xsysace.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315
  1. /*
  2. * Xilinx SystemACE device driver
  3. *
  4. * Copyright 2007 Secret Lab Technologies Ltd.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation.
  9. */
  10. /*
  11. * The SystemACE chip is designed to configure FPGAs by loading an FPGA
  12. * bitstream from a file on a CF card and squirting it into FPGAs connected
  13. * to the SystemACE JTAG chain. It also has the advantage of providing an
  14. * MPU interface which can be used to control the FPGA configuration process
  15. * and to use the attached CF card for general purpose storage.
  16. *
  17. * This driver is a block device driver for the SystemACE.
  18. *
  19. * Initialization:
  20. * The driver registers itself as a platform_device driver at module
  21. * load time. The platform bus will take care of calling the
  22. * ace_probe() method for all SystemACE instances in the system. Any
  23. * number of SystemACE instances are supported. ace_probe() calls
  24. * ace_setup() which initialized all data structures, reads the CF
  25. * id structure and registers the device.
  26. *
  27. * Processing:
  28. * Just about all of the heavy lifting in this driver is performed by
  29. * a Finite State Machine (FSM). The driver needs to wait on a number
  30. * of events; some raised by interrupts, some which need to be polled
  31. * for. Describing all of the behaviour in a FSM seems to be the
  32. * easiest way to keep the complexity low and make it easy to
  33. * understand what the driver is doing. If the block ops or the
  34. * request function need to interact with the hardware, then they
  35. * simply need to flag the request and kick of FSM processing.
  36. *
  37. * The FSM itself is atomic-safe code which can be run from any
  38. * context. The general process flow is:
  39. * 1. obtain the ace->lock spinlock.
  40. * 2. loop on ace_fsm_dostate() until the ace->fsm_continue flag is
  41. * cleared.
  42. * 3. release the lock.
  43. *
  44. * Individual states do not sleep in any way. If a condition needs to
  45. * be waited for then the state much clear the fsm_continue flag and
  46. * either schedule the FSM to be run again at a later time, or expect
  47. * an interrupt to call the FSM when the desired condition is met.
  48. *
  49. * In normal operation, the FSM is processed at interrupt context
  50. * either when the driver's tasklet is scheduled, or when an irq is
  51. * raised by the hardware. The tasklet can be scheduled at any time.
  52. * The request method in particular schedules the tasklet when a new
  53. * request has been indicated by the block layer. Once started, the
  54. * FSM proceeds as far as it can processing the request until it
  55. * needs on a hardware event. At this point, it must yield execution.
  56. *
  57. * A state has two options when yielding execution:
  58. * 1. ace_fsm_yield()
  59. * - Call if need to poll for event.
  60. * - clears the fsm_continue flag to exit the processing loop
  61. * - reschedules the tasklet to run again as soon as possible
  62. * 2. ace_fsm_yieldirq()
  63. * - Call if an irq is expected from the HW
  64. * - clears the fsm_continue flag to exit the processing loop
  65. * - does not reschedule the tasklet so the FSM will not be processed
  66. * again until an irq is received.
  67. * After calling a yield function, the state must return control back
  68. * to the FSM main loop.
  69. *
  70. * Additionally, the driver maintains a kernel timer which can process
  71. * the FSM. If the FSM gets stalled, typically due to a missed
  72. * interrupt, then the kernel timer will expire and the driver can
  73. * continue where it left off.
  74. *
  75. * To Do:
  76. * - Add FPGA configuration control interface.
  77. * - Request major number from lanana
  78. */
  79. #undef DEBUG
  80. #include <linux/module.h>
  81. #include <linux/ctype.h>
  82. #include <linux/init.h>
  83. #include <linux/interrupt.h>
  84. #include <linux/errno.h>
  85. #include <linux/kernel.h>
  86. #include <linux/delay.h>
  87. #include <linux/slab.h>
  88. #include <linux/blkdev.h>
  89. #include <linux/smp_lock.h>
  90. #include <linux/ata.h>
  91. #include <linux/hdreg.h>
  92. #include <linux/platform_device.h>
  93. #if defined(CONFIG_OF)
  94. #include <linux/of_device.h>
  95. #include <linux/of_platform.h>
  96. #endif
  97. MODULE_AUTHOR("Grant Likely <grant.likely@secretlab.ca>");
  98. MODULE_DESCRIPTION("Xilinx SystemACE device driver");
  99. MODULE_LICENSE("GPL");
  100. /* SystemACE register definitions */
  101. #define ACE_BUSMODE (0x00)
  102. #define ACE_STATUS (0x04)
  103. #define ACE_STATUS_CFGLOCK (0x00000001)
  104. #define ACE_STATUS_MPULOCK (0x00000002)
  105. #define ACE_STATUS_CFGERROR (0x00000004) /* config controller error */
  106. #define ACE_STATUS_CFCERROR (0x00000008) /* CF controller error */
  107. #define ACE_STATUS_CFDETECT (0x00000010)
  108. #define ACE_STATUS_DATABUFRDY (0x00000020)
  109. #define ACE_STATUS_DATABUFMODE (0x00000040)
