intel_dp.c 103 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include <linux/export.h>
  30. #include <drm/drmP.h>
  31. #include <drm/drm_crtc.h>
  32. #include <drm/drm_crtc_helper.h>
  33. #include <drm/drm_edid.h>
  34. #include "intel_drv.h"
  35. #include <drm/i915_drm.h>
  36. #include "i915_drv.h"
  37. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  38. struct dp_link_dpll {
  39. int link_bw;
  40. struct dpll dpll;
  41. };
  42. static const struct dp_link_dpll gen4_dpll[] = {
  43. { DP_LINK_BW_1_62,
  44. { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
  45. { DP_LINK_BW_2_7,
  46. { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
  47. };
  48. static const struct dp_link_dpll pch_dpll[] = {
  49. { DP_LINK_BW_1_62,
  50. { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
  51. { DP_LINK_BW_2_7,
  52. { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
  53. };
  54. static const struct dp_link_dpll vlv_dpll[] = {
  55. { DP_LINK_BW_1_62,
  56. { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
  57. { DP_LINK_BW_2_7,
  58. { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
  59. };
  60. /**
  61. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  62. * @intel_dp: DP struct
  63. *
  64. * If a CPU or PCH DP output is attached to an eDP panel, this function
  65. * will return true, and false otherwise.
  66. */
  67. static bool is_edp(struct intel_dp *intel_dp)
  68. {
  69. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  70. return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
  71. }
  72. static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
  73. {
  74. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  75. return intel_dig_port->base.base.dev;
  76. }
  77. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  78. {
  79. return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  80. }
  81. static void intel_dp_link_down(struct intel_dp *intel_dp);
  82. static int
  83. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  84. {
  85. int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
  86. switch (max_link_bw) {
  87. case DP_LINK_BW_1_62:
  88. case DP_LINK_BW_2_7:
  89. break;
  90. case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
  91. max_link_bw = DP_LINK_BW_2_7;
  92. break;
  93. default:
  94. WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
  95. max_link_bw);
  96. max_link_bw = DP_LINK_BW_1_62;
  97. break;
  98. }
  99. return max_link_bw;
  100. }
  101. /*
  102. * The units on the numbers in the next two are... bizarre. Examples will
  103. * make it clearer; this one parallels an example in the eDP spec.
  104. *
  105. * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
  106. *
  107. * 270000 * 1 * 8 / 10 == 216000
  108. *
  109. * The actual data capacity of that configuration is 2.16Gbit/s, so the
  110. * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
  111. * or equivalently, kilopixels per second - so for 1680x1050R it'd be
  112. * 119000. At 18bpp that's 2142000 kilobits per second.
  113. *
  114. * Thus the strange-looking division by 10 in intel_dp_link_required, to
  115. * get the result in decakilobits instead of kilobits.
  116. */
  117. static int
  118. intel_dp_link_required(int pixel_clock, int bpp)
  119. {
  120. return (pixel_clock * bpp + 9) / 10;
  121. }
  122. static int
  123. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  124. {
  125. return (max_link_clock * max_lanes * 8) / 10;
  126. }
  127. static int
  128. intel_dp_mode_valid(struct drm_connector *connector,
  129. struct drm_display_mode *mode)
  130. {
  131. struct intel_dp *intel_dp = intel_attached_dp(connector);
  132. struct intel_connector *intel_connector = to_intel_connector(connector);
  133. struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
  134. int target_clock = mode->clock;
  135. int max_rate, mode_rate, max_lanes, max_link_clock;
  136. if (is_edp(intel_dp) && fixed_mode) {
  137. if (mode->hdisplay > fixed_mode->hdisplay)
  138. return MODE_PANEL;
  139. if (mode->vdisplay > fixed_mode->vdisplay)
  140. return MODE_PANEL;
  141. target_clock = fixed_mode->clock;
  142. }
  143. max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
  144. max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
  145. max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
  146. mode_rate = intel_dp_link_required(target_clock, 18);
  147. if (mode_rate > max_rate)
  148. return MODE_CLOCK_HIGH;
  149. if (mode->clock < 10000)
  150. return MODE_CLOCK_LOW;
  151. if (mode->flags & DRM_MODE_FLAG_DBLCLK)
  152. return MODE_H_ILLEGAL;
  153. return MODE_OK;
  154. }
  155. static uint32_t
  156. pack_aux(uint8_t *src, int src_bytes)
  157. {
  158. int i;
  159. uint32_t v = 0;
  160. if (src_bytes > 4)
  161. src_bytes = 4;
  162. for (i = 0; i < src_bytes; i++)
  163. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  164. return v;
  165. }
  166. static void
  167. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  168. {
  169. int i;
  170. if (dst_bytes > 4)
  171. dst_bytes = 4;
  172. for (i = 0; i < dst_bytes; i++)
  173. dst[i] = src >> ((3-i) * 8);
  174. }
  175. /* hrawclock is 1/4 the FSB frequency */
  176. static int
  177. intel_hrawclk(struct drm_device *dev)
  178. {
  179. struct drm_i915_private *dev_priv = dev->dev_private;
  180. uint32_t clkcfg;
  181. /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
  182. if (IS_VALLEYVIEW(dev))
  183. return 200;
  184. clkcfg = I915_READ(CLKCFG);
  185. switch (clkcfg & CLKCFG_FSB_MASK) {
  186. case CLKCFG_FSB_400:
  187. return 100;
  188. case CLKCFG_FSB_533:
  189. return 133;
  190. case CLKCFG_FSB_667:
  191. return 166;
  192. case CLKCFG_FSB_800:
  193. return 200;
  194. case CLKCFG_FSB_1067:
  195. return 266;
  196. case CLKCFG_FSB_1333:
  197. return 333;
  198. /* these two are just a guess; one of them might be right */
  199. case CLKCFG_FSB_1600:
  200. case CLKCFG_FSB_1600_ALT:
  201. return 400;
  202. default:
  203. return 133;
  204. }
  205. }
  206. static void
  207. intel_dp_init_panel_power_sequencer(struct drm_device *dev,
  208. struct intel_dp *intel_dp,
  209. struct edp_power_seq *out);
  210. static void
  211. intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
  212. struct intel_dp *intel_dp,
  213. struct edp_power_seq *out);
  214. static enum pipe
  215. vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
  216. {
  217. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  218. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  219. struct drm_device *dev = intel_dig_port->base.base.dev;
  220. struct drm_i915_private *dev_priv = dev->dev_private;
  221. enum port port = intel_dig_port->port;
  222. enum pipe pipe;
  223. /* modeset should have pipe */
  224. if (crtc)
  225. return to_intel_crtc(crtc)->pipe;
  226. /* init time, try to find a pipe with this port selected */
  227. for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
  228. u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
  229. PANEL_PORT_SELECT_MASK;
  230. if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
  231. return pipe;
  232. if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
  233. return pipe;
  234. }
  235. /* shrug */
  236. return PIPE_A;
  237. }
  238. static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
  239. {
  240. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  241. if (HAS_PCH_SPLIT(dev))
  242. return PCH_PP_CONTROL;
  243. else
  244. return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
  245. }
  246. static u32 _pp_stat_reg(struct intel_dp *intel_dp)
  247. {
  248. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  249. if (HAS_PCH_SPLIT(dev))
  250. return PCH_PP_STATUS;
  251. else
  252. return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
  253. }
  254. static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
  255. {
  256. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  257. struct drm_i915_private *dev_priv = dev->dev_private;
  258. return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
  259. }
  260. static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
  261. {
  262. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  263. struct drm_i915_private *dev_priv = dev->dev_private;
  264. return (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
  265. }
  266. static void
  267. intel_dp_check_edp(struct intel_dp *intel_dp)
  268. {
  269. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  270. struct drm_i915_private *dev_priv = dev->dev_private;
  271. if (!is_edp(intel_dp))
  272. return;
  273. if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
  274. WARN(1, "eDP powered off while attempting aux channel communication.\n");
  275. DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
  276. I915_READ(_pp_stat_reg(intel_dp)),
  277. I915_READ(_pp_ctrl_reg(intel_dp)));
  278. }
  279. }
  280. static uint32_t
  281. intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
  282. {
  283. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  284. struct drm_device *dev = intel_dig_port->base.base.dev;
  285. struct drm_i915_private *dev_priv = dev->dev_private;
  286. uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
  287. uint32_t status;
  288. bool done;
  289. #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  290. if (has_aux_irq)
  291. done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
  292. msecs_to_jiffies_timeout(10));
  293. else
  294. done = wait_for_atomic(C, 10) == 0;
  295. if (!done)
  296. DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
  297. has_aux_irq);
  298. #undef C
  299. return status;
  300. }
  301. static uint32_t get_aux_clock_divider(struct intel_dp *intel_dp,
  302. int index)
  303. {
  304. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  305. struct drm_device *dev = intel_dig_port->base.base.dev;
  306. struct drm_i915_private *dev_priv = dev->dev_private;
  307. /* The clock divider is based off the hrawclk,
  308. * and would like to run at 2MHz. So, take the
  309. * hrawclk value and divide by 2 and use that
  310. *
  311. * Note that PCH attached eDP panels should use a 125MHz input
  312. * clock divider.
  313. */
  314. if (IS_VALLEYVIEW(dev)) {
  315. return index ? 0 : 100;
  316. } else if (intel_dig_port->port == PORT_A) {
  317. if (index)
  318. return 0;
  319. if (HAS_DDI(dev))
  320. return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
  321. else if (IS_GEN6(dev) || IS_GEN7(dev))
  322. return 200; /* SNB & IVB eDP input clock at 400Mhz */
  323. else
  324. return 225; /* eDP input clock at 450Mhz */
  325. } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
  326. /* Workaround for non-ULT HSW */
  327. switch (index) {
  328. case 0: return 63;
  329. case 1: return 72;
  330. default: return 0;
  331. }
  332. } else if (HAS_PCH_SPLIT(dev)) {
  333. return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
  334. } else {
  335. return index ? 0 :intel_hrawclk(dev) / 2;
  336. }
  337. }
  338. static int
  339. intel_dp_aux_ch(struct intel_dp *intel_dp,
  340. uint8_t *send, int send_bytes,
  341. uint8_t *recv, int recv_size)
  342. {
  343. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  344. struct drm_device *dev = intel_dig_port->base.base.dev;
  345. struct drm_i915_private *dev_priv = dev->dev_private;
  346. uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
  347. uint32_t ch_data = ch_ctl + 4;
  348. uint32_t aux_clock_divider;
  349. int i, ret, recv_bytes;
  350. uint32_t status;
  351. int try, precharge, clock = 0;
  352. bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
  353. /* dp aux is extremely sensitive to irq latency, hence request the
  354. * lowest possible wakeup latency and so prevent the cpu from going into
  355. * deep sleep states.
  356. */
  357. pm_qos_update_request(&dev_priv->pm_qos, 0);
  358. intel_dp_check_edp(intel_dp);
  359. if (IS_GEN6(dev))
  360. precharge = 3;
  361. else
  362. precharge = 5;
  363. intel_aux_display_runtime_get(dev_priv);
  364. /* Try to wait for any previous AUX channel activity */
  365. for (try = 0; try < 3; try++) {
  366. status = I915_READ_NOTRACE(ch_ctl);
  367. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  368. break;
  369. msleep(1);
  370. }
  371. if (try == 3) {
  372. WARN(1, "dp_aux_ch not started status 0x%08x\n",
  373. I915_READ(ch_ctl));
  374. ret = -EBUSY;
  375. goto out;
  376. }
  377. /* Only 5 data registers! */
  378. if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
  379. ret = -E2BIG;
  380. goto out;
  381. }
  382. while ((aux_clock_divider = get_aux_clock_divider(intel_dp, clock++))) {
  383. /* Must try at least 3 times according to DP spec */
  384. for (try = 0; try < 5; try++) {
  385. /* Load the send data into the aux channel data registers */
  386. for (i = 0; i < send_bytes; i += 4)
  387. I915_WRITE(ch_data + i,
  388. pack_aux(send + i, send_bytes - i));
  389. /* Send the command and wait for it to complete */
  390. I915_WRITE(ch_ctl,
  391. DP_AUX_CH_CTL_SEND_BUSY |
  392. (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
  393. DP_AUX_CH_CTL_TIME_OUT_400us |
  394. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  395. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  396. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  397. DP_AUX_CH_CTL_DONE |
  398. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  399. DP_AUX_CH_CTL_RECEIVE_ERROR);
  400. status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
  401. /* Clear done status and any errors */
  402. I915_WRITE(ch_ctl,
  403. status |
  404. DP_AUX_CH_CTL_DONE |
  405. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  406. DP_AUX_CH_CTL_RECEIVE_ERROR);
  407. if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
  408. DP_AUX_CH_CTL_RECEIVE_ERROR))
  409. continue;
  410. if (status & DP_AUX_CH_CTL_DONE)
  411. break;
  412. }
  413. if (status & DP_AUX_CH_CTL_DONE)
  414. break;
  415. }
  416. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  417. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  418. ret = -EBUSY;
  419. goto out;
  420. }
  421. /* Check for timeout or receive error.
