amd_iommu.c 59 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626
  1. /*
  2. * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
  3. * Author: Joerg Roedel <joerg.roedel@amd.com>
  4. * Leo Duran <leo.duran@amd.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/pci.h>
  20. #include <linux/bitmap.h>
  21. #include <linux/slab.h>
  22. #include <linux/debugfs.h>
  23. #include <linux/scatterlist.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/iommu-helper.h>
  26. #include <linux/iommu.h>
  27. #include <linux/delay.h>
  28. #include <asm/proto.h>
  29. #include <asm/iommu.h>
  30. #include <asm/gart.h>
  31. #include <asm/amd_iommu_proto.h>
  32. #include <asm/amd_iommu_types.h>
  33. #include <asm/amd_iommu.h>
  34. #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  35. #define LOOP_TIMEOUT 100000
  36. static DEFINE_RWLOCK(amd_iommu_devtable_lock);
  37. /* A list of preallocated protection domains */
  38. static LIST_HEAD(iommu_pd_list);
  39. static DEFINE_SPINLOCK(iommu_pd_list_lock);
  40. /*
  41. * Domain for untranslated devices - only allocated
  42. * if iommu=pt passed on kernel cmd line.
  43. */
  44. static struct protection_domain *pt_domain;
  45. static struct iommu_ops amd_iommu_ops;
  46. /*
  47. * general struct to manage commands send to an IOMMU
  48. */
  49. struct iommu_cmd {
  50. u32 data[4];
  51. };
  52. static void update_domain(struct protection_domain *domain);
  53. /****************************************************************************
  54. *
  55. * Helper functions
  56. *
  57. ****************************************************************************/
  58. static inline u16 get_device_id(struct device *dev)
  59. {
  60. struct pci_dev *pdev = to_pci_dev(dev);
  61. return calc_devid(pdev->bus->number, pdev->devfn);
  62. }
  63. static struct iommu_dev_data *get_dev_data(struct device *dev)
  64. {
  65. return dev->archdata.iommu;
  66. }
  67. /*
  68. * In this function the list of preallocated protection domains is traversed to
  69. * find the domain for a specific device
  70. */
  71. static struct dma_ops_domain *find_protection_domain(u16 devid)
  72. {
  73. struct dma_ops_domain *entry, *ret = NULL;
  74. unsigned long flags;
  75. u16 alias = amd_iommu_alias_table[devid];
  76. if (list_empty(&iommu_pd_list))
  77. return NULL;
  78. spin_lock_irqsave(&iommu_pd_list_lock, flags);
  79. list_for_each_entry(entry, &iommu_pd_list, list) {
  80. if (entry->target_dev == devid ||
  81. entry->target_dev == alias) {
  82. ret = entry;
  83. break;
  84. }
  85. }
  86. spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
  87. return ret;
  88. }
  89. /*
  90. * This function checks if the driver got a valid device from the caller to
  91. * avoid dereferencing invalid pointers.
  92. */
  93. static bool check_device(struct device *dev)
  94. {
  95. u16 devid;
  96. if (!dev || !dev->dma_mask)
  97. return false;
  98. /* No device or no PCI device */
  99. if (dev->bus != &pci_bus_type)
  100. return false;
  101. devid = get_device_id(dev);
  102. /* Out of our scope? */
  103. if (devid > amd_iommu_last_bdf)
  104. return false;
  105. if (amd_iommu_rlookup_table[devid] == NULL)
  106. return false;
  107. return true;
  108. }
  109. static int iommu_init_device(struct device *dev)
  110. {
  111. struct iommu_dev_data *dev_data;
  112. struct pci_dev *pdev;
  113. u16 devid, alias;
  114. if (dev->archdata.iommu)
  115. return 0;
  116. dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
  117. if (!dev_data)
  118. return -ENOMEM;
  119. dev_data->dev = dev;
  120. devid = get_device_id(dev);
  121. alias = amd_iommu_alias_table[devid];
  122. pdev = pci_get_bus_and_slot(PCI_BUS(alias), alias & 0xff);
  123. if (pdev)
  124. dev_data->alias = &pdev->dev;
  125. atomic_set(&dev_data->bind, 0);
  126. dev->archdata.iommu = dev_data;
  127. return 0;
  128. }
  129. static void iommu_uninit_device(struct device *dev)
  130. {
  131. kfree(dev->archdata.iommu);
  132. }
  133. void __init amd_iommu_uninit_devices(void)
  134. {
  135. struct pci_dev *pdev = NULL;
  136. for_each_pci_dev(pdev) {
  137. if (!check_device(&pdev->dev))
  138. continue;
  139. iommu_uninit_device(&pdev->dev);
  140. }
  141. }
  142. int __init amd_iommu_init_devices(void)
  143. {
  144. struct pci_dev *pdev = NULL;
  145. int ret = 0;
  146. for_each_pci_dev(pdev) {
  147. if (!check_device(&pdev->dev))
  148. continue;
  149. ret = iommu_init_device(&pdev->dev);
  150. if (ret)
  151. goto out_free;
  152. }
  153. return 0;
  154. out_free:
  155. amd_iommu_uninit_devices();
  156. return ret;
  157. }
  158. #ifdef CONFIG_AMD_IOMMU_STATS
  159. /*
  160. * Initialization code for statistics collection
  161. */
  162. DECLARE_STATS_COUNTER(compl_wait);
  163. DECLARE_STATS_COUNTER(cnt_map_single);
  164. DECLARE_STATS_COUNTER(cnt_unmap_single);
  165. DECLARE_STATS_COUNTER(cnt_map_sg);
  166. DECLARE_STATS_COUNTER(cnt_unmap_sg);
  167. DECLARE_STATS_COUNTER(cnt_alloc_coherent);
  168. DECLARE_STATS_COUNTER(cnt_free_coherent);
  169. DECLARE_STATS_COUNTER(cross_page);
  170. DECLARE_STATS_COUNTER(domain_flush_single);
  171. DECLARE_STATS_COUNTER(domain_flush_all);
  172. DECLARE_STATS_COUNTER(alloced_io_mem);
  173. DECLARE_STATS_COUNTER(total_map_requests);
  174. static struct dentry *stats_dir;
  175. static struct dentry *de_fflush;
  176. static void amd_iommu_stats_add(struct __iommu_counter *cnt)
  177. {
  178. if (stats_dir == NULL)
  179. return;
  180. cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
  181. &cnt->value);
  182. }
  183. static void amd_iommu_stats_init(void)
  184. {
  185. stats_dir = debugfs_create_dir("amd-iommu", NULL);
  186. if (stats_dir == NULL)
  187. return;
  188. de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
  189. (u32 *)&amd_iommu_unmap_flush);
  190. amd_iommu_stats_add(&compl_wait);
  191. amd_iommu_stats_add(&cnt_map_single);
  192. amd_iommu_stats_add(&cnt_unmap_single);
  193. amd_iommu_stats_add(&cnt_map_sg);
  194. amd_iommu_stats_add(&cnt_unmap_sg);
  195. amd_iommu_stats_add(&cnt_alloc_coherent);
  196. amd_iommu_stats_add(&cnt_free_coherent);
  197. amd_iommu_stats_add(&cross_page);
  198. amd_iommu_stats_add(&domain_flush_single);
  199. amd_iommu_stats_add(&domain_flush_all);
  200. amd_iommu_stats_add(&alloced_io_mem);
  201. amd_iommu_stats_add(&total_map_requests);
  202. }
  203. #endif
  204. /****************************************************************************
  205. *
  206. * Interrupt handling functions
  207. *
  208. ****************************************************************************/
  209. static void dump_dte_entry(u16 devid)
  210. {
  211. int i;
  212. for (i = 0; i < 8; ++i)
  213. pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
  214. amd_iommu_dev_table[devid].data[i]);
  215. }
  216. static void dump_command(unsigned long phys_addr)
  217. {
  218. struct iommu_cmd *cmd = phys_to_virt(phys_addr);
  219. int i;
  220. for (i = 0; i < 4; ++i)
  221. pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
  222. }
  223. static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
  224. {
  225. u32 *event = __evt;
  226. int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
  227. int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
  228. int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
  229. int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
  230. u64 address = (u64)(((u64)event[3]) << 32) | event[2];
  231. printk(KERN_ERR "AMD-Vi: Event logged [");
  232. switch (type) {
  233. case EVENT_TYPE_ILL_DEV:
  234. printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
  235. "address=0x%016llx flags=0x%04x]\n",
  236. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  237. address, flags);
  238. dump_dte_entry(devid);
  239. break;
  240. case EVENT_TYPE_IO_FAULT:
  241. printk("IO_PAGE_FAULT device=%02x:%02x.%x "
  242. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  243. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  244. domid, address, flags);
  245. break;
  246. case EVENT_TYPE_DEV_TAB_ERR:
  247. printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  248. "address=0x%016llx flags=0x%04x]\n",
  249. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  250. address, flags);
  251. break;
  252. case EVENT_TYPE_PAGE_TAB_ERR:
  253. printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  254. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  255. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  256. domid, address, flags);
  257. break;
  258. case EVENT_TYPE_ILL_CMD:
  259. printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
  260. dump_command(address);
  261. break;
  262. case EVENT_TYPE_CMD_HARD_ERR:
  263. printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
  264. "flags=0x%04x]\n", address, flags);
  265. break;
  266. case EVENT_TYPE_IOTLB_INV_TO:
  267. printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
  268. "address=0x%016llx]\n",
  269. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  270. address);
  271. break;
  272. case EVENT_TYPE_INV_DEV_REQ:
  273. printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
  274. "address=0x%016llx flags=0x%04x]\n",
  275. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  276. address, flags);
  277. break;
  278. default:
  279. printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
  280. }
  281. }
  282. static void iommu_poll_events(struct amd_iommu *iommu)