  110. #define ACE_STATUS_CFGDONE (0x00000080)
  111. #define ACE_STATUS_RDYFORCFCMD (0x00000100)
  112. #define ACE_STATUS_CFGMODEPIN (0x00000200)
  113. #define ACE_STATUS_CFGADDR_MASK (0x0000e000)
  114. #define ACE_STATUS_CFBSY (0x00020000)
  115. #define ACE_STATUS_CFRDY (0x00040000)
  116. #define ACE_STATUS_CFDWF (0x00080000)
  117. #define ACE_STATUS_CFDSC (0x00100000)
  118. #define ACE_STATUS_CFDRQ (0x00200000)
  119. #define ACE_STATUS_CFCORR (0x00400000)
  120. #define ACE_STATUS_CFERR (0x00800000)
  121. #define ACE_ERROR (0x08)
  122. #define ACE_CFGLBA (0x0c)
  123. #define ACE_MPULBA (0x10)
  124. #define ACE_SECCNTCMD (0x14)
  125. #define ACE_SECCNTCMD_RESET (0x0100)
  126. #define ACE_SECCNTCMD_IDENTIFY (0x0200)
  127. #define ACE_SECCNTCMD_READ_DATA (0x0300)
  128. #define ACE_SECCNTCMD_WRITE_DATA (0x0400)
  129. #define ACE_SECCNTCMD_ABORT (0x0600)
  130. #define ACE_VERSION (0x16)
  131. #define ACE_VERSION_REVISION_MASK (0x00FF)
  132. #define ACE_VERSION_MINOR_MASK (0x0F00)
  133. #define ACE_VERSION_MAJOR_MASK (0xF000)
  134. #define ACE_CTRL (0x18)
  135. #define ACE_CTRL_FORCELOCKREQ (0x0001)
  136. #define ACE_CTRL_LOCKREQ (0x0002)
  137. #define ACE_CTRL_FORCECFGADDR (0x0004)
  138. #define ACE_CTRL_FORCECFGMODE (0x0008)
  139. #define ACE_CTRL_CFGMODE (0x0010)
  140. #define ACE_CTRL_CFGSTART (0x0020)
  141. #define ACE_CTRL_CFGSEL (0x0040)
  142. #define ACE_CTRL_CFGRESET (0x0080)
  143. #define ACE_CTRL_DATABUFRDYIRQ (0x0100)
  144. #define ACE_CTRL_ERRORIRQ (0x0200)
  145. #define ACE_CTRL_CFGDONEIRQ (0x0400)
  146. #define ACE_CTRL_RESETIRQ (0x0800)
  147. #define ACE_CTRL_CFGPROG (0x1000)
  148. #define ACE_CTRL_CFGADDR_MASK (0xe000)
  149. #define ACE_FATSTAT (0x1c)
  150. #define ACE_NUM_MINORS 16
  151. #define ACE_SECTOR_SIZE (512)
  152. #define ACE_FIFO_SIZE (32)
  153. #define ACE_BUF_PER_SECTOR (ACE_SECTOR_SIZE / ACE_FIFO_SIZE)
  154. #define ACE_BUS_WIDTH_8 0
  155. #define ACE_BUS_WIDTH_16 1
  156. struct ace_reg_ops;
  157. struct ace_device {
  158. /* driver state data */
  159. int id;
  160. int media_change;
  161. int users;
  162. struct list_head list;
  163. /* finite state machine data */
  164. struct tasklet_struct fsm_tasklet;
  165. uint fsm_task; /* Current activity (ACE_TASK_*) */
  166. uint fsm_state; /* Current state (ACE_FSM_STATE_*) */
  167. uint fsm_continue_flag; /* cleared to exit FSM mainloop */
  168. uint fsm_iter_num;
  169. struct timer_list stall_timer;
  170. /* Transfer state/result, use for both id and block request */
  171. struct request *req; /* request being processed */
  172. void *data_ptr; /* pointer to I/O buffer */
  173. int data_count; /* number of buffers remaining */
  174. int data_result; /* Result of transfer; 0 := success */
  175. int id_req_count; /* count of id requests */
  176. int id_result;
  177. struct completion id_completion; /* used when id req finishes */
  178. int in_irq;
  179. /* Details of hardware device */
  180. resource_size_t physaddr;
  181. void __iomem *baseaddr;
  182. int irq;
  183. int bus_width; /* 0 := 8 bit; 1 := 16 bit */
  184. struct ace_reg_ops *reg_ops;
  185. int lock_count;
  186. /* Block device data structures */
  187. spinlock_t lock;
  188. struct device *dev;
  189. struct request_queue *queue;
  190. struct gendisk *gd;
  191. /* Inserted CF card parameters */
  192. u16 cf_id[ATA_ID_WORDS];
  193. };
  194. static int ace_major;
  195. /* ---------------------------------------------------------------------
  196. * Low level register access
  197. */
  198. struct ace_reg_ops {
  199. u16(*in) (struct ace_device * ace, int reg);
  200. void (*out) (struct ace_device * ace, int reg, u16 val);
  201. void (*datain) (struct ace_device * ace);
  202. void (*dataout) (struct ace_device * ace);
  203. };
  204. /* 8 Bit bus width */
  205. static u16 ace_in_8(struct ace_device *ace, int reg)
  206. {
  207. void __iomem *r = ace->baseaddr + reg;
  208. return in_8(r) | (in_8(r + 1) << 8);
  209. }
  210. static void ace_out_8(struct ace_device *ace, int reg, u16 val)
  211. {
  212. void __iomem *r = ace->baseaddr + reg;
  213. out_8(r, val);
  214. out_8(r + 1, val >> 8);
  215. }
  216. static void ace_datain_8(struct ace_device *ace)
  217. {
  218. void __iomem *r = ace->baseaddr + 0x40;
  219. u8 *dst = ace->data_ptr;
  220. int i = ACE_FIFO_SIZE;
  221. while (i--)
  222. *dst++ = in_8(r++);
  223. ace->data_ptr = dst;
  224. }
  225. static void ace_dataout_8(struct ace_device *ace)
  226. {
  227. void __iomem *r = ace->baseaddr + 0x40;
  228. u8 *src = ace->data_ptr;
  229. int i = ACE_FIFO_SIZE;
  230. while (i--)
  231. out_8(r++, *src++);
  232. ace->data_ptr = src;
  233. }
  234. static struct ace_reg_ops ace_reg_8_ops = {
  235. .in = ace_in_8,
  236. .out = ace_out_8,
  237. .datain = ace_datain_8,
  238. .dataout = ace_dataout_8,
  239. };
  240. /* 16 bit big endian bus attachment */
  241. static u16 ace_in_be16(struct ace_device *ace, int reg)
  242. {
  243. return in_be16(ace->baseaddr + reg);
  244. }
  245. static void ace_out_be16(struct ace_device *ace, int reg, u16 val)