  422. * Timeouts occur when the sink is not connected
  423. */
  424. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  425. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  426. ret = -EIO;
  427. goto out;
  428. }
  429. /* Timeouts occur when the device isn't connected, so they're
  430. * "normal" -- don't fill the kernel log with these */
  431. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  432. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  433. ret = -ETIMEDOUT;
  434. goto out;
  435. }
  436. /* Unload any bytes sent back from the other side */
  437. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  438. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  439. if (recv_bytes > recv_size)
  440. recv_bytes = recv_size;
  441. for (i = 0; i < recv_bytes; i += 4)
  442. unpack_aux(I915_READ(ch_data + i),
  443. recv + i, recv_bytes - i);
  444. ret = recv_bytes;
  445. out:
  446. pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
  447. intel_aux_display_runtime_put(dev_priv);
  448. return ret;
  449. }
  450. /* Write data to the aux channel in native mode */
  451. static int
  452. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  453. uint16_t address, uint8_t *send, int send_bytes)
  454. {
  455. int ret;
  456. uint8_t msg[20];
  457. int msg_bytes;
  458. uint8_t ack;
  459. if (WARN_ON(send_bytes > 16))
  460. return -E2BIG;
  461. intel_dp_check_edp(intel_dp);
  462. msg[0] = AUX_NATIVE_WRITE << 4;
  463. msg[1] = address >> 8;
  464. msg[2] = address & 0xff;
  465. msg[3] = send_bytes - 1;
  466. memcpy(&msg[4], send, send_bytes);
  467. msg_bytes = send_bytes + 4;
  468. for (;;) {
  469. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  470. if (ret < 0)
  471. return ret;
  472. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  473. break;
  474. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  475. udelay(100);
  476. else
  477. return -EIO;
  478. }
  479. return send_bytes;
  480. }
  481. /* Write a single byte to the aux channel in native mode */
  482. static int
  483. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  484. uint16_t address, uint8_t byte)
  485. {
  486. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  487. }
  488. /* read bytes from a native aux channel */
  489. static int
  490. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  491. uint16_t address, uint8_t *recv, int recv_bytes)
  492. {
  493. uint8_t msg[4];
  494. int msg_bytes;
  495. uint8_t reply[20];
  496. int reply_bytes;
  497. uint8_t ack;
  498. int ret;
  499. if (WARN_ON(recv_bytes > 19))
  500. return -E2BIG;
  501. intel_dp_check_edp(intel_dp);
  502. msg[0] = AUX_NATIVE_READ << 4;
  503. msg[1] = address >> 8;
  504. msg[2] = address & 0xff;
  505. msg[3] = recv_bytes - 1;
  506. msg_bytes = 4;
  507. reply_bytes = recv_bytes + 1;
  508. for (;;) {
  509. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  510. reply, reply_bytes);
  511. if (ret == 0)
  512. return -EPROTO;
  513. if (ret < 0)
  514. return ret;
  515. ack = reply[0];
  516. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  517. memcpy(recv, reply + 1, ret - 1);
  518. return ret - 1;
  519. }
  520. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  521. udelay(100);
  522. else
  523. return -EIO;
  524. }
  525. }
  526. static int
  527. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  528. uint8_t write_byte, uint8_t *read_byte)
  529. {
  530. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  531. struct intel_dp *intel_dp = container_of(adapter,
  532. struct intel_dp,
  533. adapter);
  534. uint16_t address = algo_data->address;
  535. uint8_t msg[5];
  536. uint8_t reply[2];
  537. unsigned retry;
  538. int msg_bytes;
  539. int reply_bytes;
  540. int ret;
  541. intel_dp_check_edp(intel_dp);
  542. /* Set up the command byte */
  543. if (mode & MODE_I2C_READ)
  544. msg[0] = AUX_I2C_READ << 4;
  545. else
  546. msg[0] = AUX_I2C_WRITE << 4;
  547. if (!(mode & MODE_I2C_STOP))
  548. msg[0] |= AUX_I2C_MOT << 4;
  549. msg[1] = address >> 8;
  550. msg[2] = address;
  551. switch (mode) {
  552. case MODE_I2C_WRITE:
  553. msg[3] = 0;
  554. msg[4] = write_byte;
  555. msg_bytes = 5;
  556. reply_bytes = 1;
  557. break;
  558. case MODE_I2C_READ:
  559. msg[3] = 0;
  560. msg_bytes = 4;
  561. reply_bytes = 2;
  562. break;
  563. default:
  564. msg_bytes = 3;
  565. reply_bytes = 1;
  566. break;
  567. }
  568. /*
  569. * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device is
  570. * required to retry at least seven times upon receiving AUX_DEFER
  571. * before giving up the AUX transaction.
  572. */
  573. for (retry = 0; retry < 7; retry++) {
  574. ret = intel_dp_aux_ch(intel_dp,
  575. msg, msg_bytes,
  576. reply, reply_bytes);
  577. if (ret < 0) {
  578. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  579. return ret;
  580. }
  581. switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
  582. case AUX_NATIVE_REPLY_ACK:
  583. /* I2C-over-AUX Reply field is only valid
  584. * when paired with AUX ACK.
  585. */
  586. break;
  587. case AUX_NATIVE_REPLY_NACK:
  588. DRM_DEBUG_KMS("aux_ch native nack\n");
  589. return -EREMOTEIO;
  590. case AUX_NATIVE_REPLY_DEFER:
  591. /*
  592. * For now, just give more slack to branch devices. We
  593. * could check the DPCD for I2C bit rate capabilities,
  594. * and if available, adjust the interval. We could also
  595. * be more careful with DP-to-Legacy adapters where a
  596. * long legacy cable may force very low I2C bit rates.
  597. */
  598. if (intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
  599. DP_DWN_STRM_PORT_PRESENT)
  600. usleep_range(500, 600);
  601. else
  602. usleep_range(300, 400);
  603. continue;
  604. default:
  605. DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
  606. reply[0]);
  607. return -EREMOTEIO;
  608. }
  609. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  610. case AUX_I2C_REPLY_ACK:
  611. if (mode == MODE_I2C_READ) {
  612. *read_byte = reply[1];
  613. }
  614. return reply_bytes - 1;
  615. case AUX_I2C_REPLY_NACK:
  616. DRM_DEBUG_KMS("aux_i2c nack\n");
  617. return -EREMOTEIO;
  618. case AUX_I2C_REPLY_DEFER:
  619. DRM_DEBUG_KMS("aux_i2c defer\n");
  620. udelay(100);
  621. break;
  622. default:
  623. DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
  624. return -EREMOTEIO;
  625. }
  626. }
  627. DRM_ERROR("too many retries, giving up\n");
  628. return -EREMOTEIO;
  629. }
  630. static int
  631. intel_dp_i2c_init(struct intel_dp *intel_dp,
  632. struct intel_connector *intel_connector, const char *name)
  633. {
  634. int ret;
  635. DRM_DEBUG_KMS("i2c_init %s\n", name);
  636. intel_dp->algo.running = false;
  637. intel_dp->algo.address = 0;
  638. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  639. memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
  640. intel_dp->adapter.owner = THIS_MODULE;
  641. intel_dp->adapter.class = I2C_CLASS_DDC;
  642. strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  643. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  644. intel_dp->adapter.algo_data = &intel_dp->algo;
  645. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  646. ironlake_edp_panel_vdd_on(intel_dp);
  647. ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
  648. ironlake_edp_panel_vdd_off(intel_dp, false);
  649. return ret;
  650. }
  651. static void
  652. intel_dp_set_clock(struct intel_encoder *encoder,
  653. struct intel_crtc_config *pipe_config, int link_bw)
  654. {
  655. struct drm_device *dev = encoder->base.dev;
  656. const struct dp_link_dpll *divisor = NULL;
  657. int i, count = 0;
  658. if (IS_G4X(dev)) {
  659. divisor = gen4_dpll;
  660. count = ARRAY_SIZE(gen4_dpll);
  661. } else if (IS_HASWELL(dev)) {
  662. /* Haswell has special-purpose DP DDI clocks. */
  663. } else if (HAS_PCH_SPLIT(dev)) {
  664. divisor = pch_dpll;
  665. count = ARRAY_SIZE(pch_dpll);
  666. } else if (IS_VALLEYVIEW(dev)) {
  667. divisor = vlv_dpll;
  668. count = ARRAY_SIZE(vlv_dpll);
  669. }
  670. if (divisor && count) {
  671. for (i = 0; i < count; i++) {
  672. if (link_bw == divisor[i].link_bw) {
  673. pipe_config->dpll = divisor[i].dpll;
  674. pipe_config->clock_set = true;
  675. break;
  676. }
  677. }
  678. }
  679. }
  680. bool
  681. intel_dp_compute_config(struct intel_encoder *encoder,
  682. struct intel_crtc_config *pipe_config)
  683. {
  684. struct drm_device *dev = encoder->base.dev;
  685. struct drm_i915_private *dev_priv = dev->dev_private;
  686. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  687. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  688. enum port port = dp_to_dig_port(intel_dp)->port;
  689. struct intel_crtc *intel_crtc = encoder->new_crtc;
  690. struct intel_connector *intel_connector = intel_dp->attached_connector;
  691. int lane_count, clock;
  692. int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
  693. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  694. int bpp, mode_rate;
  695. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  696. int link_avail, link_clock;
  697. if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
  698. pipe_config->has_pch_encoder = true;
  699. pipe_config->has_dp_encoder = true;
  700. if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
  701. intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
  702. adjusted_mode);
  703. if (!HAS_PCH_SPLIT(dev))
  704. intel_gmch_panel_fitting(intel_crtc, pipe_config,
  705. intel_connector->panel.fitting_mode);
  706. else
  707. intel_pch_panel_fitting(intel_crtc, pipe_config,
  708. intel_connector->panel.fitting_mode);
  709. }
  710. if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
  711. return false;
  712. DRM_DEBUG_KMS("DP link computation with max lane count %i "
  713. "max bw %02x pixel clock %iKHz\n",
  714. max_lane_count, bws[max_clock],
  715. adjusted_mode->crtc_clock);
  716. /* Walk through all bpp values. Luckily they're all nicely spaced with 2
  717. * bpc in between. */
  718. bpp = pipe_config->pipe_bpp;
  719. if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp) {
  720. DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
  721. dev_priv->vbt.edp_bpp);
  722. bpp = min_t(int, bpp, dev_priv->vbt.edp_bpp);
  723. }
  724. for (; bpp >= 6*3; bpp -= 2*3) {
  725. mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
  726. bpp);
  727. for (clock = 0; clock <= max_clock; clock++) {
  728. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  729. link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
  730. link_avail = intel_dp_max_data_rate(link_clock,
  731. lane_count);
  732. if (mode_rate <= link_avail) {
  733. goto found;
  734. }
  735. }
  736. }
  737. }
  738. return false;
  739. found:
  740. if (intel_dp->color_range_auto) {
  741. /*
  742. * See:
  743. * CEA-861-E - 5.1 Default Encoding Parameters
  744. * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
  745. */
  746. if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
  747. intel_dp->color_range = DP_COLOR_RANGE_16_235;
  748. else
  749. intel_dp->color_range = 0;
  750. }
  751. if (intel_dp->color_range)
  752. pipe_config->limited_color_range = true;
  753. intel_dp->link_bw = bws[clock];
  754. intel_dp->lane_count = lane_count;
  755. pipe_config->pipe_bpp = bpp;
  756. pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
  757. DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
  758. intel_dp->link_bw, intel_dp->lane_count,
  759. pipe_config->port_clock, bpp);
  760. DRM_DEBUG_KMS("DP link bw required %i available %i\n",
  761. mode_rate, link_avail);
  762. intel_link_compute_m_n(bpp, lane_count,
  763. adjusted_mode->crtc_clock,
  764. pipe_config->port_clock,
  765. &pipe_config->dp_m_n);
  766. intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
  767. return true;
  768. }
  769. void intel_dp_init_link_config(struct intel_dp *intel_dp)
  770. {
  771. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  772. intel_dp->link_configuration[0] = intel_dp->link_bw;
  773. intel_dp->link_configuration[1] = intel_dp->lane_count;
  774. intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
  775. /*
  776. * Check for DPCD version > 1.1 and enhanced framing support
  777. */
  778. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  779. (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
  780. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  781. }
  782. }
  783. static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
  784. {
  785. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  786. struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
  787. struct drm_device *dev = crtc->base.dev;
  788. struct drm_i915_private *dev_priv = dev->dev_private;
  789. u32 dpa_ctl;
  790. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
  791. dpa_ctl = I915_READ(DP_A);
  792. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  793. if (crtc->config.port_clock == 162000) {
  794. /* For a long time we've carried around a ILK-DevA w/a for the
  795. * 160MHz clock. If we're really unlucky, it's still required.
  796. */
  797. DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
  798. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  799. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  800. } else {
  801. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  802. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  803. }
  804. I915_WRITE(DP_A, dpa_ctl);
  805. POSTING_READ(DP_A);
  806. udelay(500);
  807. }
  808. static void intel_dp_mode_set(struct intel_encoder *encoder)
  809. {
  810. struct drm_device *dev = encoder->base.dev;
  811. struct drm_i915_private *dev_priv = dev->dev_private;
  812. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  813. enum port port = dp_to_dig_port(intel_dp)->port;
  814. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  815. struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
  816. /*
  817. * There are four kinds of DP registers:
  818. *
  819. * IBX PCH
  820. * SNB CPU
  821. * IVB CPU
  822. * CPT PCH
  823. *
  824. * IBX PCH and CPU are the same for almost everything,
  825. * except that the CPU DP PLL is configured in this
  826. * register
  827. *
  828. * CPT PCH is quite different, having many bits moved
  829. * to the TRANS_DP_CTL register instead. That
  830. * configuration happens (oddly) in ironlake_pch_enable
  831. */
  832. /* Preserve the BIOS-computed detected bit. This is
  833. * supposed to be read-only.
