readahead.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582
  1. /*
  2. * mm/readahead.c - address_space-level file readahead.
  3. *
  4. * Copyright (C) 2002, Linus Torvalds
  5. *
  6. * 09Apr2002 akpm@zip.com.au
  7. * Initial version.
  8. */
  9. #include <linux/kernel.h>
  10. #include <linux/fs.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <linux/blkdev.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/pagevec.h>
  16. void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  17. {
  18. }
  19. EXPORT_SYMBOL(default_unplug_io_fn);
  20. struct backing_dev_info default_backing_dev_info = {
  21. .ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE,
  22. .state = 0,
  23. .capabilities = BDI_CAP_MAP_COPY,
  24. .unplug_io_fn = default_unplug_io_fn,
  25. };
  26. EXPORT_SYMBOL_GPL(default_backing_dev_info);
  27. /*
  28. * Initialise a struct file's readahead state. Assumes that the caller has
  29. * memset *ra to zero.
  30. */
  31. void
  32. file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
  33. {
  34. ra->ra_pages = mapping->backing_dev_info->ra_pages;
  35. ra->prev_page = -1;
  36. }
  37. EXPORT_SYMBOL_GPL(file_ra_state_init);
  38. /*
  39. * Return max readahead size for this inode in number-of-pages.
  40. */
  41. static inline unsigned long get_max_readahead(struct file_ra_state *ra)
  42. {
  43. return ra->ra_pages;
  44. }
  45. static inline unsigned long get_min_readahead(struct file_ra_state *ra)
  46. {
  47. return (VM_MIN_READAHEAD * 1024) / PAGE_CACHE_SIZE;
  48. }
  49. static inline void reset_ahead_window(struct file_ra_state *ra)
  50. {
  51. /*
  52. * ... but preserve ahead_start + ahead_size value,
  53. * see 'recheck:' label in page_cache_readahead().
  54. * Note: We never use ->ahead_size as rvalue without
  55. * checking ->ahead_start != 0 first.
  56. */
  57. ra->ahead_size += ra->ahead_start;
  58. ra->ahead_start = 0;
  59. }
  60. static inline void ra_off(struct file_ra_state *ra)
  61. {
  62. ra->start = 0;
  63. ra->flags = 0;
  64. ra->size = 0;
  65. reset_ahead_window(ra);
  66. return;
  67. }
  68. /*
  69. * Set the initial window size, round to next power of 2 and square
  70. * for small size, x 4 for medium, and x 2 for large
  71. * for 128k (32 page) max ra
  72. * 1-8 page = 32k initial, > 8 page = 128k initial
  73. */
  74. static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
  75. {
  76. unsigned long newsize = roundup_pow_of_two(size);
  77. if (newsize <= max / 32)
  78. newsize = newsize * 4;
  79. else if (newsize <= max / 4)
  80. newsize = newsize * 2;
  81. else
  82. newsize = max;
  83. return newsize;
  84. }
  85. /*
  86. * Set the new window size, this is called only when I/O is to be submitted,
  87. * not for each call to readahead. If a cache miss occured, reduce next I/O
  88. * size, else increase depending on how close to max we are.
  89. */
  90. static inline unsigned long get_next_ra_size(struct file_ra_state *ra)
  91. {
  92. unsigned long max = get_max_readahead(ra);
  93. unsigned long min = get_min_readahead(ra);
  94. unsigned long cur = ra->size;
  95. unsigned long newsize;
  96. if (ra->flags & RA_FLAG_MISS) {
  97. ra->flags &= ~RA_FLAG_MISS;
  98. newsize = max((cur - 2), min);
  99. } else if (cur < max / 16) {
  100. newsize = 4 * cur;
  101. } else {
  102. newsize = 2 * cur;
  103. }
  104. return min(newsize, max);
  105. }
  106. #define list_to_page(head) (list_entry((head)->prev, struct page, lru))
  107. /**
  108. * read_cache_pages - populate an address space with some pages & start reads against them
  109. * @mapping: the address_space
  110. * @pages: The address of a list_head which contains the target pages. These
  111. * pages have their ->index populated and are otherwise uninitialised.