  246. {
  247. out_be16(ace->baseaddr + reg, val);
  248. }
  249. static void ace_datain_be16(struct ace_device *ace)
  250. {
  251. int i = ACE_FIFO_SIZE / 2;
  252. u16 *dst = ace->data_ptr;
  253. while (i--)
  254. *dst++ = in_le16(ace->baseaddr + 0x40);
  255. ace->data_ptr = dst;
  256. }
  257. static void ace_dataout_be16(struct ace_device *ace)
  258. {
  259. int i = ACE_FIFO_SIZE / 2;
  260. u16 *src = ace->data_ptr;
  261. while (i--)
  262. out_le16(ace->baseaddr + 0x40, *src++);
  263. ace->data_ptr = src;
  264. }
  265. /* 16 bit little endian bus attachment */
  266. static u16 ace_in_le16(struct ace_device *ace, int reg)
  267. {
  268. return in_le16(ace->baseaddr + reg);
  269. }
  270. static void ace_out_le16(struct ace_device *ace, int reg, u16 val)
  271. {
  272. out_le16(ace->baseaddr + reg, val);
  273. }
  274. static void ace_datain_le16(struct ace_device *ace)
  275. {
  276. int i = ACE_FIFO_SIZE / 2;
  277. u16 *dst = ace->data_ptr;
  278. while (i--)
  279. *dst++ = in_be16(ace->baseaddr + 0x40);
  280. ace->data_ptr = dst;
  281. }
  282. static void ace_dataout_le16(struct ace_device *ace)
  283. {
  284. int i = ACE_FIFO_SIZE / 2;
  285. u16 *src = ace->data_ptr;
  286. while (i--)
  287. out_be16(ace->baseaddr + 0x40, *src++);
  288. ace->data_ptr = src;
  289. }
  290. static struct ace_reg_ops ace_reg_be16_ops = {
  291. .in = ace_in_be16,
  292. .out = ace_out_be16,
  293. .datain = ace_datain_be16,
  294. .dataout = ace_dataout_be16,
  295. };
  296. static struct ace_reg_ops ace_reg_le16_ops = {
  297. .in = ace_in_le16,
  298. .out = ace_out_le16,
  299. .datain = ace_datain_le16,
  300. .dataout = ace_dataout_le16,
  301. };
  302. static inline u16 ace_in(struct ace_device *ace, int reg)
  303. {
  304. return ace->reg_ops->in(ace, reg);
  305. }
  306. static inline u32 ace_in32(struct ace_device *ace, int reg)
  307. {
  308. return ace_in(ace, reg) | (ace_in(ace, reg + 2) << 16);
  309. }
  310. static inline void ace_out(struct ace_device *ace, int reg, u16 val)
  311. {
  312. ace->reg_ops->out(ace, reg, val);
  313. }
  314. static inline void ace_out32(struct ace_device *ace, int reg, u32 val)
  315. {
  316. ace_out(ace, reg, val);
  317. ace_out(ace, reg + 2, val >> 16);
  318. }
  319. /* ---------------------------------------------------------------------
  320. * Debug support functions
  321. */
  322. #if defined(DEBUG)
  323. static void ace_dump_mem(void *base, int len)
  324. {
  325. const char *ptr = base;
  326. int i, j;
  327. for (i = 0; i < len; i += 16) {
  328. printk(KERN_INFO "%.8x:", i);
  329. for (j = 0; j < 16; j++) {
  330. if (!(j % 4))
  331. printk(" ");
  332. printk("%.2x", ptr[i + j]);
  333. }
  334. printk(" ");
  335. for (j = 0; j < 16; j++)
  336. printk("%c", isprint(ptr[i + j]) ? ptr[i + j] : '.');
  337. printk("\n");
  338. }
  339. }
  340. #else
  341. static inline void ace_dump_mem(void *base, int len)
  342. {
  343. }
  344. #endif
  345. static void ace_dump_regs(struct ace_device *ace)
  346. {
  347. dev_info(ace->dev,
  348. " ctrl: %.8x seccnt/cmd: %.4x ver:%.4x\n"
  349. " status:%.8x mpu_lba:%.8x busmode:%4x\n"
  350. " error: %.8x cfg_lba:%.8x fatstat:%.4x\n",
  351. ace_in32(ace, ACE_CTRL),
  352. ace_in(ace, ACE_SECCNTCMD),
  353. ace_in(ace, ACE_VERSION),
  354. ace_in32(ace, ACE_STATUS),
  355. ace_in32(ace, ACE_MPULBA),
  356. ace_in(ace, ACE_BUSMODE),
  357. ace_in32(ace, ACE_ERROR),
  358. ace_in32(ace, ACE_CFGLBA), ace_in(ace, ACE_FATSTAT));
  359. }
  360. void ace_fix_driveid(u16 *id)
  361. {
  362. #if defined(__BIG_ENDIAN)
  363. int i;
  364. /* All half words have wrong byte order; swap the bytes */
  365. for (i = 0; i < ATA_ID_WORDS; i++, id++)
  366. *id = le16_to_cpu(*id);
  367. #endif
  368. }
  369. /* ---------------------------------------------------------------------
  370. * Finite State Machine (FSM) implementation
  371. */
  372. /* FSM tasks; used to direct state transitions */
  373. #define ACE_TASK_IDLE 0
  374. #define ACE_TASK_IDENTIFY 1
  375. #define ACE_TASK_READ 2
  376. #define ACE_TASK_WRITE 3
  377. #define ACE_FSM_NUM_TASKS 4
  378. /* FSM state definitions */
  379. #define ACE_FSM_STATE_IDLE 0
  380. #define ACE_FSM_STATE_REQ_LOCK 1
  381. #define ACE_FSM_STATE_WAIT_LOCK 2
  382. #define ACE_FSM_STATE_WAIT_CFREADY 3
  383. #define ACE_FSM_STATE_IDENTIFY_PREPARE 4
  384. #define ACE_FSM_STATE_IDENTIFY_TRANSFER 5
  385. #define ACE_FSM_STATE_IDENTIFY_COMPLETE 6
  386. #define ACE_FSM_STATE_REQ_PREPARE 7
  387. #define ACE_FSM_STATE_REQ_TRANSFER 8
  388. #define ACE_FSM_STATE_REQ_COMPLETE 9
  389. #define ACE_FSM_STATE_ERROR 10
  390. #define ACE_FSM_NUM_STATES 11
  391. /* Set flag to exit FSM loop and reschedule tasklet */
  392. static inline void ace_fsm_yield(struct ace_device *ace)
  393. {
  394. dev_dbg(ace->dev, "ace_fsm_yield()\n");
  395. tasklet_schedule(&ace->fsm_tasklet);
  396. ace->fsm_continue_flag = 0;
  397. }
  398. /* Set flag to exit FSM loop and wait for IRQ to reschedule tasklet */
