setup.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545
  1. /*
  2. * Machine specific setup for xen
  3. *
  4. * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  5. */
  6. #include <linux/module.h>
  7. #include <linux/sched.h>
  8. #include <linux/mm.h>
  9. #include <linux/pm.h>
  10. #include <linux/memblock.h>
  11. #include <linux/cpuidle.h>
  12. #include <linux/cpufreq.h>
  13. #include <asm/elf.h>
  14. #include <asm/vdso.h>
  15. #include <asm/e820.h>
  16. #include <asm/setup.h>
  17. #include <asm/acpi.h>
  18. #include <asm/xen/hypervisor.h>
  19. #include <asm/xen/hypercall.h>
  20. #include <xen/xen.h>
  21. #include <xen/page.h>
  22. #include <xen/interface/callback.h>
  23. #include <xen/interface/memory.h>
  24. #include <xen/interface/physdev.h>
  25. #include <xen/features.h>
  26. #include "xen-ops.h"
  27. #include "vdso.h"
  28. /* These are code, but not functions. Defined in entry.S */
  29. extern const char xen_hypervisor_callback[];
  30. extern const char xen_failsafe_callback[];
  31. extern void xen_sysenter_target(void);
  32. extern void xen_syscall_target(void);
  33. extern void xen_syscall32_target(void);
  34. /* Amount of extra memory space we add to the e820 ranges */
  35. struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata;
  36. /* Number of pages released from the initial allocation. */
  37. unsigned long xen_released_pages;
  38. /*
  39. * The maximum amount of extra memory compared to the base size. The
  40. * main scaling factor is the size of struct page. At extreme ratios
  41. * of base:extra, all the base memory can be filled with page
  42. * structures for the extra memory, leaving no space for anything
  43. * else.
  44. *
  45. * 10x seems like a reasonable balance between scaling flexibility and
  46. * leaving a practically usable system.
  47. */
  48. #define EXTRA_MEM_RATIO (10)
  49. static void __init xen_add_extra_mem(u64 start, u64 size)
  50. {
  51. unsigned long pfn;
  52. int i;
  53. for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
  54. /* Add new region. */
  55. if (xen_extra_mem[i].size == 0) {
  56. xen_extra_mem[i].start = start;
  57. xen_extra_mem[i].size = size;
  58. break;
  59. }
  60. /* Append to existing region. */
  61. if (xen_extra_mem[i].start + xen_extra_mem[i].size == start) {
  62. xen_extra_mem[i].size += size;
  63. break;
  64. }
  65. }
  66. if (i == XEN_EXTRA_MEM_MAX_REGIONS)
  67. printk(KERN_WARNING "Warning: not enough extra memory regions\n");
  68. memblock_reserve(start, size);
  69. xen_max_p2m_pfn = PFN_DOWN(start + size);
  70. for (pfn = PFN_DOWN(start); pfn <= xen_max_p2m_pfn; pfn++)
  71. __set_phys_to_machine(pfn, INVALID_P2M_ENTRY);
  72. }
  73. static unsigned long __init xen_do_chunk(unsigned long start,
  74. unsigned long end, bool release)
  75. {
  76. struct xen_memory_reservation reservation = {
  77. .address_bits = 0,
  78. .extent_order = 0,
  79. .domid = DOMID_SELF
  80. };
  81. unsigned long len = 0;
  82. unsigned long pfn;
  83. int ret;
  84. for (pfn = start; pfn < end; pfn++) {
  85. unsigned long frame;
  86. unsigned long mfn = pfn_to_mfn(pfn);
  87. if (release) {
  88. /* Make sure pfn exists to start with */
  89. if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn)
  90. continue;
  91. frame = mfn;
  92. } else {
  93. if (mfn != INVALID_P2M_ENTRY)
  94. continue;
  95. frame = pfn;
  96. }
  97. set_xen_guest_handle(reservation.extent_start, &frame);
  98. reservation.nr_extents = 1;
  99. ret = HYPERVISOR_memory_op(release ? XENMEM_decrease_reservation : XENMEM_populate_physmap,
  100. &reservation);
  101. WARN(ret != 1, "Failed to %s pfn %lx err=%d\n",
  102. release ? "release" : "populate", pfn, ret);
  103. if (ret == 1) {
  104. if (!early_set_phys_to_machine(pfn, release ? INVALID_P2M_ENTRY : frame)) {
  105. if (release)
  106. break;
  107. set_xen_guest_handle(reservation.extent_start, &frame);
  108. reservation.nr_extents = 1;
  109. ret = HYPERVISOR_memory_op(XENMEM_decrease_reservation,
  110. &reservation);
  111. break;
  112. }
  113. len++;
  114. } else
  115. break;
  116. }
  117. if (len)
  118. printk(KERN_INFO "%s %lx-%lx pfn range: %lu pages %s\n",
  119. release ? "Freeing" : "Populating",
  120. start, end, len,
  121. release ? "freed" : "added");
  122. return len;
  123. }