  283. {
  284. u32 head, tail;
  285. unsigned long flags;
  286. spin_lock_irqsave(&iommu->lock, flags);
  287. head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  288. tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
  289. while (head != tail) {
  290. iommu_print_event(iommu, iommu->evt_buf + head);
  291. head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
  292. }
  293. writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  294. spin_unlock_irqrestore(&iommu->lock, flags);
  295. }
  296. irqreturn_t amd_iommu_int_handler(int irq, void *data)
  297. {
  298. struct amd_iommu *iommu;
  299. for_each_iommu(iommu)
  300. iommu_poll_events(iommu);
  301. return IRQ_HANDLED;
  302. }
  303. /****************************************************************************
  304. *
  305. * IOMMU command queuing functions
  306. *
  307. ****************************************************************************/
  308. static int wait_on_sem(volatile u64 *sem)
  309. {
  310. int i = 0;
  311. while (*sem == 0 && i < LOOP_TIMEOUT) {
  312. udelay(1);
  313. i += 1;
  314. }
  315. if (i == LOOP_TIMEOUT) {
  316. pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
  317. return -EIO;
  318. }
  319. return 0;
  320. }
  321. static void copy_cmd_to_buffer(struct amd_iommu *iommu,
  322. struct iommu_cmd *cmd,
  323. u32 tail)
  324. {
  325. u8 *target;
  326. target = iommu->cmd_buf + tail;
  327. tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
  328. /* Copy command to buffer */
  329. memcpy(target, cmd, sizeof(*cmd));
  330. /* Tell the IOMMU about it */
  331. writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  332. }
  333. static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
  334. {
  335. WARN_ON(address & 0x7ULL);
  336. memset(cmd, 0, sizeof(*cmd));
  337. cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
  338. cmd->data[1] = upper_32_bits(__pa(address));
  339. cmd->data[2] = 1;
  340. CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
  341. }
  342. static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
  343. {
  344. memset(cmd, 0, sizeof(*cmd));
  345. cmd->data[0] = devid;
  346. CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
  347. }
  348. static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
  349. size_t size, u16 domid, int pde)
  350. {
  351. u64 pages;
  352. int s;
  353. pages = iommu_num_pages(address, size, PAGE_SIZE);
  354. s = 0;
  355. if (pages > 1) {
  356. /*
  357. * If we have to flush more than one page, flush all
  358. * TLB entries for this domain
  359. */
  360. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  361. s = 1;
  362. }
  363. address &= PAGE_MASK;
  364. memset(cmd, 0, sizeof(*cmd));
  365. cmd->data[1] |= domid;
  366. cmd->data[2] = lower_32_bits(address);
  367. cmd->data[3] = upper_32_bits(address);
  368. CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
  369. if (s) /* size bit - we flush more than one 4kb page */
  370. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  371. if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
  372. cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  373. }
  374. static void build_inv_all(struct iommu_cmd *cmd)
  375. {
  376. memset(cmd, 0, sizeof(*cmd));
  377. CMD_SET_TYPE(cmd, CMD_INV_ALL);
  378. }
  379. /*
  380. * Writes the command to the IOMMUs command buffer and informs the
  381. * hardware about the new command.
  382. */
  383. static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
  384. {
  385. u32 left, tail, head, next_tail;
  386. unsigned long flags;
  387. WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
  388. again:
  389. spin_lock_irqsave(&iommu->lock, flags);
  390. head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
  391. tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  392. next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
  393. left = (head - next_tail) % iommu->cmd_buf_size;
  394. if (left <= 2) {
  395. struct iommu_cmd sync_cmd;
  396. volatile u64 sem = 0;
  397. int ret;
  398. build_completion_wait(&sync_cmd, (u64)&sem);
  399. copy_cmd_to_buffer(iommu, &sync_cmd, tail);
  400. spin_unlock_irqrestore(&iommu->lock, flags);
  401. if ((ret = wait_on_sem(&sem)) != 0)
  402. return ret;
  403. goto again;
  404. }
  405. copy_cmd_to_buffer(iommu, cmd, tail);
  406. /* We need to sync now to make sure all commands are processed */
  407. iommu->need_sync = true;
  408. spin_unlock_irqrestore(&iommu->lock, flags);
  409. return 0;
  410. }
  411. /*
  412. * This function queues a completion wait command into the command
  413. * buffer of an IOMMU
  414. */
  415. static int iommu_completion_wait(struct amd_iommu *iommu)
  416. {
  417. struct iommu_cmd cmd;
  418. volatile u64 sem = 0;
  419. int ret;
  420. if (!iommu->need_sync)
  421. return 0;
  422. build_completion_wait(&cmd, (u64)&sem);
  423. ret = iommu_queue_command(iommu, &cmd);
  424. if (ret)
  425. return ret;
  426. return wait_on_sem(&sem);
  427. }
  428. static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
  429. {
  430. struct iommu_cmd cmd;
  431. build_inv_dte(&cmd, devid);
  432. return iommu_queue_command(iommu, &cmd);
  433. }
  434. static void iommu_flush_dte_all(struct amd_iommu *iommu)
  435. {
  436. u32 devid;
  437. for (devid = 0; devid <= 0xffff; ++devid)
  438. iommu_flush_dte(iommu, devid);
  439. iommu_completion_wait(iommu);
  440. }
  441. /*
  442. * This function uses heavy locking and may disable irqs for some time. But
  443. * this is no issue because it is only called during resume.
  444. */
  445. static void iommu_flush_tlb_all(struct amd_iommu *iommu)
  446. {
  447. u32 dom_id;
  448. for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
  449. struct iommu_cmd cmd;
  450. build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
  451. dom_id, 1);
  452. iommu_queue_command(iommu, &cmd);
  453. }
  454. iommu_completion_wait(iommu);
  455. }
  456. static void iommu_flush_all(struct amd_iommu *iommu)
  457. {
  458. struct iommu_cmd cmd;
  459. build_inv_all(&cmd);
  460. iommu_queue_command(iommu, &cmd);
  461. iommu_completion_wait(iommu);
  462. }
  463. void iommu_flush_all_caches(struct amd_iommu *iommu)
  464. {
  465. if (iommu_feature(iommu, FEATURE_IA)) {
  466. iommu_flush_all(iommu);
  467. } else {
  468. iommu_flush_dte_all(iommu);
  469. iommu_flush_tlb_all(iommu);
  470. }
  471. }
  472. /*
  473. * Command send function for invalidating a device table entry
  474. */
  475. static int device_flush_dte(struct device *dev)
  476. {
  477. struct amd_iommu *iommu;
  478. u16 devid;
  479. devid = get_device_id(dev);
  480. iommu = amd_iommu_rlookup_table[devid];
  481. return iommu_flush_dte(iommu, devid);
  482. }
  483. /*
  484. * TLB invalidation function which is called from the mapping functions.
  485. * It invalidates a single PTE if the range to flush is within a single
  486. * page. Otherwise it flushes the whole TLB of the IOMMU.
  487. */
  488. static void __domain_flush_pages(struct protection_domain *domain,
  489. u64 address, size_t size, int pde)
  490. {
  491. struct iommu_cmd cmd;
  492. int ret = 0, i;
  493. build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
  494. for (i = 0; i < amd_iommus_present; ++i) {
  495. if (!domain->dev_iommu[i])
  496. continue;
  497. /*
  498. * Devices of this domain are behind this IOMMU
  499. * We need a TLB flush
  500. */
  501. ret |= iommu_queue_command(amd_iommus[i], &cmd);
  502. }
  503. WARN_ON(ret);
  504. }
  505. static void domain_flush_pages(struct protection_domain *domain,
  506. u64 address, size_t size)
  507. {
  508. __domain_flush_pages(domain, address, size, 0);
  509. }
  510. /* Flush the whole IO/TLB for a given protection domain */
  511. static void domain_flush_tlb(struct protection_domain *domain)
  512. {
  513. __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
  514. }
  515. /* Flush the whole IO/TLB for a given protection domain - including PDE */
  516. static void domain_flush_tlb_pde(struct protection_domain *domain)
  517. {
  518. __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
  519. }
  520. static void domain_flush_complete(struct protection_domain *domain)
  521. {
  522. int i;
  523. for (i = 0; i < amd_iommus_present; ++i) {
  524. if (!domain->dev_iommu[i])
  525. continue;
  526. /*
  527. * Devices of this domain are behind this IOMMU
  528. * We need to wait for completion of all commands.
  529. */
  530. iommu_completion_wait(amd_iommus[i]);
  531. }
  532. }
  533. /*
  534. * This function flushes the DTEs for all devices in domain
  535. */
  536. static void domain_flush_devices(struct protection_domain *domain)
  537. {
  538. struct iommu_dev_data *dev_data;
  539. unsigned long flags;
  540. spin_lock_irqsave(&domain->lock, flags);
  541. list_for_each_entry(dev_data, &domain->dev_list, list)
  542. device_flush_dte(dev_data->dev);
  543. spin_unlock_irqrestore(&domain->lock, flags);
  544. }
  545. /****************************************************************************
  546. *
  547. * The functions below are used the create the page table mappings for
  548. * unity mapped regions.
  549. *
  550. ****************************************************************************/
  551. /*
  552. * This function is used to add another level to an IO page table. Adding
  553. * another level increases the size of the address space by 9 bits to a size up
  554. * to 64 bits.
