_INVLPG] = handle_invlpg,
  3009. [EXIT_REASON_VMCALL] = handle_vmcall,
  3010. [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
  3011. [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
  3012. [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
  3013. [EXIT_REASON_VMPTRST] = handle_vmx_insn,
  3014. [EXIT_REASON_VMREAD] = handle_vmx_insn,
  3015. [EXIT_REASON_VMRESUME] = handle_vmx_insn,
  3016. [EXIT_REASON_VMWRITE] = handle_vmx_insn,
  3017. [EXIT_REASON_VMOFF] = handle_vmx_insn,
  3018. [EXIT_REASON_VMON] = handle_vmx_insn,
  3019. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  3020. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  3021. [EXIT_REASON_WBINVD] = handle_wbinvd,
  3022. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  3023. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  3024. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  3025. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  3026. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  3027. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  3028. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  3029. };
  3030. static const int kvm_vmx_max_exit_handlers =
  3031. ARRAY_SIZE(kvm_vmx_exit_handlers);
  3032. /*
  3033. * The guest has exited. See if we can fix it or if we need userspace
  3034. * assistance.
  3035. */
  3036. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  3037. {
  3038. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3039. u32 exit_reason = vmx->exit_reason;
  3040. u32 vectoring_info = vmx->idt_vectoring_info;
  3041. trace_kvm_exit(exit_reason, kvm_rip_read(vcpu));
  3042. /* If guest state is invalid, start emulating */
  3043. if (vmx->emulation_required && emulate_invalid_guest_state)
  3044. return handle_invalid_guest_state(vcpu);
  3045. /* Access CR3 don't cause VMExit in paging mode, so we need
  3046. * to sync with guest real CR3. */
  3047. if (enable_ept && is_paging(vcpu))
  3048. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  3049. if (unlikely(vmx->fail)) {
  3050. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  3051. vcpu->run->fail_entry.hardware_entry_failure_reason
  3052. = vmcs_read32(VM_INSTRUCTION_ERROR);
  3053. return 0;
  3054. }
  3055. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  3056. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  3057. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  3058. exit_reason != EXIT_REASON_TASK_SWITCH))
  3059. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  3060. "(0x%x) and exit reason is 0x%x\n",
  3061. __func__, vectoring_info, exit_reason);
  3062. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  3063. if (vmx_interrupt_allowed(vcpu)) {
  3064. vmx->soft_vnmi_blocked = 0;
  3065. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  3066. vcpu->arch.nmi_pending) {
  3067. /*
  3068. * This CPU don't support us in finding the end of an
  3069. * NMI-blocked window if the guest runs with IRQs
  3070. * disabled. So we pull the trigger after 1 s of
  3071. * futile waiting, but inform the user about this.
  3072. */
  3073. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  3074. "state on VCPU %d after 1 s timeout\n",
  3075. __func__, vcpu->vcpu_id);
  3076. vmx->soft_vnmi_blocked = 0;
  3077. }
  3078. }
  3079. if (exit_reason < kvm_vmx_max_exit_handlers
  3080. && kvm_vmx_exit_handlers[exit_reason])
  3081. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  3082. else {
  3083. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3084. vcpu->run->hw.hardware_exit_reason = exit_reason;
  3085. }
  3086. return 0;
  3087. }
  3088. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  3089. {
  3090. if (irr == -1 || tpr < irr) {
  3091. vmcs_write32(TPR_THRESHOLD, 0);
  3092. return;
  3093. }
  3094. vmcs_write32(TPR_THRESHOLD, irr);
  3095. }
  3096. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  3097. {
  3098. u32 exit_intr_info;
  3099. u32 idt_vectoring_info = vmx->idt_vectoring_info;
  3100. bool unblock_nmi;
  3101. u8 vector;
  3102. int type;
  3103. bool idtv_info_valid;
  3104. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  3105. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  3106. /* Handle machine checks before interrupts are enabled */
  3107. if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
  3108. || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
  3109. && is_machine_check(exit_intr_info)))
  3110. kvm_machine_check();
  3111. /* We need to handle NMIs before interrupts are enabled */
  3112. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  3113. (exit_intr_info & INTR_INFO_VALID_MASK))
  3114. asm("int $2");
  3115. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  3116. if (cpu_has_virtual_nmis()) {
  3117. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  3118. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  3119. /*
  3120. * SDM 3: 27.7.1.2 (September 2008)
  3121. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  3122. * a guest IRET fault.
