sched.c 174 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. */
  20. #include <linux/mm.h>
  21. #include <linux/module.h>
  22. #include <linux/nmi.h>
  23. #include <linux/init.h>
  24. #include <asm/uaccess.h>
  25. #include <linux/highmem.h>
  26. #include <linux/smp_lock.h>
  27. #include <asm/mmu_context.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/capability.h>
  30. #include <linux/completion.h>
  31. #include <linux/kernel_stat.h>
  32. #include <linux/debug_locks.h>
  33. #include <linux/security.h>
  34. #include <linux/notifier.h>
  35. #include <linux/profile.h>
  36. #include <linux/freezer.h>
  37. #include <linux/vmalloc.h>
  38. #include <linux/blkdev.h>
  39. #include <linux/delay.h>
  40. #include <linux/smp.h>
  41. #include <linux/threads.h>
  42. #include <linux/timer.h>
  43. #include <linux/rcupdate.h>
  44. #include <linux/cpu.h>
  45. #include <linux/cpuset.h>
  46. #include <linux/percpu.h>
  47. #include <linux/kthread.h>
  48. #include <linux/seq_file.h>
  49. #include <linux/syscalls.h>
  50. #include <linux/times.h>
  51. #include <linux/tsacct_kern.h>
  52. #include <linux/kprobes.h>
  53. #include <linux/delayacct.h>
  54. #include <asm/tlb.h>
  55. #include <asm/unistd.h>
  56. /*
  57. * Convert user-nice values [ -20 ... 0 ... 19 ]
  58. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  59. * and back.
  60. */
  61. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  62. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  63. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  64. /*
  65. * 'User priority' is the nice value converted to something we
  66. * can work with better when scaling various scheduler parameters,
  67. * it's a [ 0 ... 39 ] range.
  68. */
  69. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  70. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  71. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  72. /*
  73. * Some helpers for converting nanosecond timing to jiffy resolution
  74. */
  75. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  76. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  77. /*
  78. * These are the 'tuning knobs' of the scheduler:
  79. *
  80. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  81. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  82. * Timeslices get refilled after they expire.
  83. */
  84. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  85. #define DEF_TIMESLICE (100 * HZ / 1000)
  86. #define ON_RUNQUEUE_WEIGHT 30
  87. #define CHILD_PENALTY 95
  88. #define PARENT_PENALTY 100
  89. #define EXIT_WEIGHT 3
  90. #define PRIO_BONUS_RATIO 25
  91. #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
  92. #define INTERACTIVE_DELTA 2
  93. #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
  94. #define STARVATION_LIMIT (MAX_SLEEP_AVG)
  95. #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
  96. /*
  97. * If a task is 'interactive' then we reinsert it in the active
  98. * array after it has expired its current timeslice. (it will not
  99. * continue to run immediately, it will still roundrobin with
  100. * other interactive tasks.)
  101. *
  102. * This part scales the interactivity limit depending on niceness.
  103. *
  104. * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
  105. * Here are a few examples of different nice levels:
  106. *
  107. * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
  108. * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
  109. * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
  110. * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
  111. * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
  112. *
  113. * (the X axis represents the possible -5 ... 0 ... +5 dynamic
  114. * priority range a task can explore, a value of '1' means the
  115. * task is rated interactive.)
  116. *
  117. * Ie. nice +19 tasks can never get 'interactive' enough to be
  118. * reinserted into the active array. And only heavily CPU-hog nice -20
  119. * tasks will be expired. Default nice 0 tasks are somewhere between,
  120. * it takes some effort for them to get interactive, but it's not
  121. * too hard.
  122. */
  123. #define CURRENT_BONUS(p) \
  124. (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
  125. MAX_SLEEP_AVG)
  126. #define GRANULARITY (10 * HZ / 1000 ? : 1)
  127. #ifdef CONFIG_SMP
  128. #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
  129. (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
  130. num_online_cpus())
  131. #else
  132. #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
  133. (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
  134. #endif
  135. #define SCALE(v1,v1_max,v2_max) \
  136. (v1) * (v2_max) / (v1_max)
  137. #define DELTA(p) \
  138. (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
  139. INTERACTIVE_DELTA)
  140. #define TASK_INTERACTIVE(p) \
  141. ((p)->prio <= (p)->static_prio - DELTA(p))
  142. #define INTERACTIVE_SLEEP(p) \
  143. (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
  144. (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
  145. #define TASK_PREEMPTS_CURR(p, rq) \
  146. ((p)->prio < (rq)->curr->prio)
  147. #define SCALE_PRIO(x, prio) \
  148. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  149. static unsigned int static_prio_timeslice(int static_prio)
  150. {
  151. if (static_prio < NICE_TO_PRIO(0))
  152. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  153. else
  154. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  155. }
  156. /*
  157. * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  158. * to time slice values: [800ms ... 100ms ... 5ms]
  159. *
  160. * The higher a thread's priority, the bigger timeslices
  161. * it gets during one round of execution. But even the lowest
  162. * priority thread gets MIN_TIMESLICE worth of execution time.
  163. */
  164. static inline unsigned int task_timeslice(struct task_struct *p)
  165. {
  166. return static_prio_timeslice(p->static_prio);
  167. }
  168. /*
  169. * These are the runqueue data structures:
  170. */
  171. struct prio_array {
  172. unsigned int nr_active;
  173. DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
  174. struct list_head queue[MAX_PRIO];
  175. };
  176. /*
  177. * This is the main, per-CPU runqueue data structure.
  178. *
  179. * Locking rule: those places that want to lock multiple runqueues
  180. * (such as the load balancing or the thread migration code), lock
  181. * acquire operations must be ordered by ascending &runqueue.
  182. */
  183. struct rq {
  184. spinlock_t lock;
  185. /*
  186. * nr_running and cpu_load should be in the same cacheline because
  187. * remote CPUs use both these fields when doing load calculation.
  188. */
  189. unsigned long nr_running;
  190. unsigned long raw_weighted_load;
  191. #ifdef CONFIG_SMP
  192. unsigned long cpu_load[3];
  193. #endif
  194. unsigned long long nr_switches;
  195. /*
  196. * This is part of a global counter where only the total sum
  197. * over all CPUs matters. A task can increase this counter on
  198. * one CPU and if it got migrated afterwards it may decrease
  199. * it on another CPU. Always updated under the runqueue lock:
  200. */
  201. unsigned long nr_uninterruptible;
  202. unsigned long expired_timestamp;
  203. unsigned long long timestamp_last_tick;
  204. struct task_struct *curr, *idle;
  205. struct mm_struct *prev_mm;
  206. struct prio_array *active, *expired, arrays[2];
  207. int best_expired_prio;
  208. atomic_t nr_iowait;
  209. #ifdef CONFIG_SMP
  210. struct sched_domain *sd;
  211. /* For active balancing */
  212. int active_balance;
  213. int push_cpu;
  214. int cpu; /* cpu of this runqueue */
  215. struct task_struct *migration_thread;
  216. struct list_head migration_queue;
  217. #endif
  218. #ifdef CONFIG_SCHEDSTATS
  219. /* latency stats */
  220. struct sched_info rq_sched_info;
  221. /* sys_sched_yield() stats */
  222. unsigned long yld_exp_empty;
  223. unsigned long yld_act_empty;
  224. unsigned long yld_both_empty;
  225. unsigned long yld_cnt;
  226. /* schedule() stats */
  227. unsigned long sched_switch;
  228. unsigned long sched_cnt;
  229. unsigned long sched_goidle;
  230. /* try_to_wake_up() stats */
  231. unsigned long ttwu_cnt;
  232. unsigned long ttwu_local;
  233. #endif
  234. struct lock_class_key rq_lock_key;
  235. };
  236. static DEFINE_PER_CPU(struct rq, runqueues);
  237. static inline int cpu_of(struct rq *rq)
  238. {
  239. #ifdef CONFIG_SMP
  240. return rq->cpu;
  241. #else
  242. return 0;
  243. #endif
  244. }
  245. /*
  246. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  247. * See detach_destroy_domains: synchronize_sched for details.