  555. */
  556. static bool increase_address_space(struct protection_domain *domain,
  557. gfp_t gfp)
  558. {
  559. u64 *pte;
  560. if (domain->mode == PAGE_MODE_6_LEVEL)
  561. /* address space already 64 bit large */
  562. return false;
  563. pte = (void *)get_zeroed_page(gfp);
  564. if (!pte)
  565. return false;
  566. *pte = PM_LEVEL_PDE(domain->mode,
  567. virt_to_phys(domain->pt_root));
  568. domain->pt_root = pte;
  569. domain->mode += 1;
  570. domain->updated = true;
  571. return true;
  572. }
  573. static u64 *alloc_pte(struct protection_domain *domain,
  574. unsigned long address,
  575. unsigned long page_size,
  576. u64 **pte_page,
  577. gfp_t gfp)
  578. {
  579. int level, end_lvl;
  580. u64 *pte, *page;
  581. BUG_ON(!is_power_of_2(page_size));
  582. while (address > PM_LEVEL_SIZE(domain->mode))
  583. increase_address_space(domain, gfp);
  584. level = domain->mode - 1;
  585. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  586. address = PAGE_SIZE_ALIGN(address, page_size);
  587. end_lvl = PAGE_SIZE_LEVEL(page_size);
  588. while (level > end_lvl) {
  589. if (!IOMMU_PTE_PRESENT(*pte)) {
  590. page = (u64 *)get_zeroed_page(gfp);
  591. if (!page)
  592. return NULL;
  593. *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
  594. }
  595. /* No level skipping support yet */
  596. if (PM_PTE_LEVEL(*pte) != level)
  597. return NULL;
  598. level -= 1;
  599. pte = IOMMU_PTE_PAGE(*pte);
  600. if (pte_page && level == end_lvl)
  601. *pte_page = pte;
  602. pte = &pte[PM_LEVEL_INDEX(level, address)];
  603. }
  604. return pte;
  605. }
  606. /*
  607. * This function checks if there is a PTE for a given dma address. If
  608. * there is one, it returns the pointer to it.
  609. */
  610. static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
  611. {
  612. int level;
  613. u64 *pte;
  614. if (address > PM_LEVEL_SIZE(domain->mode))
  615. return NULL;
  616. level = domain->mode - 1;
  617. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  618. while (level > 0) {
  619. /* Not Present */
  620. if (!IOMMU_PTE_PRESENT(*pte))
  621. return NULL;
  622. /* Large PTE */
  623. if (PM_PTE_LEVEL(*pte) == 0x07) {
  624. unsigned long pte_mask, __pte;
  625. /*
  626. * If we have a series of large PTEs, make
  627. * sure to return a pointer to the first one.
  628. */
  629. pte_mask = PTE_PAGE_SIZE(*pte);
  630. pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
  631. __pte = ((unsigned long)pte) & pte_mask;
  632. return (u64 *)__pte;
  633. }
  634. /* No level skipping support yet */
  635. if (PM_PTE_LEVEL(*pte) != level)
  636. return NULL;
  637. level -= 1;
  638. /* Walk to the next level */
  639. pte = IOMMU_PTE_PAGE(*pte);
  640. pte = &pte[PM_LEVEL_INDEX(level, address)];
  641. }
  642. return pte;
  643. }
  644. /*
  645. * Generic mapping functions. It maps a physical address into a DMA
  646. * address space. It allocates the page table pages if necessary.
  647. * In the future it can be extended to a generic mapping function
  648. * supporting all features of AMD IOMMU page tables like level skipping
  649. * and full 64 bit address spaces.
  650. */
  651. static int iommu_map_page(struct protection_domain *dom,
  652. unsigned long bus_addr,
  653. unsigned long phys_addr,
  654. int prot,
  655. unsigned long page_size)
  656. {
  657. u64 __pte, *pte;
  658. int i, count;
  659. if (!(prot & IOMMU_PROT_MASK))
  660. return -EINVAL;
  661. bus_addr = PAGE_ALIGN(bus_addr);
  662. phys_addr = PAGE_ALIGN(phys_addr);
  663. count = PAGE_SIZE_PTE_COUNT(page_size);
  664. pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
  665. for (i = 0; i < count; ++i)
  666. if (IOMMU_PTE_PRESENT(pte[i]))
  667. return -EBUSY;
  668. if (page_size > PAGE_SIZE) {
  669. __pte = PAGE_SIZE_PTE(phys_addr, page_size);
  670. __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
  671. } else
  672. __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
  673. if (prot & IOMMU_PROT_IR)
  674. __pte |= IOMMU_PTE_IR;
  675. if (prot & IOMMU_PROT_IW)
  676. __pte |= IOMMU_PTE_IW;
  677. for (i = 0; i < count; ++i)
  678. pte[i] = __pte;
  679. update_domain(dom);
  680. return 0;
  681. }
  682. static unsigned long iommu_unmap_page(struct protection_domain *dom,
  683. unsigned long bus_addr,
  684. unsigned long page_size)
  685. {
  686. unsigned long long unmap_size, unmapped;
  687. u64 *pte;
  688. BUG_ON(!is_power_of_2(page_size));
  689. unmapped = 0;
  690. while (unmapped < page_size) {
  691. pte = fetch_pte(dom, bus_addr);
  692. if (!pte) {
  693. /*
  694. * No PTE for this address
  695. * move forward in 4kb steps
  696. */
  697. unmap_size = PAGE_SIZE;
  698. } else if (PM_PTE_LEVEL(*pte) == 0) {
  699. /* 4kb PTE found for this address */
  700. unmap_size = PAGE_SIZE;
  701. *pte = 0ULL;
  702. } else {
  703. int count, i;
  704. /* Large PTE found which maps this address */
  705. unmap_size = PTE_PAGE_SIZE(*pte);
  706. count = PAGE_SIZE_PTE_COUNT(unmap_size);
  707. for (i = 0; i < count; i++)
  708. pte[i] = 0ULL;
  709. }
  710. bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
  711. unmapped += unmap_size;
  712. }
  713. BUG_ON(!is_power_of_2(unmapped));
  714. return unmapped;
  715. }
  716. /*
  717. * This function checks if a specific unity mapping entry is needed for
  718. * this specific IOMMU.
  719. */
  720. static int iommu_for_unity_map(struct amd_iommu *iommu,
  721. struct unity_map_entry *entry)
  722. {
  723. u16 bdf, i;
  724. for (i = entry->devid_start; i <= entry->devid_end; ++i) {
  725. bdf = amd_iommu_alias_table[i];
  726. if (amd_iommu_rlookup_table[bdf] == iommu)
  727. return 1;
  728. }
  729. return 0;
  730. }
  731. /*
  732. * This function actually applies the mapping to the page table of the
  733. * dma_ops domain.
  734. */
  735. static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
  736. struct unity_map_entry *e)
  737. {
  738. u64 addr;
  739. int ret;
  740. for (addr = e->address_start; addr < e->address_end;
  741. addr += PAGE_SIZE) {
  742. ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
  743. PAGE_SIZE);
  744. if (ret)
  745. return ret;
  746. /*
  747. * if unity mapping is in aperture range mark the page
  748. * as allocated in the aperture
  749. */
  750. if (addr < dma_dom->aperture_size)
  751. __set_bit(addr >> PAGE_SHIFT,
  752. dma_dom->aperture[0]->bitmap);
  753. }
  754. return 0;
  755. }
  756. /*
  757. * Init the unity mappings for a specific IOMMU in the system
  758. *
  759. * Basically iterates over all unity mapping entries and applies them to
  760. * the default domain DMA of that IOMMU if necessary.
  761. */
  762. static int iommu_init_unity_mappings(struct amd_iommu *iommu)
  763. {
  764. struct unity_map_entry *entry;
  765. int ret;
  766. list_for_each_entry(entry, &amd_iommu_unity_map, list) {
  767. if (!iommu_for_unity_map(iommu, entry))
  768. continue;
  769. ret = dma_ops_unity_map(iommu->default_dom, entry);
  770. if (ret)
  771. return ret;
  772. }
  773. return 0;
  774. }
  775. /*
  776. * Inits the unity mappings required for a specific device
  777. */
  778. static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
  779. u16 devid)
  780. {
  781. struct unity_map_entry *e;
  782. int ret;
  783. list_for_each_entry(e, &amd_iommu_unity_map, list) {
  784. if (!(devid >= e->devid_start && devid <= e->devid_end))
  785. continue;
  786. ret = dma_ops_unity_map(dma_dom, e);
  787. if (ret)
  788. return ret;
  789. }
  790. return 0;
  791. }
  792. /****************************************************************************
  793. *
  794. * The next functions belong to the address allocator for the dma_ops
  795. * interface functions. They work like the allocators in the other IOMMU
  796. * drivers. Its basically a bitmap which marks the allocated pages in
  797. * the aperture. Maybe it could be enhanced in the future to a more
  798. * efficient allocator.
  799. *
  800. ****************************************************************************/
  801. /*
  802. * The address allocator core functions.
  803. *
  804. * called with domain->lock held
  805. */
  806. /*
  807. * Used to reserve address ranges in the aperture (e.g. for exclusion
  808. * ranges.
  809. */
  810. static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
  811. unsigned long start_page,
  812. unsigned int pages)
  813. {
  814. unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
  815. if (start_page + pages > last_page)
  816. pages = last_page - start_page;
  817. for (i = start_page; i < start_page + pages; ++i) {
  818. int index = i / APERTURE_RANGE_PAGES;
  819. int page = i % APERTURE_RANGE_PAGES;
  820. __set_bit(page, dom->aperture[index]->bitmap);
  821. }
  822. }
  823. /*
  824. * This function is used to add a new aperture range to an existing
  825. * aperture in case of dma_ops domain allocation or address allocation
  826. * failure.
