enlighten.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521
  1. /*
  2. * Core of Xen paravirt_ops implementation.
  3. *
  4. * This file contains the xen_paravirt_ops structure itself, and the
  5. * implementations for:
  6. * - privileged instructions
  7. * - interrupt flags
  8. * - segment operations
  9. * - booting and setup
  10. *
  11. * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  12. */
  13. #include <linux/cpu.h>
  14. #include <linux/kernel.h>
  15. #include <linux/init.h>
  16. #include <linux/smp.h>
  17. #include <linux/preempt.h>
  18. #include <linux/hardirq.h>
  19. #include <linux/percpu.h>
  20. #include <linux/delay.h>
  21. #include <linux/start_kernel.h>
  22. #include <linux/sched.h>
  23. #include <linux/kprobes.h>
  24. #include <linux/bootmem.h>
  25. #include <linux/module.h>
  26. #include <linux/mm.h>
  27. #include <linux/page-flags.h>
  28. #include <linux/highmem.h>
  29. #include <linux/console.h>
  30. #include <linux/pci.h>
  31. #include <linux/gfp.h>
  32. #include <linux/memblock.h>
  33. #include <xen/xen.h>
  34. #include <xen/interface/xen.h>
  35. #include <xen/interface/version.h>
  36. #include <xen/interface/physdev.h>
  37. #include <xen/interface/vcpu.h>
  38. #include <xen/interface/memory.h>
  39. #include <xen/features.h>
  40. #include <xen/page.h>
  41. #include <xen/hvm.h>
  42. #include <xen/hvc-console.h>
  43. #include <xen/acpi.h>
  44. #include <asm/paravirt.h>
  45. #include <asm/apic.h>
  46. #include <asm/page.h>
  47. #include <asm/xen/pci.h>
  48. #include <asm/xen/hypercall.h>
  49. #include <asm/xen/hypervisor.h>
  50. #include <asm/fixmap.h>
  51. #include <asm/processor.h>
  52. #include <asm/proto.h>
  53. #include <asm/msr-index.h>
  54. #include <asm/traps.h>
  55. #include <asm/setup.h>
  56. #include <asm/desc.h>
  57. #include <asm/pgalloc.h>
  58. #include <asm/pgtable.h>
  59. #include <asm/tlbflush.h>
  60. #include <asm/reboot.h>
  61. #include <asm/stackprotector.h>
  62. #include <asm/hypervisor.h>
  63. #include <asm/mwait.h>
  64. #ifdef CONFIG_ACPI
  65. #include <linux/acpi.h>
  66. #include <asm/acpi.h>
  67. #include <acpi/pdc_intel.h>
  68. #include <acpi/processor.h>
  69. #include <xen/interface/platform.h>
  70. #endif
  71. #include "xen-ops.h"
  72. #include "mmu.h"
  73. #include "smp.h"
  74. #include "multicalls.h"
  75. EXPORT_SYMBOL_GPL(hypercall_page);
  76. DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
  77. DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
  78. enum xen_domain_type xen_domain_type = XEN_NATIVE;
  79. EXPORT_SYMBOL_GPL(xen_domain_type);
  80. unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
  81. EXPORT_SYMBOL(machine_to_phys_mapping);
  82. unsigned long machine_to_phys_nr;
  83. EXPORT_SYMBOL(machine_to_phys_nr);
  84. struct start_info *xen_start_info;
  85. EXPORT_SYMBOL_GPL(xen_start_info);
  86. struct shared_info xen_dummy_shared_info;
  87. void *xen_initial_gdt;
  88. RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
  89. __read_mostly int xen_have_vector_callback;
  90. EXPORT_SYMBOL_GPL(xen_have_vector_callback);
  91. /*
  92. * Point at some empty memory to start with. We map the real shared_info
  93. * page as soon as fixmap is up and running.
  94. */
  95. struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
  96. /*
  97. * Flag to determine whether vcpu info placement is available on all
  98. * VCPUs. We assume it is to start with, and then set it to zero on
  99. * the first failure. This is because it can succeed on some VCPUs
  100. * and not others, since it can involve hypervisor memory allocation,
  101. * or because the guest failed to guarantee all the appropriate
  102. * constraints on all VCPUs (ie buffer can't cross a page boundary).
  103. *
  104. * Note that any particular CPU may be using a placed vcpu structure,
  105. * but we can only optimise if the all are.
  106. *
  107. * 0: not available, 1: available
  108. */
  109. static int have_vcpu_info_placement = 1;
  110. static void clamp_max_cpus(void)
  111. {
  112. #ifdef CONFIG_SMP
  113. if (setup_max_cpus > MAX_VIRT_CPUS)
  114. setup_max_cpus = MAX_VIRT_CPUS;
  115. #endif
  116. }
  117. static void xen_vcpu_setup(int cpu)
  118. {
  119. struct vcpu_register_vcpu_info info;
  120. int err;
  121. struct vcpu_info *vcpup;
  122. BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
  123. if (cpu < MAX_VIRT_CPUS)
  124. per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
  125. if (!have_vcpu_info_placement) {
  126. if (cpu >= MAX_VIRT_CPUS)
  127. clamp_max_cpus();
  128. return;
  129. }
  130. vcpup = &per_cpu(xen_vcpu_info, cpu);
  131. info.mfn = arbitrary_virt_to_mfn(vcpup);
  132. info.offset = offset_in_page(vcpup);
  133. /* Check to see if the hypervisor will put the vcpu_info
  134. structure where we want it, which allows direct access via
  135. a percpu-variable. */
  136. err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
  137. if (err) {
  138. printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
  139. have_vcpu_info_placement = 0;
  140. clamp_max_cpus();
  141. } else {
  142. /* This cpu is using the registered vcpu info, even if
  143. later ones fail to. */
  144. per_cpu(xen_vcpu, cpu) = vcpup;
  145. }
  146. }
  147. /*
  148. * On restore, set the vcpu placement up again.