  248. *
  249. * The domain tree of any CPU may only be accessed from within
  250. * preempt-disabled sections.
  251. */
  252. #define for_each_domain(cpu, __sd) \
  253. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  254. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  255. #define this_rq() (&__get_cpu_var(runqueues))
  256. #define task_rq(p) cpu_rq(task_cpu(p))
  257. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  258. #ifndef prepare_arch_switch
  259. # define prepare_arch_switch(next) do { } while (0)
  260. #endif
  261. #ifndef finish_arch_switch
  262. # define finish_arch_switch(prev) do { } while (0)
  263. #endif
  264. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  265. static inline int task_running(struct rq *rq, struct task_struct *p)
  266. {
  267. return rq->curr == p;
  268. }
  269. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  270. {
  271. }
  272. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  273. {
  274. #ifdef CONFIG_DEBUG_SPINLOCK
  275. /* this is a valid case when another task releases the spinlock */
  276. rq->lock.owner = current;
  277. #endif
  278. /*
  279. * If we are tracking spinlock dependencies then we have to
  280. * fix up the runqueue lock - which gets 'carried over' from
  281. * prev into current:
  282. */
  283. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  284. spin_unlock_irq(&rq->lock);
  285. }
  286. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  287. static inline int task_running(struct rq *rq, struct task_struct *p)
  288. {
  289. #ifdef CONFIG_SMP
  290. return p->oncpu;
  291. #else
  292. return rq->curr == p;
  293. #endif
  294. }
  295. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  296. {
  297. #ifdef CONFIG_SMP
  298. /*
  299. * We can optimise this out completely for !SMP, because the
  300. * SMP rebalancing from interrupt is the only thing that cares
  301. * here.
  302. */
  303. next->oncpu = 1;
  304. #endif
  305. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  306. spin_unlock_irq(&rq->lock);
  307. #else
  308. spin_unlock(&rq->lock);
  309. #endif
  310. }
  311. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  312. {
  313. #ifdef CONFIG_SMP
  314. /*
  315. * After ->oncpu is cleared, the task can be moved to a different CPU.
  316. * We must ensure this doesn't happen until the switch is completely
  317. * finished.
  318. */
  319. smp_wmb();
  320. prev->oncpu = 0;
  321. #endif
  322. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  323. local_irq_enable();
  324. #endif
  325. }
  326. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  327. /*
  328. * __task_rq_lock - lock the runqueue a given task resides on.
  329. * Must be called interrupts disabled.
  330. */
  331. static inline struct rq *__task_rq_lock(struct task_struct *p)
  332. __acquires(rq->lock)
  333. {
  334. struct rq *rq;
  335. repeat_lock_task:
  336. rq = task_rq(p);
  337. spin_lock(&rq->lock);
  338. if (unlikely(rq != task_rq(p))) {
  339. spin_unlock(&rq->lock);
  340. goto repeat_lock_task;
  341. }
  342. return rq;
  343. }
  344. /*
  345. * task_rq_lock - lock the runqueue a given task resides on and disable
  346. * interrupts. Note the ordering: we can safely lookup the task_rq without
  347. * explicitly disabling preemption.
  348. */
  349. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  350. __acquires(rq->lock)
  351. {
  352. struct rq *rq;
  353. repeat_lock_task:
  354. local_irq_save(*flags);
  355. rq = task_rq(p);
  356. spin_lock(&rq->lock);
  357. if (unlikely(rq != task_rq(p))) {
  358. spin_unlock_irqrestore(&rq->lock, *flags);
  359. goto repeat_lock_task;
  360. }
  361. return rq;
  362. }
  363. static inline void __task_rq_unlock(struct rq *rq)
  364. __releases(rq->lock)
  365. {
  366. spin_unlock(&rq->lock);
  367. }
  368. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  369. __releases(rq->lock)
  370. {
  371. spin_unlock_irqrestore(&rq->lock, *flags);
  372. }
  373. #ifdef CONFIG_SCHEDSTATS
  374. /*
  375. * bump this up when changing the output format or the meaning of an existing
  376. * format, so that tools can adapt (or abort)
  377. */
  378. #define SCHEDSTAT_VERSION 12
  379. static int show_schedstat(struct seq_file *seq, void *v)
  380. {
  381. int cpu;
  382. seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
  383. seq_printf(seq, "timestamp %lu\n", jiffies);
  384. for_each_online_cpu(cpu) {
  385. struct rq *rq = cpu_rq(cpu);
  386. #ifdef CONFIG_SMP
  387. struct sched_domain *sd;
  388. int dcnt = 0;
  389. #endif
  390. /* runqueue-specific stats */
  391. seq_printf(seq,
  392. "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
  393. cpu, rq->yld_both_empty,
  394. rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
  395. rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
  396. rq->ttwu_cnt, rq->ttwu_local,
  397. rq->rq_sched_info.cpu_time,
  398. rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
  399. seq_printf(seq, "\n");
  400. #ifdef CONFIG_SMP
  401. /* domain-specific stats */
  402. preempt_disable();
  403. for_each_domain(cpu, sd) {
  404. enum idle_type itype;
  405. char mask_str[NR_CPUS];
  406. cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
  407. seq_printf(seq, "domain%d %s", dcnt++, mask_str);
  408. for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
  409. itype++) {
  410. seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
  411. sd->lb_cnt[itype],
  412. sd->lb_balanced[itype],
  413. sd->lb_failed[itype],
  414. sd->lb_imbalance[itype],
  415. sd->lb_gained[itype],
  416. sd->lb_hot_gained[itype],
  417. sd->lb_nobusyq[itype],
  418. sd->lb_nobusyg[itype]);
  419. }
  420. seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
  421. sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
  422. sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
  423. sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
  424. sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
  425. }
  426. preempt_enable();
  427. #endif
  428. }
  429. return 0;
  430. }
  431. static int schedstat_open(struct inode *inode, struct file *file)
  432. {
  433. unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
  434. char *buf = kmalloc(size, GFP_KERNEL);
  435. struct seq_file *m;
  436. int res;
  437. if (!buf)
  438. return -ENOMEM;
  439. res = single_open(file, show_schedstat, NULL);
  440. if (!res) {
  441. m = file->private_data;
  442. m->buf = buf;
  443. m->size = size;
  444. } else
  445. kfree(buf);
  446. return res;
  447. }
  448. const struct file_operations proc_schedstat_operations = {
  449. .open = schedstat_open,
  450. .read = seq_read,
  451. .llseek = seq_lseek,
  452. .release = single_release,
  453. };
  454. /*
  455. * Expects runqueue lock to be held for atomicity of update
  456. */
  457. static inline void
  458. rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
  459. {
  460. if (rq) {
  461. rq->rq_sched_info.run_delay += delta_jiffies;
  462. rq->rq_sched_info.pcnt++;
  463. }
  464. }
  465. /*
  466. * Expects runqueue lock to be held for atomicity of update
  467. */
  468. static inline void
  469. rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
  470. {
  471. if (rq)
  472. rq->rq_sched_info.cpu_time += delta_jiffies;
  473. }
  474. # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
  475. # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
  476. #else /* !CONFIG_SCHEDSTATS */
  477. static inline void
  478. rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
  479. {}
  480. static inline void
  481. rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
  482. {}
  483. # define schedstat_inc(rq, field) do { } while (0)
  484. # define schedstat_add(rq, field, amt) do { } while (0)
  485. #endif
  486. /*
  487. * rq_lock - lock a given runqueue and disable interrupts.