  3123. * SDM 3: 23.2.2 (September 2008)
  3124. * Bit 12 is undefined in any of the following cases:
  3125. * If the VM exit sets the valid bit in the IDT-vectoring
  3126. * information field.
  3127. * If the VM exit is due to a double fault.
  3128. */
  3129. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  3130. vector != DF_VECTOR && !idtv_info_valid)
  3131. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3132. GUEST_INTR_STATE_NMI);
  3133. } else if (unlikely(vmx->soft_vnmi_blocked))
  3134. vmx->vnmi_blocked_time +=
  3135. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  3136. vmx->vcpu.arch.nmi_injected = false;
  3137. kvm_clear_exception_queue(&vmx->vcpu);
  3138. kvm_clear_interrupt_queue(&vmx->vcpu);
  3139. if (!idtv_info_valid)
  3140. return;
  3141. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  3142. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  3143. switch (type) {
  3144. case INTR_TYPE_NMI_INTR:
  3145. vmx->vcpu.arch.nmi_injected = true;
  3146. /*
  3147. * SDM 3: 27.7.1.2 (September 2008)
  3148. * Clear bit "block by NMI" before VM entry if a NMI
  3149. * delivery faulted.
  3150. */
  3151. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3152. GUEST_INTR_STATE_NMI);
  3153. break;
  3154. case INTR_TYPE_SOFT_EXCEPTION:
  3155. vmx->vcpu.arch.event_exit_inst_len =
  3156. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3157. /* fall through */
  3158. case INTR_TYPE_HARD_EXCEPTION:
  3159. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  3160. u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  3161. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  3162. } else
  3163. kvm_queue_exception(&vmx->vcpu, vector);
  3164. break;
  3165. case INTR_TYPE_SOFT_INTR:
  3166. vmx->vcpu.arch.event_exit_inst_len =
  3167. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3168. /* fall through */
  3169. case INTR_TYPE_EXT_INTR:
  3170. kvm_queue_interrupt(&vmx->vcpu, vector,
  3171. type == INTR_TYPE_SOFT_INTR);
  3172. break;
  3173. default:
  3174. break;
  3175. }
  3176. }
  3177. /*
  3178. * Failure to inject an interrupt should give us the information
  3179. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  3180. * when fetching the interrupt redirection bitmap in the real-mode
  3181. * tss, this doesn't happen. So we do it ourselves.
  3182. */
  3183. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  3184. {
  3185. vmx->rmode.irq.pending = 0;
  3186. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  3187. return;
  3188. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  3189. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  3190. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  3191. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  3192. return;
  3193. }
  3194. vmx->idt_vectoring_info =
  3195. VECTORING_INFO_VALID_MASK
  3196. | INTR_TYPE_EXT_INTR
  3197. | vmx->rmode.irq.vector;
  3198. }
  3199. #ifdef CONFIG_X86_64
  3200. #define R "r"
  3201. #define Q "q"
  3202. #else
  3203. #define R "e"
  3204. #define Q "l"
  3205. #endif
  3206. static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
  3207. {
  3208. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3209. /* Record the guest's net vcpu time for enforced NMI injections. */
  3210. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  3211. vmx->entry_time = ktime_get();
  3212. /* Don't enter VMX if guest state is invalid, let the exit handler
  3213. start emulation until we arrive back to a valid state */
  3214. if (vmx->emulation_required && emulate_invalid_guest_state)
  3215. return;
  3216. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  3217. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  3218. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  3219. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  3220. /* When single-stepping over STI and MOV SS, we must clear the
