random.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605
  1. /*
  2. * random.c -- A strong random number generator
  3. *
  4. * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
  5. *
  6. * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
  7. * rights reserved.
  8. *
  9. * Redistribution and use in source and binary forms, with or without
  10. * modification, are permitted provided that the following conditions
  11. * are met:
  12. * 1. Redistributions of source code must retain the above copyright
  13. * notice, and the entire permission notice in its entirety,
  14. * including the disclaimer of warranties.
  15. * 2. Redistributions in binary form must reproduce the above copyright
  16. * notice, this list of conditions and the following disclaimer in the
  17. * documentation and/or other materials provided with the distribution.
  18. * 3. The name of the author may not be used to endorse or promote
  19. * products derived from this software without specific prior
  20. * written permission.
  21. *
  22. * ALTERNATIVELY, this product may be distributed under the terms of
  23. * the GNU General Public License, in which case the provisions of the GPL are
  24. * required INSTEAD OF the above restrictions. (This clause is
  25. * necessary due to a potential bad interaction between the GPL and
  26. * the restrictions contained in a BSD-style copyright.)
  27. *
  28. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  29. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  30. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  31. * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
  32. * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  33. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  34. * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  35. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  36. * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  38. * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  39. * DAMAGE.
  40. */
  41. /*
  42. * (now, with legal B.S. out of the way.....)
  43. *
  44. * This routine gathers environmental noise from device drivers, etc.,
  45. * and returns good random numbers, suitable for cryptographic use.
  46. * Besides the obvious cryptographic uses, these numbers are also good
  47. * for seeding TCP sequence numbers, and other places where it is
  48. * desirable to have numbers which are not only random, but hard to
  49. * predict by an attacker.
  50. *
  51. * Theory of operation
  52. * ===================
  53. *
  54. * Computers are very predictable devices. Hence it is extremely hard
  55. * to produce truly random numbers on a computer --- as opposed to
  56. * pseudo-random numbers, which can easily generated by using a
  57. * algorithm. Unfortunately, it is very easy for attackers to guess
  58. * the sequence of pseudo-random number generators, and for some
  59. * applications this is not acceptable. So instead, we must try to
  60. * gather "environmental noise" from the computer's environment, which
  61. * must be hard for outside attackers to observe, and use that to
  62. * generate random numbers. In a Unix environment, this is best done
  63. * from inside the kernel.
  64. *
  65. * Sources of randomness from the environment include inter-keyboard
  66. * timings, inter-interrupt timings from some interrupts, and other
  67. * events which are both (a) non-deterministic and (b) hard for an
  68. * outside observer to measure. Randomness from these sources are
  69. * added to an "entropy pool", which is mixed using a CRC-like function.
  70. * This is not cryptographically strong, but it is adequate assuming
  71. * the randomness is not chosen maliciously, and it is fast enough that
  72. * the overhead of doing it on every interrupt is very reasonable.
  73. * As random bytes are mixed into the entropy pool, the routines keep
  74. * an *estimate* of how many bits of randomness have been stored into
  75. * the random number generator's internal state.
  76. *
  77. * When random bytes are desired, they are obtained by taking the SHA
  78. * hash of the contents of the "entropy pool". The SHA hash avoids
  79. * exposing the internal state of the entropy pool. It is believed to
  80. * be computationally infeasible to derive any useful information
  81. * about the input of SHA from its output. Even if it is possible to
  82. * analyze SHA in some clever way, as long as the amount of data
  83. * returned from the generator is less than the inherent entropy in
  84. * the pool, the output data is totally unpredictable. For this
  85. * reason, the routine decreases its internal estimate of how many
  86. * bits of "true randomness" are contained in the entropy pool as it
  87. * outputs random numbers.
  88. *
  89. * If this estimate goes to zero, the routine can still generate
  90. * random numbers; however, an attacker may (at least in theory) be
  91. * able to infer the future output of the generator from prior
  92. * outputs. This requires successful cryptanalysis of SHA, which is
  93. * not believed to be feasible, but there is a remote possibility.
  94. * Nonetheless, these numbers should be useful for the vast majority
  95. * of purposes.
  96. *
  97. * Exported interfaces ---- output
  98. * ===============================
  99. *
  100. * There are three exported interfaces; the first is one designed to
  101. * be used from within the kernel:
  102. *
  103. * void get_random_bytes(void *buf, int nbytes);
  104. *
  105. * This interface will return the requested number of random bytes,
  106. * and place it in the requested buffer.
  107. *
  108. * The two other interfaces are two character devices /dev/random and
  109. * /dev/urandom. /dev/random is suitable for use when very high
  110. * quality randomness is desired (for example, for key generation or
  111. * one-time pads), as it will only return a maximum of the number of
  112. * bits of randomness (as estimated by the random number generator)
  113. * contained in the entropy pool.
  114. *
  115. * The /dev/urandom device does not have this limit, and will return
  116. * as many bytes as are requested. As more and more random bytes are
  117. * requested without giving time for the entropy pool to recharge,
  118. * this will result in random numbers that are merely cryptographically
  119. * strong. For many applications, however, this is acceptable.
  120. *
  121. * Exported interfaces ---- input
  122. * ==============================
  123. *
  124. * The current exported interfaces for gathering environmental noise
  125. * from the devices are:
  126. *
  127. * void add_device_randomness(const void *buf, unsigned int size);
  128. * void add_input_randomness(unsigned int type, unsigned int code,
  129. * unsigned int value);
  130. * void add_interrupt_randomness(int irq, int irq_flags);
  131. * void add_disk_randomness(struct gendisk *disk);
  132. *
  133. * add_device_randomness() is for adding data to the random pool that
  134. * is likely to differ between two devices (or possibly even per boot).
  135. * This would be things like MAC addresses or serial numbers, or the
  136. * read-out of the RTC. This does *not* add any actual entropy to the
  137. * pool, but it initializes the pool to different values for devices
  138. * that might otherwise be identical and have very little entropy
  139. * available to them (particularly common in the embedded world).
  140. *
  141. * add_input_randomness() uses the input layer interrupt timing, as well as
  142. * the event type information from the hardware.
  143. *
  144. * add_interrupt_randomness() uses the interrupt timing as random
  145. * inputs to the entropy pool. Using the cycle counters and the irq source
  146. * as inputs, it feeds the randomness roughly once a second.
  147. *
  148. * add_disk_randomness() uses what amounts to the seek time of block
  149. * layer request events, on a per-disk_devt basis, as input to the
  150. * entropy pool. Note that high-speed solid state drives with very low
  151. * seek times do not make for good sources of entropy, as their seek
  152. * times are usually fairly consistent.
  153. *
  154. * All of these routines try to estimate how many bits of randomness a
  155. * particular randomness source. They do this by keeping track of the
  156. * first and second order deltas of the event timings.
  157. *
  158. * Ensuring unpredictability at system startup
  159. * ============================================
  160. *
  161. * When any operating system starts up, it will go through a sequence
  162. * of actions that are fairly predictable by an adversary, especially
  163. * if the start-up does not involve interaction with a human operator.