  488. */
  489. static inline struct rq *this_rq_lock(void)
  490. __acquires(rq->lock)
  491. {
  492. struct rq *rq;
  493. local_irq_disable();
  494. rq = this_rq();
  495. spin_lock(&rq->lock);
  496. return rq;
  497. }
  498. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  499. /*
  500. * Called when a process is dequeued from the active array and given
  501. * the cpu. We should note that with the exception of interactive
  502. * tasks, the expired queue will become the active queue after the active
  503. * queue is empty, without explicitly dequeuing and requeuing tasks in the
  504. * expired queue. (Interactive tasks may be requeued directly to the
  505. * active queue, thus delaying tasks in the expired queue from running;
  506. * see scheduler_tick()).
  507. *
  508. * This function is only called from sched_info_arrive(), rather than
  509. * dequeue_task(). Even though a task may be queued and dequeued multiple
  510. * times as it is shuffled about, we're really interested in knowing how
  511. * long it was from the *first* time it was queued to the time that it
  512. * finally hit a cpu.
  513. */
  514. static inline void sched_info_dequeued(struct task_struct *t)
  515. {
  516. t->sched_info.last_queued = 0;
  517. }
  518. /*
  519. * Called when a task finally hits the cpu. We can now calculate how
  520. * long it was waiting to run. We also note when it began so that we
  521. * can keep stats on how long its timeslice is.
  522. */
  523. static void sched_info_arrive(struct task_struct *t)
  524. {
  525. unsigned long now = jiffies, delta_jiffies = 0;
  526. if (t->sched_info.last_queued)
  527. delta_jiffies = now - t->sched_info.last_queued;
  528. sched_info_dequeued(t);
  529. t->sched_info.run_delay += delta_jiffies;
  530. t->sched_info.last_arrival = now;
  531. t->sched_info.pcnt++;
  532. rq_sched_info_arrive(task_rq(t), delta_jiffies);
  533. }
  534. /*
  535. * Called when a process is queued into either the active or expired
  536. * array. The time is noted and later used to determine how long we
  537. * had to wait for us to reach the cpu. Since the expired queue will
  538. * become the active queue after active queue is empty, without dequeuing
  539. * and requeuing any tasks, we are interested in queuing to either. It
  540. * is unusual but not impossible for tasks to be dequeued and immediately
  541. * requeued in the same or another array: this can happen in sched_yield(),
  542. * set_user_nice(), and even load_balance() as it moves tasks from runqueue
  543. * to runqueue.
  544. *
  545. * This function is only called from enqueue_task(), but also only updates
  546. * the timestamp if it is already not set. It's assumed that
  547. * sched_info_dequeued() will clear that stamp when appropriate.
  548. */
  549. static inline void sched_info_queued(struct task_struct *t)
  550. {
  551. if (unlikely(sched_info_on()))
  552. if (!t->sched_info.last_queued)
  553. t->sched_info.last_queued = jiffies;
  554. }
  555. /*
  556. * Called when a process ceases being the active-running process, either
  557. * voluntarily or involuntarily. Now we can calculate how long we ran.
  558. */
  559. static inline void sched_info_depart(struct task_struct *t)
  560. {
  561. unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
  562. t->sched_info.cpu_time += delta_jiffies;
  563. rq_sched_info_depart(task_rq(t), delta_jiffies);
  564. }
  565. /*
  566. * Called when tasks are switched involuntarily due, typically, to expiring
  567. * their time slice. (This may also be called when switching to or from
  568. * the idle task.) We are only called when prev != next.
  569. */
  570. static inline void
  571. __sched_info_switch(struct task_struct *prev, struct task_struct *next)
  572. {
  573. struct rq *rq = task_rq(prev);
  574. /*
  575. * prev now departs the cpu. It's not interesting to record
  576. * stats about how efficient we were at scheduling the idle
  577. * process, however.
  578. */
  579. if (prev != rq->idle)
  580. sched_info_depart(prev);
  581. if (next != rq->idle)
  582. sched_info_arrive(next);
  583. }
  584. static inline void
  585. sched_info_switch(struct task_struct *prev, struct task_struct *next)
  586. {
  587. if (unlikely(sched_info_on()))
  588. __sched_info_switch(prev, next);
  589. }
  590. #else
  591. #define sched_info_queued(t) do { } while (0)
  592. #define sched_info_switch(t, next) do { } while (0)
  593. #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
  594. /*
  595. * Adding/removing a task to/from a priority array:
  596. */
  597. static void dequeue_task(struct task_struct *p, struct prio_array *array)
  598. {
  599. array->nr_active--;
  600. list_del(&p->run_list);
  601. if (list_empty(array->queue + p->prio))
  602. __clear_bit(p->prio, array->bitmap);
  603. }
  604. static void enqueue_task(struct task_struct *p, struct prio_array *array)
  605. {
  606. sched_info_queued(p);
  607. list_add_tail(&p->run_list, array->queue + p->prio);
  608. __set_bit(p->prio, array->bitmap);
  609. array->nr_active++;
  610. p->array = array;
  611. }
  612. /*
  613. * Put task to the end of the run list without the overhead of dequeue
  614. * followed by enqueue.
  615. */
  616. static void requeue_task(struct task_struct *p, struct prio_array *array)
  617. {
  618. list_move_tail(&p->run_list, array->queue + p->prio);
  619. }
  620. static inline void
  621. enqueue_task_head(struct task_struct *p, struct prio_array *array)
  622. {
  623. list_add(&p->run_list, array->queue + p->prio);
  624. __set_bit(p->prio, array->bitmap);
  625. array->nr_active++;
  626. p->array = array;
  627. }
  628. /*
  629. * __normal_prio - return the priority that is based on the static
  630. * priority but is modified by bonuses/penalties.
  631. *
  632. * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
  633. * into the -5 ... 0 ... +5 bonus/penalty range.