  399. static inline void ace_fsm_yieldirq(struct ace_device *ace)
  400. {
  401. dev_dbg(ace->dev, "ace_fsm_yieldirq()\n");
  402. if (ace->irq == NO_IRQ)
  403. /* No IRQ assigned, so need to poll */
  404. tasklet_schedule(&ace->fsm_tasklet);
  405. ace->fsm_continue_flag = 0;
  406. }
  407. /* Get the next read/write request; ending requests that we don't handle */
  408. struct request *ace_get_next_request(struct request_queue * q)
  409. {
  410. struct request *req;
  411. while ((req = blk_peek_request(q)) != NULL) {
  412. if (req->cmd_type == REQ_TYPE_FS)
  413. break;
  414. blk_start_request(req);
  415. __blk_end_request_all(req, -EIO);
  416. }
  417. return req;
  418. }
  419. static void ace_fsm_dostate(struct ace_device *ace)
  420. {
  421. struct request *req;
  422. u32 status;
  423. u16 val;
  424. int count;
  425. #if defined(DEBUG)
  426. dev_dbg(ace->dev, "fsm_state=%i, id_req_count=%i\n",
  427. ace->fsm_state, ace->id_req_count);
  428. #endif
  429. /* Verify that there is actually a CF in the slot. If not, then
  430. * bail out back to the idle state and wake up all the waiters */
  431. status = ace_in32(ace, ACE_STATUS);
  432. if ((status & ACE_STATUS_CFDETECT) == 0) {
  433. ace->fsm_state = ACE_FSM_STATE_IDLE;
  434. ace->media_change = 1;
  435. set_capacity(ace->gd, 0);
  436. dev_info(ace->dev, "No CF in slot\n");
  437. /* Drop all in-flight and pending requests */
  438. if (ace->req) {
  439. __blk_end_request_all(ace->req, -EIO);
  440. ace->req = NULL;
  441. }
  442. while ((req = blk_fetch_request(ace->queue)) != NULL)
  443. __blk_end_request_all(req, -EIO);
  444. /* Drop back to IDLE state and notify waiters */
  445. ace->fsm_state = ACE_FSM_STATE_IDLE;
  446. ace->id_result = -EIO;
  447. while (ace->id_req_count) {
  448. complete(&ace->id_completion);
  449. ace->id_req_count--;
  450. }
  451. }
  452. switch (ace->fsm_state) {
  453. case ACE_FSM_STATE_IDLE:
  454. /* See if there is anything to do */
  455. if (ace->id_req_count || ace_get_next_request(ace->queue)) {
  456. ace->fsm_iter_num++;
  457. ace->fsm_state = ACE_FSM_STATE_REQ_LOCK;
  458. mod_timer(&ace->stall_timer, jiffies + HZ);
  459. if (!timer_pending(&ace->stall_timer))
  460. add_timer(&ace->stall_timer);
  461. break;
  462. }
  463. del_timer(&ace->stall_timer);
  464. ace->fsm_continue_flag = 0;
  465. break;
  466. case ACE_FSM_STATE_REQ_LOCK:
  467. if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
  468. /* Already have the lock, jump to next state */
  469. ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
  470. break;
  471. }
  472. /* Request the lock */
  473. val = ace_in(ace, ACE_CTRL);
  474. ace_out(ace, ACE_CTRL, val | ACE_CTRL_LOCKREQ);
  475. ace->fsm_state = ACE_FSM_STATE_WAIT_LOCK;
  476. break;
  477. case ACE_FSM_STATE_WAIT_LOCK:
  478. if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
  479. /* got the lock; move to next state */
  480. ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
  481. break;
  482. }
  483. /* wait a bit for the lock */
  484. ace_fsm_yield(ace);
  485. break;
  486. case ACE_FSM_STATE_WAIT_CFREADY:
  487. status = ace_in32(ace, ACE_STATUS);
  488. if (!(status & ACE_STATUS_RDYFORCFCMD) ||
  489. (status & ACE_STATUS_CFBSY)) {
  490. /* CF card isn't ready; it needs to be polled */
  491. ace_fsm_yield(ace);
  492. break;
  493. }
  494. /* Device is ready for command; determine what to do next */
  495. if (ace->id_req_count)
  496. ace->fsm_state = ACE_FSM_STATE_IDENTIFY_PREPARE;
  497. else
  498. ace->fsm_state = ACE_FSM_STATE_REQ_PREPARE;
  499. break;
  500. case ACE_FSM_STATE_IDENTIFY_PREPARE:
  501. /* Send identify command */
  502. ace->fsm_task = ACE_TASK_IDENTIFY;
  503. ace->data_ptr = ace->cf_id;
  504. ace->data_count = ACE_BUF_PER_SECTOR;
  505. ace_out(ace, ACE_SECCNTCMD, ACE_SECCNTCMD_IDENTIFY);
  506. /* As per datasheet, put config controller in reset */
  507. val = ace_in(ace, ACE_CTRL);
  508. ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
  509. /* irq handler takes over from this point; wait for the
  510. * transfer to complete */
  511. ace->fsm_state = ACE_FSM_STATE_IDENTIFY_TRANSFER;
  512. ace_fsm_yieldirq(ace);
  513. break;
  514. case ACE_FSM_STATE_IDENTIFY_TRANSFER:
  515. /* Check that the sysace is ready to receive data */
  516. status = ace_in32(ace, ACE_STATUS);
  517. if (status & ACE_STATUS_CFBSY) {
  518. dev_dbg(ace->dev, "CFBSY set; t=%i iter=%i dc=%i\n",
  519. ace->fsm_task, ace->fsm_iter_num,
  520. ace->data_count);
  521. ace_fsm_yield(ace);
  522. break;
  523. }
  524. if (!(status & ACE_STATUS_DATABUFRDY)) {
  525. ace_fsm_yield(ace);
  526. break;
  527. }
  528. /* Transfer the next buffer */
  529. ace->reg_ops->datain(ace);
  530. ace->data_count--;
  531. /* If there are still buffers to be transfers; jump out here */
  532. if (ace->data_count != 0) {
  533. ace_fsm_yieldirq(ace);
  534. break;
  535. }
  536. /* transfer finished; kick state machine */
  537. dev_dbg(ace->dev, "identify finished\n");
  538. ace->fsm_state = ACE_FSM_STATE_IDENTIFY_COMPLETE;
  539. break;
