mtdpart.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577
  1. /*
  2. * Simple MTD partitioning layer
  3. *
  4. * (C) 2000 Nicolas Pitre <nico@cam.org>
  5. *
  6. * This code is GPL
  7. *
  8. * 02-21-2002 Thomas Gleixner <gleixner@autronix.de>
  9. * added support for read_oob, write_oob
  10. */
  11. #include <linux/module.h>
  12. #include <linux/types.h>
  13. #include <linux/kernel.h>
  14. #include <linux/slab.h>
  15. #include <linux/list.h>
  16. #include <linux/kmod.h>
  17. #include <linux/mtd/mtd.h>
  18. #include <linux/mtd/partitions.h>
  19. #include <linux/mtd/compatmac.h>
  20. /* Our partition linked list */
  21. static LIST_HEAD(mtd_partitions);
  22. /* Our partition node structure */
  23. struct mtd_part {
  24. struct mtd_info mtd;
  25. struct mtd_info *master;
  26. u_int32_t offset;
  27. int index;
  28. struct list_head list;
  29. int registered;
  30. };
  31. /*
  32. * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  33. * the pointer to that structure with this macro.
  34. */
  35. #define PART(x) ((struct mtd_part *)(x))
  36. /*
  37. * MTD methods which simply translate the effective address and pass through
  38. * to the _real_ device.
  39. */
  40. static int part_read (struct mtd_info *mtd, loff_t from, size_t len,
  41. size_t *retlen, u_char *buf)
  42. {
  43. struct mtd_part *part = PART(mtd);
  44. int res;
  45. if (from >= mtd->size)
  46. len = 0;
  47. else if (from + len > mtd->size)
  48. len = mtd->size - from;
  49. res = part->master->read (part->master, from + part->offset,
  50. len, retlen, buf);
  51. if (unlikely(res)) {
  52. if (res == -EUCLEAN)
  53. mtd->ecc_stats.corrected++;
  54. if (res == -EBADMSG)
  55. mtd->ecc_stats.failed++;
  56. }
  57. return res;
  58. }
  59. static int part_point (struct mtd_info *mtd, loff_t from, size_t len,
  60. size_t *retlen, void **virt, resource_size_t *phys)
  61. {
  62. struct mtd_part *part = PART(mtd);
  63. if (from >= mtd->size)
  64. len = 0;
  65. else if (from + len > mtd->size)
  66. len = mtd->size - from;
  67. return part->master->point (part->master, from + part->offset,
  68. len, retlen, virt, phys);
  69. }
  70. static void part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  71. {
  72. struct mtd_part *part = PART(mtd);
  73. part->master->unpoint(part->master, from + part->offset, len);
  74. }
  75. static int part_read_oob(struct mtd_info *mtd, loff_t from,
  76. struct mtd_oob_ops *ops)
  77. {
  78. struct mtd_part *part = PART(mtd);
  79. int res;
  80. if (from >= mtd->size)
  81. return -EINVAL;
  82. if (ops->datbuf && from + ops->len > mtd->size)
  83. return -EINVAL;
  84. res = part->master->read_oob(part->master, from + part->offset, ops);
  85. if (unlikely(res)) {
  86. if (res == -EUCLEAN)
  87. mtd->ecc_stats.corrected++;
  88. if (res == -EBADMSG)
  89. mtd->ecc_stats.failed++;
  90. }
  91. return res;
  92. }
  93. static int part_read_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
  94. size_t *retlen, u_char *buf)
  95. {
  96. struct mtd_part *part = PART(mtd);
  97. return part->master->read_user_prot_reg (part->master, from,
  98. len, retlen, buf);
  99. }
  100. static int part_get_user_prot_info (struct mtd_info *mtd,