  634. *
  635. * We use 25% of the full 0...39 priority range so that:
  636. *
  637. * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
  638. * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
  639. *
  640. * Both properties are important to certain workloads.
  641. */
  642. static inline int __normal_prio(struct task_struct *p)
  643. {
  644. int bonus, prio;
  645. bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
  646. prio = p->static_prio - bonus;
  647. if (prio < MAX_RT_PRIO)
  648. prio = MAX_RT_PRIO;
  649. if (prio > MAX_PRIO-1)
  650. prio = MAX_PRIO-1;
  651. return prio;
  652. }
  653. /*
  654. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  655. * of tasks with abnormal "nice" values across CPUs the contribution that
  656. * each task makes to its run queue's load is weighted according to its
  657. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  658. * scaled version of the new time slice allocation that they receive on time
  659. * slice expiry etc.
  660. */
  661. /*
  662. * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
  663. * If static_prio_timeslice() is ever changed to break this assumption then
  664. * this code will need modification
  665. */
  666. #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
  667. #define LOAD_WEIGHT(lp) \
  668. (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
  669. #define PRIO_TO_LOAD_WEIGHT(prio) \
  670. LOAD_WEIGHT(static_prio_timeslice(prio))
  671. #define RTPRIO_TO_LOAD_WEIGHT(rp) \
  672. (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
  673. static void set_load_weight(struct task_struct *p)
  674. {
  675. if (has_rt_policy(p)) {
  676. #ifdef CONFIG_SMP
  677. if (p == task_rq(p)->migration_thread)
  678. /*
  679. * The migration thread does the actual balancing.
  680. * Giving its load any weight will skew balancing
  681. * adversely.
  682. */
  683. p->load_weight = 0;
  684. else
  685. #endif
  686. p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
  687. } else
  688. p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
  689. }
  690. static inline void
  691. inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
  692. {
  693. rq->raw_weighted_load += p->load_weight;
  694. }
  695. static inline void
  696. dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
  697. {
  698. rq->raw_weighted_load -= p->load_weight;
  699. }
  700. static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
  701. {
  702. rq->nr_running++;
  703. inc_raw_weighted_load(rq, p);
  704. }
  705. static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
  706. {
  707. rq->nr_running--;
  708. dec_raw_weighted_load(rq, p);
  709. }
  710. /*
  711. * Calculate the expected normal priority: i.e. priority
  712. * without taking RT-inheritance into account. Might be
  713. * boosted by interactivity modifiers. Changes upon fork,
  714. * setprio syscalls, and whenever the interactivity
  715. * estimator recalculates.
  716. */
  717. static inline int normal_prio(struct task_struct *p)
  718. {
  719. int prio;
  720. if (has_rt_policy(p))
  721. prio = MAX_RT_PRIO-1 - p->rt_priority;
  722. else
  723. prio = __normal_prio(p);
  724. return prio;
  725. }
  726. /*
  727. * Calculate the current priority, i.e. the priority
  728. * taken into account by the scheduler. This value might
  729. * be boosted by RT tasks, or might be boosted by
  730. * interactivity modifiers. Will be RT if the task got
  731. * RT-boosted. If not then it returns p->normal_prio.
  732. */
  733. static int effective_prio(struct task_struct *p)
  734. {
  735. p->normal_prio = normal_prio(p);
  736. /*
  737. * If we are RT tasks or we were boosted to RT priority,
  738. * keep the priority unchanged. Otherwise, update priority
  739. * to the normal priority:
  740. */
  741. if (!rt_prio(p->prio))
  742. return p->normal_prio;
  743. return p->prio;
  744. }
  745. /*
  746. * __activate_task - move a task to the runqueue.
  747. */
  748. static void __activate_task(struct task_struct *p, struct rq *rq)
  749. {
  750. struct prio_array *target = rq->active;
  751. if (batch_task(p))
  752. target = rq->expired;
  753. enqueue_task(p, target);
  754. inc_nr_running(p, rq);
  755. }
  756. /*
  757. * __activate_idle_task - move idle task to the _front_ of runqueue.
  758. */
  759. static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
  760. {
  761. enqueue_task_head(p, rq->active);
  762. inc_nr_running(p, rq);
  763. }
  764. /*
  765. * Recalculate p->normal_prio and p->prio after having slept,
  766. * updating the sleep-average too:
  767. */
  768. static int recalc_task_prio(struct task_struct *p, unsigned long long now)
  769. {
  770. /* Caller must always ensure 'now >= p->timestamp' */
  771. unsigned long sleep_time = now - p->timestamp;
  772. if (batch_task(p))
  773. sleep_time = 0;
  774. if (likely(sleep_time > 0)) {
  775. /*
  776. * This ceiling is set to the lowest priority that would allow
  777. * a task to be reinserted into the active array on timeslice
  778. * completion.
  779. */
  780. unsigned long ceiling = INTERACTIVE_SLEEP(p);
  781. if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
  782. /*
  783. * Prevents user tasks from achieving best priority
  784. * with one single large enough sleep.
  785. */
  786. p->sleep_avg = ceiling;
  787. /*
  788. * Using INTERACTIVE_SLEEP() as a ceiling places a
  789. * nice(0) task 1ms sleep away from promotion, and
  790. * gives it 700ms to round-robin with no chance of
  791. * being demoted. This is more than generous, so
  792. * mark this sleep as non-interactive to prevent the
  793. * on-runqueue bonus logic from intervening should
  794. * this task not receive cpu immediately.
  795. */
  796. p->sleep_type = SLEEP_NONINTERACTIVE;
  797. } else {
  798. /*
  799. * Tasks waking from uninterruptible sleep are
  800. * limited in their sleep_avg rise as they
  801. * are likely to be waiting on I/O
  802. */
  803. if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
  804. if (p->sleep_avg >= ceiling)
  805. sleep_time = 0;
  806. else if (p->sleep_avg + sleep_time >=
  807. ceiling) {
  808. p->sleep_avg = ceiling;
  809. sleep_time = 0;
  810. }
  811. }
  812. /*
  813. * This code gives a bonus to interactive tasks.
  814. *
  815. * The boost works by updating the 'average sleep time'
  816. * value here, based on ->timestamp. The more time a
  817. * task spends sleeping, the higher the average gets -
  818. * and the higher the priority boost gets as well.
  819. */
  820. p->sleep_avg += sleep_time;
  821. }
  822. if (p->sleep_avg > NS_MAX_SLEEP_AVG)
  823. p->sleep_avg = NS_MAX_SLEEP_AVG;
  824. }
  825. return effective_prio(p);
  826. }
  827. /*
  828. * activate_task - move a task to the runqueue and do priority recalculation
  829. *
  830. * Update all the scheduling statistics stuff. (sleep average
  831. * calculation, priority modifiers, etc.)