  540. case ACE_FSM_STATE_IDENTIFY_COMPLETE:
  541. ace_fix_driveid(ace->cf_id);
  542. ace_dump_mem(ace->cf_id, 512); /* Debug: Dump out disk ID */
  543. if (ace->data_result) {
  544. /* Error occured, disable the disk */
  545. ace->media_change = 1;
  546. set_capacity(ace->gd, 0);
  547. dev_err(ace->dev, "error fetching CF id (%i)\n",
  548. ace->data_result);
  549. } else {
  550. ace->media_change = 0;
  551. /* Record disk parameters */
  552. set_capacity(ace->gd,
  553. ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY));
  554. dev_info(ace->dev, "capacity: %i sectors\n",
  555. ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY));
  556. }
  557. /* We're done, drop to IDLE state and notify waiters */
  558. ace->fsm_state = ACE_FSM_STATE_IDLE;
  559. ace->id_result = ace->data_result;
  560. while (ace->id_req_count) {
  561. complete(&ace->id_completion);
  562. ace->id_req_count--;
  563. }
  564. break;
  565. case ACE_FSM_STATE_REQ_PREPARE:
  566. req = ace_get_next_request(ace->queue);
  567. if (!req) {
  568. ace->fsm_state = ACE_FSM_STATE_IDLE;
  569. break;
  570. }
  571. blk_start_request(req);
  572. /* Okay, it's a data request, set it up for transfer */
  573. dev_dbg(ace->dev,
  574. "request: sec=%llx hcnt=%x, ccnt=%x, dir=%i\n",
  575. (unsigned long long)blk_rq_pos(req),
  576. blk_rq_sectors(req), blk_rq_cur_sectors(req),
  577. rq_data_dir(req));
  578. ace->req = req;
  579. ace->data_ptr = req->buffer;
  580. ace->data_count = blk_rq_cur_sectors(req) * ACE_BUF_PER_SECTOR;
  581. ace_out32(ace, ACE_MPULBA, blk_rq_pos(req) & 0x0FFFFFFF);
  582. count = blk_rq_sectors(req);
  583. if (rq_data_dir(req)) {
  584. /* Kick off write request */
  585. dev_dbg(ace->dev, "write data\n");
  586. ace->fsm_task = ACE_TASK_WRITE;
  587. ace_out(ace, ACE_SECCNTCMD,
  588. count | ACE_SECCNTCMD_WRITE_DATA);
  589. } else {
  590. /* Kick off read request */
  591. dev_dbg(ace->dev, "read data\n");
  592. ace->fsm_task = ACE_TASK_READ;
  593. ace_out(ace, ACE_SECCNTCMD,
  594. count | ACE_SECCNTCMD_READ_DATA);
  595. }
  596. /* As per datasheet, put config controller in reset */
  597. val = ace_in(ace, ACE_CTRL);
  598. ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
  599. /* Move to the transfer state. The systemace will raise
  600. * an interrupt once there is something to do
  601. */
  602. ace->fsm_state = ACE_FSM_STATE_REQ_TRANSFER;
  603. if (ace->fsm_task == ACE_TASK_READ)
  604. ace_fsm_yieldirq(ace); /* wait for data ready */
  605. break;
  606. case ACE_FSM_STATE_REQ_TRANSFER:
  607. /* Check that the sysace is ready to receive data */
  608. status = ace_in32(ace, ACE_STATUS);
  609. if (status & ACE_STATUS_CFBSY) {
  610. dev_dbg(ace->dev,
  611. "CFBSY set; t=%i iter=%i c=%i dc=%i irq=%i\n",
  612. ace->fsm_task, ace->fsm_iter_num,
  613. blk_rq_cur_sectors(ace->req) * 16,
  614. ace->data_count, ace->in_irq);
  615. ace_fsm_yield(ace); /* need to poll CFBSY bit */
  616. break;
  617. }
  618. if (!(status & ACE_STATUS_DATABUFRDY)) {
  619. dev_dbg(ace->dev,
  620. "DATABUF not set; t=%i iter=%i c=%i dc=%i irq=%i\n",
  621. ace->fsm_task, ace->fsm_iter_num,
  622. blk_rq_cur_sectors(ace->req) * 16,
  623. ace->data_count, ace->in_irq);
  624. ace_fsm_yieldirq(ace);
  625. break;
  626. }
  627. /* Transfer the next buffer */
  628. if (ace->fsm_task == ACE_TASK_WRITE)
  629. ace->reg_ops->dataout(ace);
  630. else
  631. ace->reg_ops->datain(ace);
  632. ace->data_count--;
  633. /* If there are still buffers to be transfers; jump out here */
  634. if (ace->data_count != 0) {
  635. ace_fsm_yieldirq(ace);
  636. break;
  637. }
  638. /* bio finished; is there another one? */
  639. if (__blk_end_request_cur(ace->req, 0)) {
  640. /* dev_dbg(ace->dev, "next block; h=%u c=%u\n",
  641. * blk_rq_sectors(ace->req),
  642. * blk_rq_cur_sectors(ace->req));
  643. */
  644. ace->data_ptr = ace->req->buffer;
  645. ace->data_count = blk_rq_cur_sectors(ace->req) * 16;
  646. ace_fsm_yieldirq(ace);
  647. break;
  648. }
  649. ace->fsm_state = ACE_FSM_STATE_REQ_COMPLETE;
  650. break;
  651. case ACE_FSM_STATE_REQ_COMPLETE:
  652. ace->req = NULL;
  653. /* Finished request; go to idle state */
  654. ace->fsm_state = ACE_FSM_STATE_IDLE;
  655. break;
  656. default:
  657. ace->fsm_state = ACE_FSM_STATE_IDLE;
  658. break;
  659. }
  660. }
  661. static void ace_fsm_tasklet(unsigned long data)
  662. {
  663. struct ace_device *ace = (void *)data;
  664. unsigned long flags;
  665. spin_lock_irqsave(&ace->lock, flags);
  666. /* Loop over state machine until told to stop */
  667. ace->fsm_continue_flag = 1;
  668. while (ace->fsm_continue_flag)
  669. ace_fsm_dostate(ace);
  670. spin_unlock_irqrestore(&ace->lock, flags);
  671. }
  672. static void ace_stall_timer(unsigned long data)
  673. {
  674. struct ace_device *ace = (void *)data;
  675. unsigned long flags;
  676. dev_warn(ace->dev,
  677. "kicking stalled fsm; state=%i task=%i iter=%i dc=%i\n",
  678. ace->fsm_state, ace->fsm_task, ace->fsm_iter_num,
  679. ace->data_count);