  149. * If it fails, then we're in a bad state, since
  150. * we can't back out from using it...
  151. */
  152. void xen_vcpu_restore(void)
  153. {
  154. int cpu;
  155. for_each_online_cpu(cpu) {
  156. bool other_cpu = (cpu != smp_processor_id());
  157. if (other_cpu &&
  158. HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
  159. BUG();
  160. xen_setup_runstate_info(cpu);
  161. if (have_vcpu_info_placement)
  162. xen_vcpu_setup(cpu);
  163. if (other_cpu &&
  164. HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
  165. BUG();
  166. }
  167. }
  168. static void __init xen_banner(void)
  169. {
  170. unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
  171. struct xen_extraversion extra;
  172. HYPERVISOR_xen_version(XENVER_extraversion, &extra);
  173. printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
  174. pv_info.name);
  175. printk(KERN_INFO "Xen version: %d.%d%s%s\n",
  176. version >> 16, version & 0xffff, extra.extraversion,
  177. xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
  178. }
  179. static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
  180. static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
  181. static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
  182. static __read_mostly unsigned int cpuid_leaf5_ecx_val;
  183. static __read_mostly unsigned int cpuid_leaf5_edx_val;
  184. static void xen_cpuid(unsigned int *ax, unsigned int *bx,
  185. unsigned int *cx, unsigned int *dx)
  186. {
  187. unsigned maskebx = ~0;
  188. unsigned maskecx = ~0;
  189. unsigned maskedx = ~0;
  190. unsigned setecx = 0;
  191. /*
  192. * Mask out inconvenient features, to try and disable as many
  193. * unsupported kernel subsystems as possible.
  194. */
  195. switch (*ax) {
  196. case 1:
  197. maskecx = cpuid_leaf1_ecx_mask;
  198. setecx = cpuid_leaf1_ecx_set_mask;
  199. maskedx = cpuid_leaf1_edx_mask;
  200. break;
  201. case CPUID_MWAIT_LEAF:
  202. /* Synthesize the values.. */
  203. *ax = 0;
  204. *bx = 0;
  205. *cx = cpuid_leaf5_ecx_val;
  206. *dx = cpuid_leaf5_edx_val;
  207. return;
  208. case 0xb:
  209. /* Suppress extended topology stuff */
  210. maskebx = 0;
  211. break;
  212. }
  213. asm(XEN_EMULATE_PREFIX "cpuid"
  214. : "=a" (*ax),
  215. "=b" (*bx),
  216. "=c" (*cx),
  217. "=d" (*dx)
  218. : "0" (*ax), "2" (*cx));
  219. *bx &= maskebx;
  220. *cx &= maskecx;
  221. *cx |= setecx;
  222. *dx &= maskedx;
  223. }
  224. static bool __init xen_check_mwait(void)
  225. {
  226. #ifdef CONFIG_ACPI
  227. struct xen_platform_op op = {
  228. .cmd = XENPF_set_processor_pminfo,
  229. .u.set_pminfo.id = -1,
  230. .u.set_pminfo.type = XEN_PM_PDC,
  231. };
  232. uint32_t buf[3];
  233. unsigned int ax, bx, cx, dx;
  234. unsigned int mwait_mask;
  235. /* We need to determine whether it is OK to expose the MWAIT
  236. * capability to the kernel to harvest deeper than C3 states from ACPI
  237. * _CST using the processor_harvest_xen.c module. For this to work, we
  238. * need to gather the MWAIT_LEAF values (which the cstate.c code
  239. * checks against). The hypervisor won't expose the MWAIT flag because
  240. * it would break backwards compatibility; so we will find out directly
  241. * from the hardware and hypercall.
  242. */
  243. if (!xen_initial_domain())
  244. return false;
  245. ax = 1;
  246. cx = 0;
  247. native_cpuid(&ax, &bx, &cx, &dx);
  248. mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
  249. (1 << (X86_FEATURE_MWAIT % 32));
  250. if ((cx & mwait_mask) != mwait_mask)
  251. return false;
  252. /* We need to emulate the MWAIT_LEAF and for that we need both
  253. * ecx and edx. The hypercall provides only partial information.
  254. */
  255. ax = CPUID_MWAIT_LEAF;
  256. bx = 0;
  257. cx = 0;
  258. dx = 0;
  259. native_cpuid(&ax, &bx, &cx, &dx);
  260. /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
  261. * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
  262. */
  263. buf[0] = ACPI_PDC_REVISION_ID;
  264. buf[1] = 1;
  265. buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
  266. set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
  267. if ((HYPERVISOR_dom0_op(&op) == 0) &&
  268. (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
  269. cpuid_leaf5_ecx_val = cx;
  270. cpuid_leaf5_edx_val = dx;
  271. }
  272. return true;
  273. #else
  274. return false;
  275. #endif
  276. }
  277. static void __init xen_init_cpuid_mask(void)
  278. {
  279. unsigned int ax, bx, cx, dx;
  280. unsigned int xsave_mask;
  281. cpuid_leaf1_edx_mask =
  282. ~((1 << X86_FEATURE_MCE) | /* disable MCE */
  283. (1 << X86_FEATURE_MCA) | /* disable MCA */
  284. (1 << X86_FEATURE_MTRR) | /* disable MTRR */
  285. (1 << X86_FEATURE_ACC)); /* thermal monitoring */
  286. if (!xen_initial_domain())
  287. cpuid_leaf1_edx_mask &=
  288. ~((1 << X86_FEATURE_APIC) | /* disable local APIC */
  289. (1 << X86_FEATURE_ACPI)); /* disable ACPI */
  290. ax = 1;
  291. cx = 0;
  292. xen_cpuid(&ax, &bx, &cx, &dx);
  293. xsave_mask =
  294. (1 << (X86_FEATURE_XSAVE % 32)) |
  295. (1 << (X86_FEATURE_OSXSAVE % 32));
  296. /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
  297. if ((cx & xsave_mask) != xsave_mask)
  298. cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
  299. if (xen_check_mwait())
  300. cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
  301. }
  302. static void xen_set_debugreg(int reg, unsigned long val)
  303. {
  304. HYPERVISOR_set_debugreg(reg, val);
  305. }
  306. static unsigned long xen_get_debugreg(int reg)
  307. {
  308. return HYPERVISOR_get_debugreg(reg);
  309. }
  310. static void xen_end_context_switch(struct task_struct *next)
  311. {
  312. xen_mc_flush();
  313. paravirt_end_context_switch(next);
  314. }
  315. static unsigned long xen_store_tr(void)
  316. {
  317. return 0;
  318. }
  319. /*
  320. * Set the page permissions for a particular virtual address. If the
  321. * address is a vmalloc mapping (or other non-linear mapping), then
  322. * find the linear mapping of the page and also set its protections to
  323. * match.