  124. static unsigned long __init xen_release_chunk(unsigned long start,
  125. unsigned long end)
  126. {
  127. return xen_do_chunk(start, end, true);
  128. }
  129. static unsigned long __init xen_populate_chunk(
  130. const struct e820entry *list, size_t map_size,
  131. unsigned long max_pfn, unsigned long *last_pfn,
  132. unsigned long credits_left)
  133. {
  134. const struct e820entry *entry;
  135. unsigned int i;
  136. unsigned long done = 0;
  137. unsigned long dest_pfn;
  138. for (i = 0, entry = list; i < map_size; i++, entry++) {
  139. unsigned long credits = credits_left;
  140. unsigned long s_pfn;
  141. unsigned long e_pfn;
  142. unsigned long pfns;
  143. long capacity;
  144. if (credits <= 0)
  145. break;
  146. if (entry->type != E820_RAM)
  147. continue;
  148. e_pfn = PFN_UP(entry->addr + entry->size);
  149. /* We only care about E820 after the xen_start_info->nr_pages */
  150. if (e_pfn <= max_pfn)
  151. continue;
  152. s_pfn = PFN_DOWN(entry->addr);
  153. /* If the E820 falls within the nr_pages, we want to start
  154. * at the nr_pages PFN.
  155. * If that would mean going past the E820 entry, skip it
  156. */
  157. if (s_pfn <= max_pfn) {
  158. capacity = e_pfn - max_pfn;
  159. dest_pfn = max_pfn;
  160. } else {
  161. /* last_pfn MUST be within E820_RAM regions */
  162. if (*last_pfn && e_pfn >= *last_pfn)
  163. s_pfn = *last_pfn;
  164. capacity = e_pfn - s_pfn;
  165. dest_pfn = s_pfn;
  166. }
  167. /* If we had filled this E820_RAM entry, go to the next one. */
  168. if (capacity <= 0)
  169. continue;
  170. if (credits > capacity)
  171. credits = capacity;
  172. pfns = xen_do_chunk(dest_pfn, dest_pfn + credits, false);
  173. done += pfns;
  174. credits_left -= pfns;
  175. *last_pfn = (dest_pfn + pfns);
  176. }
  177. return done;
  178. }
  179. static void __init xen_set_identity_and_release_chunk(
  180. unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages,
  181. unsigned long *released, unsigned long *identity)
  182. {
  183. unsigned long pfn;
  184. /*
  185. * If the PFNs are currently mapped, the VA mapping also needs
  186. * to be updated to be 1:1.
  187. */
  188. for (pfn = start_pfn; pfn <= max_pfn_mapped && pfn < end_pfn; pfn++)
  189. (void)HYPERVISOR_update_va_mapping(
  190. (unsigned long)__va(pfn << PAGE_SHIFT),
  191. mfn_pte(pfn, PAGE_KERNEL_IO), 0);
  192. if (start_pfn < nr_pages)
  193. *released += xen_release_chunk(
  194. start_pfn, min(end_pfn, nr_pages));
  195. *identity += set_phys_range_identity(start_pfn, end_pfn);
  196. }
  197. static unsigned long __init xen_set_identity_and_release(
  198. const struct e820entry *list, size_t map_size, unsigned long nr_pages)
  199. {
  200. phys_addr_t start = 0;
  201. unsigned long released = 0;
  202. unsigned long identity = 0;
  203. const struct e820entry *entry;
  204. int i;
  205. /*
  206. * Combine non-RAM regions and gaps until a RAM region (or the
  207. * end of the map) is reached, then set the 1:1 map and
  208. * release the pages (if available) in those non-RAM regions.
  209. *
  210. * The combined non-RAM regions are rounded to a whole number
  211. * of pages so any partial pages are accessible via the 1:1
  212. * mapping. This is needed for some BIOSes that put (for
  213. * example) the DMI tables in a reserved region that begins on
  214. * a non-page boundary.
  215. */
  216. for (i = 0, entry = list; i < map_size; i++, entry++) {
  217. phys_addr_t end = entry->addr + entry->size;
  218. if (entry->type == E820_RAM || i == map_size - 1) {
  219. unsigned long start_pfn = PFN_DOWN(start);
  220. unsigned long end_pfn = PFN_UP(end);
  221. if (entry->type == E820_RAM)
  222. end_pfn = PFN_UP(entry->addr);
  223. if (start_pfn < end_pfn)
  224. xen_set_identity_and_release_chunk(
  225. start_pfn, end_pfn, nr_pages,
  226. &released, &identity);
  227. start = end;
  228. }
  229. }
  230. if (released)
  231. printk(KERN_INFO "Released %lu pages of unused memory\n", released);
  232. if (identity)
  233. printk(KERN_INFO "Set %ld page(s) to 1-1 mapping\n", identity);
  234. return released;
  235. }
  236. static unsigned long __init xen_get_max_pages(void)
  237. {
  238. unsigned long max_pages = MAX_DOMAIN_PAGES;
  239. domid_t domid = DOMID_SELF;
  240. int ret;
  241. /*
  242. * For the initial domain we use the maximum reservation as
  243. * the maximum page.