  101. struct otp_info *buf, size_t len)
  102. {
  103. struct mtd_part *part = PART(mtd);
  104. return part->master->get_user_prot_info (part->master, buf, len);
  105. }
  106. static int part_read_fact_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
  107. size_t *retlen, u_char *buf)
  108. {
  109. struct mtd_part *part = PART(mtd);
  110. return part->master->read_fact_prot_reg (part->master, from,
  111. len, retlen, buf);
  112. }
  113. static int part_get_fact_prot_info (struct mtd_info *mtd,
  114. struct otp_info *buf, size_t len)
  115. {
  116. struct mtd_part *part = PART(mtd);
  117. return part->master->get_fact_prot_info (part->master, buf, len);
  118. }
  119. static int part_write (struct mtd_info *mtd, loff_t to, size_t len,
  120. size_t *retlen, const u_char *buf)
  121. {
  122. struct mtd_part *part = PART(mtd);
  123. if (!(mtd->flags & MTD_WRITEABLE))
  124. return -EROFS;
  125. if (to >= mtd->size)
  126. len = 0;
  127. else if (to + len > mtd->size)
  128. len = mtd->size - to;
  129. return part->master->write (part->master, to + part->offset,
  130. len, retlen, buf);
  131. }
  132. static int part_panic_write (struct mtd_info *mtd, loff_t to, size_t len,
  133. size_t *retlen, const u_char *buf)
  134. {
  135. struct mtd_part *part = PART(mtd);
  136. if (!(mtd->flags & MTD_WRITEABLE))
  137. return -EROFS;
  138. if (to >= mtd->size)
  139. len = 0;
  140. else if (to + len > mtd->size)
  141. len = mtd->size - to;
  142. return part->master->panic_write (part->master, to + part->offset,
  143. len, retlen, buf);
  144. }
  145. static int part_write_oob(struct mtd_info *mtd, loff_t to,
  146. struct mtd_oob_ops *ops)
  147. {
  148. struct mtd_part *part = PART(mtd);
  149. if (!(mtd->flags & MTD_WRITEABLE))
  150. return -EROFS;
  151. if (to >= mtd->size)
  152. return -EINVAL;
  153. if (ops->datbuf && to + ops->len > mtd->size)
  154. return -EINVAL;
  155. return part->master->write_oob(part->master, to + part->offset, ops);
  156. }
  157. static int part_write_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
  158. size_t *retlen, u_char *buf)
  159. {
  160. struct mtd_part *part = PART(mtd);
  161. return part->master->write_user_prot_reg (part->master, from,
  162. len, retlen, buf);
  163. }
  164. static int part_lock_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len)
  165. {
  166. struct mtd_part *part = PART(mtd);
  167. return part->master->lock_user_prot_reg (part->master, from, len);
  168. }
  169. static int part_writev (struct mtd_info *mtd, const struct kvec *vecs,
  170. unsigned long count, loff_t to, size_t *retlen)
  171. {
  172. struct mtd_part *part = PART(mtd);
  173. if (!(mtd->flags & MTD_WRITEABLE))
  174. return -EROFS;
  175. return part->master->writev (part->master, vecs, count,
  176. to + part->offset, retlen);
  177. }
  178. static int part_erase (struct mtd_info *mtd, struct erase_info *instr)
  179. {
  180. struct mtd_part *part = PART(mtd);
  181. int ret;
  182. if (!(mtd->flags & MTD_WRITEABLE))
  183. return -EROFS;
  184. if (instr->addr >= mtd->size)
  185. return -EINVAL;
  186. instr->addr += part->offset;
  187. ret = part->master->erase(part->master, instr);
  188. if (ret) {