  3221. * corresponding interruptibility bits in the guest state. Otherwise
  3222. * vmentry fails as it then expects bit 14 (BS) in pending debug
  3223. * exceptions being set, but that's not correct for the guest debugging
  3224. * case. */
  3225. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3226. vmx_set_interrupt_shadow(vcpu, 0);
  3227. /*
  3228. * Loading guest fpu may have cleared host cr0.ts
  3229. */
  3230. vmcs_writel(HOST_CR0, read_cr0());
  3231. asm(
  3232. /* Store host registers */
  3233. "push %%"R"dx; push %%"R"bp;"
  3234. "push %%"R"cx \n\t"
  3235. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  3236. "je 1f \n\t"
  3237. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  3238. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  3239. "1: \n\t"
  3240. /* Reload cr2 if changed */
  3241. "mov %c[cr2](%0), %%"R"ax \n\t"
  3242. "mov %%cr2, %%"R"dx \n\t"
  3243. "cmp %%"R"ax, %%"R"dx \n\t"
  3244. "je 2f \n\t"
  3245. "mov %%"R"ax, %%cr2 \n\t"
  3246. "2: \n\t"
  3247. /* Check if vmlaunch of vmresume is needed */
  3248. "cmpl $0, %c[launched](%0) \n\t"
  3249. /* Load guest registers. Don't clobber flags. */
  3250. "mov %c[rax](%0), %%"R"ax \n\t"
  3251. "mov %c[rbx](%0), %%"R"bx \n\t"
  3252. "mov %c[rdx](%0), %%"R"dx \n\t"
  3253. "mov %c[rsi](%0), %%"R"si \n\t"
  3254. "mov %c[rdi](%0), %%"R"di \n\t"
  3255. "mov %c[rbp](%0), %%"R"bp \n\t"
  3256. #ifdef CONFIG_X86_64
  3257. "mov %c[r8](%0), %%r8 \n\t"
  3258. "mov %c[r9](%0), %%r9 \n\t"
  3259. "mov %c[r10](%0), %%r10 \n\t"
  3260. "mov %c[r11](%0), %%r11 \n\t"
  3261. "mov %c[r12](%0), %%r12 \n\t"
  3262. "mov %c[r13](%0), %%r13 \n\t"
  3263. "mov %c[r14](%0), %%r14 \n\t"
  3264. "mov %c[r15](%0), %%r15 \n\t"
  3265. #endif
  3266. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  3267. /* Enter guest mode */
  3268. "jne .Llaunched \n\t"
  3269. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  3270. "jmp .Lkvm_vmx_return \n\t"
  3271. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  3272. ".Lkvm_vmx_return: "
  3273. /* Save guest registers, load host registers, keep flags */
  3274. "xchg %0, (%%"R"sp) \n\t"
  3275. "mov %%"R"ax, %c[rax](%0) \n\t"
  3276. "mov %%"R"bx, %c[rbx](%0) \n\t"
  3277. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  3278. "mov %%"R"dx, %c[rdx](%0) \n\t"
  3279. "mov %%"R"si, %c[rsi](%0) \n\t"
  3280. "mov %%"R"di, %c[rdi](%0) \n\t"
  3281. "mov %%"R"bp, %c[rbp](%0) \n\t"
  3282. #ifdef CONFIG_X86_64
  3283. "mov %%r8, %c[r8](%0) \n\t"
  3284. "mov %%r9, %c[r9](%0) \n\t"
  3285. "mov %%r10, %c[r10](%0) \n\t"
  3286. "mov %%r11, %c[r11](%0) \n\t"
  3287. "mov %%r12, %c[r12](%0) \n\t"
  3288. "mov %%r13, %c[r13](%0) \n\t"
  3289. "mov %%r14, %c[r14](%0) \n\t"
  3290. "mov %%r15, %c[r15](%0) \n\t"
  3291. #endif
  3292. "mov %%cr2, %%"R"ax \n\t"
  3293. "mov %%"R"ax, %c[cr2](%0) \n\t"
  3294. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  3295. "setbe %c[fail](%0) \n\t"
  3296. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  3297. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  3298. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  3299. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  3300. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  3301. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  3302. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3303. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3304. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3305. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3306. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3307. #ifdef CONFIG_X86_64
  3308. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3309. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3310. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3311. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3312. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3313. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3314. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3315. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3316. #endif