  244. *
  245. * For guest domains the current maximum reservation reflects
  246. * the current maximum rather than the static maximum. In this
  247. * case the e820 map provided to us will cover the static
  248. * maximum region.
  249. */
  250. if (xen_initial_domain()) {
  251. ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid);
  252. if (ret > 0)
  253. max_pages = ret;
  254. }
  255. return min(max_pages, MAX_DOMAIN_PAGES);
  256. }
  257. static void xen_align_and_add_e820_region(u64 start, u64 size, int type)
  258. {
  259. u64 end = start + size;
  260. /* Align RAM regions to page boundaries. */
  261. if (type == E820_RAM) {
  262. start = PAGE_ALIGN(start);
  263. end &= ~((u64)PAGE_SIZE - 1);
  264. }
  265. e820_add_region(start, end - start, type);
  266. }
  267. /**
  268. * machine_specific_memory_setup - Hook for machine specific memory setup.
  269. **/
  270. char * __init xen_memory_setup(void)
  271. {
  272. static struct e820entry map[E820MAX] __initdata;
  273. unsigned long max_pfn = xen_start_info->nr_pages;
  274. unsigned long long mem_end;
  275. int rc;
  276. struct xen_memory_map memmap;
  277. unsigned long max_pages;
  278. unsigned long last_pfn = 0;
  279. unsigned long extra_pages = 0;
  280. unsigned long populated;
  281. int i;
  282. int op;
  283. max_pfn = min(MAX_DOMAIN_PAGES, max_pfn);
  284. mem_end = PFN_PHYS(max_pfn);
  285. memmap.nr_entries = E820MAX;
  286. set_xen_guest_handle(memmap.buffer, map);
  287. op = xen_initial_domain() ?
  288. XENMEM_machine_memory_map :
  289. XENMEM_memory_map;
  290. rc = HYPERVISOR_memory_op(op, &memmap);
  291. if (rc == -ENOSYS) {
  292. BUG_ON(xen_initial_domain());
  293. memmap.nr_entries = 1;
  294. map[0].addr = 0ULL;
  295. map[0].size = mem_end;
  296. /* 8MB slack (to balance backend allocations). */
  297. map[0].size += 8ULL << 20;
  298. map[0].type = E820_RAM;
  299. rc = 0;
  300. }
  301. BUG_ON(rc);
  302. /* Make sure the Xen-supplied memory map is well-ordered. */
  303. sanitize_e820_map(map, memmap.nr_entries, &memmap.nr_entries);
  304. max_pages = xen_get_max_pages();
  305. if (max_pages > max_pfn)
  306. extra_pages += max_pages - max_pfn;
  307. /*
  308. * Set P2M for all non-RAM pages and E820 gaps to be identity
  309. * type PFNs. Any RAM pages that would be made inaccesible by
  310. * this are first released.
  311. */
  312. xen_released_pages = xen_set_identity_and_release(
  313. map, memmap.nr_entries, max_pfn);
  314. /*
  315. * Populate back the non-RAM pages and E820 gaps that had been
  316. * released. */
  317. populated = xen_populate_chunk(map, memmap.nr_entries,
  318. max_pfn, &last_pfn, xen_released_pages);
  319. xen_released_pages -= populated;
  320. extra_pages += xen_released_pages;
  321. if (last_pfn > max_pfn) {
  322. max_pfn = min(MAX_DOMAIN_PAGES, last_pfn);
  323. mem_end = PFN_PHYS(max_pfn);
  324. }
  325. /*
  326. * Clamp the amount of extra memory to a EXTRA_MEM_RATIO
  327. * factor the base size. On non-highmem systems, the base
  328. * size is the full initial memory allocation; on highmem it
  329. * is limited to the max size of lowmem, so that it doesn't
  330. * get completely filled.
  331. *
  332. * In principle there could be a problem in lowmem systems if
  333. * the initial memory is also very large with respect to
  334. * lowmem, but we won't try to deal with that here.