  189. if (instr->fail_addr != 0xffffffff)
  190. instr->fail_addr -= part->offset;
  191. instr->addr -= part->offset;
  192. }
  193. return ret;
  194. }
  195. void mtd_erase_callback(struct erase_info *instr)
  196. {
  197. if (instr->mtd->erase == part_erase) {
  198. struct mtd_part *part = PART(instr->mtd);
  199. if (instr->fail_addr != 0xffffffff)
  200. instr->fail_addr -= part->offset;
  201. instr->addr -= part->offset;
  202. }
  203. if (instr->callback)
  204. instr->callback(instr);
  205. }
  206. EXPORT_SYMBOL_GPL(mtd_erase_callback);
  207. static int part_lock (struct mtd_info *mtd, loff_t ofs, size_t len)
  208. {
  209. struct mtd_part *part = PART(mtd);
  210. if ((len + ofs) > mtd->size)
  211. return -EINVAL;
  212. return part->master->lock(part->master, ofs + part->offset, len);
  213. }
  214. static int part_unlock (struct mtd_info *mtd, loff_t ofs, size_t len)
  215. {
  216. struct mtd_part *part = PART(mtd);
  217. if ((len + ofs) > mtd->size)
  218. return -EINVAL;
  219. return part->master->unlock(part->master, ofs + part->offset, len);
  220. }
  221. static void part_sync(struct mtd_info *mtd)
  222. {
  223. struct mtd_part *part = PART(mtd);
  224. part->master->sync(part->master);
  225. }
  226. static int part_suspend(struct mtd_info *mtd)
  227. {
  228. struct mtd_part *part = PART(mtd);
  229. return part->master->suspend(part->master);
  230. }
  231. static void part_resume(struct mtd_info *mtd)
  232. {
  233. struct mtd_part *part = PART(mtd);
  234. part->master->resume(part->master);
  235. }
  236. static int part_block_isbad (struct mtd_info *mtd, loff_t ofs)
  237. {
  238. struct mtd_part *part = PART(mtd);
  239. if (ofs >= mtd->size)
  240. return -EINVAL;
  241. ofs += part->offset;
  242. return part->master->block_isbad(part->master, ofs);
  243. }
  244. static int part_block_markbad (struct mtd_info *mtd, loff_t ofs)
  245. {
  246. struct mtd_part *part = PART(mtd);
  247. int res;
  248. if (!(mtd->flags & MTD_WRITEABLE))
  249. return -EROFS;
  250. if (ofs >= mtd->size)
  251. return -EINVAL;
  252. ofs += part->offset;
  253. res = part->master->block_markbad(part->master, ofs);
  254. if (!res)
  255. mtd->ecc_stats.badblocks++;
  256. return res;
  257. }
  258. /*
  259. * This function unregisters and destroy all slave MTD objects which are
  260. * attached to the given master MTD object.
  261. */
  262. int del_mtd_partitions(struct mtd_info *master)
  263. {
  264. struct list_head *node;
  265. struct mtd_part *slave;
  266. for (node = mtd_partitions.next;
  267. node != &mtd_partitions;
  268. node = node->next) {
  269. slave = list_entry(node, struct mtd_part, list);
  270. if (slave->master == master) {
  271. struct list_head *prev = node->prev;
  272. __list_del(prev, node->next);
  273. if(slave->registered)
  274. del_mtd_device(&slave->mtd);
  275. kfree(slave);
  276. node = prev;
  277. }
  278. }
  279. return 0;
  280. }
  281. /*
  282. * This function, given a master MTD object and a partition table, creates
  283. * and registers slave MTD objects which are bound to the master according to
  284. * the partition definitions.
  285. * (Q: should we register the master MTD object as well?)