  832. */
  833. static void activate_task(struct task_struct *p, struct rq *rq, int local)
  834. {
  835. unsigned long long now;
  836. now = sched_clock();
  837. #ifdef CONFIG_SMP
  838. if (!local) {
  839. /* Compensate for drifting sched_clock */
  840. struct rq *this_rq = this_rq();
  841. now = (now - this_rq->timestamp_last_tick)
  842. + rq->timestamp_last_tick;
  843. }
  844. #endif
  845. /*
  846. * Sleep time is in units of nanosecs, so shift by 20 to get a
  847. * milliseconds-range estimation of the amount of time that the task
  848. * spent sleeping:
  849. */
  850. if (unlikely(prof_on == SLEEP_PROFILING)) {
  851. if (p->state == TASK_UNINTERRUPTIBLE)
  852. profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
  853. (now - p->timestamp) >> 20);
  854. }
  855. if (!rt_task(p))
  856. p->prio = recalc_task_prio(p, now);
  857. /*
  858. * This checks to make sure it's not an uninterruptible task
  859. * that is now waking up.
  860. */
  861. if (p->sleep_type == SLEEP_NORMAL) {
  862. /*
  863. * Tasks which were woken up by interrupts (ie. hw events)
  864. * are most likely of interactive nature. So we give them
  865. * the credit of extending their sleep time to the period
  866. * of time they spend on the runqueue, waiting for execution
  867. * on a CPU, first time around:
  868. */
  869. if (in_interrupt())
  870. p->sleep_type = SLEEP_INTERRUPTED;
  871. else {
  872. /*
  873. * Normal first-time wakeups get a credit too for
  874. * on-runqueue time, but it will be weighted down:
  875. */
  876. p->sleep_type = SLEEP_INTERACTIVE;
  877. }
  878. }
  879. p->timestamp = now;
  880. __activate_task(p, rq);
  881. }
  882. /*
  883. * deactivate_task - remove a task from the runqueue.
  884. */
  885. static void deactivate_task(struct task_struct *p, struct rq *rq)
  886. {
  887. dec_nr_running(p, rq);
  888. dequeue_task(p, p->array);
  889. p->array = NULL;
  890. }
  891. /*
  892. * resched_task - mark a task 'to be rescheduled now'.
  893. *
  894. * On UP this means the setting of the need_resched flag, on SMP it
  895. * might also involve a cross-CPU call to trigger the scheduler on
  896. * the target CPU.
  897. */
  898. #ifdef CONFIG_SMP
  899. #ifndef tsk_is_polling
  900. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  901. #endif
  902. static void resched_task(struct task_struct *p)
  903. {
  904. int cpu;
  905. assert_spin_locked(&task_rq(p)->lock);
  906. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  907. return;
  908. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  909. cpu = task_cpu(p);
  910. if (cpu == smp_processor_id())
  911. return;
  912. /* NEED_RESCHED must be visible before we test polling */
  913. smp_mb();
  914. if (!tsk_is_polling(p))
  915. smp_send_reschedule(cpu);
  916. }
  917. #else
  918. static inline void resched_task(struct task_struct *p)
  919. {
  920. assert_spin_locked(&task_rq(p)->lock);
  921. set_tsk_need_resched(p);
  922. }
  923. #endif
  924. /**
  925. * task_curr - is this task currently executing on a CPU?
  926. * @p: the task in question.
  927. */
  928. inline int task_curr(const struct task_struct *p)
  929. {
  930. return cpu_curr(task_cpu(p)) == p;
  931. }
  932. /* Used instead of source_load when we know the type == 0 */
  933. unsigned long weighted_cpuload(const int cpu)
  934. {
  935. return cpu_rq(cpu)->raw_weighted_load;
  936. }
  937. #ifdef CONFIG_SMP
  938. struct migration_req {
  939. struct list_head list;
  940. struct task_struct *task;
  941. int dest_cpu;
  942. struct completion done;
  943. };
  944. /*
  945. * The task's runqueue lock must be held.
  946. * Returns true if you have to wait for migration thread.
  947. */
  948. static int
  949. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  950. {
  951. struct rq *rq = task_rq(p);
  952. /*
  953. * If the task is not on a runqueue (and not running), then
  954. * it is sufficient to simply update the task's cpu field.
  955. */
  956. if (!p->array && !task_running(rq, p)) {
  957. set_task_cpu(p, dest_cpu);
  958. return 0;
  959. }
  960. init_completion(&req->done);
  961. req->task = p;
  962. req->dest_cpu = dest_cpu;
  963. list_add(&req->list, &rq->migration_queue);
  964. return 1;
  965. }
  966. /*
  967. * wait_task_inactive - wait for a thread to unschedule.
  968. *
  969. * The caller must ensure that the task *will* unschedule sometime soon,
  970. * else this function might spin for a *long* time. This function can't
  971. * be called with interrupts off, or it may introduce deadlock with
  972. * smp_call_function() if an IPI is sent by the same process we are
  973. * waiting to become inactive.
  974. */
  975. void wait_task_inactive(struct task_struct *p)
  976. {
  977. unsigned long flags;
  978. struct rq *rq;
  979. int preempted;
  980. repeat:
  981. rq = task_rq_lock(p, &flags);
  982. /* Must be off runqueue entirely, not preempted. */
  983. if (unlikely(p->array || task_running(rq, p))) {
  984. /* If it's preempted, we yield. It could be a while. */
  985. preempted = !task_running(rq, p);
  986. task_rq_unlock(rq, &flags);
  987. cpu_relax();
  988. if (preempted)
  989. yield();
  990. goto repeat;
  991. }
  992. task_rq_unlock(rq, &flags);
  993. }
  994. /***
  995. * kick_process - kick a running thread to enter/exit the kernel
  996. * @p: the to-be-kicked thread
  997. *
  998. * Cause a process which is running on another CPU to enter
  999. * kernel-mode, without any delay. (to get signals handled.)
  1000. *
  1001. * NOTE: this function doesnt have to take the runqueue lock,
  1002. * because all it wants to ensure is that the remote task enters
  1003. * the kernel. If the IPI races and the task has been migrated
  1004. * to another CPU then no harm is done and the purpose has been
  1005. * achieved as well.
  1006. */
  1007. void kick_process(struct task_struct *p)
  1008. {
  1009. int cpu;
  1010. preempt_disable();
  1011. cpu = task_cpu(p);
  1012. if ((cpu != smp_processor_id()) && task_curr(p))
  1013. smp_send_reschedule(cpu);
  1014. preempt_enable();
  1015. }
  1016. /*
  1017. * Return a low guess at the load of a migration-source cpu weighted
  1018. * according to the scheduling class and "nice" value.
  1019. *
  1020. * We want to under-estimate the load of migration sources, to
  1021. * balance conservatively.
  1022. */
  1023. static inline unsigned long source_load(int cpu, int type)
  1024. {
  1025. struct rq *rq = cpu_rq(cpu);
  1026. if (type == 0)
  1027. return rq->raw_weighted_load;
  1028. return min(rq->cpu_load[type-1], rq->raw_weighted_load);
  1029. }
  1030. /*
  1031. * Return a high guess at the load of a migration-target cpu weighted
  1032. * according to the scheduling class and "nice" value.
  1033. */
  1034. static inline unsigned long target_load(int cpu, int type)
  1035. {
  1036. struct rq *rq = cpu_rq(cpu);
  1037. if (type == 0)
  1038. return rq->raw_weighted_load;
  1039. return max(rq->cpu_load[type-1], rq->raw_weighted_load);
  1040. }
  1041. /*
  1042. * Return the average load per task on the cpu's run queue
  1043. */
  1044. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1045. {
  1046. struct rq *rq = cpu_rq(cpu);
  1047. unsigned long n = rq->nr_running;
  1048. return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
  1049. }
  1050. /*
  1051. * find_idlest_group finds and returns the least busy CPU group within the
  1052. * domain.