  827. */
  828. static int alloc_new_range(struct dma_ops_domain *dma_dom,
  829. bool populate, gfp_t gfp)
  830. {
  831. int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
  832. struct amd_iommu *iommu;
  833. unsigned long i;
  834. #ifdef CONFIG_IOMMU_STRESS
  835. populate = false;
  836. #endif
  837. if (index >= APERTURE_MAX_RANGES)
  838. return -ENOMEM;
  839. dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
  840. if (!dma_dom->aperture[index])
  841. return -ENOMEM;
  842. dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
  843. if (!dma_dom->aperture[index]->bitmap)
  844. goto out_free;
  845. dma_dom->aperture[index]->offset = dma_dom->aperture_size;
  846. if (populate) {
  847. unsigned long address = dma_dom->aperture_size;
  848. int i, num_ptes = APERTURE_RANGE_PAGES / 512;
  849. u64 *pte, *pte_page;
  850. for (i = 0; i < num_ptes; ++i) {
  851. pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
  852. &pte_page, gfp);
  853. if (!pte)
  854. goto out_free;
  855. dma_dom->aperture[index]->pte_pages[i] = pte_page;
  856. address += APERTURE_RANGE_SIZE / 64;
  857. }
  858. }
  859. dma_dom->aperture_size += APERTURE_RANGE_SIZE;
  860. /* Initialize the exclusion range if necessary */
  861. for_each_iommu(iommu) {
  862. if (iommu->exclusion_start &&
  863. iommu->exclusion_start >= dma_dom->aperture[index]->offset
  864. && iommu->exclusion_start < dma_dom->aperture_size) {
  865. unsigned long startpage;
  866. int pages = iommu_num_pages(iommu->exclusion_start,
  867. iommu->exclusion_length,
  868. PAGE_SIZE);
  869. startpage = iommu->exclusion_start >> PAGE_SHIFT;
  870. dma_ops_reserve_addresses(dma_dom, startpage, pages);
  871. }
  872. }
  873. /*
  874. * Check for areas already mapped as present in the new aperture
  875. * range and mark those pages as reserved in the allocator. Such
  876. * mappings may already exist as a result of requested unity
  877. * mappings for devices.
  878. */
  879. for (i = dma_dom->aperture[index]->offset;
  880. i < dma_dom->aperture_size;
  881. i += PAGE_SIZE) {
  882. u64 *pte = fetch_pte(&dma_dom->domain, i);
  883. if (!pte || !IOMMU_PTE_PRESENT(*pte))
  884. continue;
  885. dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
  886. }
  887. update_domain(&dma_dom->domain);
  888. return 0;
  889. out_free:
  890. update_domain(&dma_dom->domain);
  891. free_page((unsigned long)dma_dom->aperture[index]->bitmap);
  892. kfree(dma_dom->aperture[index]);
  893. dma_dom->aperture[index] = NULL;
  894. return -ENOMEM;
  895. }
  896. static unsigned long dma_ops_area_alloc(struct device *dev,
  897. struct dma_ops_domain *dom,
  898. unsigned int pages,
  899. unsigned long align_mask,
  900. u64 dma_mask,
  901. unsigned long start)
  902. {
  903. unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
  904. int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
  905. int i = start >> APERTURE_RANGE_SHIFT;
  906. unsigned long boundary_size;
  907. unsigned long address = -1;
  908. unsigned long limit;
  909. next_bit >>= PAGE_SHIFT;
  910. boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
  911. PAGE_SIZE) >> PAGE_SHIFT;
  912. for (;i < max_index; ++i) {
  913. unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
  914. if (dom->aperture[i]->offset >= dma_mask)
  915. break;
  916. limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
  917. dma_mask >> PAGE_SHIFT);
  918. address = iommu_area_alloc(dom->aperture[i]->bitmap,
  919. limit, next_bit, pages, 0,
  920. boundary_size, align_mask);
  921. if (address != -1) {
  922. address = dom->aperture[i]->offset +
  923. (address << PAGE_SHIFT);
  924. dom->next_address = address + (pages << PAGE_SHIFT);
  925. break;
  926. }
  927. next_bit = 0;
  928. }
  929. return address;
  930. }
  931. static unsigned long dma_ops_alloc_addresses(struct device *dev,
  932. struct dma_ops_domain *dom,
  933. unsigned int pages,
  934. unsigned long align_mask,
  935. u64 dma_mask)
  936. {
  937. unsigned long address;
  938. #ifdef CONFIG_IOMMU_STRESS
  939. dom->next_address = 0;
  940. dom->need_flush = true;
  941. #endif
  942. address = dma_ops_area_alloc(dev, dom, pages, align_mask,
  943. dma_mask, dom->next_address);
  944. if (address == -1) {
  945. dom->next_address = 0;
  946. address = dma_ops_area_alloc(dev, dom, pages, align_mask,
  947. dma_mask, 0);
  948. dom->need_flush = true;
  949. }
  950. if (unlikely(address == -1))
  951. address = DMA_ERROR_CODE;
  952. WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
  953. return address;
  954. }
  955. /*
  956. * The address free function.
  957. *
  958. * called with domain->lock held
  959. */
  960. static void dma_ops_free_addresses(struct dma_ops_domain *dom,
  961. unsigned long address,
  962. unsigned int pages)
  963. {
  964. unsigned i = address >> APERTURE_RANGE_SHIFT;
  965. struct aperture_range *range = dom->aperture[i];
  966. BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
  967. #ifdef CONFIG_IOMMU_STRESS
  968. if (i < 4)
  969. return;
  970. #endif
  971. if (address >= dom->next_address)
  972. dom->need_flush = true;
  973. address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
  974. bitmap_clear(range->bitmap, address, pages);
  975. }
  976. /****************************************************************************
  977. *
  978. * The next functions belong to the domain allocation. A domain is
  979. * allocated for every IOMMU as the default domain. If device isolation
  980. * is enabled, every device get its own domain. The most important thing
  981. * about domains is the page table mapping the DMA address space they
  982. * contain.
  983. *
  984. ****************************************************************************/
  985. /*
  986. * This function adds a protection domain to the global protection domain list
  987. */
  988. static void add_domain_to_list(struct protection_domain *domain)
  989. {
  990. unsigned long flags;
  991. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  992. list_add(&domain->list, &amd_iommu_pd_list);
  993. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  994. }
  995. /*
  996. * This function removes a protection domain to the global
  997. * protection domain list
  998. */
  999. static void del_domain_from_list(struct protection_domain *domain)
  1000. {
  1001. unsigned long flags;
  1002. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1003. list_del(&domain->list);
  1004. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1005. }
  1006. static u16 domain_id_alloc(void)
  1007. {
  1008. unsigned long flags;
  1009. int id;
  1010. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1011. id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
  1012. BUG_ON(id == 0);
  1013. if (id > 0 && id < MAX_DOMAIN_ID)
  1014. __set_bit(id, amd_iommu_pd_alloc_bitmap);
  1015. else
  1016. id = 0;
  1017. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1018. return id;
  1019. }
  1020. static void domain_id_free(int id)
  1021. {
  1022. unsigned long flags;
  1023. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1024. if (id > 0 && id < MAX_DOMAIN_ID)
  1025. __clear_bit(id, amd_iommu_pd_alloc_bitmap);
  1026. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1027. }
  1028. static void free_pagetable(struct protection_domain *domain)
  1029. {
  1030. int i, j;
  1031. u64 *p1, *p2, *p3;
  1032. p1 = domain->pt_root;
  1033. if (!p1)
  1034. return;
  1035. for (i = 0; i < 512; ++i) {
  1036. if (!IOMMU_PTE_PRESENT(p1[i]))
  1037. continue;
  1038. p2 = IOMMU_PTE_PAGE(p1[i]);
  1039. for (j = 0; j < 512; ++j) {
  1040. if (!IOMMU_PTE_PRESENT(p2[j]))
  1041. continue;
  1042. p3 = IOMMU_PTE_PAGE(p2[j]);
  1043. free_page((unsigned long)p3);
  1044. }
  1045. free_page((unsigned long)p2);
  1046. }
  1047. free_page((unsigned long)p1);
  1048. domain->pt_root = NULL;
  1049. }
  1050. /*
  1051. * Free a domain, only used if something went wrong in the
  1052. * allocation path and we need to free an already allocated page table
  1053. */
  1054. static void dma_ops_domain_free(struct dma_ops_domain *dom)
  1055. {
  1056. int i;
  1057. if (!dom)
  1058. return;
  1059. del_domain_from_list(&dom->domain);
  1060. free_pagetable(&dom->domain);
  1061. for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
  1062. if (!dom->aperture[i])
  1063. continue;
  1064. free_page((unsigned long)dom->aperture[i]->bitmap);
  1065. kfree(dom->aperture[i]);
  1066. }
  1067. kfree(dom);
  1068. }
  1069. /*
  1070. * Allocates a new protection domain usable for the dma_ops functions.