  324. */
  325. static void set_aliased_prot(void *v, pgprot_t prot)
  326. {
  327. int level;
  328. pte_t *ptep;
  329. pte_t pte;
  330. unsigned long pfn;
  331. struct page *page;
  332. ptep = lookup_address((unsigned long)v, &level);
  333. BUG_ON(ptep == NULL);
  334. pfn = pte_pfn(*ptep);
  335. page = pfn_to_page(pfn);
  336. pte = pfn_pte(pfn, prot);
  337. if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
  338. BUG();
  339. if (!PageHighMem(page)) {
  340. void *av = __va(PFN_PHYS(pfn));
  341. if (av != v)
  342. if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
  343. BUG();
  344. } else
  345. kmap_flush_unused();
  346. }
  347. static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
  348. {
  349. const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
  350. int i;
  351. for(i = 0; i < entries; i += entries_per_page)
  352. set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
  353. }
  354. static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
  355. {
  356. const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
  357. int i;
  358. for(i = 0; i < entries; i += entries_per_page)
  359. set_aliased_prot(ldt + i, PAGE_KERNEL);
  360. }
  361. static void xen_set_ldt(const void *addr, unsigned entries)
  362. {
  363. struct mmuext_op *op;
  364. struct multicall_space mcs = xen_mc_entry(sizeof(*op));
  365. trace_xen_cpu_set_ldt(addr, entries);
  366. op = mcs.args;
  367. op->cmd = MMUEXT_SET_LDT;
  368. op->arg1.linear_addr = (unsigned long)addr;
  369. op->arg2.nr_ents = entries;
  370. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  371. xen_mc_issue(PARAVIRT_LAZY_CPU);
  372. }
  373. static void xen_load_gdt(const struct desc_ptr *dtr)
  374. {
  375. unsigned long va = dtr->address;
  376. unsigned int size = dtr->size + 1;
  377. unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
  378. unsigned long frames[pages];
  379. int f;
  380. /*
  381. * A GDT can be up to 64k in size, which corresponds to 8192
  382. * 8-byte entries, or 16 4k pages..
  383. */
  384. BUG_ON(size > 65536);
  385. BUG_ON(va & ~PAGE_MASK);
  386. for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
  387. int level;
  388. pte_t *ptep;
  389. unsigned long pfn, mfn;
  390. void *virt;
  391. /*
  392. * The GDT is per-cpu and is in the percpu data area.
  393. * That can be virtually mapped, so we need to do a
  394. * page-walk to get the underlying MFN for the
  395. * hypercall. The page can also be in the kernel's
  396. * linear range, so we need to RO that mapping too.
  397. */
  398. ptep = lookup_address(va, &level);
  399. BUG_ON(ptep == NULL);
  400. pfn = pte_pfn(*ptep);
  401. mfn = pfn_to_mfn(pfn);
  402. virt = __va(PFN_PHYS(pfn));
  403. frames[f] = mfn;
  404. make_lowmem_page_readonly((void *)va);
  405. make_lowmem_page_readonly(virt);
  406. }
  407. if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
  408. BUG();
  409. }
  410. /*
  411. * load_gdt for early boot, when the gdt is only mapped once
  412. */
  413. static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
  414. {
  415. unsigned long va = dtr->address;
  416. unsigned int size = dtr->size + 1;
  417. unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
  418. unsigned long frames[pages];
  419. int f;
  420. /*
  421. * A GDT can be up to 64k in size, which corresponds to 8192
  422. * 8-byte entries, or 16 4k pages..
  423. */
  424. BUG_ON(size > 65536);
  425. BUG_ON(va & ~PAGE_MASK);
  426. for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
  427. pte_t pte;
  428. unsigned long pfn, mfn;
  429. pfn = virt_to_pfn(va);
  430. mfn = pfn_to_mfn(pfn);
  431. pte = pfn_pte(pfn, PAGE_KERNEL_RO);
  432. if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
  433. BUG();
  434. frames[f] = mfn;
  435. }
  436. if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
  437. BUG();
  438. }
  439. static void load_TLS_descriptor(struct thread_struct *t,
  440. unsigned int cpu, unsigned int i)
  441. {
  442. struct desc_struct *gdt = get_cpu_gdt_table(cpu);
  443. xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
  444. struct multicall_space mc = __xen_mc_entry(0);
  445. MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
  446. }
  447. static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
  448. {
  449. /*
  450. * XXX sleazy hack: If we're being called in a lazy-cpu zone
  451. * and lazy gs handling is enabled, it means we're in a
  452. * context switch, and %gs has just been saved. This means we
  453. * can zero it out to prevent faults on exit from the
  454. * hypervisor if the next process has no %gs. Either way, it
  455. * has been saved, and the new value will get loaded properly.
  456. * This will go away as soon as Xen has been modified to not
  457. * save/restore %gs for normal hypercalls.