  112. * @filler: callback routine for filling a single page.
  113. * @data: private data for the callback routine.
  114. *
  115. * Hides the details of the LRU cache etc from the filesystems.
  116. */
  117. int read_cache_pages(struct address_space *mapping, struct list_head *pages,
  118. int (*filler)(void *, struct page *), void *data)
  119. {
  120. struct page *page;
  121. struct pagevec lru_pvec;
  122. int ret = 0;
  123. pagevec_init(&lru_pvec, 0);
  124. while (!list_empty(pages)) {
  125. page = list_to_page(pages);
  126. list_del(&page->lru);
  127. if (add_to_page_cache(page, mapping, page->index, GFP_KERNEL)) {
  128. page_cache_release(page);
  129. continue;
  130. }
  131. ret = filler(data, page);
  132. if (!pagevec_add(&lru_pvec, page))
  133. __pagevec_lru_add(&lru_pvec);
  134. if (ret) {
  135. put_pages_list(pages);
  136. break;
  137. }
  138. }
  139. pagevec_lru_add(&lru_pvec);
  140. return ret;
  141. }
  142. EXPORT_SYMBOL(read_cache_pages);
  143. static int read_pages(struct address_space *mapping, struct file *filp,
  144. struct list_head *pages, unsigned nr_pages)
  145. {
  146. unsigned page_idx;
  147. struct pagevec lru_pvec;
  148. int ret;
  149. if (mapping->a_ops->readpages) {
  150. ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
  151. /* Clean up the remaining pages */
  152. put_pages_list(pages);
  153. goto out;
  154. }
  155. pagevec_init(&lru_pvec, 0);
  156. for (page_idx = 0; page_idx < nr_pages; page_idx++) {
  157. struct page *page = list_to_page(pages);
  158. list_del(&page->lru);
  159. if (!add_to_page_cache(page, mapping,
  160. page->index, GFP_KERNEL)) {
  161. mapping->a_ops->readpage(filp, page);
  162. if (!pagevec_add(&lru_pvec, page))
  163. __pagevec_lru_add(&lru_pvec);
  164. } else
  165. page_cache_release(page);
  166. }
  167. pagevec_lru_add(&lru_pvec);
  168. ret = 0;
  169. out:
  170. return ret;
  171. }
  172. /*
  173. * Readahead design.
  174. *
  175. * The fields in struct file_ra_state represent the most-recently-executed
  176. * readahead attempt:
  177. *
  178. * start: Page index at which we started the readahead
  179. * size: Number of pages in that read
  180. * Together, these form the "current window".
  181. * Together, start and size represent the `readahead window'.
  182. * prev_page: The page which the readahead algorithm most-recently inspected.
  183. * It is mainly used to detect sequential file reading.
  184. * If page_cache_readahead sees that it is again being called for
  185. * a page which it just looked at, it can return immediately without
  186. * making any state changes.
  187. * ahead_start,
  188. * ahead_size: Together, these form the "ahead window".
  189. * ra_pages: The externally controlled max readahead for this fd.
  190. *
  191. * When readahead is in the off state (size == 0), readahead is disabled.
  192. * In this state, prev_page is used to detect the resumption of sequential I/O.
  193. *
  194. * The readahead code manages two windows - the "current" and the "ahead"
  195. * windows. The intent is that while the application is walking the pages
  196. * in the current window, I/O is underway on the ahead window. When the
  197. * current window is fully traversed, it is replaced by the ahead window
  198. * and the ahead window is invalidated. When this copying happens, the
  199. * new current window's pages are probably still locked. So
  200. * we submit a new batch of I/O immediately, creating a new ahead window.
  201. *
  202. * So:
  203. *
  204. * ----|----------------|----------------|-----
  205. * ^start ^start+size
  206. * ^ahead_start ^ahead_start+ahead_size
  207. *
  208. * ^ When this page is read, we submit I/O for the
  209. * ahead window.
  210. *
  211. * A `readahead hit' occurs when a read request is made against a page which is
  212. * the next sequential page. Ahead window calculations are done only when it
  213. * is time to submit a new IO. The code ramps up the size agressively at first,
  214. * but slow down as it approaches max_readhead.