  1071. * It also initializes the page table and the address allocator data
  1072. * structures required for the dma_ops interface
  1073. */
  1074. static struct dma_ops_domain *dma_ops_domain_alloc(void)
  1075. {
  1076. struct dma_ops_domain *dma_dom;
  1077. dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
  1078. if (!dma_dom)
  1079. return NULL;
  1080. spin_lock_init(&dma_dom->domain.lock);
  1081. dma_dom->domain.id = domain_id_alloc();
  1082. if (dma_dom->domain.id == 0)
  1083. goto free_dma_dom;
  1084. INIT_LIST_HEAD(&dma_dom->domain.dev_list);
  1085. dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
  1086. dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  1087. dma_dom->domain.flags = PD_DMA_OPS_MASK;
  1088. dma_dom->domain.priv = dma_dom;
  1089. if (!dma_dom->domain.pt_root)
  1090. goto free_dma_dom;
  1091. dma_dom->need_flush = false;
  1092. dma_dom->target_dev = 0xffff;
  1093. add_domain_to_list(&dma_dom->domain);
  1094. if (alloc_new_range(dma_dom, true, GFP_KERNEL))
  1095. goto free_dma_dom;
  1096. /*
  1097. * mark the first page as allocated so we never return 0 as
  1098. * a valid dma-address. So we can use 0 as error value
  1099. */
  1100. dma_dom->aperture[0]->bitmap[0] = 1;
  1101. dma_dom->next_address = 0;
  1102. return dma_dom;
  1103. free_dma_dom:
  1104. dma_ops_domain_free(dma_dom);
  1105. return NULL;
  1106. }
  1107. /*
  1108. * little helper function to check whether a given protection domain is a
  1109. * dma_ops domain
  1110. */
  1111. static bool dma_ops_domain(struct protection_domain *domain)
  1112. {
  1113. return domain->flags & PD_DMA_OPS_MASK;
  1114. }
  1115. static void set_dte_entry(u16 devid, struct protection_domain *domain)
  1116. {
  1117. u64 pte_root = virt_to_phys(domain->pt_root);
  1118. pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
  1119. << DEV_ENTRY_MODE_SHIFT;
  1120. pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
  1121. amd_iommu_dev_table[devid].data[2] = domain->id;
  1122. amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
  1123. amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
  1124. }
  1125. static void clear_dte_entry(u16 devid)
  1126. {
  1127. /* remove entry from the device table seen by the hardware */
  1128. amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
  1129. amd_iommu_dev_table[devid].data[1] = 0;
  1130. amd_iommu_dev_table[devid].data[2] = 0;
  1131. amd_iommu_apply_erratum_63(devid);
  1132. }
  1133. static void do_attach(struct device *dev, struct protection_domain *domain)
  1134. {
  1135. struct iommu_dev_data *dev_data;
  1136. struct amd_iommu *iommu;
  1137. u16 devid;
  1138. devid = get_device_id(dev);
  1139. iommu = amd_iommu_rlookup_table[devid];
  1140. dev_data = get_dev_data(dev);
  1141. /* Update data structures */
  1142. dev_data->domain = domain;
  1143. list_add(&dev_data->list, &domain->dev_list);
  1144. set_dte_entry(devid, domain);
  1145. /* Do reference counting */
  1146. domain->dev_iommu[iommu->index] += 1;
  1147. domain->dev_cnt += 1;
  1148. /* Flush the DTE entry */
  1149. device_flush_dte(dev);
  1150. }
  1151. static void do_detach(struct device *dev)
  1152. {
  1153. struct iommu_dev_data *dev_data;
  1154. struct amd_iommu *iommu;
  1155. u16 devid;
  1156. devid = get_device_id(dev);
  1157. iommu = amd_iommu_rlookup_table[devid];
  1158. dev_data = get_dev_data(dev);
  1159. /* decrease reference counters */
  1160. dev_data->domain->dev_iommu[iommu->index] -= 1;
  1161. dev_data->domain->dev_cnt -= 1;
  1162. /* Update data structures */
  1163. dev_data->domain = NULL;
  1164. list_del(&dev_data->list);
  1165. clear_dte_entry(devid);
  1166. /* Flush the DTE entry */
  1167. device_flush_dte(dev);
  1168. }
  1169. /*
  1170. * If a device is not yet associated with a domain, this function does
  1171. * assigns it visible for the hardware
  1172. */
  1173. static int __attach_device(struct device *dev,
  1174. struct protection_domain *domain)
  1175. {
  1176. struct iommu_dev_data *dev_data, *alias_data;
  1177. int ret;
  1178. dev_data = get_dev_data(dev);
  1179. alias_data = get_dev_data(dev_data->alias);
  1180. if (!alias_data)
  1181. return -EINVAL;
  1182. /* lock domain */
  1183. spin_lock(&domain->lock);
  1184. /* Some sanity checks */
  1185. ret = -EBUSY;
  1186. if (alias_data->domain != NULL &&
  1187. alias_data->domain != domain)
  1188. goto out_unlock;
  1189. if (dev_data->domain != NULL &&
  1190. dev_data->domain != domain)
  1191. goto out_unlock;
  1192. /* Do real assignment */
  1193. if (dev_data->alias != dev) {
  1194. alias_data = get_dev_data(dev_data->alias);
  1195. if (alias_data->domain == NULL)
  1196. do_attach(dev_data->alias, domain);
  1197. atomic_inc(&alias_data->bind);
  1198. }
  1199. if (dev_data->domain == NULL)
  1200. do_attach(dev, domain);
  1201. atomic_inc(&dev_data->bind);
  1202. ret = 0;
  1203. out_unlock:
  1204. /* ready */
  1205. spin_unlock(&domain->lock);
  1206. return ret;
  1207. }
  1208. /*
  1209. * If a device is not yet associated with a domain, this function does
  1210. * assigns it visible for the hardware
  1211. */
  1212. static int attach_device(struct device *dev,
  1213. struct protection_domain *domain)
  1214. {
  1215. unsigned long flags;
  1216. int ret;
  1217. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1218. ret = __attach_device(dev, domain);
  1219. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1220. /*
  1221. * We might boot into a crash-kernel here. The crashed kernel
  1222. * left the caches in the IOMMU dirty. So we have to flush
  1223. * here to evict all dirty stuff.
  1224. */
  1225. domain_flush_tlb_pde(domain);
  1226. return ret;
  1227. }
  1228. /*
  1229. * Removes a device from a protection domain (unlocked)
  1230. */
  1231. static void __detach_device(struct device *dev)
  1232. {
  1233. struct iommu_dev_data *dev_data = get_dev_data(dev);
  1234. struct iommu_dev_data *alias_data;
  1235. struct protection_domain *domain;
  1236. unsigned long flags;
  1237. BUG_ON(!dev_data->domain);
  1238. domain = dev_data->domain;
  1239. spin_lock_irqsave(&domain->lock, flags);
  1240. if (dev_data->alias != dev) {
  1241. alias_data = get_dev_data(dev_data->alias);
  1242. if (atomic_dec_and_test(&alias_data->bind))
  1243. do_detach(dev_data->alias);
  1244. }
  1245. if (atomic_dec_and_test(&dev_data->bind))
  1246. do_detach(dev);
  1247. spin_unlock_irqrestore(&domain->lock, flags);
  1248. /*
  1249. * If we run in passthrough mode the device must be assigned to the
  1250. * passthrough domain if it is detached from any other domain.
  1251. * Make sure we can deassign from the pt_domain itself.
  1252. */
  1253. if (iommu_pass_through &&
  1254. (dev_data->domain == NULL && domain != pt_domain))
  1255. __attach_device(dev, pt_domain);
  1256. }
  1257. /*
  1258. * Removes a device from a protection domain (with devtable_lock held)
  1259. */
  1260. static void detach_device(struct device *dev)
  1261. {
  1262. unsigned long flags;
  1263. /* lock device table */
  1264. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1265. __detach_device(dev);
  1266. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1267. }
  1268. /*
  1269. * Find out the protection domain structure for a given PCI device. This
  1270. * will give us the pointer to the page table root for example.
  1271. */
  1272. static struct protection_domain *domain_for_device(struct device *dev)
  1273. {
  1274. struct protection_domain *dom;
  1275. struct iommu_dev_data *dev_data, *alias_data;
  1276. unsigned long flags;
  1277. u16 devid, alias;
  1278. devid = get_device_id(dev);
  1279. alias = amd_iommu_alias_table[devid];
  1280. dev_data = get_dev_data(dev);
  1281. alias_data = get_dev_data(dev_data->alias);
  1282. if (!alias_data)
  1283. return NULL;
  1284. read_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1285. dom = dev_data->domain;
  1286. if (dom == NULL &&
  1287. alias_data->domain != NULL) {
  1288. __attach_device(dev, alias_data->domain);
  1289. dom = alias_data->domain;
  1290. }
  1291. read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1292. return dom;
  1293. }
  1294. static int device_change_notifier(struct notifier_block *nb,
  1295. unsigned long action, void *data)
  1296. {
  1297. struct device *dev = data;
  1298. u16 devid;
  1299. struct protection_domain *domain;
  1300. struct dma_ops_domain *dma_domain;
  1301. struct amd_iommu *iommu;
  1302. unsigned long flags;
  1303. if (!check_device(dev))
  1304. return 0;
  1305. devid = get_device_id(dev);
  1306. iommu = amd_iommu_rlookup_table[devid];
  1307. switch (action) {
  1308. case BUS_NOTIFY_UNBOUND_DRIVER:
  1309. domain = domain_for_device(dev);
  1310. if (!domain)
  1311. goto out;
  1312. if (iommu_pass_through)
  1313. break;
  1314. detach_device(dev);
  1315. break;
  1316. case BUS_NOTIFY_ADD_DEVICE:
  1317. iommu_init_device(dev);
  1318. domain = domain_for_device(dev);
  1319. /* allocate a protection domain if a device is added */
  1320. dma_domain = find_protection_domain(devid);
  1321. if (dma_domain)
  1322. goto out;
  1323. dma_domain = dma_ops_domain_alloc();
  1324. if (!dma_domain)
  1325. goto out;
  1326. dma_domain->target_dev = devid;
  1327. spin_lock_irqsave(&iommu_pd_list_lock, flags);
  1328. list_add_tail(&dma_domain->list, &iommu_pd_list);
  1329. spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
  1330. break;
  1331. case BUS_NOTIFY_DEL_DEVICE:
  1332. iommu_uninit_device(dev);
  1333. default:
  1334. goto out;
  1335. }
  1336. device_flush_dte(dev);
  1337. iommu_completion_wait(iommu);
  1338. out:
  1339. return 0;
  1340. }
  1341. static struct notifier_block device_nb = {
  1342. .notifier_call = device_change_notifier,
  1343. };
  1344. void amd_iommu_init_notifier(void)
  1345. {
  1346. bus_register_notifier(&pci_bus_type, &device_nb);
  1347. }
  1348. /*****************************************************************************
  1349. *
  1350. * The next functions belong to the dma_ops mapping/unmapping code.