  458. *
  459. * On x86_64, this hack is not used for %gs, because gs points
  460. * to KERNEL_GS_BASE (and uses it for PDA references), so we
  461. * must not zero %gs on x86_64
  462. *
  463. * For x86_64, we need to zero %fs, otherwise we may get an
  464. * exception between the new %fs descriptor being loaded and
  465. * %fs being effectively cleared at __switch_to().
  466. */
  467. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
  468. #ifdef CONFIG_X86_32
  469. lazy_load_gs(0);
  470. #else
  471. loadsegment(fs, 0);
  472. #endif
  473. }
  474. xen_mc_batch();
  475. load_TLS_descriptor(t, cpu, 0);
  476. load_TLS_descriptor(t, cpu, 1);
  477. load_TLS_descriptor(t, cpu, 2);
  478. xen_mc_issue(PARAVIRT_LAZY_CPU);
  479. }
  480. #ifdef CONFIG_X86_64
  481. static void xen_load_gs_index(unsigned int idx)
  482. {
  483. if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
  484. BUG();
  485. }
  486. #endif
  487. static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
  488. const void *ptr)
  489. {
  490. xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
  491. u64 entry = *(u64 *)ptr;
  492. trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
  493. preempt_disable();
  494. xen_mc_flush();
  495. if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
  496. BUG();
  497. preempt_enable();
  498. }
  499. static int cvt_gate_to_trap(int vector, const gate_desc *val,
  500. struct trap_info *info)
  501. {
  502. unsigned long addr;
  503. if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
  504. return 0;
  505. info->vector = vector;
  506. addr = gate_offset(*val);
  507. #ifdef CONFIG_X86_64
  508. /*
  509. * Look for known traps using IST, and substitute them
  510. * appropriately. The debugger ones are the only ones we care
  511. * about. Xen will handle faults like double_fault and
  512. * machine_check, so we should never see them. Warn if
  513. * there's an unexpected IST-using fault handler.
  514. */
  515. if (addr == (unsigned long)debug)
  516. addr = (unsigned long)xen_debug;
  517. else if (addr == (unsigned long)int3)
  518. addr = (unsigned long)xen_int3;
  519. else if (addr == (unsigned long)stack_segment)
  520. addr = (unsigned long)xen_stack_segment;
  521. else if (addr == (unsigned long)double_fault ||
  522. addr == (unsigned long)nmi) {
  523. /* Don't need to handle these */
  524. return 0;
  525. #ifdef CONFIG_X86_MCE
  526. } else if (addr == (unsigned long)machine_check) {
  527. return 0;
  528. #endif
  529. } else {
  530. /* Some other trap using IST? */
  531. if (WARN_ON(val->ist != 0))
  532. return 0;
  533. }
  534. #endif /* CONFIG_X86_64 */
  535. info->address = addr;
  536. info->cs = gate_segment(*val);
  537. info->flags = val->dpl;
  538. /* interrupt gates clear IF */
  539. if (val->type == GATE_INTERRUPT)
  540. info->flags |= 1 << 2;
  541. return 1;
  542. }
  543. /* Locations of each CPU's IDT */
  544. static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
  545. /* Set an IDT entry. If the entry is part of the current IDT, then
  546. also update Xen. */
  547. static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
  548. {
  549. unsigned long p = (unsigned long)&dt[entrynum];
  550. unsigned long start, end;
  551. trace_xen_cpu_write_idt_entry(dt, entrynum, g);
  552. preempt_disable();
  553. start = __this_cpu_read(idt_desc.address);
  554. end = start + __this_cpu_read(idt_desc.size) + 1;
  555. xen_mc_flush();
  556. native_write_idt_entry(dt, entrynum, g);
  557. if (p >= start && (p + 8) <= end) {
  558. struct trap_info info[2];
  559. info[1].address = 0;
  560. if (cvt_gate_to_trap(entrynum, g, &info[0]))
  561. if (HYPERVISOR_set_trap_table(info))
  562. BUG();
  563. }
  564. preempt_enable();
  565. }
  566. static void xen_convert_trap_info(const struct desc_ptr *desc,
  567. struct trap_info *traps)
  568. {
  569. unsigned in, out, count;
  570. count = (desc->size+1) / sizeof(gate_desc);
  571. BUG_ON(count > 256);
  572. for (in = out = 0; in < count; in++) {
  573. gate_desc *entry = (gate_desc*)(desc->address) + in;
  574. if (cvt_gate_to_trap(in, entry, &traps[out]))
  575. out++;
  576. }
  577. traps[out].address = 0;
  578. }
  579. void xen_copy_trap_info(struct trap_info *traps)
  580. {
  581. const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
  582. xen_convert_trap_info(desc, traps);
  583. }
  584. /* Load a new IDT into Xen. In principle this can be per-CPU, so we
  585. hold a spinlock to protect the static traps[] array (static because
  586. it avoids allocation, and saves stack space). */
  587. static void xen_load_idt(const struct desc_ptr *desc)
  588. {
  589. static DEFINE_SPINLOCK(lock);
  590. static struct trap_info traps[257];
  591. trace_xen_cpu_load_idt(desc);
  592. spin_lock(&lock);
  593. __get_cpu_var(idt_desc) = *desc;
  594. xen_convert_trap_info(desc, traps);
  595. xen_mc_flush();
  596. if (HYPERVISOR_set_trap_table(traps))
  597. BUG();
  598. spin_unlock(&lock);
  599. }
  600. /* Write a GDT descriptor entry. Ignore LDT descriptors, since
  601. they're handled differently. */
  602. static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
  603. const void *desc, int type)
  604. {
  605. trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
  606. preempt_disable();
  607. switch (type) {
  608. case DESC_LDT:
  609. case DESC_TSS:
  610. /* ignore */
  611. break;
  612. default: {
  613. xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
  614. xen_mc_flush();
  615. if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
  616. BUG();
  617. }
  618. }
  619. preempt_enable();
  620. }
  621. /*
  622. * Version of write_gdt_entry for use at early boot-time needed to
  623. * update an entry as simply as possible.