  215. *
  216. * Any seek/ramdom IO will result in readahead being turned off. It will resume
  217. * at the first sequential access.
  218. *
  219. * There is a special-case: if the first page which the application tries to
  220. * read happens to be the first page of the file, it is assumed that a linear
  221. * read is about to happen and the window is immediately set to the initial size
  222. * based on I/O request size and the max_readahead.
  223. *
  224. * This function is to be called for every read request, rather than when
  225. * it is time to perform readahead. It is called only once for the entire I/O
  226. * regardless of size unless readahead is unable to start enough I/O to satisfy
  227. * the request (I/O request > max_readahead).
  228. */
  229. /*
  230. * do_page_cache_readahead actually reads a chunk of disk. It allocates all
  231. * the pages first, then submits them all for I/O. This avoids the very bad
  232. * behaviour which would occur if page allocations are causing VM writeback.
  233. * We really don't want to intermingle reads and writes like that.
  234. *
  235. * Returns the number of pages requested, or the maximum amount of I/O allowed.
  236. *
  237. * do_page_cache_readahead() returns -1 if it encountered request queue
  238. * congestion.
  239. */
  240. static int
  241. __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
  242. pgoff_t offset, unsigned long nr_to_read)
  243. {
  244. struct inode *inode = mapping->host;
  245. struct page *page;
  246. unsigned long end_index; /* The last page we want to read */
  247. LIST_HEAD(page_pool);
  248. int page_idx;
  249. int ret = 0;
  250. loff_t isize = i_size_read(inode);
  251. if (isize == 0)
  252. goto out;
  253. end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
  254. /*
  255. * Preallocate as many pages as we will need.
  256. */
  257. read_lock_irq(&mapping->tree_lock);
  258. for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
  259. pgoff_t page_offset = offset + page_idx;
  260. if (page_offset > end_index)
  261. break;
  262. page = radix_tree_lookup(&mapping->page_tree, page_offset);
  263. if (page)
  264. continue;
  265. read_unlock_irq(&mapping->tree_lock);
  266. page = page_cache_alloc_cold(mapping);
  267. read_lock_irq(&mapping->tree_lock);
  268. if (!page)
  269. break;
  270. page->index = page_offset;
  271. list_add(&page->lru, &page_pool);
  272. ret++;
  273. }
  274. read_unlock_irq(&mapping->tree_lock);
  275. /*
  276. * Now start the IO. We ignore I/O errors - if the page is not
  277. * uptodate then the caller will launch readpage again, and
  278. * will then handle the error.
  279. */
  280. if (ret)
  281. read_pages(mapping, filp, &page_pool, ret);
  282. BUG_ON(!list_empty(&page_pool));
  283. out:
  284. return ret;
  285. }
  286. /*
  287. * Chunk the readahead into 2 megabyte units, so that we don't pin too much
  288. * memory at once.
  289. */
  290. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  291. pgoff_t offset, unsigned long nr_to_read)
  292. {
  293. int ret = 0;
  294. if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
  295. return -EINVAL;
  296. while (nr_to_read) {
  297. int err;
  298. unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
  299. if (this_chunk > nr_to_read)
  300. this_chunk = nr_to_read;
  301. err = __do_page_cache_readahead(mapping, filp,
  302. offset, this_chunk);
  303. if (err < 0) {
  304. ret = err;
  305. break;
  306. }
  307. ret += err;
  308. offset += this_chunk;
  309. nr_to_read -= this_chunk;
  310. }
  311. return ret;
  312. }
  313. /*
  314. * Check how effective readahead is being. If the amount of started IO is
  315. * less than expected then the file is partly or fully in pagecache and
  316. * readahead isn't helping.