  286. */
  287. int add_mtd_partitions(struct mtd_info *master,
  288. const struct mtd_partition *parts,
  289. int nbparts)
  290. {
  291. struct mtd_part *slave;
  292. u_int32_t cur_offset = 0;
  293. int i;
  294. printk (KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
  295. for (i = 0; i < nbparts; i++) {
  296. /* allocate the partition structure */
  297. slave = kzalloc (sizeof(*slave), GFP_KERNEL);
  298. if (!slave) {
  299. printk ("memory allocation error while creating partitions for \"%s\"\n",
  300. master->name);
  301. del_mtd_partitions(master);
  302. return -ENOMEM;
  303. }
  304. list_add(&slave->list, &mtd_partitions);
  305. /* set up the MTD object for this partition */
  306. slave->mtd.type = master->type;
  307. slave->mtd.flags = master->flags & ~parts[i].mask_flags;
  308. slave->mtd.size = parts[i].size;
  309. slave->mtd.writesize = master->writesize;
  310. slave->mtd.oobsize = master->oobsize;
  311. slave->mtd.oobavail = master->oobavail;
  312. slave->mtd.subpage_sft = master->subpage_sft;
  313. slave->mtd.name = parts[i].name;
  314. slave->mtd.owner = master->owner;
  315. slave->mtd.read = part_read;
  316. slave->mtd.write = part_write;
  317. if (master->panic_write)
  318. slave->mtd.panic_write = part_panic_write;
  319. if(master->point && master->unpoint){
  320. slave->mtd.point = part_point;
  321. slave->mtd.unpoint = part_unpoint;
  322. }
  323. if (master->read_oob)
  324. slave->mtd.read_oob = part_read_oob;
  325. if (master->write_oob)
  326. slave->mtd.write_oob = part_write_oob;
  327. if(master->read_user_prot_reg)
  328. slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
  329. if(master->read_fact_prot_reg)
  330. slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
  331. if(master->write_user_prot_reg)
  332. slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
  333. if(master->lock_user_prot_reg)
  334. slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
  335. if(master->get_user_prot_info)
  336. slave->mtd.get_user_prot_info = part_get_user_prot_info;
  337. if(master->get_fact_prot_info)
  338. slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
  339. if (master->sync)
  340. slave->mtd.sync = part_sync;
  341. if (!i && master->suspend && master->resume) {
  342. slave->mtd.suspend = part_suspend;
  343. slave->mtd.resume = part_resume;
  344. }
  345. if (master->writev)
  346. slave->mtd.writev = part_writev;
  347. if (master->lock)
  348. slave->mtd.lock = part_lock;
  349. if (master->unlock)
  350. slave->mtd.unlock = part_unlock;
  351. if (master->block_isbad)
  352. slave->mtd.block_isbad = part_block_isbad;
  353. if (master->block_markbad)
  354. slave->mtd.block_markbad = part_block_markbad;
  355. slave->mtd.erase = part_erase;
  356. slave->master = master;
  357. slave->offset = parts[i].offset;
  358. slave->index = i;
  359. if (slave->offset == MTDPART_OFS_APPEND)
  360. slave->offset = cur_offset;
  361. if (slave->offset == MTDPART_OFS_NXTBLK) {
  362. slave->offset = cur_offset;
  363. if ((cur_offset % master->erasesize) != 0) {
  364. /* Round up to next erasesize */
  365. slave->offset = ((cur_offset / master->erasesize) + 1) * master->erasesize;
  366. printk(KERN_NOTICE "Moving partition %d: "
  367. "0x%08x -> 0x%08x\n", i,
  368. cur_offset, slave->offset);
  369. }
  370. }
  371. if (slave->mtd.size == MTDPART_SIZ_FULL)
  372. slave->mtd.size = master->size - slave->offset;
  373. cur_offset = slave->offset + slave->mtd.size;
  374. printk (KERN_NOTICE "0x%08x-0x%08x : \"%s\"\n", slave->offset,
  375. slave->offset + slave->mtd.size, slave->mtd.name);
  376. /* let's do some sanity checks */
  377. if (slave->offset >= master->size) {
  378. /* let's register it anyway to preserve ordering */
  379. slave->offset = 0;
  380. slave->mtd.size = 0;
  381. printk ("mtd: partition \"%s\" is out of reach -- disabled\n",
  382. parts[i].name);
  383. }
  384. if (slave->offset + slave->mtd.size > master->size) {
  385. slave->mtd.size = master->size - slave->offset;
  386. printk ("mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#x\n",