  680. spin_lock_irqsave(&ace->lock, flags);
  681. /* Rearm the stall timer *before* entering FSM (which may then
  682. * delete the timer) */
  683. mod_timer(&ace->stall_timer, jiffies + HZ);
  684. /* Loop over state machine until told to stop */
  685. ace->fsm_continue_flag = 1;
  686. while (ace->fsm_continue_flag)
  687. ace_fsm_dostate(ace);
  688. spin_unlock_irqrestore(&ace->lock, flags);
  689. }
  690. /* ---------------------------------------------------------------------
  691. * Interrupt handling routines
  692. */
  693. static int ace_interrupt_checkstate(struct ace_device *ace)
  694. {
  695. u32 sreg = ace_in32(ace, ACE_STATUS);
  696. u16 creg = ace_in(ace, ACE_CTRL);
  697. /* Check for error occurance */
  698. if ((sreg & (ACE_STATUS_CFGERROR | ACE_STATUS_CFCERROR)) &&
  699. (creg & ACE_CTRL_ERRORIRQ)) {
  700. dev_err(ace->dev, "transfer failure\n");
  701. ace_dump_regs(ace);
  702. return -EIO;
  703. }
  704. return 0;
  705. }
  706. static irqreturn_t ace_interrupt(int irq, void *dev_id)
  707. {
  708. u16 creg;
  709. struct ace_device *ace = dev_id;
  710. /* be safe and get the lock */
  711. spin_lock(&ace->lock);
  712. ace->in_irq = 1;
  713. /* clear the interrupt */
  714. creg = ace_in(ace, ACE_CTRL);
  715. ace_out(ace, ACE_CTRL, creg | ACE_CTRL_RESETIRQ);
  716. ace_out(ace, ACE_CTRL, creg);
  717. /* check for IO failures */
  718. if (ace_interrupt_checkstate(ace))
  719. ace->data_result = -EIO;
  720. if (ace->fsm_task == 0) {
  721. dev_err(ace->dev,
  722. "spurious irq; stat=%.8x ctrl=%.8x cmd=%.4x\n",
  723. ace_in32(ace, ACE_STATUS), ace_in32(ace, ACE_CTRL),
  724. ace_in(ace, ACE_SECCNTCMD));
  725. dev_err(ace->dev, "fsm_task=%i fsm_state=%i data_count=%i\n",
  726. ace->fsm_task, ace->fsm_state, ace->data_count);
  727. }
  728. /* Loop over state machine until told to stop */
  729. ace->fsm_continue_flag = 1;
  730. while (ace->fsm_continue_flag)
  731. ace_fsm_dostate(ace);
  732. /* done with interrupt; drop the lock */
  733. ace->in_irq = 0;
  734. spin_unlock(&ace->lock);
  735. return IRQ_HANDLED;
  736. }
  737. /* ---------------------------------------------------------------------
  738. * Block ops
  739. */
  740. static void ace_request(struct request_queue * q)
  741. {
  742. struct request *req;
  743. struct ace_device *ace;
  744. req = ace_get_next_request(q);
  745. if (req) {
  746. ace = req->rq_disk->private_data;
  747. tasklet_schedule(&ace->fsm_tasklet);
  748. }
  749. }
  750. static int ace_media_changed(struct gendisk *gd)
  751. {
  752. struct ace_device *ace = gd->private_data;
  753. dev_dbg(ace->dev, "ace_media_changed(): %i\n", ace->media_change);
  754. return ace->media_change;
  755. }
  756. static int ace_revalidate_disk(struct gendisk *gd)
  757. {
  758. struct ace_device *ace = gd->private_data;
  759. unsigned long flags;
  760. dev_dbg(ace->dev, "ace_revalidate_disk()\n");
  761. if (ace->media_change) {
  762. dev_dbg(ace->dev, "requesting cf id and scheduling tasklet\n");
  763. spin_lock_irqsave(&ace->lock, flags);
  764. ace->id_req_count++;
  765. spin_unlock_irqrestore(&ace->lock, flags);
  766. tasklet_schedule(&ace->fsm_tasklet);
  767. wait_for_completion(&ace->id_completion);
  768. }
  769. dev_dbg(ace->dev, "revalidate complete\n");
  770. return ace->id_result;
  771. }
  772. static int ace_open(struct block_device *bdev, fmode_t mode)
  773. {
  774. struct ace_device *ace = bdev->bd_disk->private_data;
  775. unsigned long flags;
  776. dev_dbg(ace->dev, "ace_open() users=%i\n", ace->users + 1);
  777. lock_kernel();
  778. spin_lock_irqsave(&ace->lock, flags);
  779. ace->users++;
  780. spin_unlock_irqrestore(&ace->lock, flags);
  781. check_disk_change(bdev);
  782. unlock_kernel();
  783. return 0;
  784. }
  785. static int ace_release(struct gendisk *disk, fmode_t mode)
  786. {
  787. struct ace_device *ace = disk->private_data;
  788. unsigned long flags;
  789. u16 val;
  790. dev_dbg(ace->dev, "ace_release() users=%i\n", ace->users - 1);
  791. lock_kernel();
  792. spin_lock_irqsave(&ace->lock, flags);
  793. ace->users--;
  794. if (ace->users == 0) {
  795. val = ace_in(ace, ACE_CTRL);
  796. ace_out(ace, ACE_CTRL, val & ~ACE_CTRL_LOCKREQ);
  797. }
  798. spin_unlock_irqrestore(&ace->lock, flags);
  799. unlock_kernel();
  800. return 0;
  801. }
  802. static int ace_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  803. {
  804. struct ace_device *ace = bdev->bd_disk->private_data;
  805. u16 *cf_id = ace->cf_id;
  806. dev_dbg(ace->dev, "ace_getgeo()\n");
  807. geo->heads = cf_id[ATA_ID_HEADS];
  808. geo->sectors = cf_id[ATA_ID_SECTORS];
  809. geo->cylinders = cf_id[ATA_ID_CYLS];
  810. return 0;
  811. }
  812. static const struct block_device_operations ace_fops = {
  813. .owner = THIS_MODULE,
  814. .open = ace_open,
  815. .release = ace_release,
  816. .media_changed = ace_media_changed,
  817. .revalidate_disk = ace_revalidate_disk,
  818. .getgeo = ace_getgeo,
  819. };
  820. /* --------------------------------------------------------------------
  821. * SystemACE device setup/teardown code