  317. *
  318. */
  319. static inline int check_ra_success(struct file_ra_state *ra,
  320. unsigned long nr_to_read, unsigned long actual)
  321. {
  322. if (actual == 0) {
  323. ra->cache_hit += nr_to_read;
  324. if (ra->cache_hit >= VM_MAX_CACHE_HIT) {
  325. ra_off(ra);
  326. ra->flags |= RA_FLAG_INCACHE;
  327. return 0;
  328. }
  329. } else {
  330. ra->cache_hit=0;
  331. }
  332. return 1;
  333. }
  334. /*
  335. * This version skips the IO if the queue is read-congested, and will tell the
  336. * block layer to abandon the readahead if request allocation would block.
  337. *
  338. * force_page_cache_readahead() will ignore queue congestion and will block on
  339. * request queues.
  340. */
  341. int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
  342. pgoff_t offset, unsigned long nr_to_read)
  343. {
  344. if (bdi_read_congested(mapping->backing_dev_info))
  345. return -1;
  346. return __do_page_cache_readahead(mapping, filp, offset, nr_to_read);
  347. }
  348. /*
  349. * Read 'nr_to_read' pages starting at page 'offset'. If the flag 'block'
  350. * is set wait till the read completes. Otherwise attempt to read without
  351. * blocking.
  352. * Returns 1 meaning 'success' if read is successful without switching off
  353. * readahead mode. Otherwise return failure.
  354. */
  355. static int
  356. blockable_page_cache_readahead(struct address_space *mapping, struct file *filp,
  357. pgoff_t offset, unsigned long nr_to_read,
  358. struct file_ra_state *ra, int block)
  359. {
  360. int actual;
  361. if (!block && bdi_read_congested(mapping->backing_dev_info))
  362. return 0;
  363. actual = __do_page_cache_readahead(mapping, filp, offset, nr_to_read);
  364. return check_ra_success(ra, nr_to_read, actual);
  365. }
  366. static int make_ahead_window(struct address_space *mapping, struct file *filp,
  367. struct file_ra_state *ra, int force)
  368. {
  369. int block, ret;
  370. ra->ahead_size = get_next_ra_size(ra);
  371. ra->ahead_start = ra->start + ra->size;
  372. block = force || (ra->prev_page >= ra->ahead_start);
  373. ret = blockable_page_cache_readahead(mapping, filp,
  374. ra->ahead_start, ra->ahead_size, ra, block);
  375. if (!ret && !force) {
  376. /* A read failure in blocking mode, implies pages are
  377. * all cached. So we can safely assume we have taken
  378. * care of all the pages requested in this call.
  379. * A read failure in non-blocking mode, implies we are
  380. * reading more pages than requested in this call. So
  381. * we safely assume we have taken care of all the pages
  382. * requested in this call.
  383. *
  384. * Just reset the ahead window in case we failed due to
  385. * congestion. The ahead window will any way be closed
  386. * in case we failed due to excessive page cache hits.
  387. */
  388. reset_ahead_window(ra);
  389. }
  390. return ret;
  391. }
  392. /**
  393. * page_cache_readahead - generic adaptive readahead
  394. * @mapping: address_space which holds the pagecache and I/O vectors
  395. * @ra: file_ra_state which holds the readahead state
  396. * @filp: passed on to ->readpage() and ->readpages()
  397. * @offset: start offset into @mapping, in PAGE_CACHE_SIZE units
  398. * @req_size: hint: total size of the read which the caller is performing in
  399. * PAGE_CACHE_SIZE units
  400. *
  401. * page_cache_readahead() is the main function. If performs the adaptive
  402. * readahead window size management and submits the readahead I/O.
  403. *
  404. * Note that @filp is purely used for passing on to the ->readpage[s]()
  405. * handler: it may refer to a different file from @mapping (so we may not use
  406. * @filp->f_mapping or @filp->f_path.dentry->d_inode here).
  407. * Also, @ra may not be equal to &@filp->f_ra.
  408. *
  409. */
  410. unsigned long
  411. page_cache_readahead(struct address_space *mapping, struct file_ra_state *ra,
  412. struct file *filp, pgoff_t offset, unsigned long req_size)
  413. {
  414. unsigned long max, newsize;
  415. int sequential;
  416. /*
  417. * We avoid doing extra work and bogusly perturbing the readahead
  418. * window expansion logic.