  164. * This reduces the actual number of bits of unpredictability in the
  165. * entropy pool below the value in entropy_count. In order to
  166. * counteract this effect, it helps to carry information in the
  167. * entropy pool across shut-downs and start-ups. To do this, put the
  168. * following lines an appropriate script which is run during the boot
  169. * sequence:
  170. *
  171. * echo "Initializing random number generator..."
  172. * random_seed=/var/run/random-seed
  173. * # Carry a random seed from start-up to start-up
  174. * # Load and then save the whole entropy pool
  175. * if [ -f $random_seed ]; then
  176. * cat $random_seed >/dev/urandom
  177. * else
  178. * touch $random_seed
  179. * fi
  180. * chmod 600 $random_seed
  181. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  182. *
  183. * and the following lines in an appropriate script which is run as
  184. * the system is shutdown:
  185. *
  186. * # Carry a random seed from shut-down to start-up
  187. * # Save the whole entropy pool
  188. * echo "Saving random seed..."
  189. * random_seed=/var/run/random-seed
  190. * touch $random_seed
  191. * chmod 600 $random_seed
  192. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  193. *
  194. * For example, on most modern systems using the System V init
  195. * scripts, such code fragments would be found in
  196. * /etc/rc.d/init.d/random. On older Linux systems, the correct script
  197. * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
  198. *
  199. * Effectively, these commands cause the contents of the entropy pool
  200. * to be saved at shut-down time and reloaded into the entropy pool at
  201. * start-up. (The 'dd' in the addition to the bootup script is to
  202. * make sure that /etc/random-seed is different for every start-up,
  203. * even if the system crashes without executing rc.0.) Even with
  204. * complete knowledge of the start-up activities, predicting the state
  205. * of the entropy pool requires knowledge of the previous history of
  206. * the system.
  207. *
  208. * Configuring the /dev/random driver under Linux
  209. * ==============================================
  210. *
  211. * The /dev/random driver under Linux uses minor numbers 8 and 9 of
  212. * the /dev/mem major number (#1). So if your system does not have
  213. * /dev/random and /dev/urandom created already, they can be created
  214. * by using the commands:
  215. *
  216. * mknod /dev/random c 1 8
  217. * mknod /dev/urandom c 1 9
  218. *
  219. * Acknowledgements:
  220. * =================
  221. *
  222. * Ideas for constructing this random number generator were derived
  223. * from Pretty Good Privacy's random number generator, and from private
  224. * discussions with Phil Karn. Colin Plumb provided a faster random
  225. * number generator, which speed up the mixing function of the entropy
  226. * pool, taken from PGPfone. Dale Worley has also contributed many
  227. * useful ideas and suggestions to improve this driver.
  228. *
  229. * Any flaws in the design are solely my responsibility, and should
  230. * not be attributed to the Phil, Colin, or any of authors of PGP.
  231. *
  232. * Further background information on this topic may be obtained from
  233. * RFC 1750, "Randomness Recommendations for Security", by Donald
  234. * Eastlake, Steve Crocker, and Jeff Schiller.
  235. */
  236. #include <linux/utsname.h>
  237. #include <linux/module.h>
  238. #include <linux/kernel.h>
  239. #include <linux/major.h>
  240. #include <linux/string.h>
  241. #include <linux/fcntl.h>
  242. #include <linux/slab.h>
  243. #include <linux/random.h>
  244. #include <linux/poll.h>
  245. #include <linux/init.h>
  246. #include <linux/fs.h>
  247. #include <linux/genhd.h>
  248. #include <linux/interrupt.h>
  249. #include <linux/mm.h>
  250. #include <linux/spinlock.h>
  251. #include <linux/percpu.h>
  252. #include <linux/cryptohash.h>
  253. #include <linux/fips.h>
  254. #include <linux/ptrace.h>
  255. #include <linux/kmemcheck.h>
  256. #ifdef CONFIG_GENERIC_HARDIRQS
  257. # include <linux/irq.h>
  258. #endif
  259. #include <asm/processor.h>
  260. #include <asm/uaccess.h>
  261. #include <asm/irq.h>
  262. #include <asm/irq_regs.h>
  263. #include <asm/io.h>
  264. #define CREATE_TRACE_POINTS
  265. #include <trace/events/random.h>
  266. /*
  267. * Configuration information
  268. */
  269. #define INPUT_POOL_SHIFT 12
  270. #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
  271. #define OUTPUT_POOL_SHIFT 10
  272. #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
  273. #define SEC_XFER_SIZE 512
  274. #define EXTRACT_SIZE 10
  275. #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
  276. /*
  277. * To allow fractional bits to be tracked, the following fields contain
  278. * this many fractional bits:
  279. *
  280. * entropy_count, trickle_thresh
  281. *
  282. * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
  283. * credit_entropy_bits() needs to be 64 bits wide.
  284. */
  285. #define ENTROPY_SHIFT 3
  286. #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
  287. /*
  288. * The minimum number of bits of entropy before we wake up a read on
  289. * /dev/random. Should be enough to do a significant reseed.
  290. */
  291. static int random_read_wakeup_thresh = 64;
  292. /*
  293. * If the entropy count falls under this number of bits, then we
  294. * should wake up processes which are selecting or polling on write
  295. * access to /dev/random.
  296. */
  297. static int random_write_wakeup_thresh = 128;
  298. /*
  299. * When the input pool goes over trickle_thresh, start dropping most
  300. * samples to avoid wasting CPU time and reduce lock contention.
  301. */
  302. static const int trickle_thresh = (INPUT_POOL_WORDS * 28) << ENTROPY_SHIFT;
  303. static DEFINE_PER_CPU(int, trickle_count);
  304. /*
  305. * A pool of size .poolwords is stirred with a primitive polynomial
  306. * of degree .poolwords over GF(2). The taps for various sizes are
  307. * defined below. They are chosen to be evenly spaced (minimum RMS
  308. * distance from evenly spaced; the numbers in the comments are a
  309. * scaled squared error sum) except for the last tap, which is 1 to
  310. * get the twisting happening as fast as possible.
  311. */
  312. static struct poolinfo {
  313. int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
  314. #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
  315. int tap1, tap2, tap3, tap4, tap5;
  316. } poolinfo_table[] = {
  317. /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
  318. { S(128), 103, 76, 51, 25, 1 },
  319. /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
  320. { S(32), 26, 20, 14, 7, 1 },
  321. #if 0
  322. /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
  323. { S(2048), 1638, 1231, 819, 411, 1 },
  324. /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
  325. { S(1024), 817, 615, 412, 204, 1 },
  326. /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
  327. { S(1024), 819, 616, 410, 207, 2 },
  328. /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
  329. { S(512), 411, 308, 208, 104, 1 },
  330. /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
  331. { S(512), 409, 307, 206, 102, 2 },
  332. /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
  333. { S(512), 409, 309, 205, 103, 2 },
  334. /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
  335. { S(256), 205, 155, 101, 52, 1 },
  336. /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
  337. { S(128), 103, 78, 51, 27, 2 },
  338. /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
  339. { S(64), 52, 39, 26, 14, 1 },
  340. #endif
  341. };
  342. /*
  343. * For the purposes of better mixing, we use the CRC-32 polynomial as
  344. * well to make a twisted Generalized Feedback Shift Reigster
  345. *
  346. * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
  347. * Transactions on Modeling and Computer Simulation 2(3):179-194.