  387. parts[i].name, master->name, slave->mtd.size);
  388. }
  389. if (master->numeraseregions>1) {
  390. /* Deal with variable erase size stuff */
  391. int i;
  392. struct mtd_erase_region_info *regions = master->eraseregions;
  393. /* Find the first erase regions which is part of this partition. */
  394. for (i=0; i < master->numeraseregions && slave->offset >= regions[i].offset; i++)
  395. ;
  396. for (i--; i < master->numeraseregions && slave->offset + slave->mtd.size > regions[i].offset; i++) {
  397. if (slave->mtd.erasesize < regions[i].erasesize) {
  398. slave->mtd.erasesize = regions[i].erasesize;
  399. }
  400. }
  401. } else {
  402. /* Single erase size */
  403. slave->mtd.erasesize = master->erasesize;
  404. }
  405. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  406. (slave->offset % slave->mtd.erasesize)) {
  407. /* Doesn't start on a boundary of major erase size */
  408. /* FIXME: Let it be writable if it is on a boundary of _minor_ erase size though */
  409. slave->mtd.flags &= ~MTD_WRITEABLE;
  410. printk ("mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
  411. parts[i].name);
  412. }
  413. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  414. (slave->mtd.size % slave->mtd.erasesize)) {
  415. slave->mtd.flags &= ~MTD_WRITEABLE;
  416. printk ("mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
  417. parts[i].name);
  418. }
  419. slave->mtd.ecclayout = master->ecclayout;
  420. if (master->block_isbad) {
  421. uint32_t offs = 0;
  422. while(offs < slave->mtd.size) {
  423. if (master->block_isbad(master,
  424. offs + slave->offset))
  425. slave->mtd.ecc_stats.badblocks++;
  426. offs += slave->mtd.erasesize;
  427. }
  428. }
  429. if(parts[i].mtdp)
  430. { /* store the object pointer (caller may or may not register it */
  431. *parts[i].mtdp = &slave->mtd;
  432. slave->registered = 0;
  433. }
  434. else
  435. {
  436. /* register our partition */
  437. add_mtd_device(&slave->mtd);
  438. slave->registered = 1;
  439. }
  440. }
  441. return 0;
  442. }
  443. EXPORT_SYMBOL(add_mtd_partitions);
  444. EXPORT_SYMBOL(del_mtd_partitions);
  445. static DEFINE_SPINLOCK(part_parser_lock);
  446. static LIST_HEAD(part_parsers);
  447. static struct mtd_part_parser *get_partition_parser(const char *name)
  448. {
  449. struct list_head *this;
  450. void *ret = NULL;
  451. spin_lock(&part_parser_lock);
  452. list_for_each(this, &part_parsers) {
  453. struct mtd_part_parser *p = list_entry(this, struct mtd_part_parser, list);
  454. if (!strcmp(p->name, name) && try_module_get(p->owner)) {
  455. ret = p;
  456. break;
  457. }
  458. }
  459. spin_unlock(&part_parser_lock);
  460. return ret;
  461. }
  462. int register_mtd_parser(struct mtd_part_parser *p)
  463. {
  464. spin_lock(&part_parser_lock);
  465. list_add(&p->list, &part_parsers);
  466. spin_unlock(&part_parser_lock);
  467. return 0;
  468. }
  469. int deregister_mtd_parser(struct mtd_part_parser *p)
  470. {
  471. spin_lock(&part_parser_lock);
  472. list_del(&p->list);
  473. spin_unlock(&part_parser_lock);
  474. return 0;
  475. }
  476. int parse_mtd_partitions(struct mtd_info *master, const char **types,
  477. struct mtd_partition **pparts, unsigned long origin)
  478. {
  479. struct mtd_part_parser *parser;
  480. int ret = 0;
  481. for ( ; ret <= 0 && *types; types++) {
  482. parser = get_partition_parser(*types);
  483. #ifdef CONFIG_KMOD
  484. if (!parser && !request_module("%s", *types))
  485. parser = get_partition_parser(*types);
  486. #endif
  487. if (!parser) {
  488. printk(KERN_NOTICE "%s partition parsing not available\n",
  489. *types);
  490. continue;
  491. }
  492. ret = (*parser->parse_fn)(master, pparts, origin);
  493. if (ret > 0) {
  494. printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
  495. ret, parser->name, master->name);
  496. }
  497. put_partition_parser(parser);
  498. }
  499. return ret;
  500. }
  501. EXPORT_SYMBOL_GPL(parse_mtd_partitions);
  502. EXPORT_SYMBOL_GPL(register_mtd_parser);
  503. EXPORT_SYMBOL_GPL(deregister_mtd_parser);