  335. */
  336. extra_pages = min(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)),
  337. extra_pages);
  338. i = 0;
  339. while (i < memmap.nr_entries) {
  340. u64 addr = map[i].addr;
  341. u64 size = map[i].size;
  342. u32 type = map[i].type;
  343. if (type == E820_RAM) {
  344. if (addr < mem_end) {
  345. size = min(size, mem_end - addr);
  346. } else if (extra_pages) {
  347. size = min(size, (u64)extra_pages * PAGE_SIZE);
  348. extra_pages -= size / PAGE_SIZE;
  349. xen_add_extra_mem(addr, size);
  350. } else
  351. type = E820_UNUSABLE;
  352. }
  353. xen_align_and_add_e820_region(addr, size, type);
  354. map[i].addr += size;
  355. map[i].size -= size;
  356. if (map[i].size == 0)
  357. i++;
  358. }
  359. /*
  360. * In domU, the ISA region is normal, usable memory, but we
  361. * reserve ISA memory anyway because too many things poke
  362. * about in there.
  363. */
  364. e820_add_region(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS,
  365. E820_RESERVED);
  366. /*
  367. * Reserve Xen bits:
  368. * - mfn_list
  369. * - xen_start_info
  370. * See comment above "struct start_info" in <xen/interface/xen.h>
  371. */
  372. memblock_reserve(__pa(xen_start_info->mfn_list),
  373. xen_start_info->pt_base - xen_start_info->mfn_list);
  374. sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
  375. return "Xen";
  376. }
  377. /*
  378. * Set the bit indicating "nosegneg" library variants should be used.
  379. * We only need to bother in pure 32-bit mode; compat 32-bit processes
  380. * can have un-truncated segments, so wrapping around is allowed.
  381. */
  382. static void __init fiddle_vdso(void)
  383. {
  384. #ifdef CONFIG_X86_32
  385. u32 *mask;
  386. mask = VDSO32_SYMBOL(&vdso32_int80_start, NOTE_MASK);
  387. *mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
  388. mask = VDSO32_SYMBOL(&vdso32_sysenter_start, NOTE_MASK);
  389. *mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
  390. #endif
  391. }
  392. static int __cpuinit register_callback(unsigned type, const void *func)
  393. {
  394. struct callback_register callback = {
  395. .type = type,
  396. .address = XEN_CALLBACK(__KERNEL_CS, func),
  397. .flags = CALLBACKF_mask_events,
  398. };
  399. return HYPERVISOR_callback_op(CALLBACKOP_register, &callback);
  400. }
  401. void __cpuinit xen_enable_sysenter(void)
  402. {
  403. int ret;
  404. unsigned sysenter_feature;
  405. #ifdef CONFIG_X86_32
  406. sysenter_feature = X86_FEATURE_SEP;
  407. #else
  408. sysenter_feature = X86_FEATURE_SYSENTER32;
  409. #endif
  410. if (!boot_cpu_has(sysenter_feature))
  411. return;
  412. ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target);
  413. if(ret != 0)
  414. setup_clear_cpu_cap(sysenter_feature);
  415. }
  416. void __cpuinit xen_enable_syscall(void)
  417. {
  418. #ifdef CONFIG_X86_64
  419. int ret;
  420. ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target);
  421. if (ret != 0) {
  422. printk(KERN_ERR "Failed to set syscall callback: %d\n", ret);
  423. /* Pretty fatal; 64-bit userspace has no other
  424. mechanism for syscalls. */
  425. }
  426. if (boot_cpu_has(X86_FEATURE_SYSCALL32)) {
  427. ret = register_callback(CALLBACKTYPE_syscall32,
  428. xen_syscall32_target);
  429. if (ret != 0)
  430. setup_clear_cpu_cap(X86_FEATURE_SYSCALL32);
  431. }
  432. #endif /* CONFIG_X86_64 */
  433. }
  434. void __init xen_arch_setup(void)
  435. {
  436. xen_panic_handler_init();
  437. HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments);
  438. HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables);
  439. if (!xen_feature(XENFEAT_auto_translated_physmap))
  440. HYPERVISOR_vm_assist(VMASST_CMD_enable,
  441. VMASST_TYPE_pae_extended_cr3);
  442. if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) ||
  443. register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback))
  444. BUG();
  445. xen_enable_sysenter();
  446. xen_enable_syscall();
  447. #ifdef CONFIG_ACPI
  448. if (!(xen_start_info->flags & SIF_INITDOMAIN)) {
  449. printk(KERN_INFO "ACPI in unprivileged domain disabled\n");
  450. disable_acpi();
  451. }
  452. #endif
  453. memcpy(boot_command_line, xen_start_info->cmd_line,
  454. MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ?
  455. COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE);
  456. /* Set up idle, making sure it calls safe_halt() pvop */
  457. #ifdef CONFIG_X86_32
  458. boot_cpu_data.hlt_works_ok = 1;
  459. #endif
  460. disable_cpuidle();
  461. disable_cpufreq();
  462. WARN_ON(set_pm_idle_to_default());
  463. fiddle_vdso();
  464. }