  624. */
  625. static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
  626. const void *desc, int type)
  627. {
  628. trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
  629. switch (type) {
  630. case DESC_LDT:
  631. case DESC_TSS:
  632. /* ignore */
  633. break;
  634. default: {
  635. xmaddr_t maddr = virt_to_machine(&dt[entry]);
  636. if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
  637. dt[entry] = *(struct desc_struct *)desc;
  638. }
  639. }
  640. }
  641. static void xen_load_sp0(struct tss_struct *tss,
  642. struct thread_struct *thread)
  643. {
  644. struct multicall_space mcs;
  645. mcs = xen_mc_entry(0);
  646. MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
  647. xen_mc_issue(PARAVIRT_LAZY_CPU);
  648. }
  649. static void xen_set_iopl_mask(unsigned mask)
  650. {
  651. struct physdev_set_iopl set_iopl;
  652. /* Force the change at ring 0. */
  653. set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
  654. HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
  655. }
  656. static void xen_io_delay(void)
  657. {
  658. }
  659. #ifdef CONFIG_X86_LOCAL_APIC
  660. static u32 xen_apic_read(u32 reg)
  661. {
  662. return 0;
  663. }
  664. static void xen_apic_write(u32 reg, u32 val)
  665. {
  666. /* Warn to see if there's any stray references */
  667. WARN_ON(1);
  668. }
  669. static u64 xen_apic_icr_read(void)
  670. {
  671. return 0;
  672. }
  673. static void xen_apic_icr_write(u32 low, u32 id)
  674. {
  675. /* Warn to see if there's any stray references */
  676. WARN_ON(1);
  677. }
  678. static void xen_apic_wait_icr_idle(void)
  679. {
  680. return;
  681. }
  682. static u32 xen_safe_apic_wait_icr_idle(void)
  683. {
  684. return 0;
  685. }
  686. static void set_xen_basic_apic_ops(void)
  687. {
  688. apic->read = xen_apic_read;
  689. apic->write = xen_apic_write;
  690. apic->icr_read = xen_apic_icr_read;
  691. apic->icr_write = xen_apic_icr_write;
  692. apic->wait_icr_idle = xen_apic_wait_icr_idle;
  693. apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
  694. #ifdef CONFIG_SMP
  695. apic->send_IPI_allbutself = xen_send_IPI_allbutself;
  696. apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself;
  697. apic->send_IPI_mask = xen_send_IPI_mask;
  698. apic->send_IPI_all = xen_send_IPI_all;
  699. apic->send_IPI_self = xen_send_IPI_self;
  700. #endif
  701. }
  702. #endif
  703. static void xen_clts(void)
  704. {
  705. struct multicall_space mcs;
  706. mcs = xen_mc_entry(0);
  707. MULTI_fpu_taskswitch(mcs.mc, 0);
  708. xen_mc_issue(PARAVIRT_LAZY_CPU);
  709. }
  710. static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
  711. static unsigned long xen_read_cr0(void)
  712. {
  713. unsigned long cr0 = this_cpu_read(xen_cr0_value);
  714. if (unlikely(cr0 == 0)) {
  715. cr0 = native_read_cr0();
  716. this_cpu_write(xen_cr0_value, cr0);
  717. }
  718. return cr0;
  719. }
  720. static void xen_write_cr0(unsigned long cr0)
  721. {
  722. struct multicall_space mcs;
  723. this_cpu_write(xen_cr0_value, cr0);
  724. /* Only pay attention to cr0.TS; everything else is
  725. ignored. */
  726. mcs = xen_mc_entry(0);
  727. MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
  728. xen_mc_issue(PARAVIRT_LAZY_CPU);
  729. }
  730. static void xen_write_cr4(unsigned long cr4)
  731. {
  732. cr4 &= ~X86_CR4_PGE;
  733. cr4 &= ~X86_CR4_PSE;
  734. native_write_cr4(cr4);
  735. }
  736. static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
  737. {
  738. int ret;
  739. ret = 0;
  740. switch (msr) {
  741. #ifdef CONFIG_X86_64
  742. unsigned which;
  743. u64 base;
  744. case MSR_FS_BASE: which = SEGBASE_FS; goto set;
  745. case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
  746. case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
  747. set:
  748. base = ((u64)high << 32) | low;
  749. if (HYPERVISOR_set_segment_base(which, base) != 0)
  750. ret = -EIO;
  751. break;
  752. #endif
  753. case MSR_STAR:
  754. case MSR_CSTAR:
  755. case MSR_LSTAR:
  756. case MSR_SYSCALL_MASK:
  757. case MSR_IA32_SYSENTER_CS:
  758. case MSR_IA32_SYSENTER_ESP:
  759. case MSR_IA32_SYSENTER_EIP:
  760. /* Fast syscall setup is all done in hypercalls, so
  761. these are all ignored. Stub them out here to stop
  762. Xen console noise. */
  763. break;
  764. case MSR_IA32_CR_PAT:
  765. if (smp_processor_id() == 0)
  766. xen_set_pat(((u64)high << 32) | low);
  767. break;
  768. default:
  769. ret = native_write_msr_safe(msr, low, high);
  770. }
  771. return ret;
  772. }
  773. void xen_setup_shared_info(void)
  774. {
  775. if (!xen_feature(XENFEAT_auto_translated_physmap)) {
  776. set_fixmap(FIX_PARAVIRT_BOOTMAP,
  777. xen_start_info->shared_info);
  778. HYPERVISOR_shared_info =
  779. (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
  780. } else
  781. HYPERVISOR_shared_info =
  782. (struct shared_info *)__va(xen_start_info->shared_info);
  783. #ifndef CONFIG_SMP
  784. /* In UP this is as good a place as any to set up shared info */
  785. xen_setup_vcpu_info_placement();
  786. #endif
  787. xen_setup_mfn_list_list();
  788. }
  789. /* This is called once we have the cpu_possible_mask */
  790. void xen_setup_vcpu_info_placement(void)
  791. {
  792. int cpu;
  793. for_each_possible_cpu(cpu)
  794. xen_vcpu_setup(cpu);
  795. /* xen_vcpu_setup managed to place the vcpu_info within the
  796. percpu area for all cpus, so make use of it */
  797. if (have_vcpu_info_placement) {