  348. * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
  349. * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
  350. *
  351. * Thanks to Colin Plumb for suggesting this.
  352. *
  353. * We have not analyzed the resultant polynomial to prove it primitive;
  354. * in fact it almost certainly isn't. Nonetheless, the irreducible factors
  355. * of a random large-degree polynomial over GF(2) are more than large enough
  356. * that periodicity is not a concern.
  357. *
  358. * The input hash is much less sensitive than the output hash. All
  359. * that we want of it is that it be a good non-cryptographic hash;
  360. * i.e. it not produce collisions when fed "random" data of the sort
  361. * we expect to see. As long as the pool state differs for different
  362. * inputs, we have preserved the input entropy and done a good job.
  363. * The fact that an intelligent attacker can construct inputs that
  364. * will produce controlled alterations to the pool's state is not
  365. * important because we don't consider such inputs to contribute any
  366. * randomness. The only property we need with respect to them is that
  367. * the attacker can't increase his/her knowledge of the pool's state.
  368. * Since all additions are reversible (knowing the final state and the
  369. * input, you can reconstruct the initial state), if an attacker has
  370. * any uncertainty about the initial state, he/she can only shuffle
  371. * that uncertainty about, but never cause any collisions (which would
  372. * decrease the uncertainty).
  373. *
  374. * The chosen system lets the state of the pool be (essentially) the input
  375. * modulo the generator polymnomial. Now, for random primitive polynomials,
  376. * this is a universal class of hash functions, meaning that the chance
  377. * of a collision is limited by the attacker's knowledge of the generator
  378. * polynomail, so if it is chosen at random, an attacker can never force
  379. * a collision. Here, we use a fixed polynomial, but we *can* assume that
  380. * ###--> it is unknown to the processes generating the input entropy. <-###
  381. * Because of this important property, this is a good, collision-resistant
  382. * hash; hash collisions will occur no more often than chance.
  383. */
  384. /*
  385. * Static global variables
  386. */
  387. static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
  388. static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
  389. static struct fasync_struct *fasync;
  390. static bool debug;
  391. module_param(debug, bool, 0644);
  392. #define DEBUG_ENT(fmt, arg...) do { \
  393. if (debug) \
  394. printk(KERN_DEBUG "random %04d %04d %04d: " \
  395. fmt,\
  396. input_pool.entropy_count,\
  397. blocking_pool.entropy_count,\
  398. nonblocking_pool.entropy_count,\
  399. ## arg); } while (0)
  400. /**********************************************************************
  401. *
  402. * OS independent entropy store. Here are the functions which handle
  403. * storing entropy in an entropy pool.
  404. *
  405. **********************************************************************/
  406. struct entropy_store;
  407. struct entropy_store {
  408. /* read-only data: */
  409. const struct poolinfo *poolinfo;
  410. __u32 *pool;
  411. const char *name;
  412. struct entropy_store *pull;
  413. int limit;
  414. /* read-write data: */
  415. spinlock_t lock;
  416. unsigned add_ptr;
  417. unsigned input_rotate;
  418. int entropy_count;
  419. int entropy_total;
  420. unsigned int initialized:1;
  421. bool last_data_init;
  422. __u8 last_data[EXTRACT_SIZE];
  423. };
  424. static __u32 input_pool_data[INPUT_POOL_WORDS];
  425. static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
  426. static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
  427. static struct entropy_store input_pool = {
  428. .poolinfo = &poolinfo_table[0],
  429. .name = "input",
  430. .limit = 1,
  431. .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
  432. .pool = input_pool_data
  433. };
  434. static struct entropy_store blocking_pool = {
  435. .poolinfo = &poolinfo_table[1],
  436. .name = "blocking",
  437. .limit = 1,
  438. .pull = &input_pool,
  439. .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
  440. .pool = blocking_pool_data
  441. };
  442. static struct entropy_store nonblocking_pool = {
  443. .poolinfo = &poolinfo_table[1],
  444. .name = "nonblocking",
  445. .pull = &input_pool,
  446. .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
  447. .pool = nonblocking_pool_data
  448. };
  449. static __u32 const twist_table[8] = {
  450. 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
  451. 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
  452. /*
  453. * This function adds bytes into the entropy "pool". It does not
  454. * update the entropy estimate. The caller should call
  455. * credit_entropy_bits if this is appropriate.
  456. *
  457. * The pool is stirred with a primitive polynomial of the appropriate
  458. * degree, and then twisted. We twist by three bits at a time because
  459. * it's cheap to do so and helps slightly in the expected case where
  460. * the entropy is concentrated in the low-order bits.
  461. */
  462. static void _mix_pool_bytes(struct entropy_store *r, const void *in,
  463. int nbytes, __u8 out[64])
  464. {
  465. unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
  466. int input_rotate;
  467. int wordmask = r->poolinfo->poolwords - 1;
  468. const char *bytes = in;
  469. __u32 w;
  470. tap1 = r->poolinfo->tap1;
  471. tap2 = r->poolinfo->tap2;
  472. tap3 = r->poolinfo->tap3;
  473. tap4 = r->poolinfo->tap4;
  474. tap5 = r->poolinfo->tap5;
  475. smp_rmb();
  476. input_rotate = ACCESS_ONCE(r->input_rotate);
  477. i = ACCESS_ONCE(r->add_ptr);
  478. /* mix one byte at a time to simplify size handling and churn faster */
  479. while (nbytes--) {
  480. w = rol32(*bytes++, input_rotate & 31);
  481. i = (i - 1) & wordmask;
  482. /* XOR in the various taps */
  483. w ^= r->pool[i];
  484. w ^= r->pool[(i + tap1) & wordmask];
  485. w ^= r->pool[(i + tap2) & wordmask];
  486. w ^= r->pool[(i + tap3) & wordmask];
  487. w ^= r->pool[(i + tap4) & wordmask];
  488. w ^= r->pool[(i + tap5) & wordmask];
  489. /* Mix the result back in with a twist */
  490. r->pool[i] = (w >> 3) ^ twist_table[w & 7];
  491. /*
  492. * Normally, we add 7 bits of rotation to the pool.
  493. * At the beginning of the pool, add an extra 7 bits
  494. * rotation, so that successive passes spread the
  495. * input bits across the pool evenly.