  1053. */
  1054. static struct sched_group *
  1055. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1056. {
  1057. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1058. unsigned long min_load = ULONG_MAX, this_load = 0;
  1059. int load_idx = sd->forkexec_idx;
  1060. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1061. do {
  1062. unsigned long load, avg_load;
  1063. int local_group;
  1064. int i;
  1065. /* Skip over this group if it has no CPUs allowed */
  1066. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1067. goto nextgroup;
  1068. local_group = cpu_isset(this_cpu, group->cpumask);
  1069. /* Tally up the load of all CPUs in the group */
  1070. avg_load = 0;
  1071. for_each_cpu_mask(i, group->cpumask) {
  1072. /* Bias balancing toward cpus of our domain */
  1073. if (local_group)
  1074. load = source_load(i, load_idx);
  1075. else
  1076. load = target_load(i, load_idx);
  1077. avg_load += load;
  1078. }
  1079. /* Adjust by relative CPU power of the group */
  1080. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1081. if (local_group) {
  1082. this_load = avg_load;
  1083. this = group;
  1084. } else if (avg_load < min_load) {
  1085. min_load = avg_load;
  1086. idlest = group;
  1087. }
  1088. nextgroup:
  1089. group = group->next;
  1090. } while (group != sd->groups);
  1091. if (!idlest || 100*this_load < imbalance*min_load)
  1092. return NULL;
  1093. return idlest;
  1094. }
  1095. /*
  1096. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1097. */
  1098. static int
  1099. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1100. {
  1101. cpumask_t tmp;
  1102. unsigned long load, min_load = ULONG_MAX;
  1103. int idlest = -1;
  1104. int i;
  1105. /* Traverse only the allowed CPUs */
  1106. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1107. for_each_cpu_mask(i, tmp) {
  1108. load = weighted_cpuload(i);
  1109. if (load < min_load || (load == min_load && i == this_cpu)) {
  1110. min_load = load;
  1111. idlest = i;
  1112. }
  1113. }
  1114. return idlest;
  1115. }
  1116. /*
  1117. * sched_balance_self: balance the current task (running on cpu) in domains
  1118. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1119. * SD_BALANCE_EXEC.
  1120. *
  1121. * Balance, ie. select the least loaded group.
  1122. *
  1123. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1124. *
  1125. * preempt must be disabled.
  1126. */
  1127. static int sched_balance_self(int cpu, int flag)
  1128. {
  1129. struct task_struct *t = current;
  1130. struct sched_domain *tmp, *sd = NULL;
  1131. for_each_domain(cpu, tmp) {
  1132. /*
  1133. * If power savings logic is enabled for a domain, stop there.
  1134. */
  1135. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1136. break;
  1137. if (tmp->flags & flag)
  1138. sd = tmp;
  1139. }
  1140. while (sd) {
  1141. cpumask_t span;
  1142. struct sched_group *group;
  1143. int new_cpu, weight;
  1144. if (!(sd->flags & flag)) {
  1145. sd = sd->child;
  1146. continue;
  1147. }
  1148. span = sd->span;
  1149. group = find_idlest_group(sd, t, cpu);
  1150. if (!group) {
  1151. sd = sd->child;
  1152. continue;
  1153. }
  1154. new_cpu = find_idlest_cpu(group, t, cpu);
  1155. if (new_cpu == -1 || new_cpu == cpu) {
  1156. /* Now try balancing at a lower domain level of cpu */
  1157. sd = sd->child;
  1158. continue;
  1159. }
  1160. /* Now try balancing at a lower domain level of new_cpu */
  1161. cpu = new_cpu;
  1162. sd = NULL;
  1163. weight = cpus_weight(span);
  1164. for_each_domain(cpu, tmp) {
  1165. if (weight <= cpus_weight(tmp->span))
  1166. break;
  1167. if (tmp->flags & flag)
  1168. sd = tmp;
  1169. }
  1170. /* while loop will break here if sd == NULL */
  1171. }
  1172. return cpu;
  1173. }
  1174. #endif /* CONFIG_SMP */
  1175. /*
  1176. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1177. * not idle and an idle cpu is available. The span of cpus to
  1178. * search starts with cpus closest then further out as needed,
  1179. * so we always favor a closer, idle cpu.
  1180. *
  1181. * Returns the CPU we should wake onto.
  1182. */
  1183. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1184. static int wake_idle(int cpu, struct task_struct *p)
  1185. {
  1186. cpumask_t tmp;
  1187. struct sched_domain *sd;
  1188. int i;
  1189. if (idle_cpu(cpu))
  1190. return cpu;
  1191. for_each_domain(cpu, sd) {
  1192. if (sd->flags & SD_WAKE_IDLE) {
  1193. cpus_and(tmp, sd->span, p->cpus_allowed);
  1194. for_each_cpu_mask(i, tmp) {
  1195. if (idle_cpu(i))
  1196. return i;
  1197. }
  1198. }
  1199. else
  1200. break;
  1201. }
  1202. return cpu;
  1203. }
  1204. #else
  1205. static inline int wake_idle(int cpu, struct task_struct *p)
  1206. {
  1207. return cpu;
  1208. }
  1209. #endif
  1210. /***
  1211. * try_to_wake_up - wake up a thread
  1212. * @p: the to-be-woken-up thread
  1213. * @state: the mask of task states that can be woken
  1214. * @sync: do a synchronous wakeup?
  1215. *
  1216. * Put it on the run-queue if it's not already there. The "current"
  1217. * thread is always on the run-queue (except when the actual
  1218. * re-schedule is in progress), and as such you're allowed to do
  1219. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1220. * runnable without the overhead of this.
  1221. *
  1222. * returns failure only if the task is already active.
  1223. */
  1224. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1225. {
  1226. int cpu, this_cpu, success = 0;
  1227. unsigned long flags;
  1228. long old_state;
  1229. struct rq *rq;
  1230. #ifdef CONFIG_SMP
  1231. struct sched_domain *sd, *this_sd = NULL;
  1232. unsigned long load, this_load;
  1233. int new_cpu;
  1234. #endif
  1235. rq = task_rq_lock(p, &flags);
  1236. old_state = p->state;
  1237. if (!(old_state & state))
  1238. goto out;
  1239. if (p->array)
  1240. goto out_running;
  1241. cpu = task_cpu(p);
  1242. this_cpu = smp_processor_id();
  1243. #ifdef CONFIG_SMP
  1244. if (unlikely(task_running(rq, p)))
  1245. goto out_activate;
  1246. new_cpu = cpu;
  1247. schedstat_inc(rq, ttwu_cnt);
  1248. if (cpu == this_cpu) {
  1249. schedstat_inc(rq, ttwu_local);
  1250. goto out_set_cpu;
  1251. }
  1252. for_each_domain(this_cpu, sd) {
  1253. if (cpu_isset(cpu, sd->span)) {
  1254. schedstat_inc(sd, ttwu_wake_remote);
  1255. this_sd = sd;
  1256. break;
  1257. }
  1258. }
  1259. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1260. goto out_set_cpu;
  1261. /*
  1262. * Check for affine wakeup and passive balancing possibilities.