  798. pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
  799. pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
  800. pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
  801. pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
  802. pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
  803. }
  804. }
  805. static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
  806. unsigned long addr, unsigned len)
  807. {
  808. char *start, *end, *reloc;
  809. unsigned ret;
  810. start = end = reloc = NULL;
  811. #define SITE(op, x) \
  812. case PARAVIRT_PATCH(op.x): \
  813. if (have_vcpu_info_placement) { \
  814. start = (char *)xen_##x##_direct; \
  815. end = xen_##x##_direct_end; \
  816. reloc = xen_##x##_direct_reloc; \
  817. } \
  818. goto patch_site
  819. switch (type) {
  820. SITE(pv_irq_ops, irq_enable);
  821. SITE(pv_irq_ops, irq_disable);
  822. SITE(pv_irq_ops, save_fl);
  823. SITE(pv_irq_ops, restore_fl);
  824. #undef SITE
  825. patch_site:
  826. if (start == NULL || (end-start) > len)
  827. goto default_patch;
  828. ret = paravirt_patch_insns(insnbuf, len, start, end);
  829. /* Note: because reloc is assigned from something that
  830. appears to be an array, gcc assumes it's non-null,
  831. but doesn't know its relationship with start and
  832. end. */
  833. if (reloc > start && reloc < end) {
  834. int reloc_off = reloc - start;
  835. long *relocp = (long *)(insnbuf + reloc_off);
  836. long delta = start - (char *)addr;
  837. *relocp += delta;
  838. }
  839. break;
  840. default_patch:
  841. default:
  842. ret = paravirt_patch_default(type, clobbers, insnbuf,
  843. addr, len);
  844. break;
  845. }
  846. return ret;
  847. }
  848. static const struct pv_info xen_info __initconst = {
  849. .paravirt_enabled = 1,
  850. .shared_kernel_pmd = 0,
  851. #ifdef CONFIG_X86_64
  852. .extra_user_64bit_cs = FLAT_USER_CS64,
  853. #endif
  854. .name = "Xen",
  855. };
  856. static const struct pv_init_ops xen_init_ops __initconst = {
  857. .patch = xen_patch,
  858. };
  859. static const struct pv_cpu_ops xen_cpu_ops __initconst = {
  860. .cpuid = xen_cpuid,
  861. .set_debugreg = xen_set_debugreg,
  862. .get_debugreg = xen_get_debugreg,
  863. .clts = xen_clts,
  864. .read_cr0 = xen_read_cr0,
  865. .write_cr0 = xen_write_cr0,
  866. .read_cr4 = native_read_cr4,
  867. .read_cr4_safe = native_read_cr4_safe,
  868. .write_cr4 = xen_write_cr4,
  869. .wbinvd = native_wbinvd,
  870. .read_msr = native_read_msr_safe,
  871. .write_msr = xen_write_msr_safe,
  872. .read_tsc = native_read_tsc,
  873. .read_pmc = native_read_pmc,
  874. .iret = xen_iret,
  875. .irq_enable_sysexit = xen_sysexit,
  876. #ifdef CONFIG_X86_64
  877. .usergs_sysret32 = xen_sysret32,
  878. .usergs_sysret64 = xen_sysret64,
  879. #endif
  880. .load_tr_desc = paravirt_nop,
  881. .set_ldt = xen_set_ldt,
  882. .load_gdt = xen_load_gdt,
  883. .load_idt = xen_load_idt,
  884. .load_tls = xen_load_tls,
  885. #ifdef CONFIG_X86_64
  886. .load_gs_index = xen_load_gs_index,
  887. #endif
  888. .alloc_ldt = xen_alloc_ldt,
  889. .free_ldt = xen_free_ldt,
  890. .store_gdt = native_store_gdt,
  891. .store_idt = native_store_idt,
  892. .store_tr = xen_store_tr,
  893. .write_ldt_entry = xen_write_ldt_entry,
  894. .write_gdt_entry = xen_write_gdt_entry,
  895. .write_idt_entry = xen_write_idt_entry,
  896. .load_sp0 = xen_load_sp0,
  897. .set_iopl_mask = xen_set_iopl_mask,
  898. .io_delay = xen_io_delay,
  899. /* Xen takes care of %gs when switching to usermode for us */
  900. .swapgs = paravirt_nop,
  901. .start_context_switch = paravirt_start_context_switch,
  902. .end_context_switch = xen_end_context_switch,
  903. };
  904. static const struct pv_apic_ops xen_apic_ops __initconst = {
  905. #ifdef CONFIG_X86_LOCAL_APIC
  906. .startup_ipi_hook = paravirt_nop,
  907. #endif
  908. };
  909. static void xen_reboot(int reason)
  910. {
  911. struct sched_shutdown r = { .reason = reason };
  912. if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
  913. BUG();
  914. }
  915. static void xen_restart(char *msg)
  916. {
  917. xen_reboot(SHUTDOWN_reboot);
  918. }
  919. static void xen_emergency_restart(void)
  920. {
  921. xen_reboot(SHUTDOWN_reboot);
  922. }
  923. static void xen_machine_halt(void)
  924. {
  925. xen_reboot(SHUTDOWN_poweroff);
  926. }
  927. static void xen_machine_power_off(void)
  928. {
  929. if (pm_power_off)
  930. pm_power_off();
  931. xen_reboot(SHUTDOWN_poweroff);
  932. }
  933. static void xen_crash_shutdown(struct pt_regs *regs)
  934. {
  935. xen_reboot(SHUTDOWN_crash);
  936. }
  937. static int
  938. xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
  939. {
  940. xen_reboot(SHUTDOWN_crash);
  941. return NOTIFY_DONE;
  942. }
  943. static struct notifier_block xen_panic_block = {
  944. .notifier_call= xen_panic_event,
  945. };
  946. int xen_panic_handler_init(void)
  947. {
  948. atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
  949. return 0;
  950. }
  951. static const struct machine_ops xen_machine_ops __initconst = {
  952. .restart = xen_restart,
  953. .halt = xen_machine_halt,
  954. .power_off = xen_machine_power_off,
  955. .shutdown = xen_machine_halt,
  956. .crash_shutdown = xen_crash_shutdown,
  957. .emergency_restart = xen_emergency_restart,
  958. };
  959. /*
  960. * Set up the GDT and segment registers for -fstack-protector. Until
  961. * we do this, we have to be careful not to call any stack-protected
  962. * function, which is most of the kernel.