  496. */
  497. input_rotate += i ? 7 : 14;
  498. }
  499. ACCESS_ONCE(r->input_rotate) = input_rotate;
  500. ACCESS_ONCE(r->add_ptr) = i;
  501. smp_wmb();
  502. if (out)
  503. for (j = 0; j < 16; j++)
  504. ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
  505. }
  506. static void __mix_pool_bytes(struct entropy_store *r, const void *in,
  507. int nbytes, __u8 out[64])
  508. {
  509. trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
  510. _mix_pool_bytes(r, in, nbytes, out);
  511. }
  512. static void mix_pool_bytes(struct entropy_store *r, const void *in,
  513. int nbytes, __u8 out[64])
  514. {
  515. unsigned long flags;
  516. trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
  517. spin_lock_irqsave(&r->lock, flags);
  518. _mix_pool_bytes(r, in, nbytes, out);
  519. spin_unlock_irqrestore(&r->lock, flags);
  520. }
  521. struct fast_pool {
  522. __u32 pool[4];
  523. unsigned long last;
  524. unsigned short count;
  525. unsigned char rotate;
  526. unsigned char last_timer_intr;
  527. };
  528. /*
  529. * This is a fast mixing routine used by the interrupt randomness
  530. * collector. It's hardcoded for an 128 bit pool and assumes that any
  531. * locks that might be needed are taken by the caller.
  532. */
  533. static void fast_mix(struct fast_pool *f, const void *in, int nbytes)
  534. {
  535. const char *bytes = in;
  536. __u32 w;
  537. unsigned i = f->count;
  538. unsigned input_rotate = f->rotate;
  539. while (nbytes--) {
  540. w = rol32(*bytes++, input_rotate & 31) ^ f->pool[i & 3] ^
  541. f->pool[(i + 1) & 3];
  542. f->pool[i & 3] = (w >> 3) ^ twist_table[w & 7];
  543. input_rotate += (i++ & 3) ? 7 : 14;
  544. }
  545. f->count = i;
  546. f->rotate = input_rotate;
  547. }
  548. /*
  549. * Credit (or debit) the entropy store with n bits of entropy.
  550. * Use credit_entropy_bits_safe() if the value comes from userspace
  551. * or otherwise should be checked for extreme values.
  552. */
  553. static void credit_entropy_bits(struct entropy_store *r, int nbits)
  554. {
  555. int entropy_count, orig;
  556. const int pool_size = r->poolinfo->poolfracbits;
  557. int nfrac = nbits << ENTROPY_SHIFT;
  558. if (!nbits)
  559. return;
  560. DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
  561. retry:
  562. entropy_count = orig = ACCESS_ONCE(r->entropy_count);
  563. if (nfrac < 0) {
  564. /* Debit */
  565. entropy_count += nfrac;
  566. } else {
  567. /*
  568. * Credit: we have to account for the possibility of
  569. * overwriting already present entropy. Even in the
  570. * ideal case of pure Shannon entropy, new contributions
  571. * approach the full value asymptotically:
  572. *
  573. * entropy <- entropy + (pool_size - entropy) *
  574. * (1 - exp(-add_entropy/pool_size))
  575. *
  576. * For add_entropy <= pool_size/2 then
  577. * (1 - exp(-add_entropy/pool_size)) >=
  578. * (add_entropy/pool_size)*0.7869...
  579. * so we can approximate the exponential with
  580. * 3/4*add_entropy/pool_size and still be on the
  581. * safe side by adding at most pool_size/2 at a time.
  582. *
  583. * The use of pool_size-2 in the while statement is to
  584. * prevent rounding artifacts from making the loop
  585. * arbitrarily long; this limits the loop to log2(pool_size)*2
  586. * turns no matter how large nbits is.
  587. */
  588. int pnfrac = nfrac;
  589. const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
  590. /* The +2 corresponds to the /4 in the denominator */
  591. do {
  592. unsigned int anfrac = min(pnfrac, pool_size/2);
  593. unsigned int add =
  594. ((pool_size - entropy_count)*anfrac*3) >> s;
  595. entropy_count += add;
  596. pnfrac -= anfrac;
  597. } while (unlikely(entropy_count < pool_size-2 && pnfrac));
  598. }
  599. if (entropy_count < 0) {
  600. DEBUG_ENT("negative entropy/overflow\n");
  601. entropy_count = 0;
  602. } else if (entropy_count > pool_size)
  603. entropy_count = pool_size;
  604. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  605. goto retry;
  606. if (!r->initialized && nbits > 0) {
  607. r->entropy_total += nbits;
  608. if (r->entropy_total > 128)
  609. r->initialized = 1;
  610. }
  611. trace_credit_entropy_bits(r->name, nbits,
  612. entropy_count >> ENTROPY_SHIFT,
  613. r->entropy_total, _RET_IP_);
  614. /* should we wake readers? */
  615. if (r == &input_pool &&
  616. (entropy_count >> ENTROPY_SHIFT) >= random_read_wakeup_thresh) {
  617. wake_up_interruptible(&random_read_wait);
  618. kill_fasync(&fasync, SIGIO, POLL_IN);
  619. }
  620. }
  621. static void credit_entropy_bits_safe(struct entropy_store *r, int nbits)
  622. {
  623. const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
  624. /* Cap the value to avoid overflows */
  625. nbits = min(nbits, nbits_max);
  626. nbits = max(nbits, -nbits_max);
  627. credit_entropy_bits(r, nbits);
  628. }
  629. /*********************************************************************
  630. *
  631. * Entropy input management
  632. *
  633. *********************************************************************/
  634. /* There is one of these per entropy source */
  635. struct timer_rand_state {
  636. cycles_t last_time;
  637. long last_delta, last_delta2;
  638. unsigned dont_count_entropy:1;
  639. };
  640. /*
  641. * Add device- or boot-specific data to the input and nonblocking
  642. * pools to help initialize them to unique values.
  643. *
  644. * None of this adds any entropy, it is meant to avoid the
  645. * problem of the nonblocking pool having similar initial state
  646. * across largely identical devices.
  647. */
  648. void add_device_randomness(const void *buf, unsigned int size)
  649. {
  650. unsigned long time = random_get_entropy() ^ jiffies;
  651. trace_add_device_randomness(size, _RET_IP_);
  652. mix_pool_bytes(&input_pool, buf, size, NULL);
  653. mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
  654. mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
  655. mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
  656. }
  657. EXPORT_SYMBOL(add_device_randomness);
  658. static struct timer_rand_state input_timer_state;
  659. /*
  660. * This function adds entropy to the entropy "pool" by using timing
  661. * delays. It uses the timer_rand_state structure to make an estimate
  662. * of how many bits of entropy this call has added to the pool.
  663. *
  664. * The number "num" is also added to the pool - it should somehow describe
  665. * the type of event which just happened. This is currently 0-255 for
  666. * keyboard scan codes, and 256 upwards for interrupts.
  667. *
  668. */
  669. static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
  670. {
  671. struct {
  672. long jiffies;
  673. unsigned cycles;
  674. unsigned num;
  675. } sample;
  676. long delta, delta2, delta3;
  677. preempt_disable();
  678. /* if over the trickle threshold, use only 1 in 4096 samples */
  679. if (ENTROPY_BITS(&input_pool) > trickle_thresh &&
  680. ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
  681. goto out;
  682. sample.jiffies = jiffies;
  683. sample.cycles = random_get_entropy();
  684. sample.num = num;
  685. mix_pool_bytes(&input_pool, &sample, sizeof(sample), NULL);
  686. /*
  687. * Calculate number of bits of randomness we probably added.