  1351. *
  1352. *****************************************************************************/
  1353. /*
  1354. * In the dma_ops path we only have the struct device. This function
  1355. * finds the corresponding IOMMU, the protection domain and the
  1356. * requestor id for a given device.
  1357. * If the device is not yet associated with a domain this is also done
  1358. * in this function.
  1359. */
  1360. static struct protection_domain *get_domain(struct device *dev)
  1361. {
  1362. struct protection_domain *domain;
  1363. struct dma_ops_domain *dma_dom;
  1364. u16 devid = get_device_id(dev);
  1365. if (!check_device(dev))
  1366. return ERR_PTR(-EINVAL);
  1367. domain = domain_for_device(dev);
  1368. if (domain != NULL && !dma_ops_domain(domain))
  1369. return ERR_PTR(-EBUSY);
  1370. if (domain != NULL)
  1371. return domain;
  1372. /* Device not bount yet - bind it */
  1373. dma_dom = find_protection_domain(devid);
  1374. if (!dma_dom)
  1375. dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
  1376. attach_device(dev, &dma_dom->domain);
  1377. DUMP_printk("Using protection domain %d for device %s\n",
  1378. dma_dom->domain.id, dev_name(dev));
  1379. return &dma_dom->domain;
  1380. }
  1381. static void update_device_table(struct protection_domain *domain)
  1382. {
  1383. struct iommu_dev_data *dev_data;
  1384. list_for_each_entry(dev_data, &domain->dev_list, list) {
  1385. u16 devid = get_device_id(dev_data->dev);
  1386. set_dte_entry(devid, domain);
  1387. }
  1388. }
  1389. static void update_domain(struct protection_domain *domain)
  1390. {
  1391. if (!domain->updated)
  1392. return;
  1393. update_device_table(domain);
  1394. domain_flush_devices(domain);
  1395. domain_flush_tlb_pde(domain);
  1396. domain->updated = false;
  1397. }
  1398. /*
  1399. * This function fetches the PTE for a given address in the aperture
  1400. */
  1401. static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
  1402. unsigned long address)
  1403. {
  1404. struct aperture_range *aperture;
  1405. u64 *pte, *pte_page;
  1406. aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
  1407. if (!aperture)
  1408. return NULL;
  1409. pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
  1410. if (!pte) {
  1411. pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
  1412. GFP_ATOMIC);
  1413. aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
  1414. } else
  1415. pte += PM_LEVEL_INDEX(0, address);
  1416. update_domain(&dom->domain);
  1417. return pte;
  1418. }
  1419. /*
  1420. * This is the generic map function. It maps one 4kb page at paddr to
  1421. * the given address in the DMA address space for the domain.
  1422. */
  1423. static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
  1424. unsigned long address,
  1425. phys_addr_t paddr,
  1426. int direction)
  1427. {
  1428. u64 *pte, __pte;
  1429. WARN_ON(address > dom->aperture_size);
  1430. paddr &= PAGE_MASK;
  1431. pte = dma_ops_get_pte(dom, address);
  1432. if (!pte)
  1433. return DMA_ERROR_CODE;
  1434. __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
  1435. if (direction == DMA_TO_DEVICE)
  1436. __pte |= IOMMU_PTE_IR;
  1437. else if (direction == DMA_FROM_DEVICE)
  1438. __pte |= IOMMU_PTE_IW;
  1439. else if (direction == DMA_BIDIRECTIONAL)
  1440. __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
  1441. WARN_ON(*pte);
  1442. *pte = __pte;
  1443. return (dma_addr_t)address;
  1444. }
  1445. /*
  1446. * The generic unmapping function for on page in the DMA address space.
  1447. */
  1448. static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
  1449. unsigned long address)
  1450. {
  1451. struct aperture_range *aperture;
  1452. u64 *pte;
  1453. if (address >= dom->aperture_size)
  1454. return;
  1455. aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
  1456. if (!aperture)
  1457. return;
  1458. pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
  1459. if (!pte)
  1460. return;
  1461. pte += PM_LEVEL_INDEX(0, address);
  1462. WARN_ON(!*pte);
  1463. *pte = 0ULL;
  1464. }
  1465. /*
  1466. * This function contains common code for mapping of a physically
  1467. * contiguous memory region into DMA address space. It is used by all
  1468. * mapping functions provided with this IOMMU driver.
  1469. * Must be called with the domain lock held.
  1470. */
  1471. static dma_addr_t __map_single(struct device *dev,
  1472. struct dma_ops_domain *dma_dom,
  1473. phys_addr_t paddr,
  1474. size_t size,
  1475. int dir,
  1476. bool align,
  1477. u64 dma_mask)
  1478. {
  1479. dma_addr_t offset = paddr & ~PAGE_MASK;
  1480. dma_addr_t address, start, ret;
  1481. unsigned int pages;
  1482. unsigned long align_mask = 0;
  1483. int i;
  1484. pages = iommu_num_pages(paddr, size, PAGE_SIZE);
  1485. paddr &= PAGE_MASK;
  1486. INC_STATS_COUNTER(total_map_requests);
  1487. if (pages > 1)
  1488. INC_STATS_COUNTER(cross_page);
  1489. if (align)
  1490. align_mask = (1UL << get_order(size)) - 1;
  1491. retry:
  1492. address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
  1493. dma_mask);
  1494. if (unlikely(address == DMA_ERROR_CODE)) {
  1495. /*
  1496. * setting next_address here will let the address
  1497. * allocator only scan the new allocated range in the
  1498. * first run. This is a small optimization.
  1499. */
  1500. dma_dom->next_address = dma_dom->aperture_size;
  1501. if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
  1502. goto out;
  1503. /*
  1504. * aperture was successfully enlarged by 128 MB, try
  1505. * allocation again
  1506. */
  1507. goto retry;
  1508. }
  1509. start = address;
  1510. for (i = 0; i < pages; ++i) {
  1511. ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
  1512. if (ret == DMA_ERROR_CODE)
  1513. goto out_unmap;
  1514. paddr += PAGE_SIZE;
  1515. start += PAGE_SIZE;
  1516. }
  1517. address += offset;
  1518. ADD_STATS_COUNTER(alloced_io_mem, size);
  1519. if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
  1520. domain_flush_tlb(&dma_dom->domain);
  1521. dma_dom->need_flush = false;
  1522. } else if (unlikely(amd_iommu_np_cache))
  1523. domain_flush_pages(&dma_dom->domain, address, size);
  1524. out:
  1525. return address;
  1526. out_unmap:
  1527. for (--i; i >= 0; --i) {
  1528. start -= PAGE_SIZE;
  1529. dma_ops_domain_unmap(dma_dom, start);
  1530. }
  1531. dma_ops_free_addresses(dma_dom, address, pages);
  1532. return DMA_ERROR_CODE;
  1533. }
  1534. /*
  1535. * Does the reverse of the __map_single function. Must be called with
  1536. * the domain lock held too
  1537. */
  1538. static void __unmap_single(struct dma_ops_domain *dma_dom,
  1539. dma_addr_t dma_addr,
  1540. size_t size,
  1541. int dir)
  1542. {
  1543. dma_addr_t flush_addr;
  1544. dma_addr_t i, start;
  1545. unsigned int pages;
  1546. if ((dma_addr == DMA_ERROR_CODE) ||
  1547. (dma_addr + size > dma_dom->aperture_size))
  1548. return;
  1549. flush_addr = dma_addr;
  1550. pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
  1551. dma_addr &= PAGE_MASK;
  1552. start = dma_addr;
  1553. for (i = 0; i < pages; ++i) {
  1554. dma_ops_domain_unmap(dma_dom, start);
  1555. start += PAGE_SIZE;
  1556. }
  1557. SUB_STATS_COUNTER(alloced_io_mem, size);
  1558. dma_ops_free_addresses(dma_dom, dma_addr, pages);
  1559. if (amd_iommu_unmap_flush || dma_dom->need_flush) {
  1560. domain_flush_pages(&dma_dom->domain, flush_addr, size);
  1561. dma_dom->need_flush = false;
  1562. }
  1563. }
  1564. /*
  1565. * The exported map_single function for dma_ops.