  3317. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  3318. : "cc", "memory"
  3319. , R"bx", R"di", R"si"
  3320. #ifdef CONFIG_X86_64
  3321. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3322. #endif
  3323. );
  3324. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  3325. | (1 << VCPU_EXREG_PDPTR));
  3326. vcpu->arch.regs_dirty = 0;
  3327. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3328. if (vmx->rmode.irq.pending)
  3329. fixup_rmode_irq(vmx);
  3330. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3331. vmx->launched = 1;
  3332. vmx_complete_interrupts(vmx);
  3333. }
  3334. #undef R
  3335. #undef Q
  3336. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3337. {
  3338. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3339. if (vmx->vmcs) {
  3340. vcpu_clear(vmx);
  3341. free_vmcs(vmx->vmcs);
  3342. vmx->vmcs = NULL;
  3343. }
  3344. }
  3345. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3346. {
  3347. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3348. spin_lock(&vmx_vpid_lock);
  3349. if (vmx->vpid != 0)
  3350. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3351. spin_unlock(&vmx_vpid_lock);
  3352. vmx_free_vmcs(vcpu);
  3353. kfree(vmx->guest_msrs);
  3354. kvm_vcpu_uninit(vcpu);
  3355. kmem_cache_free(kvm_vcpu_cache, vmx);
  3356. }
  3357. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3358. {
  3359. int err;
  3360. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3361. int cpu;
  3362. if (!vmx)
  3363. return ERR_PTR(-ENOMEM);
  3364. allocate_vpid(vmx);
  3365. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3366. if (err)
  3367. goto free_vcpu;
  3368. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3369. if (!vmx->guest_msrs) {
  3370. err = -ENOMEM;
  3371. goto uninit_vcpu;
  3372. }
  3373. vmx->vmcs = alloc_vmcs();
  3374. if (!vmx->vmcs)
  3375. goto free_msrs;
  3376. vmcs_clear(vmx->vmcs);
  3377. cpu = get_cpu();
  3378. vmx_vcpu_load(&vmx->vcpu, cpu);
  3379. err = vmx_vcpu_setup(vmx);
  3380. vmx_vcpu_put(&vmx->vcpu);
  3381. put_cpu();
  3382. if (err)
  3383. goto free_vmcs;
  3384. if (vm_need_virtualize_apic_accesses(kvm))
  3385. if (alloc_apic_access_page(kvm) != 0)
  3386. goto free_vmcs;
  3387. if (enable_ept) {
  3388. if (!kvm->arch.ept_identity_map_addr)
  3389. kvm->arch.ept_identity_map_addr =
  3390. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  3391. if (alloc_identity_pagetable(kvm) != 0)
  3392. goto free_vmcs;
  3393. }
  3394. return &vmx->vcpu;
  3395. free_vmcs:
  3396. free_vmcs(vmx->vmcs);
  3397. free_msrs:
  3398. kfree(vmx->guest_msrs);
  3399. uninit_vcpu:
  3400. kvm_vcpu_uninit(&vmx->vcpu);
  3401. free_vcpu:
  3402. kmem_cache_free(kvm_vcpu_cache, vmx);
  3403. return ERR_PTR(err);
  3404. }
  3405. static void __init vmx_check_processor_compat(void *rtn)
  3406. {
  3407. struct vmcs_config vmcs_conf;
  3408. *(int *)rtn = 0;
  3409. if (setup_vmcs_config(&vmcs_conf) < 0)
  3410. *(int *)rtn = -EIO;
  3411. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3412. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3413. smp_processor_id());
  3414. *(int *)rtn = -EIO;
  3415. }
  3416. }
  3417. static int get_ept_level(void)
  3418. {
  3419. return VMX_EPT_DEFAULT_GAW + 1;
  3420. }
  3421. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3422. {
  3423. u64 ret;
  3424. /* For VT-d and EPT combination
  3425. * 1. MMIO: always map as UC
  3426. * 2. EPT with VT-d:
  3427. * a. VT-d without snooping control feature: can't guarantee the
  3428. * result, try to trust guest.
  3429. * b. VT-d with snooping control feature: snooping control feature of
  3430. * VT-d engine can guarantee the cache correctness. Just set it
  3431. * to WB to keep consistent with host. So the same as item 3.