  834. */
  835. intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
  836. /* Handle DP bits in common between all three register formats */
  837. intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
  838. intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
  839. if (intel_dp->has_audio) {
  840. DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
  841. pipe_name(crtc->pipe));
  842. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  843. intel_write_eld(&encoder->base, adjusted_mode);
  844. }
  845. intel_dp_init_link_config(intel_dp);
  846. /* Split out the IBX/CPU vs CPT settings */
  847. if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
  848. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  849. intel_dp->DP |= DP_SYNC_HS_HIGH;
  850. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  851. intel_dp->DP |= DP_SYNC_VS_HIGH;
  852. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  853. if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
  854. intel_dp->DP |= DP_ENHANCED_FRAMING;
  855. intel_dp->DP |= crtc->pipe << 29;
  856. } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
  857. if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
  858. intel_dp->DP |= intel_dp->color_range;
  859. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  860. intel_dp->DP |= DP_SYNC_HS_HIGH;
  861. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  862. intel_dp->DP |= DP_SYNC_VS_HIGH;
  863. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  864. if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
  865. intel_dp->DP |= DP_ENHANCED_FRAMING;
  866. if (crtc->pipe == 1)
  867. intel_dp->DP |= DP_PIPEB_SELECT;
  868. } else {
  869. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  870. }
  871. if (port == PORT_A && !IS_VALLEYVIEW(dev))
  872. ironlake_set_pll_cpu_edp(intel_dp);
  873. }
  874. #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
  875. #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
  876. #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
  877. #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
  878. #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
  879. #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
  880. static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
  881. u32 mask,
  882. u32 value)
  883. {
  884. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  885. struct drm_i915_private *dev_priv = dev->dev_private;
  886. u32 pp_stat_reg, pp_ctrl_reg;
  887. pp_stat_reg = _pp_stat_reg(intel_dp);
  888. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  889. DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
  890. mask, value,
  891. I915_READ(pp_stat_reg),
  892. I915_READ(pp_ctrl_reg));
  893. if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
  894. DRM_ERROR("Panel status timeout: status %08x control %08x\n",
  895. I915_READ(pp_stat_reg),
  896. I915_READ(pp_ctrl_reg));
  897. }
  898. }
  899. static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
  900. {
  901. DRM_DEBUG_KMS("Wait for panel power on\n");
  902. ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
  903. }
  904. static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
  905. {
  906. DRM_DEBUG_KMS("Wait for panel power off time\n");
  907. ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
  908. }
  909. static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
  910. {
  911. DRM_DEBUG_KMS("Wait for panel power cycle\n");
  912. ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
  913. }
  914. /* Read the current pp_control value, unlocking the register if it
  915. * is locked
  916. */
  917. static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
  918. {
  919. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  920. struct drm_i915_private *dev_priv = dev->dev_private;
  921. u32 control;
  922. control = I915_READ(_pp_ctrl_reg(intel_dp));
  923. control &= ~PANEL_UNLOCK_MASK;
  924. control |= PANEL_UNLOCK_REGS;
  925. return control;
  926. }
  927. void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
  928. {
  929. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  930. struct drm_i915_private *dev_priv = dev->dev_private;
  931. u32 pp;
  932. u32 pp_stat_reg, pp_ctrl_reg;
  933. if (!is_edp(intel_dp))
  934. return;
  935. DRM_DEBUG_KMS("Turn eDP VDD on\n");
  936. WARN(intel_dp->want_panel_vdd,
  937. "eDP VDD already requested on\n");
  938. intel_dp->want_panel_vdd = true;
  939. if (ironlake_edp_have_panel_vdd(intel_dp)) {
  940. DRM_DEBUG_KMS("eDP VDD already on\n");
  941. return;
  942. }
  943. if (!ironlake_edp_have_panel_power(intel_dp))
  944. ironlake_wait_panel_power_cycle(intel_dp);
  945. pp = ironlake_get_pp_control(intel_dp);
  946. pp |= EDP_FORCE_VDD;
  947. pp_stat_reg = _pp_stat_reg(intel_dp);
  948. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  949. I915_WRITE(pp_ctrl_reg, pp);
  950. POSTING_READ(pp_ctrl_reg);
  951. DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
  952. I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
  953. /*
  954. * If the panel wasn't on, delay before accessing aux channel
  955. */
  956. if (!ironlake_edp_have_panel_power(intel_dp)) {
  957. DRM_DEBUG_KMS("eDP was not running\n");
  958. msleep(intel_dp->panel_power_up_delay);
  959. }
  960. }
  961. static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
  962. {
  963. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  964. struct drm_i915_private *dev_priv = dev->dev_private;
  965. u32 pp;
  966. u32 pp_stat_reg, pp_ctrl_reg;
  967. WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
  968. if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
  969. pp = ironlake_get_pp_control(intel_dp);
  970. pp &= ~EDP_FORCE_VDD;
  971. pp_stat_reg = _pp_ctrl_reg(intel_dp);
  972. pp_ctrl_reg = _pp_stat_reg(intel_dp);
  973. I915_WRITE(pp_ctrl_reg, pp);
  974. POSTING_READ(pp_ctrl_reg);
  975. /* Make sure sequencer is idle before allowing subsequent activity */
  976. DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
  977. I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
  978. msleep(intel_dp->panel_power_down_delay);
  979. }
  980. }
  981. static void ironlake_panel_vdd_work(struct work_struct *__work)
  982. {
  983. struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
  984. struct intel_dp, panel_vdd_work);
  985. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  986. mutex_lock(&dev->mode_config.mutex);
  987. ironlake_panel_vdd_off_sync(intel_dp);
  988. mutex_unlock(&dev->mode_config.mutex);
  989. }
  990. void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
  991. {
  992. if (!is_edp(intel_dp))
  993. return;
  994. DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
  995. WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
  996. intel_dp->want_panel_vdd = false;
  997. if (sync) {
  998. ironlake_panel_vdd_off_sync(intel_dp);
  999. } else {
  1000. /*
  1001. * Queue the timer to fire a long
  1002. * time from now (relative to the power down delay)
  1003. * to keep the panel power up across a sequence of operations
  1004. */
  1005. schedule_delayed_work(&intel_dp->panel_vdd_work,
  1006. msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
  1007. }
  1008. }
  1009. void ironlake_edp_panel_on(struct intel_dp *intel_dp)
  1010. {
  1011. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1012. struct drm_i915_private *dev_priv = dev->dev_private;
  1013. u32 pp;
  1014. u32 pp_ctrl_reg;
  1015. if (!is_edp(intel_dp))
  1016. return;
  1017. DRM_DEBUG_KMS("Turn eDP power on\n");
  1018. if (ironlake_edp_have_panel_power(intel_dp)) {
  1019. DRM_DEBUG_KMS("eDP power already on\n");
  1020. return;
  1021. }
  1022. ironlake_wait_panel_power_cycle(intel_dp);
  1023. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  1024. pp = ironlake_get_pp_control(intel_dp);
  1025. if (IS_GEN5(dev)) {
  1026. /* ILK workaround: disable reset around power sequence */
  1027. pp &= ~PANEL_POWER_RESET;
  1028. I915_WRITE(pp_ctrl_reg, pp);
  1029. POSTING_READ(pp_ctrl_reg);
  1030. }
  1031. pp |= POWER_TARGET_ON;
  1032. if (!IS_GEN5(dev))
  1033. pp |= PANEL_POWER_RESET;
  1034. I915_WRITE(pp_ctrl_reg, pp);
  1035. POSTING_READ(pp_ctrl_reg);
  1036. ironlake_wait_panel_on(intel_dp);
  1037. if (IS_GEN5(dev)) {
  1038. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  1039. I915_WRITE(pp_ctrl_reg, pp);
  1040. POSTING_READ(pp_ctrl_reg);
  1041. }
  1042. }
  1043. void ironlake_edp_panel_off(struct intel_dp *intel_dp)
  1044. {
  1045. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1046. struct drm_i915_private *dev_priv = dev->dev_private;
  1047. u32 pp;
  1048. u32 pp_ctrl_reg;
  1049. if (!is_edp(intel_dp))
  1050. return;
  1051. DRM_DEBUG_KMS("Turn eDP power off\n");
  1052. WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
  1053. pp = ironlake_get_pp_control(intel_dp);
  1054. /* We need to switch off panel power _and_ force vdd, for otherwise some
  1055. * panels get very unhappy and cease to work. */
  1056. pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
  1057. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  1058. I915_WRITE(pp_ctrl_reg, pp);
  1059. POSTING_READ(pp_ctrl_reg);
  1060. intel_dp->want_panel_vdd = false;
  1061. ironlake_wait_panel_off(intel_dp);
  1062. }
  1063. void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
  1064. {
  1065. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1066. struct drm_device *dev = intel_dig_port->base.base.dev;
  1067. struct drm_i915_private *dev_priv = dev->dev_private;
  1068. int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
  1069. u32 pp;
  1070. u32 pp_ctrl_reg;
  1071. if (!is_edp(intel_dp))
  1072. return;
  1073. DRM_DEBUG_KMS("\n");
  1074. /*
  1075. * If we enable the backlight right away following a panel power
  1076. * on, we may see slight flicker as the panel syncs with the eDP
  1077. * link. So delay a bit to make sure the image is solid before
  1078. * allowing it to appear.
  1079. */
  1080. msleep(intel_dp->backlight_on_delay);
  1081. pp = ironlake_get_pp_control(intel_dp);
  1082. pp |= EDP_BLC_ENABLE;
  1083. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  1084. I915_WRITE(pp_ctrl_reg, pp);
  1085. POSTING_READ(pp_ctrl_reg);
  1086. intel_panel_enable_backlight(dev, pipe);
  1087. }
  1088. void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
  1089. {
  1090. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1091. struct drm_i915_private *dev_priv = dev->dev_private;
  1092. u32 pp;
  1093. u32 pp_ctrl_reg;
  1094. if (!is_edp(intel_dp))
  1095. return;
  1096. intel_panel_disable_backlight(dev);
  1097. DRM_DEBUG_KMS("\n");
  1098. pp = ironlake_get_pp_control(intel_dp);
  1099. pp &= ~EDP_BLC_ENABLE;
  1100. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  1101. I915_WRITE(pp_ctrl_reg, pp);
  1102. POSTING_READ(pp_ctrl_reg);
  1103. msleep(intel_dp->backlight_off_delay);
  1104. }
  1105. static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
  1106. {
  1107. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1108. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1109. struct drm_device *dev = crtc->dev;
  1110. struct drm_i915_private *dev_priv = dev->dev_private;
  1111. u32 dpa_ctl;
  1112. assert_pipe_disabled(dev_priv,
  1113. to_intel_crtc(crtc)->pipe);
  1114. DRM_DEBUG_KMS("\n");
  1115. dpa_ctl = I915_READ(DP_A);
  1116. WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
  1117. WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
  1118. /* We don't adjust intel_dp->DP while tearing down the link, to
  1119. * facilitate link retraining (e.g. after hotplug). Hence clear all
  1120. * enable bits here to ensure that we don't enable too much. */
  1121. intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
  1122. intel_dp->DP |= DP_PLL_ENABLE;
  1123. I915_WRITE(DP_A, intel_dp->DP);
  1124. POSTING_READ(DP_A);
  1125. udelay(200);
  1126. }
  1127. static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
  1128. {
  1129. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1130. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1131. struct drm_device *dev = crtc->dev;
  1132. struct drm_i915_private *dev_priv = dev->dev_private;
  1133. u32 dpa_ctl;
  1134. assert_pipe_disabled(dev_priv,
  1135. to_intel_crtc(crtc)->pipe);
  1136. dpa_ctl = I915_READ(DP_A);
  1137. WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
  1138. "dp pll off, should be on\n");
  1139. WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
  1140. /* We can't rely on the value tracked for the DP register in
  1141. * intel_dp->DP because link_down must not change that (otherwise link
  1142. * re-training will fail. */
  1143. dpa_ctl &= ~DP_PLL_ENABLE;
  1144. I915_WRITE(DP_A, dpa_ctl);
  1145. POSTING_READ(DP_A);
  1146. udelay(200);
  1147. }
  1148. /* If the sink supports it, try to set the power state appropriately */
  1149. void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
  1150. {
  1151. int ret, i;
  1152. /* Should have a valid DPCD by this point */
  1153. if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
  1154. return;
  1155. if (mode != DRM_MODE_DPMS_ON) {
  1156. ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
  1157. DP_SET_POWER_D3);
  1158. if (ret != 1)
  1159. DRM_DEBUG_DRIVER("failed to write sink power state\n");
  1160. } else {
  1161. /*
  1162. * When turning on, we need to retry for 1ms to give the sink
  1163. * time to wake up.