  1566. */
  1567. static dma_addr_t map_page(struct device *dev, struct page *page,
  1568. unsigned long offset, size_t size,
  1569. enum dma_data_direction dir,
  1570. struct dma_attrs *attrs)
  1571. {
  1572. unsigned long flags;
  1573. struct protection_domain *domain;
  1574. dma_addr_t addr;
  1575. u64 dma_mask;
  1576. phys_addr_t paddr = page_to_phys(page) + offset;
  1577. INC_STATS_COUNTER(cnt_map_single);
  1578. domain = get_domain(dev);
  1579. if (PTR_ERR(domain) == -EINVAL)
  1580. return (dma_addr_t)paddr;
  1581. else if (IS_ERR(domain))
  1582. return DMA_ERROR_CODE;
  1583. dma_mask = *dev->dma_mask;
  1584. spin_lock_irqsave(&domain->lock, flags);
  1585. addr = __map_single(dev, domain->priv, paddr, size, dir, false,
  1586. dma_mask);
  1587. if (addr == DMA_ERROR_CODE)
  1588. goto out;
  1589. domain_flush_complete(domain);
  1590. out:
  1591. spin_unlock_irqrestore(&domain->lock, flags);
  1592. return addr;
  1593. }
  1594. /*
  1595. * The exported unmap_single function for dma_ops.
  1596. */
  1597. static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
  1598. enum dma_data_direction dir, struct dma_attrs *attrs)
  1599. {
  1600. unsigned long flags;
  1601. struct protection_domain *domain;
  1602. INC_STATS_COUNTER(cnt_unmap_single);
  1603. domain = get_domain(dev);
  1604. if (IS_ERR(domain))
  1605. return;
  1606. spin_lock_irqsave(&domain->lock, flags);
  1607. __unmap_single(domain->priv, dma_addr, size, dir);
  1608. domain_flush_complete(domain);
  1609. spin_unlock_irqrestore(&domain->lock, flags);
  1610. }
  1611. /*
  1612. * This is a special map_sg function which is used if we should map a
  1613. * device which is not handled by an AMD IOMMU in the system.
  1614. */
  1615. static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
  1616. int nelems, int dir)
  1617. {
  1618. struct scatterlist *s;
  1619. int i;
  1620. for_each_sg(sglist, s, nelems, i) {
  1621. s->dma_address = (dma_addr_t)sg_phys(s);
  1622. s->dma_length = s->length;
  1623. }
  1624. return nelems;
  1625. }
  1626. /*
  1627. * The exported map_sg function for dma_ops (handles scatter-gather
  1628. * lists).
  1629. */
  1630. static int map_sg(struct device *dev, struct scatterlist *sglist,
  1631. int nelems, enum dma_data_direction dir,
  1632. struct dma_attrs *attrs)
  1633. {
  1634. unsigned long flags;
  1635. struct protection_domain *domain;
  1636. int i;
  1637. struct scatterlist *s;
  1638. phys_addr_t paddr;
  1639. int mapped_elems = 0;
  1640. u64 dma_mask;
  1641. INC_STATS_COUNTER(cnt_map_sg);
  1642. domain = get_domain(dev);
  1643. if (PTR_ERR(domain) == -EINVAL)
  1644. return map_sg_no_iommu(dev, sglist, nelems, dir);
  1645. else if (IS_ERR(domain))
  1646. return 0;
  1647. dma_mask = *dev->dma_mask;
  1648. spin_lock_irqsave(&domain->lock, flags);
  1649. for_each_sg(sglist, s, nelems, i) {
  1650. paddr = sg_phys(s);
  1651. s->dma_address = __map_single(dev, domain->priv,
  1652. paddr, s->length, dir, false,
  1653. dma_mask);
  1654. if (s->dma_address) {
  1655. s->dma_length = s->length;
  1656. mapped_elems++;
  1657. } else
  1658. goto unmap;
  1659. }
  1660. domain_flush_complete(domain);
  1661. out:
  1662. spin_unlock_irqrestore(&domain->lock, flags);
  1663. return mapped_elems;
  1664. unmap:
  1665. for_each_sg(sglist, s, mapped_elems, i) {
  1666. if (s->dma_address)
  1667. __unmap_single(domain->priv, s->dma_address,
  1668. s->dma_length, dir);
  1669. s->dma_address = s->dma_length = 0;
  1670. }
  1671. mapped_elems = 0;
  1672. goto out;
  1673. }
  1674. /*
  1675. * The exported map_sg function for dma_ops (handles scatter-gather
  1676. * lists).
  1677. */
  1678. static void unmap_sg(struct device *dev, struct scatterlist *sglist,
  1679. int nelems, enum dma_data_direction dir,
  1680. struct dma_attrs *attrs)
  1681. {
  1682. unsigned long flags;
  1683. struct protection_domain *domain;
  1684. struct scatterlist *s;
  1685. int i;
  1686. INC_STATS_COUNTER(cnt_unmap_sg);
  1687. domain = get_domain(dev);
  1688. if (IS_ERR(domain))
  1689. return;
  1690. spin_lock_irqsave(&domain->lock, flags);
  1691. for_each_sg(sglist, s, nelems, i) {
  1692. __unmap_single(domain->priv, s->dma_address,
  1693. s->dma_length, dir);
  1694. s->dma_address = s->dma_length = 0;
  1695. }
  1696. domain_flush_complete(domain);
  1697. spin_unlock_irqrestore(&domain->lock, flags);
  1698. }
  1699. /*
  1700. * The exported alloc_coherent function for dma_ops.
  1701. */
  1702. static void *alloc_coherent(struct device *dev, size_t size,
  1703. dma_addr_t *dma_addr, gfp_t flag)
  1704. {
  1705. unsigned long flags;
  1706. void *virt_addr;
  1707. struct protection_domain *domain;
  1708. phys_addr_t paddr;
  1709. u64 dma_mask = dev->coherent_dma_mask;
  1710. INC_STATS_COUNTER(cnt_alloc_coherent);
  1711. domain = get_domain(dev);
  1712. if (PTR_ERR(domain) == -EINVAL) {
  1713. virt_addr = (void *)__get_free_pages(flag, get_order(size));
  1714. *dma_addr = __pa(virt_addr);
  1715. return virt_addr;
  1716. } else if (IS_ERR(domain))
  1717. return NULL;
  1718. dma_mask = dev->coherent_dma_mask;
  1719. flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
  1720. flag |= __GFP_ZERO;
  1721. virt_addr = (void *)__get_free_pages(flag, get_order(size));
  1722. if (!virt_addr)
  1723. return NULL;
  1724. paddr = virt_to_phys(virt_addr);
  1725. if (!dma_mask)
  1726. dma_mask = *dev->dma_mask;
  1727. spin_lock_irqsave(&domain->lock, flags);
  1728. *dma_addr = __map_single(dev, domain->priv, paddr,
  1729. size, DMA_BIDIRECTIONAL, true, dma_mask);
  1730. if (*dma_addr == DMA_ERROR_CODE) {
  1731. spin_unlock_irqrestore(&domain->lock, flags);
  1732. goto out_free;
  1733. }
  1734. domain_flush_complete(domain);
  1735. spin_unlock_irqrestore(&domain->lock, flags);
  1736. return virt_addr;
  1737. out_free:
  1738. free_pages((unsigned long)virt_addr, get_order(size));
  1739. return NULL;
  1740. }
  1741. /*
  1742. * The exported free_coherent function for dma_ops.
  1743. */
  1744. static void free_coherent(struct device *dev, size_t size,
  1745. void *virt_addr, dma_addr_t dma_addr)
  1746. {
  1747. unsigned long flags;
  1748. struct protection_domain *domain;
  1749. INC_STATS_COUNTER(cnt_free_coherent);
  1750. domain = get_domain(dev);
  1751. if (IS_ERR(domain))
  1752. goto free_mem;
  1753. spin_lock_irqsave(&domain->lock, flags);
  1754. __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
  1755. domain_flush_complete(domain);
  1756. spin_unlock_irqrestore(&domain->lock, flags);
  1757. free_mem:
  1758. free_pages((unsigned long)virt_addr, get_order(size));
  1759. }
  1760. /*
  1761. * This function is called by the DMA layer to find out if we can handle a
  1762. * particular device. It is part of the dma_ops.
  1763. */
  1764. static int amd_iommu_dma_supported(struct device *dev, u64 mask)
  1765. {
  1766. return check_device(dev);
  1767. }
  1768. /*
  1769. * The function for pre-allocating protection domains.
  1770. *
  1771. * If the driver core informs the DMA layer if a driver grabs a device
  1772. * we don't need to preallocate the protection domains anymore.
  1773. * For now we have to.
  1774. */
  1775. static void prealloc_protection_domains(void)
  1776. {
  1777. struct pci_dev *dev = NULL;
  1778. struct dma_ops_domain *dma_dom;
  1779. u16 devid;
  1780. for_each_pci_dev(dev) {
  1781. /* Do we handle this device? */
  1782. if (!check_device(&dev->dev))
  1783. continue;
  1784. /* Is there already any domain for it? */
  1785. if (domain_for_device(&dev->dev))
  1786. continue;
  1787. devid = get_device_id(&dev->dev);
  1788. dma_dom = dma_ops_domain_alloc();
  1789. if (!dma_dom)
  1790. continue;
  1791. init_unity_mappings_for_device(dma_dom, devid);
  1792. dma_dom->target_dev = devid;
  1793. attach_device(&dev->dev, &dma_dom->domain);
  1794. list_add_tail(&dma_dom->list, &iommu_pd_list);
  1795. }
  1796. }
  1797. static struct dma_map_ops amd_iommu_dma_ops = {
  1798. .alloc_coherent = alloc_coherent,
  1799. .free_coherent = free_coherent,
  1800. .map_page = map_page,
  1801. .unmap_page = unmap_page,
  1802. .map_sg = map_sg,
  1803. .unmap_sg = unmap_sg,
  1804. .dma_supported = amd_iommu_dma_supported,
  1805. };
  1806. /*
  1807. * The function which clues the AMD IOMMU driver into dma_ops.