  822. */
  823. static int __devinit ace_setup(struct ace_device *ace)
  824. {
  825. u16 version;
  826. u16 val;
  827. int rc;
  828. dev_dbg(ace->dev, "ace_setup(ace=0x%p)\n", ace);
  829. dev_dbg(ace->dev, "physaddr=0x%llx irq=%i\n",
  830. (unsigned long long)ace->physaddr, ace->irq);
  831. spin_lock_init(&ace->lock);
  832. init_completion(&ace->id_completion);
  833. /*
  834. * Map the device
  835. */
  836. ace->baseaddr = ioremap(ace->physaddr, 0x80);
  837. if (!ace->baseaddr)
  838. goto err_ioremap;
  839. /*
  840. * Initialize the state machine tasklet and stall timer
  841. */
  842. tasklet_init(&ace->fsm_tasklet, ace_fsm_tasklet, (unsigned long)ace);
  843. setup_timer(&ace->stall_timer, ace_stall_timer, (unsigned long)ace);
  844. /*
  845. * Initialize the request queue
  846. */
  847. ace->queue = blk_init_queue(ace_request, &ace->lock);
  848. if (ace->queue == NULL)
  849. goto err_blk_initq;
  850. blk_queue_logical_block_size(ace->queue, 512);
  851. /*
  852. * Allocate and initialize GD structure
  853. */
  854. ace->gd = alloc_disk(ACE_NUM_MINORS);
  855. if (!ace->gd)
  856. goto err_alloc_disk;
  857. ace->gd->major = ace_major;
  858. ace->gd->first_minor = ace->id * ACE_NUM_MINORS;
  859. ace->gd->fops = &ace_fops;
  860. ace->gd->queue = ace->queue;
  861. ace->gd->private_data = ace;
  862. snprintf(ace->gd->disk_name, 32, "xs%c", ace->id + 'a');
  863. /* set bus width */
  864. if (ace->bus_width == ACE_BUS_WIDTH_16) {
  865. /* 0x0101 should work regardless of endianess */
  866. ace_out_le16(ace, ACE_BUSMODE, 0x0101);
  867. /* read it back to determine endianess */
  868. if (ace_in_le16(ace, ACE_BUSMODE) == 0x0001)
  869. ace->reg_ops = &ace_reg_le16_ops;
  870. else
  871. ace->reg_ops = &ace_reg_be16_ops;
  872. } else {
  873. ace_out_8(ace, ACE_BUSMODE, 0x00);
  874. ace->reg_ops = &ace_reg_8_ops;
  875. }
  876. /* Make sure version register is sane */
  877. version = ace_in(ace, ACE_VERSION);
  878. if ((version == 0) || (version == 0xFFFF))
  879. goto err_read;
  880. /* Put sysace in a sane state by clearing most control reg bits */
  881. ace_out(ace, ACE_CTRL, ACE_CTRL_FORCECFGMODE |
  882. ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ);
  883. /* Now we can hook up the irq handler */
  884. if (ace->irq != NO_IRQ) {
  885. rc = request_irq(ace->irq, ace_interrupt, 0, "systemace", ace);
  886. if (rc) {
  887. /* Failure - fall back to polled mode */
  888. dev_err(ace->dev, "request_irq failed\n");
  889. ace->irq = NO_IRQ;
  890. }
  891. }
  892. /* Enable interrupts */
  893. val = ace_in(ace, ACE_CTRL);
  894. val |= ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ;
  895. ace_out(ace, ACE_CTRL, val);
  896. /* Print the identification */
  897. dev_info(ace->dev, "Xilinx SystemACE revision %i.%i.%i\n",
  898. (version >> 12) & 0xf, (version >> 8) & 0x0f, version & 0xff);
  899. dev_dbg(ace->dev, "physaddr 0x%llx, mapped to 0x%p, irq=%i\n",
  900. (unsigned long long) ace->physaddr, ace->baseaddr, ace->irq);
  901. ace->media_change = 1;
  902. ace_revalidate_disk(ace->gd);
  903. /* Make the sysace device 'live' */
  904. add_disk(ace->gd);
  905. return 0;
  906. err_read:
  907. put_disk(ace->gd);
  908. err_alloc_disk:
  909. blk_cleanup_queue(ace->queue);
  910. err_blk_initq:
  911. iounmap(ace->baseaddr);
  912. err_ioremap:
  913. dev_info(ace->dev, "xsysace: error initializing device at 0x%llx\n",
  914. (unsigned long long) ace->physaddr);
  915. return -ENOMEM;
  916. }
  917. static void __devexit ace_teardown(struct ace_device *ace)
  918. {
  919. if (ace->gd) {
  920. del_gendisk(ace->gd);
  921. put_disk(ace->gd);
  922. }
  923. if (ace->queue)
  924. blk_cleanup_queue(ace->queue);
  925. tasklet_kill(&ace->fsm_tasklet);
  926. if (ace->irq != NO_IRQ)
  927. free_irq(ace->irq, ace);
  928. iounmap(ace->baseaddr);
  929. }
  930. static int __devinit
  931. ace_alloc(struct device *dev, int id, resource_size_t physaddr,
  932. int irq, int bus_width)
  933. {
  934. struct ace_device *ace;
  935. int rc;
  936. dev_dbg(dev, "ace_alloc(%p)\n", dev);
  937. if (!physaddr) {
  938. rc = -ENODEV;
  939. goto err_noreg;
  940. }
  941. /* Allocate and initialize the ace device structure */
  942. ace = kzalloc(sizeof(struct ace_device), GFP_KERNEL);
  943. if (!ace) {
  944. rc = -ENOMEM;
  945. goto err_alloc;
  946. }
  947. ace->dev = dev;
  948. ace->id = id;
  949. ace->physaddr = physaddr;
  950. ace->irq = irq;
  951. ace->bus_width = bus_width;
  952. /* Call the setup code */
  953. rc = ace_setup(ace);
  954. if (rc)
  955. goto err_setup;
  956. dev_set_drvdata(dev, ace);
  957. return 0;
  958. err_setup:
  959. dev_set_drvdata(dev, NULL);
  960. kfree(ace);
  961. err_alloc:
  962. err_noreg:
  963. dev_err(dev, "could not initialize device, err=%i\n", rc);
  964. return rc;
  965. }
  966. static void __devexit ace_free(struct device *dev)
  967. {
  968. struct ace_device *ace = dev_get_drvdata(dev);
  969. dev_dbg(dev, "ace_free(%p)\n", dev);
  970. if (ace) {
  971. ace_teardown(ace);