  688. * We take into account the first, second and third-order deltas
  689. * in order to make our estimate.
  690. */
  691. if (!state->dont_count_entropy) {
  692. delta = sample.jiffies - state->last_time;
  693. state->last_time = sample.jiffies;
  694. delta2 = delta - state->last_delta;
  695. state->last_delta = delta;
  696. delta3 = delta2 - state->last_delta2;
  697. state->last_delta2 = delta2;
  698. if (delta < 0)
  699. delta = -delta;
  700. if (delta2 < 0)
  701. delta2 = -delta2;
  702. if (delta3 < 0)
  703. delta3 = -delta3;
  704. if (delta > delta2)
  705. delta = delta2;
  706. if (delta > delta3)
  707. delta = delta3;
  708. /*
  709. * delta is now minimum absolute delta.
  710. * Round down by 1 bit on general principles,
  711. * and limit entropy entimate to 12 bits.
  712. */
  713. credit_entropy_bits(&input_pool,
  714. min_t(int, fls(delta>>1), 11));
  715. }
  716. out:
  717. preempt_enable();
  718. }
  719. void add_input_randomness(unsigned int type, unsigned int code,
  720. unsigned int value)
  721. {
  722. static unsigned char last_value;
  723. /* ignore autorepeat and the like */
  724. if (value == last_value)
  725. return;
  726. DEBUG_ENT("input event\n");
  727. last_value = value;
  728. add_timer_randomness(&input_timer_state,
  729. (type << 4) ^ code ^ (code >> 4) ^ value);
  730. }
  731. EXPORT_SYMBOL_GPL(add_input_randomness);
  732. static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
  733. void add_interrupt_randomness(int irq, int irq_flags)
  734. {
  735. struct entropy_store *r;
  736. struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
  737. struct pt_regs *regs = get_irq_regs();
  738. unsigned long now = jiffies;
  739. __u32 input[4], cycles = random_get_entropy();
  740. input[0] = cycles ^ jiffies;
  741. input[1] = irq;
  742. if (regs) {
  743. __u64 ip = instruction_pointer(regs);
  744. input[2] = ip;
  745. input[3] = ip >> 32;
  746. }
  747. fast_mix(fast_pool, input, sizeof(input));
  748. if ((fast_pool->count & 1023) &&
  749. !time_after(now, fast_pool->last + HZ))
  750. return;
  751. fast_pool->last = now;
  752. r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
  753. __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
  754. /*
  755. * If we don't have a valid cycle counter, and we see
  756. * back-to-back timer interrupts, then skip giving credit for
  757. * any entropy.
  758. */
  759. if (cycles == 0) {
  760. if (irq_flags & __IRQF_TIMER) {
  761. if (fast_pool->last_timer_intr)
  762. return;
  763. fast_pool->last_timer_intr = 1;
  764. } else
  765. fast_pool->last_timer_intr = 0;
  766. }
  767. credit_entropy_bits(r, 1);
  768. }
  769. #ifdef CONFIG_BLOCK
  770. void add_disk_randomness(struct gendisk *disk)
  771. {
  772. if (!disk || !disk->random)
  773. return;
  774. /* first major is 1, so we get >= 0x200 here */
  775. DEBUG_ENT("disk event %d:%d\n",
  776. MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
  777. add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
  778. }
  779. #endif
  780. /*********************************************************************
  781. *
  782. * Entropy extraction routines
  783. *
  784. *********************************************************************/
  785. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  786. size_t nbytes, int min, int rsvd);
  787. /*
  788. * This utility inline function is responsible for transferring entropy
  789. * from the primary pool to the secondary extraction pool. We make
  790. * sure we pull enough for a 'catastrophic reseed'.
  791. */
  792. static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  793. {
  794. __u32 tmp[OUTPUT_POOL_WORDS];
  795. if (r->pull &&
  796. r->entropy_count < (nbytes << (ENTROPY_SHIFT + 3)) &&
  797. r->entropy_count < r->poolinfo->poolfracbits) {
  798. /* If we're limited, always leave two wakeup worth's BITS */
  799. int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
  800. int bytes = nbytes;
  801. /* pull at least as many as BYTES as wakeup BITS */
  802. bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
  803. /* but never more than the buffer size */
  804. bytes = min_t(int, bytes, sizeof(tmp));
  805. DEBUG_ENT("going to reseed %s with %d bits "
  806. "(%zu of %d requested)\n",
  807. r->name, bytes * 8, nbytes * 8,
  808. r->entropy_count >> ENTROPY_SHIFT);
  809. bytes = extract_entropy(r->pull, tmp, bytes,
  810. random_read_wakeup_thresh / 8, rsvd);
  811. mix_pool_bytes(r, tmp, bytes, NULL);
  812. credit_entropy_bits(r, bytes*8);
  813. }
  814. }
  815. /*
  816. * These functions extracts randomness from the "entropy pool", and
  817. * returns it in a buffer.
  818. *
  819. * The min parameter specifies the minimum amount we can pull before
  820. * failing to avoid races that defeat catastrophic reseeding while the
  821. * reserved parameter indicates how much entropy we must leave in the
  822. * pool after each pull to avoid starving other readers.
  823. *
  824. * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
  825. */
  826. static size_t account(struct entropy_store *r, size_t nbytes, int min,
  827. int reserved)
  828. {
  829. unsigned long flags;
  830. int wakeup_write = 0;
  831. int have_bytes;
  832. int entropy_count, orig;
  833. size_t ibytes;
  834. /* Hold lock while accounting */
  835. spin_lock_irqsave(&r->lock, flags);
  836. BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
  837. DEBUG_ENT("trying to extract %zu bits from %s\n",
  838. nbytes * 8, r->name);
  839. /* Can we pull enough? */
  840. retry:
  841. entropy_count = orig = ACCESS_ONCE(r->entropy_count);
  842. have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
  843. ibytes = nbytes;
  844. if (have_bytes < min + reserved) {
  845. ibytes = 0;
  846. } else {
  847. /* If limited, never pull more than available */
  848. if (r->limit && ibytes + reserved >= have_bytes)
  849. ibytes = have_bytes - reserved;
  850. if (have_bytes >= ibytes + reserved)
  851. entropy_count -= ibytes << (ENTROPY_SHIFT + 3);
  852. else
  853. entropy_count = reserved << (ENTROPY_SHIFT + 3);
  854. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  855. goto retry;
  856. if ((r->entropy_count >> ENTROPY_SHIFT)
  857. < random_write_wakeup_thresh)
  858. wakeup_write = 1;
  859. }
  860. DEBUG_ENT("debiting %zu entropy credits from %s%s\n",
  861. ibytes * 8, r->name, r->limit ? "" : " (unlimited)");
  862. spin_unlock_irqrestore(&r->lock, flags);
  863. if (wakeup_write) {
  864. wake_up_interruptible(&random_write_wait);
  865. kill_fasync(&fasync, SIGIO, POLL_OUT);
  866. }
  867. return ibytes;
  868. }
  869. static void extract_buf(struct entropy_store *r, __u8 *out)
  870. {
  871. int i;
  872. union {
  873. __u32 w[5];
  874. unsigned long l[LONGS(20)];
  875. } hash;
  876. __u32 workspace[SHA_WORKSPACE_WORDS];
  877. __u8 extract[64];
  878. unsigned long flags;
  879. /* Generate a hash across the pool, 16 words (512 bits) at a time */
  880. sha_init(hash.w);
  881. spin_lock_irqsave(&r->lock, flags);
  882. for (i = 0; i < r->poolinfo->poolwords; i += 16)
  883. sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
  884. /*
  885. * If we have a architectural hardware random number
  886. * generator, mix that in, too.