  1164. */
  1165. for (i = 0; i < 3; i++) {
  1166. ret = intel_dp_aux_native_write_1(intel_dp,
  1167. DP_SET_POWER,
  1168. DP_SET_POWER_D0);
  1169. if (ret == 1)
  1170. break;
  1171. msleep(1);
  1172. }
  1173. }
  1174. }
  1175. static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
  1176. enum pipe *pipe)
  1177. {
  1178. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1179. enum port port = dp_to_dig_port(intel_dp)->port;
  1180. struct drm_device *dev = encoder->base.dev;
  1181. struct drm_i915_private *dev_priv = dev->dev_private;
  1182. u32 tmp = I915_READ(intel_dp->output_reg);
  1183. if (!(tmp & DP_PORT_EN))
  1184. return false;
  1185. if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
  1186. *pipe = PORT_TO_PIPE_CPT(tmp);
  1187. } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
  1188. *pipe = PORT_TO_PIPE(tmp);
  1189. } else {
  1190. u32 trans_sel;
  1191. u32 trans_dp;
  1192. int i;
  1193. switch (intel_dp->output_reg) {
  1194. case PCH_DP_B:
  1195. trans_sel = TRANS_DP_PORT_SEL_B;
  1196. break;
  1197. case PCH_DP_C:
  1198. trans_sel = TRANS_DP_PORT_SEL_C;
  1199. break;
  1200. case PCH_DP_D:
  1201. trans_sel = TRANS_DP_PORT_SEL_D;
  1202. break;
  1203. default:
  1204. return true;
  1205. }
  1206. for_each_pipe(i) {
  1207. trans_dp = I915_READ(TRANS_DP_CTL(i));
  1208. if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
  1209. *pipe = i;
  1210. return true;
  1211. }
  1212. }
  1213. DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
  1214. intel_dp->output_reg);
  1215. }
  1216. return true;
  1217. }
  1218. static void intel_dp_get_config(struct intel_encoder *encoder,
  1219. struct intel_crtc_config *pipe_config)
  1220. {
  1221. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1222. u32 tmp, flags = 0;
  1223. struct drm_device *dev = encoder->base.dev;
  1224. struct drm_i915_private *dev_priv = dev->dev_private;
  1225. enum port port = dp_to_dig_port(intel_dp)->port;
  1226. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  1227. int dotclock;
  1228. if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
  1229. tmp = I915_READ(intel_dp->output_reg);
  1230. if (tmp & DP_SYNC_HS_HIGH)
  1231. flags |= DRM_MODE_FLAG_PHSYNC;
  1232. else
  1233. flags |= DRM_MODE_FLAG_NHSYNC;
  1234. if (tmp & DP_SYNC_VS_HIGH)
  1235. flags |= DRM_MODE_FLAG_PVSYNC;
  1236. else
  1237. flags |= DRM_MODE_FLAG_NVSYNC;
  1238. } else {
  1239. tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
  1240. if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
  1241. flags |= DRM_MODE_FLAG_PHSYNC;
  1242. else
  1243. flags |= DRM_MODE_FLAG_NHSYNC;
  1244. if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
  1245. flags |= DRM_MODE_FLAG_PVSYNC;
  1246. else
  1247. flags |= DRM_MODE_FLAG_NVSYNC;
  1248. }
  1249. pipe_config->adjusted_mode.flags |= flags;
  1250. pipe_config->has_dp_encoder = true;
  1251. intel_dp_get_m_n(crtc, pipe_config);
  1252. if (port == PORT_A) {
  1253. if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
  1254. pipe_config->port_clock = 162000;
  1255. else
  1256. pipe_config->port_clock = 270000;
  1257. }
  1258. dotclock = intel_dotclock_calculate(pipe_config->port_clock,
  1259. &pipe_config->dp_m_n);
  1260. if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
  1261. ironlake_check_encoder_dotclock(pipe_config, dotclock);
  1262. pipe_config->adjusted_mode.crtc_clock = dotclock;
  1263. }
  1264. static bool is_edp_psr(struct intel_dp *intel_dp)
  1265. {
  1266. return is_edp(intel_dp) &&
  1267. intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
  1268. }
  1269. static bool intel_edp_is_psr_enabled(struct drm_device *dev)
  1270. {
  1271. struct drm_i915_private *dev_priv = dev->dev_private;
  1272. if (!HAS_PSR(dev))
  1273. return false;
  1274. return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
  1275. }
  1276. static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
  1277. struct edp_vsc_psr *vsc_psr)
  1278. {
  1279. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  1280. struct drm_device *dev = dig_port->base.base.dev;
  1281. struct drm_i915_private *dev_priv = dev->dev_private;
  1282. struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
  1283. u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
  1284. u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
  1285. uint32_t *data = (uint32_t *) vsc_psr;
  1286. unsigned int i;
  1287. /* As per BSPec (Pipe Video Data Island Packet), we need to disable
  1288. the video DIP being updated before program video DIP data buffer
  1289. registers for DIP being updated. */
  1290. I915_WRITE(ctl_reg, 0);
  1291. POSTING_READ(ctl_reg);
  1292. for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
  1293. if (i < sizeof(struct edp_vsc_psr))
  1294. I915_WRITE(data_reg + i, *data++);
  1295. else
  1296. I915_WRITE(data_reg + i, 0);
  1297. }
  1298. I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
  1299. POSTING_READ(ctl_reg);
  1300. }
  1301. static void intel_edp_psr_setup(struct intel_dp *intel_dp)
  1302. {
  1303. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1304. struct drm_i915_private *dev_priv = dev->dev_private;
  1305. struct edp_vsc_psr psr_vsc;
  1306. if (intel_dp->psr_setup_done)
  1307. return;
  1308. /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
  1309. memset(&psr_vsc, 0, sizeof(psr_vsc));
  1310. psr_vsc.sdp_header.HB0 = 0;
  1311. psr_vsc.sdp_header.HB1 = 0x7;
  1312. psr_vsc.sdp_header.HB2 = 0x2;
  1313. psr_vsc.sdp_header.HB3 = 0x8;
  1314. intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
  1315. /* Avoid continuous PSR exit by masking memup and hpd */
  1316. I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
  1317. EDP_PSR_DEBUG_MASK_HPD);
  1318. intel_dp->psr_setup_done = true;
  1319. }
  1320. static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
  1321. {
  1322. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1323. struct drm_i915_private *dev_priv = dev->dev_private;
  1324. uint32_t aux_clock_divider = get_aux_clock_divider(intel_dp, 0);
  1325. int precharge = 0x3;
  1326. int msg_size = 5; /* Header(4) + Message(1) */
  1327. /* Enable PSR in sink */
  1328. if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
  1329. intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
  1330. DP_PSR_ENABLE &
  1331. ~DP_PSR_MAIN_LINK_ACTIVE);
  1332. else
  1333. intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
  1334. DP_PSR_ENABLE |
  1335. DP_PSR_MAIN_LINK_ACTIVE);
  1336. /* Setup AUX registers */
  1337. I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
  1338. I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
  1339. I915_WRITE(EDP_PSR_AUX_CTL(dev),
  1340. DP_AUX_CH_CTL_TIME_OUT_400us |
  1341. (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  1342. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  1343. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
  1344. }
  1345. static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
  1346. {
  1347. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1348. struct drm_i915_private *dev_priv = dev->dev_private;
  1349. uint32_t max_sleep_time = 0x1f;
  1350. uint32_t idle_frames = 1;
  1351. uint32_t val = 0x0;
  1352. if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
  1353. val |= EDP_PSR_LINK_STANDBY;
  1354. val |= EDP_PSR_TP2_TP3_TIME_0us;
  1355. val |= EDP_PSR_TP1_TIME_0us;
  1356. val |= EDP_PSR_SKIP_AUX_EXIT;
  1357. } else
  1358. val |= EDP_PSR_LINK_DISABLE;
  1359. I915_WRITE(EDP_PSR_CTL(dev), val |
  1360. EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES |
  1361. max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
  1362. idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
  1363. EDP_PSR_ENABLE);
  1364. }
  1365. static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
  1366. {
  1367. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  1368. struct drm_device *dev = dig_port->base.base.dev;
  1369. struct drm_i915_private *dev_priv = dev->dev_private;
  1370. struct drm_crtc *crtc = dig_port->base.base.crtc;
  1371. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1372. struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->fb)->obj;
  1373. struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
  1374. if (!HAS_PSR(dev)) {
  1375. DRM_DEBUG_KMS("PSR not supported on this platform\n");
  1376. dev_priv->no_psr_reason = PSR_NO_SOURCE;
  1377. return false;
  1378. }
  1379. if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
  1380. (dig_port->port != PORT_A)) {
  1381. DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
  1382. dev_priv->no_psr_reason = PSR_HSW_NOT_DDIA;
  1383. return false;
  1384. }
  1385. if (!is_edp_psr(intel_dp)) {
  1386. DRM_DEBUG_KMS("PSR not supported by this panel\n");
  1387. dev_priv->no_psr_reason = PSR_NO_SINK;
  1388. return false;
  1389. }
  1390. if (!i915_enable_psr) {
  1391. DRM_DEBUG_KMS("PSR disable by flag\n");
  1392. dev_priv->no_psr_reason = PSR_MODULE_PARAM;
  1393. return false;
  1394. }
  1395. crtc = dig_port->base.base.crtc;
  1396. if (crtc == NULL) {
  1397. DRM_DEBUG_KMS("crtc not active for PSR\n");
  1398. dev_priv->no_psr_reason = PSR_CRTC_NOT_ACTIVE;
  1399. return false;
  1400. }
  1401. intel_crtc = to_intel_crtc(crtc);
  1402. if (!intel_crtc_active(crtc)) {
  1403. DRM_DEBUG_KMS("crtc not active for PSR\n");
  1404. dev_priv->no_psr_reason = PSR_CRTC_NOT_ACTIVE;
  1405. return false;
  1406. }
  1407. obj = to_intel_framebuffer(crtc->fb)->obj;
  1408. if (obj->tiling_mode != I915_TILING_X ||
  1409. obj->fence_reg == I915_FENCE_REG_NONE) {
  1410. DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
  1411. dev_priv->no_psr_reason = PSR_NOT_TILED;
  1412. return false;
  1413. }
  1414. if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
  1415. DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
  1416. dev_priv->no_psr_reason = PSR_SPRITE_ENABLED;
  1417. return false;
  1418. }
  1419. if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
  1420. S3D_ENABLE) {
  1421. DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
  1422. dev_priv->no_psr_reason = PSR_S3D_ENABLED;
  1423. return false;
  1424. }
  1425. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
  1426. DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
  1427. dev_priv->no_psr_reason = PSR_INTERLACED_ENABLED;
  1428. return false;
  1429. }
  1430. return true;
  1431. }
  1432. static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
  1433. {
  1434. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1435. if (!intel_edp_psr_match_conditions(intel_dp) ||
  1436. intel_edp_is_psr_enabled(dev))
  1437. return;
  1438. /* Setup PSR once */
  1439. intel_edp_psr_setup(intel_dp);
  1440. /* Enable PSR on the panel */
  1441. intel_edp_psr_enable_sink(intel_dp);
  1442. /* Enable PSR on the host */
  1443. intel_edp_psr_enable_source(intel_dp);
  1444. }
  1445. void intel_edp_psr_enable(struct intel_dp *intel_dp)
  1446. {
  1447. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1448. if (intel_edp_psr_match_conditions(intel_dp) &&
  1449. !intel_edp_is_psr_enabled(dev))
  1450. intel_edp_psr_do_enable(intel_dp);
  1451. }
  1452. void intel_edp_psr_disable(struct intel_dp *intel_dp)
  1453. {
  1454. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1455. struct drm_i915_private *dev_priv = dev->dev_private;
  1456. if (!intel_edp_is_psr_enabled(dev))
  1457. return;
  1458. I915_WRITE(EDP_PSR_CTL(dev),
  1459. I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
  1460. /* Wait till PSR is idle */
  1461. if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
  1462. EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
  1463. DRM_ERROR("Timed out waiting for PSR Idle State\n");
  1464. }
  1465. void intel_edp_psr_update(struct drm_device *dev)
  1466. {
  1467. struct intel_encoder *encoder;
  1468. struct intel_dp *intel_dp = NULL;
  1469. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
  1470. if (encoder->type == INTEL_OUTPUT_EDP) {
  1471. intel_dp = enc_to_intel_dp(&encoder->base);
  1472. if (!is_edp_psr(intel_dp))
  1473. return;
  1474. if (!intel_edp_psr_match_conditions(intel_dp))
  1475. intel_edp_psr_disable(intel_dp);
  1476. else
  1477. if (!intel_edp_is_psr_enabled(dev))
  1478. intel_edp_psr_do_enable(intel_dp);
  1479. }
  1480. }
  1481. static void intel_disable_dp(struct intel_encoder *encoder)
  1482. {
  1483. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1484. enum port port = dp_to_dig_port(intel_dp)->port;
  1485. struct drm_device *dev = encoder->base.dev;
  1486. /* Make sure the panel is off before trying to change the mode. But also
  1487. * ensure that we have vdd while we switch off the panel. */
  1488. ironlake_edp_panel_vdd_on(intel_dp);
  1489. ironlake_edp_backlight_off(intel_dp);
  1490. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1491. ironlake_edp_panel_off(intel_dp);
  1492. /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
  1493. if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
  1494. intel_dp_link_down(intel_dp);
  1495. }
  1496. static void intel_post_disable_dp(struct intel_encoder *encoder)
  1497. {
  1498. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1499. enum port port = dp_to_dig_port(intel_dp)->port;
  1500. struct drm_device *dev = encoder->base.dev;
  1501. if (port == PORT_A || IS_VALLEYVIEW(dev)) {
  1502. intel_dp_link_down(intel_dp);
  1503. if (!IS_VALLEYVIEW(dev))
  1504. ironlake_edp_pll_off(intel_dp);
  1505. }
  1506. }
  1507. static void intel_enable_dp(struct intel_encoder *encoder)
  1508. {
  1509. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1510. struct drm_device *dev = encoder->base.dev;
  1511. struct drm_i915_private *dev_priv = dev->dev_private;
  1512. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  1513. if (WARN_ON(dp_reg & DP_PORT_EN))
  1514. return;
  1515. ironlake_edp_panel_vdd_on(intel_dp);
  1516. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1517. intel_dp_start_link_train(intel_dp);
  1518. ironlake_edp_panel_on(intel_dp);
  1519. ironlake_edp_panel_vdd_off(intel_dp, true);
  1520. intel_dp_complete_link_train(intel_dp);
  1521. intel_dp_stop_link_train(intel_dp);
  1522. }
  1523. static void g4x_enable_dp(struct intel_encoder *encoder)
  1524. {
  1525. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1526. intel_enable_dp(encoder);
  1527. ironlake_edp_backlight_on(intel_dp);
  1528. }
  1529. static void vlv_enable_dp(struct intel_encoder *encoder)
  1530. {
  1531. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1532. ironlake_edp_backlight_on(intel_dp);
  1533. }
  1534. static void g4x_pre_enable_dp(struct intel_encoder *encoder)
  1535. {
  1536. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1537. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1538. if (dport->port == PORT_A)
  1539. ironlake_edp_pll_on(intel_dp);
  1540. }
  1541. static void vlv_pre_enable_dp(struct intel_encoder *encoder)
  1542. {
  1543. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1544. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1545. struct drm_device *dev = encoder->base.dev;
  1546. struct drm_i915_private *dev_priv = dev->dev_private;
  1547. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  1548. int port = vlv_dport_to_channel(dport);
  1549. int pipe = intel_crtc->pipe;
  1550. struct edp_power_seq power_seq;
  1551. u32 val;
  1552. mutex_lock(&dev_priv->dpio_lock);
  1553. val = vlv_dpio_read(dev_priv, pipe, DPIO_DATA_LANE_A(port));
  1554. val = 0;
  1555. if (pipe)
  1556. val |= (1<<21);
  1557. else
  1558. val &= ~(1<<21);
  1559. val |= 0x001000c4;
  1560. vlv_dpio_write(dev_priv, pipe, DPIO_DATA_CHANNEL(port), val);
  1561. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLOCKBUF0(port), 0x00760018);
  1562. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLOCKBUF8(port), 0x00400888);
  1563. mutex_unlock(&dev_priv->dpio_lock);
  1564. /* init power sequencer on this pipe and port */
  1565. intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
  1566. intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
  1567. &power_seq);
  1568. intel_enable_dp(encoder);
  1569. vlv_wait_port_ready(dev_priv, port);
  1570. }
  1571. static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
  1572. {
  1573. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1574. struct drm_device *dev = encoder->base.dev;
  1575. struct drm_i915_private *dev_priv = dev->dev_private;
  1576. struct intel_crtc *intel_crtc =
  1577. to_intel_crtc(encoder->base.crtc);
  1578. int port = vlv_dport_to_channel(dport);
  1579. int pipe = intel_crtc->pipe;
  1580. /* Program Tx lane resets to default */
  1581. mutex_lock(&dev_priv->dpio_lock);
  1582. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_TX(port),
  1583. DPIO_PCS_TX_LANE2_RESET |
  1584. DPIO_PCS_TX_LANE1_RESET);
  1585. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLK(port),
  1586. DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
  1587. DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
  1588. (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
  1589. DPIO_PCS_CLK_SOFT_RESET);
  1590. /* Fix up inter-pair skew failure */
  1591. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_STAGGER1(port), 0x00750f00);
  1592. vlv_dpio_write(dev_priv, pipe, DPIO_TX_CTL(port), 0x00001500);
  1593. vlv_dpio_write(dev_priv, pipe, DPIO_TX_LANE(port), 0x40400000);
  1594. mutex_unlock(&dev_priv->dpio_lock);
  1595. }
  1596. /*
  1597. * Native read with retry for link status and receiver capability reads for
  1598. * cases where the sink may still be asleep.
  1599. */
  1600. static bool
  1601. intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
  1602. uint8_t *recv, int recv_bytes)
  1603. {
  1604. int ret, i;
  1605. /*
  1606. * Sinks are *supposed* to come up within 1ms from an off state,
  1607. * but we're also supposed to retry 3 times per the spec.