  3432. * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
  3433. * consistent with host MTRR
  3434. */
  3435. if (is_mmio)
  3436. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3437. else if (vcpu->kvm->arch.iommu_domain &&
  3438. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3439. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3440. VMX_EPT_MT_EPTE_SHIFT;
  3441. else
  3442. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3443. | VMX_EPT_IGMT_BIT;
  3444. return ret;
  3445. }
  3446. #define _ER(x) { EXIT_REASON_##x, #x }
  3447. static const struct trace_print_flags vmx_exit_reasons_str[] = {
  3448. _ER(EXCEPTION_NMI),
  3449. _ER(EXTERNAL_INTERRUPT),
  3450. _ER(TRIPLE_FAULT),
  3451. _ER(PENDING_INTERRUPT),
  3452. _ER(NMI_WINDOW),
  3453. _ER(TASK_SWITCH),
  3454. _ER(CPUID),
  3455. _ER(HLT),
  3456. _ER(INVLPG),
  3457. _ER(RDPMC),
  3458. _ER(RDTSC),
  3459. _ER(VMCALL),
  3460. _ER(VMCLEAR),
  3461. _ER(VMLAUNCH),
  3462. _ER(VMPTRLD),
  3463. _ER(VMPTRST),
  3464. _ER(VMREAD),
  3465. _ER(VMRESUME),
  3466. _ER(VMWRITE),
  3467. _ER(VMOFF),
  3468. _ER(VMON),
  3469. _ER(CR_ACCESS),
  3470. _ER(DR_ACCESS),
  3471. _ER(IO_INSTRUCTION),
  3472. _ER(MSR_READ),
  3473. _ER(MSR_WRITE),
  3474. _ER(MWAIT_INSTRUCTION),
  3475. _ER(MONITOR_INSTRUCTION),
  3476. _ER(PAUSE_INSTRUCTION),
  3477. _ER(MCE_DURING_VMENTRY),
  3478. _ER(TPR_BELOW_THRESHOLD),
  3479. _ER(APIC_ACCESS),
  3480. _ER(EPT_VIOLATION),
  3481. _ER(EPT_MISCONFIG),
  3482. _ER(WBINVD),
  3483. { -1, NULL }
  3484. };
  3485. #undef _ER
  3486. static int vmx_get_lpage_level(void)
  3487. {
  3488. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  3489. return PT_DIRECTORY_LEVEL;
  3490. else
  3491. /* For shadow and EPT supported 1GB page */
  3492. return PT_PDPE_LEVEL;
  3493. }
  3494. static inline u32 bit(int bitno)
  3495. {
  3496. return 1 << (bitno & 31);
  3497. }
  3498. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  3499. {
  3500. struct kvm_cpuid_entry2 *best;
  3501. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3502. u32 exec_control;
  3503. vmx->rdtscp_enabled = false;
  3504. if (vmx_rdtscp_supported()) {
  3505. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  3506. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  3507. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  3508. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  3509. vmx->rdtscp_enabled = true;
  3510. else {
  3511. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  3512. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3513. exec_control);
  3514. }
  3515. }
  3516. }
  3517. }
  3518. static struct kvm_x86_ops vmx_x86_ops = {
  3519. .cpu_has_kvm_support = cpu_has_kvm_support,
  3520. .disabled_by_bios = vmx_disabled_by_bios,
  3521. .hardware_setup = hardware_setup,
  3522. .hardware_unsetup = hardware_unsetup,
  3523. .check_processor_compatibility = vmx_check_processor_compat,
  3524. .hardware_enable = hardware_enable,
  3525. .hardware_disable = hardware_disable,
  3526. .cpu_has_accelerated_tpr = report_flexpriority,
  3527. .vcpu_create = vmx_create_vcpu,
  3528. .vcpu_free = vmx_free_vcpu,
  3529. .vcpu_reset = vmx_vcpu_reset,
  3530. .prepare_guest_switch = vmx_save_host_state,
  3531. .vcpu_load = vmx_vcpu_load,
  3532. .vcpu_put = vmx_vcpu_put,
  3533. .set_guest_debug = set_guest_debug,
  3534. .get_msr = vmx_get_msr,
  3535. .set_msr = vmx_set_msr,
  3536. .get_segment_base = vmx_get_segment_base,
  3537. .get_segment = vmx_get_segment,
  3538. .set_segment = vmx_set_segment,
  3539. .get_cpl = vmx_get_cpl,
  3540. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3541. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  3542. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3543. .set_cr0 = vmx_set_cr0,
  3544. .set_cr3 = vmx_set_cr3,
  3545. .set_cr4 = vmx_set_cr4,
  3546. .set_efer = vmx_set_efer,
  3547. .get_idt = vmx_get_idt,
  3548. .set_idt = vmx_set_idt,
  3549. .get_gdt = vmx_get_gdt,