  1263. */
  1264. if (this_sd) {
  1265. int idx = this_sd->wake_idx;
  1266. unsigned int imbalance;
  1267. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1268. load = source_load(cpu, idx);
  1269. this_load = target_load(this_cpu, idx);
  1270. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1271. if (this_sd->flags & SD_WAKE_AFFINE) {
  1272. unsigned long tl = this_load;
  1273. unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu);
  1274. /*
  1275. * If sync wakeup then subtract the (maximum possible)
  1276. * effect of the currently running task from the load
  1277. * of the current CPU:
  1278. */
  1279. if (sync)
  1280. tl -= current->load_weight;
  1281. if ((tl <= load &&
  1282. tl + target_load(cpu, idx) <= tl_per_task) ||
  1283. 100*(tl + p->load_weight) <= imbalance*load) {
  1284. /*
  1285. * This domain has SD_WAKE_AFFINE and
  1286. * p is cache cold in this domain, and
  1287. * there is no bad imbalance.
  1288. */
  1289. schedstat_inc(this_sd, ttwu_move_affine);
  1290. goto out_set_cpu;
  1291. }
  1292. }
  1293. /*
  1294. * Start passive balancing when half the imbalance_pct
  1295. * limit is reached.
  1296. */
  1297. if (this_sd->flags & SD_WAKE_BALANCE) {
  1298. if (imbalance*this_load <= 100*load) {
  1299. schedstat_inc(this_sd, ttwu_move_balance);
  1300. goto out_set_cpu;
  1301. }
  1302. }
  1303. }
  1304. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1305. out_set_cpu:
  1306. new_cpu = wake_idle(new_cpu, p);
  1307. if (new_cpu != cpu) {
  1308. set_task_cpu(p, new_cpu);
  1309. task_rq_unlock(rq, &flags);
  1310. /* might preempt at this point */
  1311. rq = task_rq_lock(p, &flags);
  1312. old_state = p->state;
  1313. if (!(old_state & state))
  1314. goto out;
  1315. if (p->array)
  1316. goto out_running;
  1317. this_cpu = smp_processor_id();
  1318. cpu = task_cpu(p);
  1319. }
  1320. out_activate:
  1321. #endif /* CONFIG_SMP */
  1322. if (old_state == TASK_UNINTERRUPTIBLE) {
  1323. rq->nr_uninterruptible--;
  1324. /*
  1325. * Tasks on involuntary sleep don't earn
  1326. * sleep_avg beyond just interactive state.
  1327. */
  1328. p->sleep_type = SLEEP_NONINTERACTIVE;
  1329. } else
  1330. /*
  1331. * Tasks that have marked their sleep as noninteractive get
  1332. * woken up with their sleep average not weighted in an
  1333. * interactive way.
  1334. */
  1335. if (old_state & TASK_NONINTERACTIVE)
  1336. p->sleep_type = SLEEP_NONINTERACTIVE;
  1337. activate_task(p, rq, cpu == this_cpu);
  1338. /*
  1339. * Sync wakeups (i.e. those types of wakeups where the waker
  1340. * has indicated that it will leave the CPU in short order)
  1341. * don't trigger a preemption, if the woken up task will run on
  1342. * this cpu. (in this case the 'I will reschedule' promise of
  1343. * the waker guarantees that the freshly woken up task is going
  1344. * to be considered on this CPU.)
  1345. */
  1346. if (!sync || cpu != this_cpu) {
  1347. if (TASK_PREEMPTS_CURR(p, rq))
  1348. resched_task(rq->curr);
  1349. }
  1350. success = 1;
  1351. out_running:
  1352. p->state = TASK_RUNNING;
  1353. out:
  1354. task_rq_unlock(rq, &flags);
  1355. return success;
  1356. }
  1357. int fastcall wake_up_process(struct task_struct *p)
  1358. {
  1359. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1360. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1361. }
  1362. EXPORT_SYMBOL(wake_up_process);
  1363. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1364. {
  1365. return try_to_wake_up(p, state, 0);
  1366. }
  1367. /*
  1368. * Perform scheduler related setup for a newly forked process p.
  1369. * p is forked by current.
  1370. */
  1371. void fastcall sched_fork(struct task_struct *p, int clone_flags)
  1372. {
  1373. int cpu = get_cpu();
  1374. #ifdef CONFIG_SMP
  1375. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1376. #endif
  1377. set_task_cpu(p, cpu);
  1378. /*
  1379. * We mark the process as running here, but have not actually
  1380. * inserted it onto the runqueue yet. This guarantees that
  1381. * nobody will actually run it, and a signal or other external
  1382. * event cannot wake it up and insert it on the runqueue either.
  1383. */
  1384. p->state = TASK_RUNNING;
  1385. /*
  1386. * Make sure we do not leak PI boosting priority to the child:
  1387. */
  1388. p->prio = current->normal_prio;
  1389. INIT_LIST_HEAD(&p->run_list);
  1390. p->array = NULL;
  1391. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1392. if (unlikely(sched_info_on()))
  1393. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1394. #endif
  1395. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1396. p->oncpu = 0;
  1397. #endif
  1398. #ifdef CONFIG_PREEMPT
  1399. /* Want to start with kernel preemption disabled. */
  1400. task_thread_info(p)->preempt_count = 1;
  1401. #endif
  1402. /*
  1403. * Share the timeslice between parent and child, thus the
  1404. * total amount of pending timeslices in the system doesn't change,
  1405. * resulting in more scheduling fairness.
  1406. */
  1407. local_irq_disable();
  1408. p->time_slice = (current->time_slice + 1) >> 1;
  1409. /*
  1410. * The remainder of the first timeslice might be recovered by
  1411. * the parent if the child exits early enough.
  1412. */
  1413. p->first_time_slice = 1;
  1414. current->time_slice >>= 1;
  1415. p->timestamp = sched_clock();
  1416. if (unlikely(!current->time_slice)) {
  1417. /*
  1418. * This case is rare, it happens when the parent has only
  1419. * a single jiffy left from its timeslice. Taking the
  1420. * runqueue lock is not a problem.
  1421. */
  1422. current->time_slice = 1;
  1423. scheduler_tick();
  1424. }
  1425. local_irq_enable();
  1426. put_cpu();
  1427. }
  1428. /*
  1429. * wake_up_new_task - wake up a newly created task for the first time.
  1430. *
  1431. * This function will do some initial scheduler statistics housekeeping
  1432. * that must be done for every newly created context, then puts the task
  1433. * on the runqueue and wakes it.
  1434. */
  1435. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1436. {
  1437. struct rq *rq, *this_rq;
  1438. unsigned long flags;
  1439. int this_cpu, cpu;
  1440. rq = task_rq_lock(p, &flags);
  1441. BUG_ON(p->state != TASK_RUNNING);
  1442. this_cpu = smp_processor_id();
  1443. cpu = task_cpu(p);
  1444. /*
  1445. * We decrease the sleep average of forking parents
  1446. * and children as well, to keep max-interactive tasks
  1447. * from forking tasks that are max-interactive. The parent
  1448. * (current) is done further down, under its lock.