  887. */
  888. for (i = 0; i < LONGS(20); i++) {
  889. unsigned long v;
  890. if (!arch_get_random_long(&v))
  891. break;
  892. hash.l[i] ^= v;
  893. }
  894. /*
  895. * We mix the hash back into the pool to prevent backtracking
  896. * attacks (where the attacker knows the state of the pool
  897. * plus the current outputs, and attempts to find previous
  898. * ouputs), unless the hash function can be inverted. By
  899. * mixing at least a SHA1 worth of hash data back, we make
  900. * brute-forcing the feedback as hard as brute-forcing the
  901. * hash.
  902. */
  903. __mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
  904. spin_unlock_irqrestore(&r->lock, flags);
  905. /*
  906. * To avoid duplicates, we atomically extract a portion of the
  907. * pool while mixing, and hash one final time.
  908. */
  909. sha_transform(hash.w, extract, workspace);
  910. memset(extract, 0, sizeof(extract));
  911. memset(workspace, 0, sizeof(workspace));
  912. /*
  913. * In case the hash function has some recognizable output
  914. * pattern, we fold it in half. Thus, we always feed back
  915. * twice as much data as we output.
  916. */
  917. hash.w[0] ^= hash.w[3];
  918. hash.w[1] ^= hash.w[4];
  919. hash.w[2] ^= rol32(hash.w[2], 16);
  920. memcpy(out, &hash, EXTRACT_SIZE);
  921. memset(&hash, 0, sizeof(hash));
  922. }
  923. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  924. size_t nbytes, int min, int reserved)
  925. {
  926. ssize_t ret = 0, i;
  927. __u8 tmp[EXTRACT_SIZE];
  928. unsigned long flags;
  929. /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
  930. if (fips_enabled) {
  931. spin_lock_irqsave(&r->lock, flags);
  932. if (!r->last_data_init) {
  933. r->last_data_init = true;
  934. spin_unlock_irqrestore(&r->lock, flags);
  935. trace_extract_entropy(r->name, EXTRACT_SIZE,
  936. ENTROPY_BITS(r), _RET_IP_);
  937. xfer_secondary_pool(r, EXTRACT_SIZE);
  938. extract_buf(r, tmp);
  939. spin_lock_irqsave(&r->lock, flags);
  940. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  941. }
  942. spin_unlock_irqrestore(&r->lock, flags);
  943. }
  944. trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
  945. xfer_secondary_pool(r, nbytes);
  946. nbytes = account(r, nbytes, min, reserved);
  947. while (nbytes) {
  948. extract_buf(r, tmp);
  949. if (fips_enabled) {
  950. spin_lock_irqsave(&r->lock, flags);
  951. if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
  952. panic("Hardware RNG duplicated output!\n");
  953. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  954. spin_unlock_irqrestore(&r->lock, flags);
  955. }
  956. i = min_t(int, nbytes, EXTRACT_SIZE);
  957. memcpy(buf, tmp, i);
  958. nbytes -= i;
  959. buf += i;
  960. ret += i;
  961. }
  962. /* Wipe data just returned from memory */
  963. memset(tmp, 0, sizeof(tmp));
  964. return ret;
  965. }
  966. static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
  967. size_t nbytes)
  968. {
  969. ssize_t ret = 0, i;
  970. __u8 tmp[EXTRACT_SIZE];
  971. trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
  972. xfer_secondary_pool(r, nbytes);
  973. nbytes = account(r, nbytes, 0, 0);
  974. while (nbytes) {
  975. if (need_resched()) {
  976. if (signal_pending(current)) {
  977. if (ret == 0)
  978. ret = -ERESTARTSYS;
  979. break;
  980. }
  981. schedule();
  982. }
  983. extract_buf(r, tmp);
  984. i = min_t(int, nbytes, EXTRACT_SIZE);
  985. if (copy_to_user(buf, tmp, i)) {
  986. ret = -EFAULT;
  987. break;
  988. }
  989. nbytes -= i;
  990. buf += i;
  991. ret += i;
  992. }
  993. /* Wipe data just returned from memory */
  994. memset(tmp, 0, sizeof(tmp));
  995. return ret;
  996. }
  997. /*
  998. * This function is the exported kernel interface. It returns some
  999. * number of good random numbers, suitable for key generation, seeding
  1000. * TCP sequence numbers, etc. It does not use the hw random number
  1001. * generator, if available; use get_random_bytes_arch() for that.
  1002. */
  1003. void get_random_bytes(void *buf, int nbytes)
  1004. {
  1005. trace_get_random_bytes(nbytes, _RET_IP_);
  1006. extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
  1007. }
  1008. EXPORT_SYMBOL(get_random_bytes);
  1009. /*
  1010. * This function will use the architecture-specific hardware random
  1011. * number generator if it is available. The arch-specific hw RNG will
  1012. * almost certainly be faster than what we can do in software, but it
  1013. * is impossible to verify that it is implemented securely (as
  1014. * opposed, to, say, the AES encryption of a sequence number using a
  1015. * key known by the NSA). So it's useful if we need the speed, but
  1016. * only if we're willing to trust the hardware manufacturer not to
  1017. * have put in a back door.
  1018. */
  1019. void get_random_bytes_arch(void *buf, int nbytes)
  1020. {
  1021. char *p = buf;
  1022. trace_get_random_bytes_arch(nbytes, _RET_IP_);
  1023. while (nbytes) {
  1024. unsigned long v;
  1025. int chunk = min(nbytes, (int)sizeof(unsigned long));
  1026. if (!arch_get_random_long(&v))
  1027. break;
  1028. memcpy(p, &v, chunk);
  1029. p += chunk;
  1030. nbytes -= chunk;
  1031. }
  1032. if (nbytes)
  1033. extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
  1034. }
  1035. EXPORT_SYMBOL(get_random_bytes_arch);
  1036. /*
  1037. * init_std_data - initialize pool with system data
  1038. *
  1039. * @r: pool to initialize
  1040. *
  1041. * This function clears the pool's entropy count and mixes some system
  1042. * data into the pool to prepare it for use. The pool is not cleared
  1043. * as that can only decrease the entropy in the pool.