  419. */
  420. if (offset == ra->prev_page && --req_size)
  421. ++offset;
  422. /* Note that prev_page == -1 if it is a first read */
  423. sequential = (offset == ra->prev_page + 1);
  424. ra->prev_page = offset;
  425. max = get_max_readahead(ra);
  426. newsize = min(req_size, max);
  427. /* No readahead or sub-page sized read or file already in cache */
  428. if (newsize == 0 || (ra->flags & RA_FLAG_INCACHE))
  429. goto out;
  430. ra->prev_page += newsize - 1;
  431. /*
  432. * Special case - first read at start of file. We'll assume it's
  433. * a whole-file read and grow the window fast. Or detect first
  434. * sequential access
  435. */
  436. if (sequential && ra->size == 0) {
  437. ra->size = get_init_ra_size(newsize, max);
  438. ra->start = offset;
  439. if (!blockable_page_cache_readahead(mapping, filp, offset,
  440. ra->size, ra, 1))
  441. goto out;
  442. /*
  443. * If the request size is larger than our max readahead, we
  444. * at least want to be sure that we get 2 IOs in flight and
  445. * we know that we will definitly need the new I/O.
  446. * once we do this, subsequent calls should be able to overlap
  447. * IOs,* thus preventing stalls. so issue the ahead window
  448. * immediately.
  449. */
  450. if (req_size >= max)
  451. make_ahead_window(mapping, filp, ra, 1);
  452. goto out;
  453. }
  454. /*
  455. * Now handle the random case:
  456. * partial page reads and first access were handled above,
  457. * so this must be the next page otherwise it is random
  458. */
  459. if (!sequential) {
  460. ra_off(ra);
  461. blockable_page_cache_readahead(mapping, filp, offset,
  462. newsize, ra, 1);
  463. goto out;
  464. }
  465. /*
  466. * If we get here we are doing sequential IO and this was not the first
  467. * occurence (ie we have an existing window)
  468. */
  469. if (ra->ahead_start == 0) { /* no ahead window yet */
  470. if (!make_ahead_window(mapping, filp, ra, 0))
  471. goto recheck;
  472. }
  473. /*
  474. * Already have an ahead window, check if we crossed into it.
  475. * If so, shift windows and issue a new ahead window.
  476. * Only return the #pages that are in the current window, so that
  477. * we get called back on the first page of the ahead window which
  478. * will allow us to submit more IO.
  479. */
  480. if (ra->prev_page >= ra->ahead_start) {
  481. ra->start = ra->ahead_start;
  482. ra->size = ra->ahead_size;
  483. make_ahead_window(mapping, filp, ra, 0);
  484. recheck:
  485. /* prev_page shouldn't overrun the ahead window */
  486. ra->prev_page = min(ra->prev_page,
  487. ra->ahead_start + ra->ahead_size - 1);
  488. }
  489. out:
  490. return ra->prev_page + 1;
  491. }
  492. EXPORT_SYMBOL_GPL(page_cache_readahead);
  493. /*
  494. * handle_ra_miss() is called when it is known that a page which should have
  495. * been present in the pagecache (we just did some readahead there) was in fact
  496. * not found. This will happen if it was evicted by the VM (readahead
  497. * thrashing)
  498. *
  499. * Turn on the cache miss flag in the RA struct, this will cause the RA code
  500. * to reduce the RA size on the next read.
  501. */
  502. void handle_ra_miss(struct address_space *mapping,
  503. struct file_ra_state *ra, pgoff_t offset)
  504. {
  505. ra->flags |= RA_FLAG_MISS;
  506. ra->flags &= ~RA_FLAG_INCACHE;
  507. ra->cache_hit = 0;
  508. }
  509. /*
  510. * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
  511. * sensible upper limit.
  512. */
  513. unsigned long max_sane_readahead(unsigned long nr)
  514. {
  515. unsigned long active;
  516. unsigned long inactive;
  517. unsigned long free;
  518. __get_zone_counts(&active, &inactive, &free, NODE_DATA(numa_node_id()));
  519. return min(nr, (inactive + free) / 2);
  520. }