  963. */
  964. static void __init xen_setup_stackprotector(void)
  965. {
  966. pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
  967. pv_cpu_ops.load_gdt = xen_load_gdt_boot;
  968. setup_stack_canary_segment(0);
  969. switch_to_new_gdt(0);
  970. pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
  971. pv_cpu_ops.load_gdt = xen_load_gdt;
  972. }
  973. /* First C function to be called on Xen boot */
  974. asmlinkage void __init xen_start_kernel(void)
  975. {
  976. struct physdev_set_iopl set_iopl;
  977. int rc;
  978. pgd_t *pgd;
  979. if (!xen_start_info)
  980. return;
  981. xen_domain_type = XEN_PV_DOMAIN;
  982. xen_setup_machphys_mapping();
  983. /* Install Xen paravirt ops */
  984. pv_info = xen_info;
  985. pv_init_ops = xen_init_ops;
  986. pv_cpu_ops = xen_cpu_ops;
  987. pv_apic_ops = xen_apic_ops;
  988. x86_init.resources.memory_setup = xen_memory_setup;
  989. x86_init.oem.arch_setup = xen_arch_setup;
  990. x86_init.oem.banner = xen_banner;
  991. xen_init_time_ops();
  992. /*
  993. * Set up some pagetable state before starting to set any ptes.
  994. */
  995. xen_init_mmu_ops();
  996. /* Prevent unwanted bits from being set in PTEs. */
  997. __supported_pte_mask &= ~_PAGE_GLOBAL;
  998. #if 0
  999. if (!xen_initial_domain())
  1000. #endif
  1001. __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
  1002. __supported_pte_mask |= _PAGE_IOMAP;
  1003. /*
  1004. * Prevent page tables from being allocated in highmem, even
  1005. * if CONFIG_HIGHPTE is enabled.
  1006. */
  1007. __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
  1008. /* Work out if we support NX */
  1009. x86_configure_nx();
  1010. xen_setup_features();
  1011. /* Get mfn list */
  1012. if (!xen_feature(XENFEAT_auto_translated_physmap))
  1013. xen_build_dynamic_phys_to_machine();
  1014. /*
  1015. * Set up kernel GDT and segment registers, mainly so that
  1016. * -fstack-protector code can be executed.
  1017. */
  1018. xen_setup_stackprotector();
  1019. xen_init_irq_ops();
  1020. xen_init_cpuid_mask();
  1021. #ifdef CONFIG_X86_LOCAL_APIC
  1022. /*
  1023. * set up the basic apic ops.
  1024. */
  1025. set_xen_basic_apic_ops();
  1026. #endif
  1027. if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
  1028. pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
  1029. pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
  1030. }
  1031. machine_ops = xen_machine_ops;
  1032. /*
  1033. * The only reliable way to retain the initial address of the
  1034. * percpu gdt_page is to remember it here, so we can go and
  1035. * mark it RW later, when the initial percpu area is freed.
  1036. */
  1037. xen_initial_gdt = &per_cpu(gdt_page, 0);
  1038. xen_smp_init();
  1039. #ifdef CONFIG_ACPI_NUMA
  1040. /*
  1041. * The pages we from Xen are not related to machine pages, so
  1042. * any NUMA information the kernel tries to get from ACPI will
  1043. * be meaningless. Prevent it from trying.
  1044. */
  1045. acpi_numa = -1;
  1046. #endif
  1047. pgd = (pgd_t *)xen_start_info->pt_base;
  1048. /* Don't do the full vcpu_info placement stuff until we have a
  1049. possible map and a non-dummy shared_info. */
  1050. per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
  1051. local_irq_disable();
  1052. early_boot_irqs_disabled = true;
  1053. xen_raw_console_write("mapping kernel into physical memory\n");
  1054. pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
  1055. /* Allocate and initialize top and mid mfn levels for p2m structure */
  1056. xen_build_mfn_list_list();
  1057. /* keep using Xen gdt for now; no urgent need to change it */
  1058. #ifdef CONFIG_X86_32
  1059. pv_info.kernel_rpl = 1;
  1060. if (xen_feature(XENFEAT_supervisor_mode_kernel))
  1061. pv_info.kernel_rpl = 0;
  1062. #else
  1063. pv_info.kernel_rpl = 0;
  1064. #endif
  1065. /* set the limit of our address space */
  1066. xen_reserve_top();
  1067. /* We used to do this in xen_arch_setup, but that is too late on AMD
  1068. * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
  1069. * which pokes 0xcf8 port.