  1044. */
  1045. static void init_std_data(struct entropy_store *r)
  1046. {
  1047. int i;
  1048. ktime_t now = ktime_get_real();
  1049. unsigned long rv;
  1050. r->entropy_count = 0;
  1051. r->entropy_total = 0;
  1052. r->last_data_init = false;
  1053. mix_pool_bytes(r, &now, sizeof(now), NULL);
  1054. for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
  1055. if (!arch_get_random_long(&rv))
  1056. break;
  1057. mix_pool_bytes(r, &rv, sizeof(rv), NULL);
  1058. }
  1059. mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
  1060. }
  1061. /*
  1062. * Note that setup_arch() may call add_device_randomness()
  1063. * long before we get here. This allows seeding of the pools
  1064. * with some platform dependent data very early in the boot
  1065. * process. But it limits our options here. We must use
  1066. * statically allocated structures that already have all
  1067. * initializations complete at compile time. We should also
  1068. * take care not to overwrite the precious per platform data
  1069. * we were given.
  1070. */
  1071. static int rand_initialize(void)
  1072. {
  1073. init_std_data(&input_pool);
  1074. init_std_data(&blocking_pool);
  1075. init_std_data(&nonblocking_pool);
  1076. return 0;
  1077. }
  1078. module_init(rand_initialize);
  1079. #ifdef CONFIG_BLOCK
  1080. void rand_initialize_disk(struct gendisk *disk)
  1081. {
  1082. struct timer_rand_state *state;
  1083. /*
  1084. * If kzalloc returns null, we just won't use that entropy
  1085. * source.
  1086. */
  1087. state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
  1088. if (state)
  1089. disk->random = state;
  1090. }
  1091. #endif
  1092. static ssize_t
  1093. random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1094. {
  1095. ssize_t n, retval = 0, count = 0;
  1096. if (nbytes == 0)
  1097. return 0;
  1098. while (nbytes > 0) {
  1099. n = nbytes;
  1100. if (n > SEC_XFER_SIZE)
  1101. n = SEC_XFER_SIZE;
  1102. DEBUG_ENT("reading %zu bits\n", n*8);
  1103. n = extract_entropy_user(&blocking_pool, buf, n);
  1104. if (n < 0) {
  1105. retval = n;
  1106. break;
  1107. }
  1108. DEBUG_ENT("read got %zd bits (%zd still needed)\n",
  1109. n*8, (nbytes-n)*8);
  1110. if (n == 0) {
  1111. if (file->f_flags & O_NONBLOCK) {
  1112. retval = -EAGAIN;
  1113. break;
  1114. }
  1115. DEBUG_ENT("sleeping?\n");
  1116. wait_event_interruptible(random_read_wait,
  1117. ENTROPY_BITS(&input_pool) >=
  1118. random_read_wakeup_thresh);
  1119. DEBUG_ENT("awake\n");
  1120. if (signal_pending(current)) {
  1121. retval = -ERESTARTSYS;
  1122. break;
  1123. }
  1124. continue;
  1125. }
  1126. count += n;
  1127. buf += n;
  1128. nbytes -= n;
  1129. break; /* This break makes the device work */
  1130. /* like a named pipe */
  1131. }
  1132. return (count ? count : retval);
  1133. }
  1134. static ssize_t
  1135. urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1136. {
  1137. return extract_entropy_user(&nonblocking_pool, buf, nbytes);
  1138. }
  1139. static unsigned int
  1140. random_poll(struct file *file, poll_table * wait)
  1141. {
  1142. unsigned int mask;
  1143. poll_wait(file, &random_read_wait, wait);
  1144. poll_wait(file, &random_write_wait, wait);
  1145. mask = 0;
  1146. if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_thresh)
  1147. mask |= POLLIN | POLLRDNORM;
  1148. if (ENTROPY_BITS(&input_pool) < random_write_wakeup_thresh)
  1149. mask |= POLLOUT | POLLWRNORM;
  1150. return mask;
  1151. }
  1152. static int
  1153. write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
  1154. {
  1155. size_t bytes;
  1156. __u32 buf[16];
  1157. const char __user *p = buffer;
  1158. while (count > 0) {
  1159. bytes = min(count, sizeof(buf));
  1160. if (copy_from_user(&buf, p, bytes))
  1161. return -EFAULT;
  1162. count -= bytes;
  1163. p += bytes;
  1164. mix_pool_bytes(r, buf, bytes, NULL);
  1165. cond_resched();
  1166. }
  1167. return 0;
  1168. }
  1169. static ssize_t random_write(struct file *file, const char __user *buffer,
  1170. size_t count, loff_t *ppos)
  1171. {
  1172. size_t ret;
  1173. ret = write_pool(&blocking_pool, buffer, count);
  1174. if (ret)
  1175. return ret;
  1176. ret = write_pool(&nonblocking_pool, buffer, count);
  1177. if (ret)
  1178. return ret;
  1179. return (ssize_t)count;
  1180. }
  1181. static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
  1182. {
  1183. int size, ent_count;
  1184. int __user *p = (int __user *)arg;
  1185. int retval;
  1186. switch (cmd) {
  1187. case RNDGETENTCNT:
  1188. /* inherently racy, no point locking */
  1189. ent_count = ENTROPY_BITS(&input_pool);
  1190. if (put_user(ent_count, p))
  1191. return -EFAULT;
  1192. return 0;
  1193. case RNDADDTOENTCNT:
  1194. if (!capable(CAP_SYS_ADMIN))
  1195. return -EPERM;
  1196. if (get_user(ent_count, p))
  1197. return -EFAULT;
  1198. credit_entropy_bits_safe(&input_pool, ent_count);
  1199. return 0;
  1200. case RNDADDENTROPY:
  1201. if (!capable(CAP_SYS_ADMIN))
  1202. return -EPERM;
  1203. if (get_user(ent_count, p++))
  1204. return -EFAULT;
  1205. if (ent_count < 0)
  1206. return -EINVAL;
  1207. if (get_user(size, p++))
  1208. return -EFAULT;
  1209. retval = write_pool(&input_pool, (const char __user *)p,
  1210. size);
  1211. if (retval < 0)
  1212. return retval;
  1213. credit_entropy_bits_safe(&input_pool, ent_count);
  1214. return 0;
  1215. case RNDZAPENTCNT:
  1216. case RNDCLEARPOOL:
  1217. /* Clear the entropy pool counters. */
  1218. if (!capable(CAP_SYS_ADMIN))
  1219. return -EPERM;
  1220. rand_initialize();
  1221. return 0;
  1222. default:
  1223. return -EINVAL;
  1224. }
  1225. }
  1226. static int random_fasync(int fd, struct file *filp, int on)
  1227. {
  1228. return fasync_helper(fd, filp, on, &fasync);
  1229. }
  1230. const struct file_operations random_fops = {
  1231. .read = random_read,
  1232. .write = random_write,
  1233. .poll = random_poll,
  1234. .unlocked_ioctl = random_ioctl,
  1235. .fasync = random_fasync,
  1236. .llseek = noop_llseek,
  1237. };
  1238. const struct file_operations urandom_fops = {
  1239. .read = urandom_read,
  1240. .write = random_write,
  1241. .unlocked_ioctl = random_ioctl,
  1242. .fasync = random_fasync,
  1243. .llseek = noop_llseek,
  1244. };
  1245. /***************************************************************
  1246. * Random UUID interface
  1247. *
  1248. * Used here for a Boot ID, but can be useful for other kernel
  1249. * drivers.