  972. dev_set_drvdata(dev, NULL);
  973. kfree(ace);
  974. }
  975. }
  976. /* ---------------------------------------------------------------------
  977. * Platform Bus Support
  978. */
  979. static int __devinit ace_probe(struct platform_device *dev)
  980. {
  981. resource_size_t physaddr = 0;
  982. int bus_width = ACE_BUS_WIDTH_16; /* FIXME: should not be hard coded */
  983. int id = dev->id;
  984. int irq = NO_IRQ;
  985. int i;
  986. dev_dbg(&dev->dev, "ace_probe(%p)\n", dev);
  987. for (i = 0; i < dev->num_resources; i++) {
  988. if (dev->resource[i].flags & IORESOURCE_MEM)
  989. physaddr = dev->resource[i].start;
  990. if (dev->resource[i].flags & IORESOURCE_IRQ)
  991. irq = dev->resource[i].start;
  992. }
  993. /* Call the bus-independant setup code */
  994. return ace_alloc(&dev->dev, id, physaddr, irq, bus_width);
  995. }
  996. /*
  997. * Platform bus remove() method
  998. */
  999. static int __devexit ace_remove(struct platform_device *dev)
  1000. {
  1001. ace_free(&dev->dev);
  1002. return 0;
  1003. }
  1004. static struct platform_driver ace_platform_driver = {
  1005. .probe = ace_probe,
  1006. .remove = __devexit_p(ace_remove),
  1007. .driver = {
  1008. .owner = THIS_MODULE,
  1009. .name = "xsysace",
  1010. },
  1011. };
  1012. /* ---------------------------------------------------------------------
  1013. * OF_Platform Bus Support
  1014. */
  1015. #if defined(CONFIG_OF)
  1016. static int __devinit
  1017. ace_of_probe(struct platform_device *op, const struct of_device_id *match)
  1018. {
  1019. struct resource res;
  1020. resource_size_t physaddr;
  1021. const u32 *id;
  1022. int irq, bus_width, rc;
  1023. dev_dbg(&op->dev, "ace_of_probe(%p, %p)\n", op, match);
  1024. /* device id */
  1025. id = of_get_property(op->dev.of_node, "port-number", NULL);
  1026. /* physaddr */
  1027. rc = of_address_to_resource(op->dev.of_node, 0, &res);
  1028. if (rc) {
  1029. dev_err(&op->dev, "invalid address\n");
  1030. return rc;
  1031. }
  1032. physaddr = res.start;
  1033. /* irq */
  1034. irq = irq_of_parse_and_map(op->dev.of_node, 0);
  1035. /* bus width */
  1036. bus_width = ACE_BUS_WIDTH_16;
  1037. if (of_find_property(op->dev.of_node, "8-bit", NULL))
  1038. bus_width = ACE_BUS_WIDTH_8;
  1039. /* Call the bus-independant setup code */
  1040. return ace_alloc(&op->dev, id ? *id : 0, physaddr, irq, bus_width);
  1041. }
  1042. static int __devexit ace_of_remove(struct platform_device *op)
  1043. {
  1044. ace_free(&op->dev);
  1045. return 0;
  1046. }
  1047. /* Match table for of_platform binding */
  1048. static const struct of_device_id ace_of_match[] __devinitconst = {
  1049. { .compatible = "xlnx,opb-sysace-1.00.b", },
  1050. { .compatible = "xlnx,opb-sysace-1.00.c", },
  1051. { .compatible = "xlnx,xps-sysace-1.00.a", },
  1052. { .compatible = "xlnx,sysace", },
  1053. {},
  1054. };
  1055. MODULE_DEVICE_TABLE(of, ace_of_match);
  1056. static struct of_platform_driver ace_of_driver = {
  1057. .probe = ace_of_probe,
  1058. .remove = __devexit_p(ace_of_remove),
  1059. .driver = {
  1060. .name = "xsysace",
  1061. .owner = THIS_MODULE,
  1062. .of_match_table = ace_of_match,
  1063. },
  1064. };
  1065. /* Registration helpers to keep the number of #ifdefs to a minimum */
  1066. static inline int __init ace_of_register(void)
  1067. {
  1068. pr_debug("xsysace: registering OF binding\n");
  1069. return of_register_platform_driver(&ace_of_driver);
  1070. }
  1071. static inline void __exit ace_of_unregister(void)
  1072. {
  1073. of_unregister_platform_driver(&ace_of_driver);
  1074. }
  1075. #else /* CONFIG_OF */
  1076. /* CONFIG_OF not enabled; do nothing helpers */
  1077. static inline int __init ace_of_register(void) { return 0; }
  1078. static inline void __exit ace_of_unregister(void) { }
  1079. #endif /* CONFIG_OF */
  1080. /* ---------------------------------------------------------------------
  1081. * Module init/exit routines
  1082. */
  1083. static int __init ace_init(void)
  1084. {
  1085. int rc;
  1086. ace_major = register_blkdev(ace_major, "xsysace");
  1087. if (ace_major <= 0) {
  1088. rc = -ENOMEM;
  1089. goto err_blk;
  1090. }
  1091. rc = ace_of_register();
  1092. if (rc)
  1093. goto err_of;
  1094. pr_debug("xsysace: registering platform binding\n");
  1095. rc = platform_driver_register(&ace_platform_driver);
  1096. if (rc)
  1097. goto err_plat;
  1098. pr_info("Xilinx SystemACE device driver, major=%i\n", ace_major);
  1099. return 0;
  1100. err_plat:
  1101. ace_of_unregister();
  1102. err_of:
  1103. unregister_blkdev(ace_major, "xsysace");
  1104. err_blk:
  1105. printk(KERN_ERR "xsysace: registration failed; err=%i\n", rc);
  1106. return rc;
  1107. }
  1108. static void __exit ace_exit(void)
  1109. {
  1110. pr_debug("Unregistering Xilinx SystemACE driver\n");
  1111. platform_driver_unregister(&ace_platform_driver);
  1112. ace_of_unregister();
  1113. unregister_blkdev(ace_major, "xsysace");
  1114. }
  1115. module_init(ace_init);
  1116. module_exit(ace_exit);