  1808. */
  1809. void __init amd_iommu_init_api(void)
  1810. {
  1811. register_iommu(&amd_iommu_ops);
  1812. }
  1813. int __init amd_iommu_init_dma_ops(void)
  1814. {
  1815. struct amd_iommu *iommu;
  1816. int ret;
  1817. /*
  1818. * first allocate a default protection domain for every IOMMU we
  1819. * found in the system. Devices not assigned to any other
  1820. * protection domain will be assigned to the default one.
  1821. */
  1822. for_each_iommu(iommu) {
  1823. iommu->default_dom = dma_ops_domain_alloc();
  1824. if (iommu->default_dom == NULL)
  1825. return -ENOMEM;
  1826. iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
  1827. ret = iommu_init_unity_mappings(iommu);
  1828. if (ret)
  1829. goto free_domains;
  1830. }
  1831. /*
  1832. * Pre-allocate the protection domains for each device.
  1833. */
  1834. prealloc_protection_domains();
  1835. iommu_detected = 1;
  1836. swiotlb = 0;
  1837. /* Make the driver finally visible to the drivers */
  1838. dma_ops = &amd_iommu_dma_ops;
  1839. amd_iommu_stats_init();
  1840. return 0;
  1841. free_domains:
  1842. for_each_iommu(iommu) {
  1843. if (iommu->default_dom)
  1844. dma_ops_domain_free(iommu->default_dom);
  1845. }
  1846. return ret;
  1847. }
  1848. /*****************************************************************************
  1849. *
  1850. * The following functions belong to the exported interface of AMD IOMMU
  1851. *
  1852. * This interface allows access to lower level functions of the IOMMU
  1853. * like protection domain handling and assignement of devices to domains
  1854. * which is not possible with the dma_ops interface.
  1855. *
  1856. *****************************************************************************/
  1857. static void cleanup_domain(struct protection_domain *domain)
  1858. {
  1859. struct iommu_dev_data *dev_data, *next;
  1860. unsigned long flags;
  1861. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1862. list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
  1863. struct device *dev = dev_data->dev;
  1864. __detach_device(dev);
  1865. atomic_set(&dev_data->bind, 0);
  1866. }
  1867. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1868. }
  1869. static void protection_domain_free(struct protection_domain *domain)
  1870. {
  1871. if (!domain)
  1872. return;
  1873. del_domain_from_list(domain);
  1874. if (domain->id)
  1875. domain_id_free(domain->id);
  1876. kfree(domain);
  1877. }
  1878. static struct protection_domain *protection_domain_alloc(void)
  1879. {
  1880. struct protection_domain *domain;
  1881. domain = kzalloc(sizeof(*domain), GFP_KERNEL);
  1882. if (!domain)
  1883. return NULL;
  1884. spin_lock_init(&domain->lock);
  1885. mutex_init(&domain->api_lock);
  1886. domain->id = domain_id_alloc();
  1887. if (!domain->id)
  1888. goto out_err;
  1889. INIT_LIST_HEAD(&domain->dev_list);
  1890. add_domain_to_list(domain);
  1891. return domain;
  1892. out_err:
  1893. kfree(domain);
  1894. return NULL;
  1895. }
  1896. static int amd_iommu_domain_init(struct iommu_domain *dom)
  1897. {
  1898. struct protection_domain *domain;
  1899. domain = protection_domain_alloc();
  1900. if (!domain)
  1901. goto out_free;
  1902. domain->mode = PAGE_MODE_3_LEVEL;
  1903. domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  1904. if (!domain->pt_root)
  1905. goto out_free;
  1906. dom->priv = domain;
  1907. return 0;
  1908. out_free:
  1909. protection_domain_free(domain);
  1910. return -ENOMEM;
  1911. }
  1912. static void amd_iommu_domain_destroy(struct iommu_domain *dom)
  1913. {
  1914. struct protection_domain *domain = dom->priv;
  1915. if (!domain)
  1916. return;
  1917. if (domain->dev_cnt > 0)
  1918. cleanup_domain(domain);
  1919. BUG_ON(domain->dev_cnt != 0);
  1920. free_pagetable(domain);
  1921. protection_domain_free(domain);
  1922. dom->priv = NULL;
  1923. }
  1924. static void amd_iommu_detach_device(struct iommu_domain *dom,
  1925. struct device *dev)
  1926. {
  1927. struct iommu_dev_data *dev_data = dev->archdata.iommu;
  1928. struct amd_iommu *iommu;
  1929. u16 devid;
  1930. if (!check_device(dev))
  1931. return;
  1932. devid = get_device_id(dev);
  1933. if (dev_data->domain != NULL)
  1934. detach_device(dev);
  1935. iommu = amd_iommu_rlookup_table[devid];
  1936. if (!iommu)
  1937. return;
  1938. device_flush_dte(dev);
  1939. iommu_completion_wait(iommu);
  1940. }
  1941. static int amd_iommu_attach_device(struct iommu_domain *dom,
  1942. struct device *dev)
  1943. {
  1944. struct protection_domain *domain = dom->priv;
  1945. struct iommu_dev_data *dev_data;
  1946. struct amd_iommu *iommu;
  1947. int ret;
  1948. u16 devid;
  1949. if (!check_device(dev))
  1950. return -EINVAL;
  1951. dev_data = dev->archdata.iommu;
  1952. devid = get_device_id(dev);
  1953. iommu = amd_iommu_rlookup_table[devid];
  1954. if (!iommu)
  1955. return -EINVAL;
  1956. if (dev_data->domain)
  1957. detach_device(dev);
  1958. ret = attach_device(dev, domain);
  1959. iommu_completion_wait(iommu);
  1960. return ret;
  1961. }
  1962. static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
  1963. phys_addr_t paddr, int gfp_order, int iommu_prot)
  1964. {
  1965. unsigned long page_size = 0x1000UL << gfp_order;
  1966. struct protection_domain *domain = dom->priv;
  1967. int prot = 0;
  1968. int ret;
  1969. if (iommu_prot & IOMMU_READ)
  1970. prot |= IOMMU_PROT_IR;
  1971. if (iommu_prot & IOMMU_WRITE)
  1972. prot |= IOMMU_PROT_IW;
  1973. mutex_lock(&domain->api_lock);
  1974. ret = iommu_map_page(domain, iova, paddr, prot, page_size);
  1975. mutex_unlock(&domain->api_lock);
  1976. return ret;
  1977. }
  1978. static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
  1979. int gfp_order)
  1980. {
  1981. struct protection_domain *domain = dom->priv;
  1982. unsigned long page_size, unmap_size;
  1983. page_size = 0x1000UL << gfp_order;
  1984. mutex_lock(&domain->api_lock);
  1985. unmap_size = iommu_unmap_page(domain, iova, page_size);
  1986. mutex_unlock(&domain->api_lock);
  1987. domain_flush_tlb_pde(domain);
  1988. return get_order(unmap_size);
  1989. }
  1990. static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
  1991. unsigned long iova)
  1992. {
  1993. struct protection_domain *domain = dom->priv;
  1994. unsigned long offset_mask;
  1995. phys_addr_t paddr;
  1996. u64 *pte, __pte;
  1997. pte = fetch_pte(domain, iova);
  1998. if (!pte || !IOMMU_PTE_PRESENT(*pte))
  1999. return 0;
  2000. if (PM_PTE_LEVEL(*pte) == 0)
  2001. offset_mask = PAGE_SIZE - 1;
  2002. else
  2003. offset_mask = PTE_PAGE_SIZE(*pte) - 1;
  2004. __pte = *pte & PM_ADDR_MASK;
  2005. paddr = (__pte & ~offset_mask) | (iova & offset_mask);
  2006. return paddr;
  2007. }
  2008. static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
  2009. unsigned long cap)
  2010. {
  2011. switch (cap) {
  2012. case IOMMU_CAP_CACHE_COHERENCY:
  2013. return 1;
  2014. }
  2015. return 0;
  2016. }
  2017. static struct iommu_ops amd_iommu_ops = {
  2018. .domain_init = amd_iommu_domain_init,
  2019. .domain_destroy = amd_iommu_domain_destroy,
  2020. .attach_dev = amd_iommu_attach_device,
  2021. .detach_dev = amd_iommu_detach_device,
  2022. .map = amd_iommu_map,
  2023. .unmap = amd_iommu_unmap,
  2024. .iova_to_phys = amd_iommu_iova_to_phys,
  2025. .domain_has_cap = amd_iommu_domain_has_cap,
  2026. };
  2027. /*****************************************************************************
  2028. *
  2029. * The next functions do a basic initialization of IOMMU for pass through
  2030. * mode
  2031. *
  2032. * In passthrough mode the IOMMU is initialized and enabled but not used for
  2033. * DMA-API translation.
  2034. *
  2035. *****************************************************************************/
  2036. int __init amd_iommu_init_passthrough(void)
  2037. {
  2038. struct amd_iommu *iommu;
  2039. struct pci_dev *dev = NULL;
  2040. u16 devid;
  2041. /* allocate passthrough domain */
  2042. pt_domain = protection_domain_alloc();
  2043. if (!pt_domain)
  2044. return -ENOMEM;
  2045. pt_domain->mode |= PAGE_MODE_NONE;
  2046. for_each_pci_dev(dev) {
  2047. if (!check_device(&dev->dev))
  2048. continue;
  2049. devid = get_device_id(&dev->dev);
  2050. iommu = amd_iommu_rlookup_table[devid];
  2051. if (!iommu)
  2052. continue;
  2053. attach_device(&dev->dev, pt_domain);
  2054. }
  2055. pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
  2056. return 0;
  2057. }