  1608. */
  1609. for (i = 0; i < 3; i++) {
  1610. ret = intel_dp_aux_native_read(intel_dp, address, recv,
  1611. recv_bytes);
  1612. if (ret == recv_bytes)
  1613. return true;
  1614. msleep(1);
  1615. }
  1616. return false;
  1617. }
  1618. /*
  1619. * Fetch AUX CH registers 0x202 - 0x207 which contain
  1620. * link status information
  1621. */
  1622. static bool
  1623. intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1624. {
  1625. return intel_dp_aux_native_read_retry(intel_dp,
  1626. DP_LANE0_1_STATUS,
  1627. link_status,
  1628. DP_LINK_STATUS_SIZE);
  1629. }
  1630. #if 0
  1631. static char *voltage_names[] = {
  1632. "0.4V", "0.6V", "0.8V", "1.2V"
  1633. };
  1634. static char *pre_emph_names[] = {
  1635. "0dB", "3.5dB", "6dB", "9.5dB"
  1636. };
  1637. static char *link_train_names[] = {
  1638. "pattern 1", "pattern 2", "idle", "off"
  1639. };
  1640. #endif
  1641. /*
  1642. * These are source-specific values; current Intel hardware supports
  1643. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  1644. */
  1645. static uint8_t
  1646. intel_dp_voltage_max(struct intel_dp *intel_dp)
  1647. {
  1648. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1649. enum port port = dp_to_dig_port(intel_dp)->port;
  1650. if (IS_VALLEYVIEW(dev))
  1651. return DP_TRAIN_VOLTAGE_SWING_1200;
  1652. else if (IS_GEN7(dev) && port == PORT_A)
  1653. return DP_TRAIN_VOLTAGE_SWING_800;
  1654. else if (HAS_PCH_CPT(dev) && port != PORT_A)
  1655. return DP_TRAIN_VOLTAGE_SWING_1200;
  1656. else
  1657. return DP_TRAIN_VOLTAGE_SWING_800;
  1658. }
  1659. static uint8_t
  1660. intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
  1661. {
  1662. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1663. enum port port = dp_to_dig_port(intel_dp)->port;
  1664. if (HAS_DDI(dev)) {
  1665. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1666. case DP_TRAIN_VOLTAGE_SWING_400:
  1667. return DP_TRAIN_PRE_EMPHASIS_9_5;
  1668. case DP_TRAIN_VOLTAGE_SWING_600:
  1669. return DP_TRAIN_PRE_EMPHASIS_6;
  1670. case DP_TRAIN_VOLTAGE_SWING_800:
  1671. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1672. case DP_TRAIN_VOLTAGE_SWING_1200:
  1673. default:
  1674. return DP_TRAIN_PRE_EMPHASIS_0;
  1675. }
  1676. } else if (IS_VALLEYVIEW(dev)) {
  1677. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1678. case DP_TRAIN_VOLTAGE_SWING_400:
  1679. return DP_TRAIN_PRE_EMPHASIS_9_5;
  1680. case DP_TRAIN_VOLTAGE_SWING_600:
  1681. return DP_TRAIN_PRE_EMPHASIS_6;
  1682. case DP_TRAIN_VOLTAGE_SWING_800:
  1683. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1684. case DP_TRAIN_VOLTAGE_SWING_1200:
  1685. default:
  1686. return DP_TRAIN_PRE_EMPHASIS_0;
  1687. }
  1688. } else if (IS_GEN7(dev) && port == PORT_A) {
  1689. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1690. case DP_TRAIN_VOLTAGE_SWING_400:
  1691. return DP_TRAIN_PRE_EMPHASIS_6;
  1692. case DP_TRAIN_VOLTAGE_SWING_600:
  1693. case DP_TRAIN_VOLTAGE_SWING_800:
  1694. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1695. default:
  1696. return DP_TRAIN_PRE_EMPHASIS_0;
  1697. }
  1698. } else {
  1699. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1700. case DP_TRAIN_VOLTAGE_SWING_400:
  1701. return DP_TRAIN_PRE_EMPHASIS_6;
  1702. case DP_TRAIN_VOLTAGE_SWING_600:
  1703. return DP_TRAIN_PRE_EMPHASIS_6;
  1704. case DP_TRAIN_VOLTAGE_SWING_800:
  1705. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1706. case DP_TRAIN_VOLTAGE_SWING_1200:
  1707. default:
  1708. return DP_TRAIN_PRE_EMPHASIS_0;
  1709. }
  1710. }
  1711. }
  1712. static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
  1713. {
  1714. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1715. struct drm_i915_private *dev_priv = dev->dev_private;
  1716. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1717. struct intel_crtc *intel_crtc =
  1718. to_intel_crtc(dport->base.base.crtc);
  1719. unsigned long demph_reg_value, preemph_reg_value,
  1720. uniqtranscale_reg_value;
  1721. uint8_t train_set = intel_dp->train_set[0];
  1722. int port = vlv_dport_to_channel(dport);
  1723. int pipe = intel_crtc->pipe;
  1724. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1725. case DP_TRAIN_PRE_EMPHASIS_0:
  1726. preemph_reg_value = 0x0004000;
  1727. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1728. case DP_TRAIN_VOLTAGE_SWING_400:
  1729. demph_reg_value = 0x2B405555;
  1730. uniqtranscale_reg_value = 0x552AB83A;
  1731. break;
  1732. case DP_TRAIN_VOLTAGE_SWING_600:
  1733. demph_reg_value = 0x2B404040;
  1734. uniqtranscale_reg_value = 0x5548B83A;
  1735. break;
  1736. case DP_TRAIN_VOLTAGE_SWING_800:
  1737. demph_reg_value = 0x2B245555;
  1738. uniqtranscale_reg_value = 0x5560B83A;
  1739. break;
  1740. case DP_TRAIN_VOLTAGE_SWING_1200:
  1741. demph_reg_value = 0x2B405555;
  1742. uniqtranscale_reg_value = 0x5598DA3A;
  1743. break;
  1744. default:
  1745. return 0;
  1746. }
  1747. break;
  1748. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1749. preemph_reg_value = 0x0002000;
  1750. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1751. case DP_TRAIN_VOLTAGE_SWING_400:
  1752. demph_reg_value = 0x2B404040;
  1753. uniqtranscale_reg_value = 0x5552B83A;
  1754. break;
  1755. case DP_TRAIN_VOLTAGE_SWING_600:
  1756. demph_reg_value = 0x2B404848;
  1757. uniqtranscale_reg_value = 0x5580B83A;
  1758. break;
  1759. case DP_TRAIN_VOLTAGE_SWING_800:
  1760. demph_reg_value = 0x2B404040;
  1761. uniqtranscale_reg_value = 0x55ADDA3A;
  1762. break;
  1763. default:
  1764. return 0;
  1765. }
  1766. break;
  1767. case DP_TRAIN_PRE_EMPHASIS_6:
  1768. preemph_reg_value = 0x0000000;
  1769. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1770. case DP_TRAIN_VOLTAGE_SWING_400:
  1771. demph_reg_value = 0x2B305555;
  1772. uniqtranscale_reg_value = 0x5570B83A;
  1773. break;
  1774. case DP_TRAIN_VOLTAGE_SWING_600:
  1775. demph_reg_value = 0x2B2B4040;
  1776. uniqtranscale_reg_value = 0x55ADDA3A;
  1777. break;
  1778. default:
  1779. return 0;
  1780. }
  1781. break;
  1782. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1783. preemph_reg_value = 0x0006000;
  1784. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1785. case DP_TRAIN_VOLTAGE_SWING_400:
  1786. demph_reg_value = 0x1B405555;
  1787. uniqtranscale_reg_value = 0x55ADDA3A;
  1788. break;
  1789. default:
  1790. return 0;
  1791. }
  1792. break;
  1793. default:
  1794. return 0;
  1795. }
  1796. mutex_lock(&dev_priv->dpio_lock);
  1797. vlv_dpio_write(dev_priv, pipe, DPIO_TX_OCALINIT(port), 0x00000000);
  1798. vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL4(port), demph_reg_value);
  1799. vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL2(port),
  1800. uniqtranscale_reg_value);
  1801. vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL3(port), 0x0C782040);
  1802. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_STAGGER0(port), 0x00030000);
  1803. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CTL_OVER1(port), preemph_reg_value);
  1804. vlv_dpio_write(dev_priv, pipe, DPIO_TX_OCALINIT(port), 0x80000000);
  1805. mutex_unlock(&dev_priv->dpio_lock);
  1806. return 0;
  1807. }
  1808. static void
  1809. intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1810. {
  1811. uint8_t v = 0;
  1812. uint8_t p = 0;
  1813. int lane;
  1814. uint8_t voltage_max;
  1815. uint8_t preemph_max;
  1816. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1817. uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
  1818. uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
  1819. if (this_v > v)
  1820. v = this_v;
  1821. if (this_p > p)
  1822. p = this_p;
  1823. }
  1824. voltage_max = intel_dp_voltage_max(intel_dp);
  1825. if (v >= voltage_max)
  1826. v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
  1827. preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
  1828. if (p >= preemph_max)
  1829. p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  1830. for (lane = 0; lane < 4; lane++)
  1831. intel_dp->train_set[lane] = v | p;
  1832. }
  1833. static uint32_t
  1834. intel_gen4_signal_levels(uint8_t train_set)
  1835. {
  1836. uint32_t signal_levels = 0;
  1837. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1838. case DP_TRAIN_VOLTAGE_SWING_400:
  1839. default:
  1840. signal_levels |= DP_VOLTAGE_0_4;
  1841. break;
  1842. case DP_TRAIN_VOLTAGE_SWING_600:
  1843. signal_levels |= DP_VOLTAGE_0_6;
  1844. break;
  1845. case DP_TRAIN_VOLTAGE_SWING_800:
  1846. signal_levels |= DP_VOLTAGE_0_8;
  1847. break;
  1848. case DP_TRAIN_VOLTAGE_SWING_1200:
  1849. signal_levels |= DP_VOLTAGE_1_2;
  1850. break;
  1851. }
  1852. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1853. case DP_TRAIN_PRE_EMPHASIS_0:
  1854. default:
  1855. signal_levels |= DP_PRE_EMPHASIS_0;
  1856. break;
  1857. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1858. signal_levels |= DP_PRE_EMPHASIS_3_5;
  1859. break;
  1860. case DP_TRAIN_PRE_EMPHASIS_6:
  1861. signal_levels |= DP_PRE_EMPHASIS_6;
  1862. break;
  1863. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1864. signal_levels |= DP_PRE_EMPHASIS_9_5;
  1865. break;
  1866. }
  1867. return signal_levels;
  1868. }
  1869. /* Gen6's DP voltage swing and pre-emphasis control */
  1870. static uint32_t
  1871. intel_gen6_edp_signal_levels(uint8_t train_set)
  1872. {
  1873. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1874. DP_TRAIN_PRE_EMPHASIS_MASK);
  1875. switch (signal_levels) {
  1876. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1877. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1878. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1879. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1880. return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
  1881. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1882. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1883. return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
  1884. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1885. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1886. return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
  1887. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1888. case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
  1889. return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
  1890. default:
  1891. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1892. "0x%x\n", signal_levels);
  1893. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1894. }
  1895. }
  1896. /* Gen7's DP voltage swing and pre-emphasis control */
  1897. static uint32_t
  1898. intel_gen7_edp_signal_levels(uint8_t train_set)
  1899. {
  1900. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1901. DP_TRAIN_PRE_EMPHASIS_MASK);
  1902. switch (signal_levels) {
  1903. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1904. return EDP_LINK_TRAIN_400MV_0DB_IVB;
  1905. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1906. return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
  1907. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1908. return EDP_LINK_TRAIN_400MV_6DB_IVB;
  1909. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1910. return EDP_LINK_TRAIN_600MV_0DB_IVB;
  1911. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1912. return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
  1913. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1914. return EDP_LINK_TRAIN_800MV_0DB_IVB;
  1915. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1916. return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
  1917. default:
  1918. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1919. "0x%x\n", signal_levels);
  1920. return EDP_LINK_TRAIN_500MV_0DB_IVB;
  1921. }
  1922. }
  1923. /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
  1924. static uint32_t
  1925. intel_hsw_signal_levels(uint8_t train_set)
  1926. {
  1927. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1928. DP_TRAIN_PRE_EMPHASIS_MASK);
  1929. switch (signal_levels) {
  1930. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1931. return DDI_BUF_EMP_400MV_0DB_HSW;
  1932. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1933. return DDI_BUF_EMP_400MV_3_5DB_HSW;
  1934. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1935. return DDI_BUF_EMP_400MV_6DB_HSW;
  1936. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
  1937. return DDI_BUF_EMP_400MV_9_5DB_HSW;
  1938. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1939. return DDI_BUF_EMP_600MV_0DB_HSW;
  1940. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1941. return DDI_BUF_EMP_600MV_3_5DB_HSW;
  1942. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1943. return DDI_BUF_EMP_600MV_6DB_HSW;
  1944. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1945. return DDI_BUF_EMP_800MV_0DB_HSW;
  1946. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1947. return DDI_BUF_EMP_800MV_3_5DB_HSW;
  1948. default:
  1949. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1950. "0x%x\n", signal_levels);
  1951. return DDI_BUF_EMP_400MV_0DB_HSW;
  1952. }
  1953. }
  1954. /* Properly updates "DP" with the correct signal levels. */
  1955. static void
  1956. intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
  1957. {
  1958. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1959. enum port port = intel_dig_port->port;
  1960. struct drm_device *dev = intel_dig_port->base.base.dev;
  1961. uint32_t signal_levels, mask;
  1962. uint8_t train_set = intel_dp->train_set[0];
  1963. if (HAS_DDI(dev)) {
  1964. signal_levels = intel_hsw_signal_levels(train_set);
  1965. mask = DDI_BUF_EMP_MASK;
  1966. } else if (IS_VALLEYVIEW(dev)) {
  1967. signal_levels = intel_vlv_signal_levels(intel_dp);
  1968. mask = 0;
  1969. } else if (IS_GEN7(dev) && port == PORT_A) {
  1970. signal_levels = intel_gen7_edp_signal_levels(train_set);
  1971. mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
  1972. } else if (IS_GEN6(dev) && port == PORT_A) {
  1973. signal_levels = intel_gen6_edp_signal_levels(train_set);
  1974. mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
  1975. } else {
  1976. signal_levels = intel_gen4_signal_levels(train_set);
  1977. mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
  1978. }
  1979. DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
  1980. *DP = (*DP & ~mask) | signal_levels;
  1981. }
  1982. static bool
  1983. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1984. uint32_t dp_reg_value,
  1985. uint8_t dp_train_pat)
  1986. {
  1987. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1988. struct drm_device *dev = intel_dig_port->base.base.dev;
  1989. struct drm_i915_private *dev_priv = dev->dev_private;
  1990. enum port port = intel_dig_port->port;
  1991. int ret;
  1992. if (HAS_DDI(dev)) {
  1993. uint32_t temp = I915_READ(DP_TP_CTL(port));
  1994. if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
  1995. temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
  1996. else
  1997. temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
  1998. temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
  1999. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  2000. case DP_TRAINING_PATTERN_DISABLE:
  2001. temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
  2002. break;
  2003. case DP_TRAINING_PATTERN_1:
  2004. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  2005. break;
  2006. case DP_TRAINING_PATTERN_2:
  2007. temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
  2008. break;
  2009. case DP_TRAINING_PATTERN_3:
  2010. temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
  2011. break;
  2012. }
  2013. I915_WRITE(DP_TP_CTL(port), temp);
  2014. } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
  2015. dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
  2016. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  2017. case DP_TRAINING_PATTERN_DISABLE:
  2018. dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
  2019. break;
  2020. case DP_TRAINING_PATTERN_1:
  2021. dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
  2022. break;
  2023. case DP_TRAINING_PATTERN_2:
  2024. dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
  2025. break;
  2026. case DP_TRAINING_PATTERN_3:
  2027. DRM_ERROR("DP training pattern 3 not supported\n");
  2028. dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
  2029. break;
  2030. }
  2031. } else {
  2032. dp_reg_value &= ~DP_LINK_TRAIN_MASK;
  2033. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  2034. case DP_TRAINING_PATTERN_DISABLE:
  2035. dp_reg_value |= DP_LINK_TRAIN_OFF;
  2036. break;
  2037. case DP_TRAINING_PATTERN_1:
  2038. dp_reg_value |= DP_LINK_TRAIN_PAT_1;
  2039. break;
  2040. case DP_TRAINING_PATTERN_2:
  2041. dp_reg_value |= DP_LINK_TRAIN_PAT_2;
  2042. break;
  2043. case DP_TRAINING_PATTERN_3:
  2044. DRM_ERROR("DP training pattern 3 not supported\n");
  2045. dp_reg_value |= DP_LINK_TRAIN_PAT_2;
  2046. break;
  2047. }
  2048. }
  2049. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  2050. POSTING_READ(intel_dp->output_reg);
  2051. intel_dp_aux_native_write_1(intel_dp,
  2052. DP_TRAINING_PATTERN_SET,
  2053. dp_train_pat);
  2054. if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
  2055. DP_TRAINING_PATTERN_DISABLE) {
  2056. ret = intel_dp_aux_native_write(intel_dp,
  2057. DP_TRAINING_LANE0_SET,
  2058. intel_dp->train_set,
  2059. intel_dp->lane_count);
  2060. if (ret != intel_dp->lane_count)
  2061. return false;
  2062. }
  2063. return true;
  2064. }
  2065. static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
  2066. {
  2067. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2068. struct drm_device *dev = intel_dig_port->base.base.dev;
  2069. struct drm_i915_private *dev_priv = dev->dev_private;
  2070. enum port port = intel_dig_port->port;
  2071. uint32_t val;
  2072. if (!HAS_DDI(dev))
  2073. return;
  2074. val = I915_READ(DP_TP_CTL(port));
  2075. val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
  2076. val |= DP_TP_CTL_LINK_TRAIN_IDLE;
  2077. I915_WRITE(DP_TP_CTL(port), val);
  2078. /*
  2079. * On PORT_A we can have only eDP in SST mode. There the only reason
  2080. * we need to set idle transmission mode is to work around a HW issue
  2081. * where we enable the pipe while not in idle link-training mode.