  1250. ***************************************************************/
  1251. /*
  1252. * Generate random UUID
  1253. */
  1254. void generate_random_uuid(unsigned char uuid_out[16])
  1255. {
  1256. get_random_bytes(uuid_out, 16);
  1257. /* Set UUID version to 4 --- truly random generation */
  1258. uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
  1259. /* Set the UUID variant to DCE */
  1260. uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
  1261. }
  1262. EXPORT_SYMBOL(generate_random_uuid);
  1263. /********************************************************************
  1264. *
  1265. * Sysctl interface
  1266. *
  1267. ********************************************************************/
  1268. #ifdef CONFIG_SYSCTL
  1269. #include <linux/sysctl.h>
  1270. static int min_read_thresh = 8, min_write_thresh;
  1271. static int max_read_thresh = INPUT_POOL_WORDS * 32;
  1272. static int max_write_thresh = INPUT_POOL_WORDS * 32;
  1273. static char sysctl_bootid[16];
  1274. /*
  1275. * These functions is used to return both the bootid UUID, and random
  1276. * UUID. The difference is in whether table->data is NULL; if it is,
  1277. * then a new UUID is generated and returned to the user.
  1278. *
  1279. * If the user accesses this via the proc interface, it will be returned
  1280. * as an ASCII string in the standard UUID format. If accesses via the
  1281. * sysctl system call, it is returned as 16 bytes of binary data.
  1282. */
  1283. static int proc_do_uuid(struct ctl_table *table, int write,
  1284. void __user *buffer, size_t *lenp, loff_t *ppos)
  1285. {
  1286. struct ctl_table fake_table;
  1287. unsigned char buf[64], tmp_uuid[16], *uuid;
  1288. uuid = table->data;
  1289. if (!uuid) {
  1290. uuid = tmp_uuid;
  1291. generate_random_uuid(uuid);
  1292. } else {
  1293. static DEFINE_SPINLOCK(bootid_spinlock);
  1294. spin_lock(&bootid_spinlock);
  1295. if (!uuid[8])
  1296. generate_random_uuid(uuid);
  1297. spin_unlock(&bootid_spinlock);
  1298. }
  1299. sprintf(buf, "%pU", uuid);
  1300. fake_table.data = buf;
  1301. fake_table.maxlen = sizeof(buf);
  1302. return proc_dostring(&fake_table, write, buffer, lenp, ppos);
  1303. }
  1304. /*
  1305. * Return entropy available scaled to integral bits
  1306. */
  1307. static int proc_do_entropy(ctl_table *table, int write,
  1308. void __user *buffer, size_t *lenp, loff_t *ppos)
  1309. {
  1310. ctl_table fake_table;
  1311. int entropy_count;
  1312. entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
  1313. fake_table.data = &entropy_count;
  1314. fake_table.maxlen = sizeof(entropy_count);
  1315. return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
  1316. }
  1317. static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
  1318. extern struct ctl_table random_table[];
  1319. struct ctl_table random_table[] = {
  1320. {
  1321. .procname = "poolsize",
  1322. .data = &sysctl_poolsize,
  1323. .maxlen = sizeof(int),
  1324. .mode = 0444,
  1325. .proc_handler = proc_dointvec,
  1326. },
  1327. {
  1328. .procname = "entropy_avail",
  1329. .maxlen = sizeof(int),
  1330. .mode = 0444,
  1331. .proc_handler = proc_do_entropy,
  1332. .data = &input_pool.entropy_count,
  1333. },
  1334. {
  1335. .procname = "read_wakeup_threshold",
  1336. .data = &random_read_wakeup_thresh,
  1337. .maxlen = sizeof(int),
  1338. .mode = 0644,
  1339. .proc_handler = proc_dointvec_minmax,
  1340. .extra1 = &min_read_thresh,
  1341. .extra2 = &max_read_thresh,
  1342. },
  1343. {
  1344. .procname = "write_wakeup_threshold",
  1345. .data = &random_write_wakeup_thresh,
  1346. .maxlen = sizeof(int),
  1347. .mode = 0644,
  1348. .proc_handler = proc_dointvec_minmax,
  1349. .extra1 = &min_write_thresh,
  1350. .extra2 = &max_write_thresh,
  1351. },
  1352. {
  1353. .procname = "boot_id",
  1354. .data = &sysctl_bootid,
  1355. .maxlen = 16,
  1356. .mode = 0444,
  1357. .proc_handler = proc_do_uuid,
  1358. },
  1359. {
  1360. .procname = "uuid",
  1361. .maxlen = 16,
  1362. .mode = 0444,
  1363. .proc_handler = proc_do_uuid,
  1364. },
  1365. { }
  1366. };
  1367. #endif /* CONFIG_SYSCTL */
  1368. static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
  1369. int random_int_secret_init(void)
  1370. {
  1371. get_random_bytes(random_int_secret, sizeof(random_int_secret));
  1372. return 0;
  1373. }
  1374. /*
  1375. * Get a random word for internal kernel use only. Similar to urandom but
  1376. * with the goal of minimal entropy pool depletion. As a result, the random
  1377. * value is not cryptographically secure but for several uses the cost of
  1378. * depleting entropy is too high
  1379. */
  1380. static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
  1381. unsigned int get_random_int(void)
  1382. {
  1383. __u32 *hash;
  1384. unsigned int ret;
  1385. if (arch_get_random_int(&ret))
  1386. return ret;
  1387. hash = get_cpu_var(get_random_int_hash);
  1388. hash[0] += current->pid + jiffies + random_get_entropy();
  1389. md5_transform(hash, random_int_secret);
  1390. ret = hash[0];
  1391. put_cpu_var(get_random_int_hash);
  1392. return ret;
  1393. }
  1394. EXPORT_SYMBOL(get_random_int);
  1395. /*
  1396. * randomize_range() returns a start address such that
  1397. *
  1398. * [...... <range> .....]
  1399. * start end
  1400. *
  1401. * a <range> with size "len" starting at the return value is inside in the
  1402. * area defined by [start, end], but is otherwise randomized.
  1403. */
  1404. unsigned long
  1405. randomize_range(unsigned long start, unsigned long end, unsigned long len)
  1406. {
  1407. unsigned long range = end - len - start;
  1408. if (end <= start + len)
  1409. return 0;
  1410. return PAGE_ALIGN(get_random_int() % range + start);
  1411. }