  1070. */
  1071. set_iopl.iopl = 1;
  1072. rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
  1073. if (rc != 0)
  1074. xen_raw_printk("physdev_op failed %d\n", rc);
  1075. #ifdef CONFIG_X86_32
  1076. /* set up basic CPUID stuff */
  1077. cpu_detect(&new_cpu_data);
  1078. new_cpu_data.hard_math = 1;
  1079. new_cpu_data.wp_works_ok = 1;
  1080. new_cpu_data.x86_capability[0] = cpuid_edx(1);
  1081. #endif
  1082. /* Poke various useful things into boot_params */
  1083. boot_params.hdr.type_of_loader = (9 << 4) | 0;
  1084. boot_params.hdr.ramdisk_image = xen_start_info->mod_start
  1085. ? __pa(xen_start_info->mod_start) : 0;
  1086. boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
  1087. boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
  1088. if (!xen_initial_domain()) {
  1089. add_preferred_console("xenboot", 0, NULL);
  1090. add_preferred_console("tty", 0, NULL);
  1091. add_preferred_console("hvc", 0, NULL);
  1092. if (pci_xen)
  1093. x86_init.pci.arch_init = pci_xen_init;
  1094. } else {
  1095. const struct dom0_vga_console_info *info =
  1096. (void *)((char *)xen_start_info +
  1097. xen_start_info->console.dom0.info_off);
  1098. xen_init_vga(info, xen_start_info->console.dom0.info_size);
  1099. xen_start_info->console.domU.mfn = 0;
  1100. xen_start_info->console.domU.evtchn = 0;
  1101. /* Make sure ACS will be enabled */
  1102. pci_request_acs();
  1103. xen_acpi_sleep_register();
  1104. }
  1105. xen_raw_console_write("about to get started...\n");
  1106. xen_setup_runstate_info(0);
  1107. /* Start the world */
  1108. #ifdef CONFIG_X86_32
  1109. i386_start_kernel();
  1110. #else
  1111. x86_64_start_reservations((char *)__pa_symbol(&boot_params));
  1112. #endif
  1113. }
  1114. static int init_hvm_pv_info(int *major, int *minor)
  1115. {
  1116. uint32_t eax, ebx, ecx, edx, pages, msr, base;
  1117. u64 pfn;
  1118. base = xen_cpuid_base();
  1119. cpuid(base + 1, &eax, &ebx, &ecx, &edx);
  1120. *major = eax >> 16;
  1121. *minor = eax & 0xffff;
  1122. printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
  1123. cpuid(base + 2, &pages, &msr, &ecx, &edx);
  1124. pfn = __pa(hypercall_page);
  1125. wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
  1126. xen_setup_features();
  1127. pv_info.name = "Xen HVM";
  1128. xen_domain_type = XEN_HVM_DOMAIN;
  1129. return 0;
  1130. }
  1131. void __ref xen_hvm_init_shared_info(void)
  1132. {
  1133. int cpu;
  1134. struct xen_add_to_physmap xatp;
  1135. static struct shared_info *shared_info_page = 0;
  1136. if (!shared_info_page)
  1137. shared_info_page = (struct shared_info *)
  1138. extend_brk(PAGE_SIZE, PAGE_SIZE);
  1139. xatp.domid = DOMID_SELF;
  1140. xatp.idx = 0;
  1141. xatp.space = XENMAPSPACE_shared_info;
  1142. xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
  1143. if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
  1144. BUG();
  1145. HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
  1146. /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
  1147. * page, we use it in the event channel upcall and in some pvclock
  1148. * related functions. We don't need the vcpu_info placement
  1149. * optimizations because we don't use any pv_mmu or pv_irq op on
  1150. * HVM.
  1151. * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
  1152. * online but xen_hvm_init_shared_info is run at resume time too and
  1153. * in that case multiple vcpus might be online. */
  1154. for_each_online_cpu(cpu) {
  1155. per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
  1156. }
  1157. }
  1158. #ifdef CONFIG_XEN_PVHVM
  1159. static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
  1160. unsigned long action, void *hcpu)
  1161. {
  1162. int cpu = (long)hcpu;
  1163. switch (action) {
  1164. case CPU_UP_PREPARE:
  1165. xen_vcpu_setup(cpu);
  1166. if (xen_have_vector_callback)
  1167. xen_init_lock_cpu(cpu);
  1168. break;
  1169. default:
  1170. break;
  1171. }
  1172. return NOTIFY_OK;
  1173. }
  1174. static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
  1175. .notifier_call = xen_hvm_cpu_notify,
  1176. };
  1177. static void __init xen_hvm_guest_init(void)
  1178. {
  1179. int r;
  1180. int major, minor;
  1181. r = init_hvm_pv_info(&major, &minor);
  1182. if (r < 0)
  1183. return;
  1184. xen_hvm_init_shared_info();
  1185. if (xen_feature(XENFEAT_hvm_callback_vector))
  1186. xen_have_vector_callback = 1;
  1187. xen_hvm_smp_init();
  1188. register_cpu_notifier(&xen_hvm_cpu_notifier);
  1189. xen_unplug_emulated_devices();
  1190. x86_init.irqs.intr_init = xen_init_IRQ;
  1191. xen_hvm_init_time_ops();
  1192. xen_hvm_init_mmu_ops();
  1193. }
  1194. static bool __init xen_hvm_platform(void)
  1195. {
  1196. if (xen_pv_domain())
  1197. return false;
  1198. if (!xen_cpuid_base())
  1199. return false;
  1200. return true;
  1201. }
  1202. bool xen_hvm_need_lapic(void)
  1203. {
  1204. if (xen_pv_domain())
  1205. return false;
  1206. if (!xen_hvm_domain())
  1207. return false;
  1208. if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
  1209. return false;
  1210. return true;
  1211. }
  1212. EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
  1213. const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
  1214. .name = "Xen HVM",
  1215. .detect = xen_hvm_platform,
  1216. .init_platform = xen_hvm_guest_init,
  1217. };
  1218. EXPORT_SYMBOL(x86_hyper_xen_hvm);
  1219. #endif