  2082. * In this case there is requirement to wait for a minimum number of
  2083. * idle patterns to be sent.
  2084. */
  2085. if (port == PORT_A)
  2086. return;
  2087. if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
  2088. 1))
  2089. DRM_ERROR("Timed out waiting for DP idle patterns\n");
  2090. }
  2091. /* Enable corresponding port and start training pattern 1 */
  2092. void
  2093. intel_dp_start_link_train(struct intel_dp *intel_dp)
  2094. {
  2095. struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
  2096. struct drm_device *dev = encoder->dev;
  2097. int i;
  2098. uint8_t voltage;
  2099. int voltage_tries, loop_tries;
  2100. uint32_t DP = intel_dp->DP;
  2101. if (HAS_DDI(dev))
  2102. intel_ddi_prepare_link_retrain(encoder);
  2103. /* Write the link configuration data */
  2104. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  2105. intel_dp->link_configuration,
  2106. DP_LINK_CONFIGURATION_SIZE);
  2107. DP |= DP_PORT_EN;
  2108. memset(intel_dp->train_set, 0, 4);
  2109. voltage = 0xff;
  2110. voltage_tries = 0;
  2111. loop_tries = 0;
  2112. for (;;) {
  2113. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  2114. uint8_t link_status[DP_LINK_STATUS_SIZE];
  2115. intel_dp_set_signal_levels(intel_dp, &DP);
  2116. /* Set training pattern 1 */
  2117. if (!intel_dp_set_link_train(intel_dp, DP,
  2118. DP_TRAINING_PATTERN_1 |
  2119. DP_LINK_SCRAMBLING_DISABLE))
  2120. break;
  2121. drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
  2122. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  2123. DRM_ERROR("failed to get link status\n");
  2124. break;
  2125. }
  2126. if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  2127. DRM_DEBUG_KMS("clock recovery OK\n");
  2128. break;
  2129. }
  2130. /* Check to see if we've tried the max voltage */
  2131. for (i = 0; i < intel_dp->lane_count; i++)
  2132. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  2133. break;
  2134. if (i == intel_dp->lane_count) {
  2135. ++loop_tries;
  2136. if (loop_tries == 5) {
  2137. DRM_DEBUG_KMS("too many full retries, give up\n");
  2138. break;
  2139. }
  2140. memset(intel_dp->train_set, 0, 4);
  2141. voltage_tries = 0;
  2142. continue;
  2143. }
  2144. /* Check to see if we've tried the same voltage 5 times */
  2145. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  2146. ++voltage_tries;
  2147. if (voltage_tries == 5) {
  2148. DRM_DEBUG_KMS("too many voltage retries, give up\n");
  2149. break;
  2150. }
  2151. } else
  2152. voltage_tries = 0;
  2153. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  2154. /* Compute new intel_dp->train_set as requested by target */
  2155. intel_get_adjust_train(intel_dp, link_status);
  2156. }
  2157. intel_dp->DP = DP;
  2158. }
  2159. void
  2160. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  2161. {
  2162. bool channel_eq = false;
  2163. int tries, cr_tries;
  2164. uint32_t DP = intel_dp->DP;
  2165. /* channel equalization */
  2166. tries = 0;
  2167. cr_tries = 0;
  2168. channel_eq = false;
  2169. for (;;) {
  2170. uint8_t link_status[DP_LINK_STATUS_SIZE];
  2171. if (cr_tries > 5) {
  2172. DRM_ERROR("failed to train DP, aborting\n");
  2173. intel_dp_link_down(intel_dp);
  2174. break;
  2175. }
  2176. intel_dp_set_signal_levels(intel_dp, &DP);
  2177. /* channel eq pattern */
  2178. if (!intel_dp_set_link_train(intel_dp, DP,
  2179. DP_TRAINING_PATTERN_2 |
  2180. DP_LINK_SCRAMBLING_DISABLE))
  2181. break;
  2182. drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
  2183. if (!intel_dp_get_link_status(intel_dp, link_status))
  2184. break;
  2185. /* Make sure clock is still ok */
  2186. if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  2187. intel_dp_start_link_train(intel_dp);
  2188. cr_tries++;
  2189. continue;
  2190. }
  2191. if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
  2192. channel_eq = true;
  2193. break;
  2194. }
  2195. /* Try 5 times, then try clock recovery if that fails */
  2196. if (tries > 5) {
  2197. intel_dp_link_down(intel_dp);
  2198. intel_dp_start_link_train(intel_dp);
  2199. tries = 0;
  2200. cr_tries++;
  2201. continue;
  2202. }
  2203. /* Compute new intel_dp->train_set as requested by target */
  2204. intel_get_adjust_train(intel_dp, link_status);
  2205. ++tries;
  2206. }
  2207. intel_dp_set_idle_link_train(intel_dp);
  2208. intel_dp->DP = DP;
  2209. if (channel_eq)
  2210. DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
  2211. }
  2212. void intel_dp_stop_link_train(struct intel_dp *intel_dp)
  2213. {
  2214. intel_dp_set_link_train(intel_dp, intel_dp->DP,
  2215. DP_TRAINING_PATTERN_DISABLE);
  2216. }
  2217. static void
  2218. intel_dp_link_down(struct intel_dp *intel_dp)
  2219. {
  2220. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2221. enum port port = intel_dig_port->port;
  2222. struct drm_device *dev = intel_dig_port->base.base.dev;
  2223. struct drm_i915_private *dev_priv = dev->dev_private;
  2224. struct intel_crtc *intel_crtc =
  2225. to_intel_crtc(intel_dig_port->base.base.crtc);
  2226. uint32_t DP = intel_dp->DP;
  2227. /*
  2228. * DDI code has a strict mode set sequence and we should try to respect
  2229. * it, otherwise we might hang the machine in many different ways. So we
  2230. * really should be disabling the port only on a complete crtc_disable
  2231. * sequence. This function is just called under two conditions on DDI
  2232. * code:
  2233. * - Link train failed while doing crtc_enable, and on this case we
  2234. * really should respect the mode set sequence and wait for a
  2235. * crtc_disable.
  2236. * - Someone turned the monitor off and intel_dp_check_link_status
  2237. * called us. We don't need to disable the whole port on this case, so
  2238. * when someone turns the monitor on again,
  2239. * intel_ddi_prepare_link_retrain will take care of redoing the link
  2240. * train.
  2241. */
  2242. if (HAS_DDI(dev))
  2243. return;
  2244. if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
  2245. return;
  2246. DRM_DEBUG_KMS("\n");
  2247. if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
  2248. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  2249. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  2250. } else {
  2251. DP &= ~DP_LINK_TRAIN_MASK;
  2252. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  2253. }
  2254. POSTING_READ(intel_dp->output_reg);
  2255. /* We don't really know why we're doing this */
  2256. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2257. if (HAS_PCH_IBX(dev) &&
  2258. I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
  2259. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  2260. /* Hardware workaround: leaving our transcoder select
  2261. * set to transcoder B while it's off will prevent the
  2262. * corresponding HDMI output on transcoder A.
  2263. *
  2264. * Combine this with another hardware workaround:
  2265. * transcoder select bit can only be cleared while the
  2266. * port is enabled.
  2267. */
  2268. DP &= ~DP_PIPEB_SELECT;
  2269. I915_WRITE(intel_dp->output_reg, DP);
  2270. /* Changes to enable or select take place the vblank
  2271. * after being written.