  3550. .set_gdt = vmx_set_gdt,
  3551. .cache_reg = vmx_cache_reg,
  3552. .get_rflags = vmx_get_rflags,
  3553. .set_rflags = vmx_set_rflags,
  3554. .fpu_deactivate = vmx_fpu_deactivate,
  3555. .tlb_flush = vmx_flush_tlb,
  3556. .run = vmx_vcpu_run,
  3557. .handle_exit = vmx_handle_exit,
  3558. .skip_emulated_instruction = skip_emulated_instruction,
  3559. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  3560. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  3561. .patch_hypercall = vmx_patch_hypercall,
  3562. .set_irq = vmx_inject_irq,
  3563. .set_nmi = vmx_inject_nmi,
  3564. .queue_exception = vmx_queue_exception,
  3565. .interrupt_allowed = vmx_interrupt_allowed,
  3566. .nmi_allowed = vmx_nmi_allowed,
  3567. .get_nmi_mask = vmx_get_nmi_mask,
  3568. .set_nmi_mask = vmx_set_nmi_mask,
  3569. .enable_nmi_window = enable_nmi_window,
  3570. .enable_irq_window = enable_irq_window,
  3571. .update_cr8_intercept = update_cr8_intercept,
  3572. .set_tss_addr = vmx_set_tss_addr,
  3573. .get_tdp_level = get_ept_level,
  3574. .get_mt_mask = vmx_get_mt_mask,
  3575. .exit_reasons_str = vmx_exit_reasons_str,
  3576. .get_lpage_level = vmx_get_lpage_level,
  3577. .cpuid_update = vmx_cpuid_update,
  3578. .rdtscp_supported = vmx_rdtscp_supported,
  3579. };
  3580. static int __init vmx_init(void)
  3581. {
  3582. int r, i;
  3583. rdmsrl_safe(MSR_EFER, &host_efer);
  3584. for (i = 0; i < NR_VMX_MSR; ++i)
  3585. kvm_define_shared_msr(i, vmx_msr_index[i]);
  3586. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3587. if (!vmx_io_bitmap_a)
  3588. return -ENOMEM;
  3589. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3590. if (!vmx_io_bitmap_b) {
  3591. r = -ENOMEM;
  3592. goto out;
  3593. }
  3594. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3595. if (!vmx_msr_bitmap_legacy) {
  3596. r = -ENOMEM;
  3597. goto out1;
  3598. }
  3599. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3600. if (!vmx_msr_bitmap_longmode) {
  3601. r = -ENOMEM;
  3602. goto out2;
  3603. }
  3604. /*
  3605. * Allow direct access to the PC debug port (it is often used for I/O
  3606. * delays, but the vmexits simply slow things down).
  3607. */
  3608. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3609. clear_bit(0x80, vmx_io_bitmap_a);
  3610. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3611. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3612. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3613. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3614. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3615. if (r)
  3616. goto out3;
  3617. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3618. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3619. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3620. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3621. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3622. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3623. if (enable_ept) {
  3624. bypass_guest_pf = 0;
  3625. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3626. VMX_EPT_WRITABLE_MASK);
  3627. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3628. VMX_EPT_EXECUTABLE_MASK);
  3629. kvm_enable_tdp();
  3630. } else
  3631. kvm_disable_tdp();
  3632. if (bypass_guest_pf)
  3633. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3634. return 0;
  3635. out3:
  3636. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3637. out2:
  3638. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3639. out1:
  3640. free_page((unsigned long)vmx_io_bitmap_b);
  3641. out:
  3642. free_page((unsigned long)vmx_io_bitmap_a);
  3643. return r;
  3644. }
  3645. static void __exit vmx_exit(void)
  3646. {
  3647. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3648. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3649. free_page((unsigned long)vmx_io_bitmap_b);
  3650. free_page((unsigned long)vmx_io_bitmap_a);
  3651. kvm_exit();
  3652. }
  3653. module_init(vmx_init)
  3654. module_exit(vmx_exit)