  2272. */
  2273. if (WARN_ON(crtc == NULL)) {
  2274. /* We should never try to disable a port without a crtc
  2275. * attached. For paranoia keep the code around for a
  2276. * bit. */
  2277. POSTING_READ(intel_dp->output_reg);
  2278. msleep(50);
  2279. } else
  2280. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2281. }
  2282. DP &= ~DP_AUDIO_OUTPUT_ENABLE;
  2283. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  2284. POSTING_READ(intel_dp->output_reg);
  2285. msleep(intel_dp->panel_power_down_delay);
  2286. }
  2287. static bool
  2288. intel_dp_get_dpcd(struct intel_dp *intel_dp)
  2289. {
  2290. char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
  2291. if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
  2292. sizeof(intel_dp->dpcd)) == 0)
  2293. return false; /* aux transfer failed */
  2294. hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
  2295. 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
  2296. DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
  2297. if (intel_dp->dpcd[DP_DPCD_REV] == 0)
  2298. return false; /* DPCD not present */
  2299. /* Check if the panel supports PSR */
  2300. memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
  2301. if (is_edp(intel_dp)) {
  2302. intel_dp_aux_native_read_retry(intel_dp, DP_PSR_SUPPORT,
  2303. intel_dp->psr_dpcd,
  2304. sizeof(intel_dp->psr_dpcd));
  2305. if (is_edp_psr(intel_dp))
  2306. DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
  2307. }
  2308. if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
  2309. DP_DWN_STRM_PORT_PRESENT))
  2310. return true; /* native DP sink */
  2311. if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
  2312. return true; /* no per-port downstream info */
  2313. if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
  2314. intel_dp->downstream_ports,
  2315. DP_MAX_DOWNSTREAM_PORTS) == 0)
  2316. return false; /* downstream port status fetch failed */
  2317. return true;
  2318. }
  2319. static void
  2320. intel_dp_probe_oui(struct intel_dp *intel_dp)
  2321. {
  2322. u8 buf[3];
  2323. if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
  2324. return;
  2325. ironlake_edp_panel_vdd_on(intel_dp);
  2326. if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
  2327. DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
  2328. buf[0], buf[1], buf[2]);
  2329. if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
  2330. DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
  2331. buf[0], buf[1], buf[2]);
  2332. ironlake_edp_panel_vdd_off(intel_dp, false);
  2333. }
  2334. static bool
  2335. intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
  2336. {
  2337. int ret;
  2338. ret = intel_dp_aux_native_read_retry(intel_dp,
  2339. DP_DEVICE_SERVICE_IRQ_VECTOR,
  2340. sink_irq_vector, 1);
  2341. if (!ret)
  2342. return false;
  2343. return true;
  2344. }
  2345. static void
  2346. intel_dp_handle_test_request(struct intel_dp *intel_dp)
  2347. {
  2348. /* NAK by default */
  2349. intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
  2350. }
  2351. /*
  2352. * According to DP spec
  2353. * 5.1.2:
  2354. * 1. Read DPCD
  2355. * 2. Configure link according to Receiver Capabilities
  2356. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  2357. * 4. Check link status on receipt of hot-plug interrupt
  2358. */
  2359. void
  2360. intel_dp_check_link_status(struct intel_dp *intel_dp)
  2361. {
  2362. struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
  2363. u8 sink_irq_vector;
  2364. u8 link_status[DP_LINK_STATUS_SIZE];
  2365. if (!intel_encoder->connectors_active)
  2366. return;
  2367. if (WARN_ON(!intel_encoder->base.crtc))
  2368. return;
  2369. /* Try to read receiver status if the link appears to be up */
  2370. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  2371. intel_dp_link_down(intel_dp);
  2372. return;
  2373. }
  2374. /* Now read the DPCD to see if it's actually running */
  2375. if (!intel_dp_get_dpcd(intel_dp)) {
  2376. intel_dp_link_down(intel_dp);
  2377. return;
  2378. }
  2379. /* Try to read the source of the interrupt */
  2380. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  2381. intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
  2382. /* Clear interrupt source */
  2383. intel_dp_aux_native_write_1(intel_dp,
  2384. DP_DEVICE_SERVICE_IRQ_VECTOR,
  2385. sink_irq_vector);
  2386. if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
  2387. intel_dp_handle_test_request(intel_dp);
  2388. if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
  2389. DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
  2390. }
  2391. if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
  2392. DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
  2393. drm_get_encoder_name(&intel_encoder->base));
  2394. intel_dp_start_link_train(intel_dp);
  2395. intel_dp_complete_link_train(intel_dp);
  2396. intel_dp_stop_link_train(intel_dp);
  2397. }
  2398. }
  2399. /* XXX this is probably wrong for multiple downstream ports */
  2400. static enum drm_connector_status
  2401. intel_dp_detect_dpcd(struct intel_dp *intel_dp)
  2402. {
  2403. uint8_t *dpcd = intel_dp->dpcd;
  2404. bool hpd;
  2405. uint8_t type;
  2406. if (!intel_dp_get_dpcd(intel_dp))
  2407. return connector_status_disconnected;
  2408. /* if there's no downstream port, we're done */
  2409. if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
  2410. return connector_status_connected;
  2411. /* If we're HPD-aware, SINK_COUNT changes dynamically */
  2412. hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
  2413. if (hpd) {
  2414. uint8_t reg;
  2415. if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
  2416. &reg, 1))
  2417. return connector_status_unknown;
  2418. return DP_GET_SINK_COUNT(reg) ? connector_status_connected
  2419. : connector_status_disconnected;
  2420. }
  2421. /* If no HPD, poke DDC gently */
  2422. if (drm_probe_ddc(&intel_dp->adapter))
  2423. return connector_status_connected;
  2424. /* Well we tried, say unknown for unreliable port types */
  2425. type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
  2426. if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
  2427. return connector_status_unknown;
  2428. /* Anything else is out of spec, warn and ignore */
  2429. DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
  2430. return connector_status_disconnected;
  2431. }
  2432. static enum drm_connector_status
  2433. ironlake_dp_detect(struct intel_dp *intel_dp)
  2434. {
  2435. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  2436. struct drm_i915_private *dev_priv = dev->dev_private;
  2437. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2438. enum drm_connector_status status;
  2439. /* Can't disconnect eDP, but you can close the lid... */
  2440. if (is_edp(intel_dp)) {
  2441. status = intel_panel_detect(dev);
  2442. if (status == connector_status_unknown)
  2443. status = connector_status_connected;
  2444. return status;
  2445. }
  2446. if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
  2447. return connector_status_disconnected;
  2448. return intel_dp_detect_dpcd(intel_dp);
  2449. }
  2450. static enum drm_connector_status
  2451. g4x_dp_detect(struct intel_dp *intel_dp)
  2452. {
  2453. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  2454. struct drm_i915_private *dev_priv = dev->dev_private;
  2455. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2456. uint32_t bit;
  2457. /* Can't disconnect eDP, but you can close the lid... */
  2458. if (is_edp(intel_dp)) {
  2459. enum drm_connector_status status;
  2460. status = intel_panel_detect(dev);
  2461. if (status == connector_status_unknown)
  2462. status = connector_status_connected;
  2463. return status;
  2464. }
  2465. switch (intel_dig_port->port) {
  2466. case PORT_B:
  2467. bit = PORTB_HOTPLUG_LIVE_STATUS;
  2468. break;
  2469. case PORT_C:
  2470. bit = PORTC_HOTPLUG_LIVE_STATUS;
  2471. break;
  2472. case PORT_D:
  2473. bit = PORTD_HOTPLUG_LIVE_STATUS;
  2474. break;
  2475. default:
  2476. return connector_status_unknown;
  2477. }
  2478. if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
  2479. return connector_status_disconnected;
  2480. return intel_dp_detect_dpcd(intel_dp);
  2481. }
  2482. static struct edid *
  2483. intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
  2484. {
  2485. struct intel_connector *intel_connector = to_intel_connector(connector);
  2486. /* use cached edid if we have one */
  2487. if (intel_connector->edid) {
  2488. struct edid *edid;
  2489. int size;
  2490. /* invalid edid */
  2491. if (IS_ERR(intel_connector->edid))
  2492. return NULL;
  2493. size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
  2494. edid = kmemdup(intel_connector->edid, size, GFP_KERNEL);
  2495. if (!edid)
  2496. return NULL;
  2497. return edid;
  2498. }
  2499. return drm_get_edid(connector, adapter);
  2500. }
  2501. static int
  2502. intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
  2503. {
  2504. struct intel_connector *intel_connector = to_intel_connector(connector);
  2505. /* use cached edid if we have one */
  2506. if (intel_connector->edid) {
  2507. /* invalid edid */
  2508. if (IS_ERR(intel_connector->edid))
  2509. return 0;
  2510. return intel_connector_update_modes(connector,
  2511. intel_connector->edid);
  2512. }
  2513. return intel_ddc_get_modes(connector, adapter);
  2514. }
  2515. static enum drm_connector_status
  2516. intel_dp_detect(struct drm_connector *connector, bool force)
  2517. {
  2518. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2519. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2520. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  2521. struct drm_device *dev = connector->dev;
  2522. enum drm_connector_status status;
  2523. struct edid *edid = NULL;
  2524. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  2525. connector->base.id, drm_get_connector_name(connector));
  2526. intel_dp->has_audio = false;
  2527. if (HAS_PCH_SPLIT(dev))
  2528. status = ironlake_dp_detect(intel_dp);
  2529. else
  2530. status = g4x_dp_detect(intel_dp);
  2531. if (status != connector_status_connected)
  2532. return status;
  2533. intel_dp_probe_oui(intel_dp);
  2534. if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
  2535. intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
  2536. } else {
  2537. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  2538. if (edid) {
  2539. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  2540. kfree(edid);
  2541. }
  2542. }
  2543. if (intel_encoder->type != INTEL_OUTPUT_EDP)
  2544. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  2545. return connector_status_connected;
  2546. }
  2547. static int intel_dp_get_modes(struct drm_connector *connector)
  2548. {
  2549. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2550. struct intel_connector *intel_connector = to_intel_connector(connector);
  2551. struct drm_device *dev = connector->dev;
  2552. int ret;
  2553. /* We should parse the EDID data and find out if it has an audio sink
  2554. */
  2555. ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
  2556. if (ret)
  2557. return ret;
  2558. /* if eDP has no EDID, fall back to fixed mode */
  2559. if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
  2560. struct drm_display_mode *mode;
  2561. mode = drm_mode_duplicate(dev,
  2562. intel_connector->panel.fixed_mode);
  2563. if (mode) {
  2564. drm_mode_probed_add(connector, mode);
  2565. return 1;
  2566. }
  2567. }
  2568. return 0;
  2569. }
  2570. static bool
  2571. intel_dp_detect_audio(struct drm_connector *connector)
  2572. {
  2573. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2574. struct edid *edid;
  2575. bool has_audio = false;
  2576. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  2577. if (edid) {
  2578. has_audio = drm_detect_monitor_audio(edid);
  2579. kfree(edid);
  2580. }
  2581. return has_audio;
  2582. }
  2583. static int
  2584. intel_dp_set_property(struct drm_connector *connector,
  2585. struct drm_property *property,
  2586. uint64_t val)
  2587. {
  2588. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  2589. struct intel_connector *intel_connector = to_intel_connector(connector);
  2590. struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
  2591. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2592. int ret;
  2593. ret = drm_object_property_set_value(&connector->base, property, val);
  2594. if (ret)
  2595. return ret;
  2596. if (property == dev_priv->force_audio_property) {
  2597. int i = val;
  2598. bool has_audio;
  2599. if (i == intel_dp->force_audio)
  2600. return 0;
  2601. intel_dp->force_audio = i;
  2602. if (i == HDMI_AUDIO_AUTO)
  2603. has_audio = intel_dp_detect_audio(connector);
  2604. else
  2605. has_audio = (i == HDMI_AUDIO_ON);
  2606. if (has_audio == intel_dp->has_audio)
  2607. return 0;
  2608. intel_dp->has_audio = has_audio;
  2609. goto done;
  2610. }
  2611. if (property == dev_priv->broadcast_rgb_property) {
  2612. bool old_auto = intel_dp->color_range_auto;
  2613. uint32_t old_range = intel_dp->color_range;
  2614. switch (val) {
  2615. case INTEL_BROADCAST_RGB_AUTO:
  2616. intel_dp->color_range_auto = true;
  2617. break;
  2618. case INTEL_BROADCAST_RGB_FULL:
  2619. intel_dp->color_range_auto = false;
  2620. intel_dp->color_range = 0;
  2621. break;
  2622. case INTEL_BROADCAST_RGB_LIMITED:
  2623. intel_dp->color_range_auto = false;
  2624. intel_dp->color_range = DP_COLOR_RANGE_16_235;
  2625. break;
  2626. default:
  2627. return -EINVAL;
  2628. }
  2629. if (old_auto == intel_dp->color_range_auto &&
  2630. old_range == intel_dp->color_range)
  2631. return 0;
  2632. goto done;
  2633. }
  2634. if (is_edp(intel_dp) &&
  2635. property == connector->dev->mode_config.scaling_mode_property) {
  2636. if (val == DRM_MODE_SCALE_NONE) {
  2637. DRM_DEBUG_KMS("no scaling not supported\n");
  2638. return -EINVAL;
  2639. }
  2640. if (intel_connector->panel.fitting_mode == val) {
  2641. /* the eDP scaling property is not changed */
  2642. return 0;
  2643. }
  2644. intel_connector->panel.fitting_mode = val;
  2645. goto done;
  2646. }
  2647. return -EINVAL;
  2648. done:
  2649. if (intel_encoder->base.crtc)
  2650. intel_crtc_restore_mode(intel_encoder->base.crtc);
  2651. return 0;
  2652. }
  2653. static void
  2654. intel_dp_connector_destroy(struct drm_connector *connector)
  2655. {
  2656. struct intel_connector *intel_connector = to_intel_connector(connector);
  2657. if (!IS_ERR_OR_NULL(intel_connector->edid))
  2658. kfree(intel_connector->edid);
  2659. /* Can't call is_edp() since the encoder may have been destroyed
  2660. * already. */
  2661. if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  2662. intel_panel_fini(&intel_connector->panel);
  2663. drm_sysfs_connector_remove(connector);
  2664. drm_connector_cleanup(connector);
  2665. kfree(connector);
  2666. }
  2667. void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  2668. {
  2669. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  2670. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2671. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  2672. i2c_del_adapter(&intel_dp->adapter);
  2673. drm_encoder_cleanup(encoder);
  2674. if (is_edp(intel_dp)) {
  2675. cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
  2676. mutex_lock(&dev->mode_config.mutex);
  2677. ironlake_panel_vdd_off_sync(intel_dp);
  2678. mutex_unlock(&dev->mode_config.mutex);
  2679. }
  2680. kfree(intel_dig_port);
  2681. }
  2682. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  2683. .dpms = intel_connector_dpms,
  2684. .detect = intel_dp_detect,
  2685. .fill_modes = drm_helper_probe_single_connector_modes,
  2686. .set_property = intel_dp_set_property,
  2687. .destroy = intel_dp_connector_destroy,
  2688. };
  2689. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  2690. .get_modes = intel_dp_get_modes,
  2691. .mode_valid = intel_dp_mode_valid,
  2692. .best_encoder = intel_best_encoder,
  2693. };
  2694. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  2695. .destroy = intel_dp_encoder_destroy,
  2696. };
  2697. static void
  2698. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  2699. {
  2700. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2701. intel_dp_check_link_status(intel_dp);
  2702. }
  2703. /* Return which DP Port should be selected for Transcoder DP control */
  2704. int
  2705. intel_trans_dp_port_sel(struct drm_crtc *crtc)
  2706. {
  2707. struct drm_device *dev = crtc->dev;
  2708. struct intel_encoder *intel_encoder;
  2709. struct intel_dp *intel_dp;
  2710. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  2711. intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2712. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  2713. intel_encoder->type == INTEL_OUTPUT_EDP)
  2714. return intel_dp->output_reg;
  2715. }
  2716. return -1;
  2717. }
  2718. /* check the VBT to see whether the eDP is on DP-D port */
  2719. bool intel_dpd_is_edp(struct drm_device *dev)
  2720. {
  2721. struct drm_i915_private *dev_priv = dev->dev_private;
  2722. union child_device_config *p_child;
  2723. int i;
  2724. if (!dev_priv->vbt.child_dev_num)
  2725. return false;
  2726. for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
  2727. p_child = dev_priv->vbt.child_dev + i;
  2728. if (p_child->common.dvo_port == PORT_IDPD &&
  2729. p_child->common.device_type == DEVICE_TYPE_eDP)
  2730. return true;
  2731. }
  2732. return false;
  2733. }
  2734. static void
  2735. intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
  2736. {
  2737. struct intel_connector *intel_connector = to_intel_connector(connector);
  2738. intel_attach_force_audio_property(connector);
  2739. intel_attach_broadcast_rgb_property(connector);
  2740. intel_dp->color_range_auto = true;
  2741. if (is_edp(intel_dp)) {
  2742. drm_mode_create_scaling_mode_property(connector->dev);
  2743. drm_object_attach_property(
  2744. &connector->base,
  2745. connector->dev->mode_config.scaling_mode_property,
  2746. DRM_MODE_SCALE_ASPECT);
  2747. intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
  2748. }
  2749. }
  2750. static void
  2751. intel_dp_init_panel_power_sequencer(struct drm_device *dev,
  2752. struct intel_dp *intel_dp,
  2753. struct edp_power_seq *out)
  2754. {
  2755. struct drm_i915_private *dev_priv = dev->dev_private;
  2756. struct edp_power_seq cur, vbt, spec, final;
  2757. u32 pp_on, pp_off, pp_div, pp;
  2758. int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
  2759. if (HAS_PCH_SPLIT(dev)) {
  2760. pp_ctrl_reg = PCH_PP_CONTROL;
  2761. pp_on_reg = PCH_PP_ON_DELAYS;
  2762. pp_off_reg = PCH_PP_OFF_DELAYS;
  2763. pp_div_reg = PCH_PP_DIVISOR;
  2764. } else {
  2765. enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
  2766. pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
  2767. pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
  2768. pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
  2769. pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
  2770. }
  2771. /* Workaround: Need to write PP_CONTROL with the unlock key as
  2772. * the very first thing. */
  2773. pp = ironlake_get_pp_control(intel_dp);
  2774. I915_WRITE(pp_ctrl_reg, pp);
  2775. pp_on = I915_READ(pp_on_reg);
  2776. pp_off = I915_READ(pp_off_reg);
  2777. pp_div = I915_READ(pp_div_reg);
  2778. /* Pull timing values out of registers */
  2779. cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
  2780. PANEL_POWER_UP_DELAY_SHIFT;
  2781. cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
  2782. PANEL_LIGHT_ON_DELAY_SHIFT;
  2783. cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
  2784. PANEL_LIGHT_OFF_DELAY_SHIFT;
  2785. cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
  2786. PANEL_POWER_DOWN_DELAY_SHIFT;
  2787. cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
  2788. PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
  2789. DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  2790. cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
  2791. vbt = dev_priv->vbt.edp_pps;
  2792. /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
  2793. * our hw here, which are all in 100usec. */
  2794. spec.t1_t3 = 210 * 10;
  2795. spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
  2796. spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
  2797. spec.t10 = 500 * 10;
  2798. /* This one is special and actually in units of 100ms, but zero
  2799. * based in the hw (so we need to add 100 ms). But the sw vbt
  2800. * table multiplies it with 1000 to make it in units of 100usec,
  2801. * too. */
  2802. spec.t11_t12 = (510 + 100) * 10;
  2803. DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  2804. vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
  2805. /* Use the max of the register settings and vbt. If both are
  2806. * unset, fall back to the spec limits. */
  2807. #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
  2808. spec.field : \
  2809. max(cur.field, vbt.field))
  2810. assign_final(t1_t3);
  2811. assign_final(t8);
  2812. assign_final(t9);
  2813. assign_final(t10);
  2814. assign_final(t11_t12);
  2815. #undef assign_final
  2816. #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
  2817. intel_dp->panel_power_up_delay = get_delay(t1_t3);
  2818. intel_dp->backlight_on_delay = get_delay(t8);
  2819. intel_dp->backlight_off_delay = get_delay(t9);
  2820. intel_dp->panel_power_down_delay = get_delay(t10);
  2821. intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
  2822. #undef get_delay
  2823. DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
  2824. intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
  2825. intel_dp->panel_power_cycle_delay);
  2826. DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
  2827. intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
  2828. if (out)
  2829. *out = final;
  2830. }
  2831. static void
  2832. intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
  2833. struct intel_dp *intel_dp,
  2834. struct edp_power_seq *seq)
  2835. {
  2836. struct drm_i915_private *dev_priv = dev->dev_private;
  2837. u32 pp_on, pp_off, pp_div, port_sel = 0;
  2838. int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
  2839. int pp_on_reg, pp_off_reg, pp_div_reg;
  2840. if (HAS_PCH_SPLIT(dev)) {
  2841. pp_on_reg = PCH_PP_ON_DELAYS;
  2842. pp_off_reg = PCH_PP_OFF_DELAYS;
  2843. pp_div_reg = PCH_PP_DIVISOR;
  2844. } else {
  2845. enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
  2846. pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
  2847. pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
  2848. pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
  2849. }
  2850. /* And finally store the new values in the power sequencer. */
  2851. pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
  2852. (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
  2853. pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
  2854. (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
  2855. /* Compute the divisor for the pp clock, simply match the Bspec
  2856. * formula. */
  2857. pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
  2858. pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
  2859. << PANEL_POWER_CYCLE_DELAY_SHIFT);
  2860. /* Haswell doesn't have any port selection bits for the panel
  2861. * power sequencer any more. */
  2862. if (IS_VALLEYVIEW(dev)) {
  2863. if (dp_to_dig_port(intel_dp)->port == PORT_B)
  2864. port_sel = PANEL_PORT_SELECT_DPB_VLV;
  2865. else
  2866. port_sel = PANEL_PORT_SELECT_DPC_VLV;
  2867. } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  2868. if (dp_to_dig_port(intel_dp)->port == PORT_A)
  2869. port_sel = PANEL_PORT_SELECT_DPA;
  2870. else
  2871. port_sel = PANEL_PORT_SELECT_DPD;
  2872. }
  2873. pp_on |= port_sel;
  2874. I915_WRITE(pp_on_reg, pp_on);
  2875. I915_WRITE(pp_off_reg, pp_off);
  2876. I915_WRITE(pp_div_reg, pp_div);
  2877. DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
  2878. I915_READ(pp_on_reg),
  2879. I915_READ(pp_off_reg),
  2880. I915_READ(pp_div_reg));
  2881. }
  2882. static bool intel_edp_init_connector(struct intel_dp *intel_dp,
  2883. struct intel_connector *intel_connector)
  2884. {
  2885. struct drm_connector *connector = &intel_connector->base;
  2886. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2887. struct drm_device *dev = intel_dig_port->base.base.dev;
  2888. struct drm_i915_private *dev_priv = dev->dev_private;
  2889. struct drm_display_mode *fixed_mode = NULL;
  2890. struct edp_power_seq power_seq = { 0 };
  2891. bool has_dpcd;
  2892. struct drm_display_mode *scan;
  2893. struct edid *edid;
  2894. if (!is_edp(intel_dp))
  2895. return true;
  2896. intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
  2897. /* Cache DPCD and EDID for edp. */
  2898. ironlake_edp_panel_vdd_on(intel_dp);
  2899. has_dpcd = intel_dp_get_dpcd(intel_dp);
  2900. ironlake_edp_panel_vdd_off(intel_dp, false);
  2901. if (has_dpcd) {
  2902. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
  2903. dev_priv->no_aux_handshake =
  2904. intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
  2905. DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
  2906. } else {
  2907. /* if this fails, presume the device is a ghost */
  2908. DRM_INFO("failed to retrieve link info, disabling eDP\n");
  2909. return false;
  2910. }
  2911. /* We now know it's not a ghost, init power sequence regs. */
  2912. intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
  2913. &power_seq);
  2914. ironlake_edp_panel_vdd_on(intel_dp);
  2915. edid = drm_get_edid(connector, &intel_dp->adapter);
  2916. if (edid) {
  2917. if (drm_add_edid_modes(connector, edid)) {
  2918. drm_mode_connector_update_edid_property(connector,
  2919. edid);
  2920. drm_edid_to_eld(connector, edid);
  2921. } else {
  2922. kfree(edid);
  2923. edid = ERR_PTR(-EINVAL);
  2924. }
  2925. } else {
  2926. edid = ERR_PTR(-ENOENT);
  2927. }
  2928. intel_connector->edid = edid;
  2929. /* prefer fixed mode from EDID if available */
  2930. list_for_each_entry(scan, &connector->probed_modes, head) {
  2931. if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
  2932. fixed_mode = drm_mode_duplicate(dev, scan);
  2933. break;
  2934. }
  2935. }
  2936. /* fallback to VBT if available for eDP */
  2937. if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
  2938. fixed_mode = drm_mode_duplicate(dev,
  2939. dev_priv->vbt.lfp_lvds_vbt_mode);
  2940. if (fixed_mode)
  2941. fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
  2942. }
  2943. ironlake_edp_panel_vdd_off(intel_dp, false);
  2944. intel_panel_init(&intel_connector->panel, fixed_mode);
  2945. intel_panel_setup_backlight(connector);
  2946. return true;
  2947. }
  2948. bool
  2949. intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
  2950. struct intel_connector *intel_connector)
  2951. {
  2952. struct drm_connector *connector = &intel_connector->base;
  2953. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2954. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  2955. struct drm_device *dev = intel_encoder->base.dev;
  2956. struct drm_i915_private *dev_priv = dev->dev_private;
  2957. enum port port = intel_dig_port->port;
  2958. const char *name = NULL;
  2959. int type, error;
  2960. /* Preserve the current hw state. */
  2961. intel_dp->DP = I915_READ(intel_dp->output_reg);
  2962. intel_dp->attached_connector = intel_connector;
  2963. type = DRM_MODE_CONNECTOR_DisplayPort;
  2964. /*
  2965. * FIXME : We need to initialize built-in panels before external panels.
  2966. * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
  2967. */
  2968. switch (port) {
  2969. case PORT_A:
  2970. type = DRM_MODE_CONNECTOR_eDP;
  2971. break;
  2972. case PORT_C:
  2973. if (IS_VALLEYVIEW(dev))
  2974. type = DRM_MODE_CONNECTOR_eDP;
  2975. break;
  2976. case PORT_D:
  2977. if (HAS_PCH_SPLIT(dev) && intel_dpd_is_edp(dev))
  2978. type = DRM_MODE_CONNECTOR_eDP;
  2979. break;
  2980. default: /* silence GCC warning */
  2981. break;
  2982. }
  2983. /*
  2984. * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
  2985. * for DP the encoder type can be set by the caller to
  2986. * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
  2987. */
  2988. if (type == DRM_MODE_CONNECTOR_eDP)
  2989. intel_encoder->type = INTEL_OUTPUT_EDP;
  2990. DRM_DEBUG_KMS("Adding %s connector on port %c\n",
  2991. type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
  2992. port_name(port));
  2993. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  2994. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  2995. connector->interlace_allowed = true;
  2996. connector->doublescan_allowed = 0;
  2997. INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
  2998. ironlake_panel_vdd_work);
  2999. intel_connector_attach_encoder(intel_connector, intel_encoder);
  3000. drm_sysfs_connector_add(connector);
  3001. if (HAS_DDI(dev))
  3002. intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
  3003. else
  3004. intel_connector->get_hw_state = intel_connector_get_hw_state;
  3005. intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
  3006. if (HAS_DDI(dev)) {
  3007. switch (intel_dig_port->port) {
  3008. case PORT_A:
  3009. intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
  3010. break;
  3011. case PORT_B:
  3012. intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
  3013. break;
  3014. case PORT_C:
  3015. intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
  3016. break;
  3017. case PORT_D:
  3018. intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
  3019. break;
  3020. default:
  3021. BUG();
  3022. }
  3023. }
  3024. /* Set up the DDC bus. */
  3025. switch (port) {
  3026. case PORT_A:
  3027. intel_encoder->hpd_pin = HPD_PORT_A;
  3028. name = "DPDDC-A";
  3029. break;
  3030. case PORT_B:
  3031. intel_encoder->hpd_pin = HPD_PORT_B;
  3032. name = "DPDDC-B";
  3033. break;
  3034. case PORT_C:
  3035. intel_encoder->hpd_pin = HPD_PORT_C;
  3036. name = "DPDDC-C";
  3037. break;
  3038. case PORT_D:
  3039. intel_encoder->hpd_pin = HPD_PORT_D;
  3040. name = "DPDDC-D";
  3041. break;
  3042. default:
  3043. BUG();
  3044. }
  3045. error = intel_dp_i2c_init(intel_dp, intel_connector, name);
  3046. WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
  3047. error, port_name(port));
  3048. intel_dp->psr_setup_done = false;
  3049. if (!intel_edp_init_connector(intel_dp, intel_connector)) {
  3050. i2c_del_adapter(&intel_dp->adapter);
  3051. if (is_edp(intel_dp)) {
  3052. cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
  3053. mutex_lock(&dev->mode_config.mutex);
  3054. ironlake_panel_vdd_off_sync(intel_dp);
  3055. mutex_unlock(&dev->mode_config.mutex);
  3056. }
  3057. drm_sysfs_connector_remove(connector);
  3058. drm_connector_cleanup(connector);
  3059. return false;
  3060. }
  3061. intel_dp_add_properties(intel_dp, connector);
  3062. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  3063. * 0xd. Failure to do so will result in spurious interrupts being
  3064. * generated on the port when a cable is not attached.
  3065. */
  3066. if (IS_G4X(dev) && !IS_GM45(dev)) {
  3067. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  3068. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  3069. }
  3070. return true;
  3071. }
  3072. void
  3073. intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
  3074. {
  3075. struct intel_digital_port *intel_dig_port;
  3076. struct intel_encoder *intel_encoder;
  3077. struct drm_encoder *encoder;
  3078. struct intel_connector *intel_connector;
  3079. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  3080. if (!intel_dig_port)
  3081. return;
  3082. intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
  3083. if (!intel_connector) {
  3084. kfree(intel_dig_port);
  3085. return;
  3086. }
  3087. intel_encoder = &intel_dig_port->base;
  3088. encoder = &intel_encoder->base;
  3089. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  3090. DRM_MODE_ENCODER_TMDS);
  3091. intel_encoder->compute_config = intel_dp_compute_config;
  3092. intel_encoder->mode_set = intel_dp_mode_set;
  3093. intel_encoder->disable = intel_disable_dp;
  3094. intel_encoder->post_disable = intel_post_disable_dp;
  3095. intel_encoder->get_hw_state = intel_dp_get_hw_state;
  3096. intel_encoder->get_config = intel_dp_get_config;
  3097. if (IS_VALLEYVIEW(dev)) {
  3098. intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
  3099. intel_encoder->pre_enable = vlv_pre_enable_dp;
  3100. intel_encoder->enable = vlv_enable_dp;
  3101. } else {
  3102. intel_encoder->pre_enable = g4x_pre_enable_dp;
  3103. intel_encoder->enable = g4x_enable_dp;
  3104. }
  3105. intel_dig_port->port = port;
  3106. intel_dig_port->dp.output_reg = output_reg;
  3107. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  3108. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  3109. intel_encoder->cloneable = false;
  3110. intel_encoder->hot_plug = intel_dp_hot_plug;
  3111. if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
  3112. drm_encoder_cleanup(encoder);
  3113. kfree(intel_dig_port);
  3114. kfree(intel_connector);
  3115. }
  3116. }