  1449. */
  1450. p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
  1451. CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
  1452. p->prio = effective_prio(p);
  1453. if (likely(cpu == this_cpu)) {
  1454. if (!(clone_flags & CLONE_VM)) {
  1455. /*
  1456. * The VM isn't cloned, so we're in a good position to
  1457. * do child-runs-first in anticipation of an exec. This
  1458. * usually avoids a lot of COW overhead.
  1459. */
  1460. if (unlikely(!current->array))
  1461. __activate_task(p, rq);
  1462. else {
  1463. p->prio = current->prio;
  1464. p->normal_prio = current->normal_prio;
  1465. list_add_tail(&p->run_list, &current->run_list);
  1466. p->array = current->array;
  1467. p->array->nr_active++;
  1468. inc_nr_running(p, rq);
  1469. }
  1470. set_need_resched();
  1471. } else
  1472. /* Run child last */
  1473. __activate_task(p, rq);
  1474. /*
  1475. * We skip the following code due to cpu == this_cpu
  1476. *
  1477. * task_rq_unlock(rq, &flags);
  1478. * this_rq = task_rq_lock(current, &flags);
  1479. */
  1480. this_rq = rq;
  1481. } else {
  1482. this_rq = cpu_rq(this_cpu);
  1483. /*
  1484. * Not the local CPU - must adjust timestamp. This should
  1485. * get optimised away in the !CONFIG_SMP case.
  1486. */
  1487. p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
  1488. + rq->timestamp_last_tick;
  1489. __activate_task(p, rq);
  1490. if (TASK_PREEMPTS_CURR(p, rq))
  1491. resched_task(rq->curr);
  1492. /*
  1493. * Parent and child are on different CPUs, now get the
  1494. * parent runqueue to update the parent's ->sleep_avg:
  1495. */
  1496. task_rq_unlock(rq, &flags);
  1497. this_rq = task_rq_lock(current, &flags);
  1498. }
  1499. current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
  1500. PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
  1501. task_rq_unlock(this_rq, &flags);
  1502. }
  1503. /*
  1504. * Potentially available exiting-child timeslices are
  1505. * retrieved here - this way the parent does not get
  1506. * penalized for creating too many threads.
  1507. *
  1508. * (this cannot be used to 'generate' timeslices
  1509. * artificially, because any timeslice recovered here
  1510. * was given away by the parent in the first place.)
  1511. */
  1512. void fastcall sched_exit(struct task_struct *p)
  1513. {
  1514. unsigned long flags;
  1515. struct rq *rq;
  1516. /*
  1517. * If the child was a (relative-) CPU hog then decrease
  1518. * the sleep_avg of the parent as well.
  1519. */
  1520. rq = task_rq_lock(p->parent, &flags);
  1521. if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
  1522. p->parent->time_slice += p->time_slice;
  1523. if (unlikely(p->parent->time_slice > task_timeslice(p)))
  1524. p->parent->time_slice = task_timeslice(p);
  1525. }
  1526. if (p->sleep_avg < p->parent->sleep_avg)
  1527. p->parent->sleep_avg = p->parent->sleep_avg /
  1528. (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
  1529. (EXIT_WEIGHT + 1);
  1530. task_rq_unlock(rq, &flags);
  1531. }
  1532. /**
  1533. * prepare_task_switch - prepare to switch tasks
  1534. * @rq: the runqueue preparing to switch
  1535. * @next: the task we are going to switch to.
  1536. *
  1537. * This is called with the rq lock held and interrupts off. It must
  1538. * be paired with a subsequent finish_task_switch after the context
  1539. * switch.
  1540. *
  1541. * prepare_task_switch sets up locking and calls architecture specific
  1542. * hooks.
  1543. */
  1544. static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
  1545. {
  1546. prepare_lock_switch(rq, next);
  1547. prepare_arch_switch(next);
  1548. }
  1549. /**
  1550. * finish_task_switch - clean up after a task-switch
  1551. * @rq: runqueue associated with task-switch
  1552. * @prev: the thread we just switched away from.
  1553. *
  1554. * finish_task_switch must be called after the context switch, paired
  1555. * with a prepare_task_switch call before the context switch.
  1556. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1557. * and do any other architecture-specific cleanup actions.
  1558. *
  1559. * Note that we may have delayed dropping an mm in context_switch(). If
  1560. * so, we finish that here outside of the runqueue lock. (Doing it
  1561. * with the lock held can cause deadlocks; see schedule() for
  1562. * details.)
  1563. */
  1564. static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1565. __releases(rq->lock)
  1566. {
  1567. struct mm_struct *mm = rq->prev_mm;
  1568. long prev_state;
  1569. rq->prev_mm = NULL;
  1570. /*
  1571. * A task struct has one reference for the use as "current".
  1572. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1573. * schedule one last time. The schedule call will never return, and
  1574. * the scheduled task must drop that reference.
  1575. * The test for TASK_DEAD must occur while the runqueue locks are
  1576. * still held, otherwise prev could be scheduled on another cpu, die
  1577. * there before we look at prev->state, and then the reference would
  1578. * be dropped twice.
  1579. * Manfred Spraul <manfred@colorfullife.com>
  1580. */
  1581. prev_state = prev->state;
  1582. finish_arch_switch(prev);
  1583. finish_lock_switch(rq, prev);
  1584. if (mm)
  1585. mmdrop(mm);
  1586. if (unlikely(prev_state == TASK_DEAD)) {
  1587. /*
  1588. * Remove function-return probe instances associated with this
  1589. * task and put them back on the free list.
  1590. */
  1591. kprobe_flush_task(prev);
  1592. put_task_struct(prev);
  1593. }
  1594. }
  1595. /**
  1596. * schedule_tail - first thing a freshly forked thread must call.
  1597. * @prev: the thread we just switched away from.
  1598. */
  1599. asmlinkage void schedule_tail(struct task_struct *prev)
  1600. __releases(rq->lock)
  1601. {
  1602. struct rq *rq = this_rq();
  1603. finish_task_switch(rq, prev);
  1604. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1605. /* In this case, finish_task_switch does not reenable preemption */
  1606. preempt_enable();
  1607. #endif
  1608. if (current->set_child_tid)
  1609. put_user(current->pid, current->set_child_tid);
  1610. }
  1611. /*
  1612. * context_switch - switch to the new MM and the new
  1613. * thread's register state.
  1614. */
  1615. static inline struct task_struct *
  1616. context_switch(struct rq *rq, struct task_struct *prev,
  1617. struct task_struct *next)
  1618. {
  1619. struct mm_struct *mm = next->mm;
  1620. struct mm_struct *oldmm = prev->active_mm;
  1621. if (!mm) {
  1622. next->active_mm = oldmm;
  1623. atomic_inc(&oldmm->mm_count);
  1624. enter_lazy_tlb(oldmm, next);
  1625. } else
  1626. switch_mm(oldmm, mm, next);
  1627. if (!prev->mm) {
  1628. prev->active_mm = NULL;
  1629. WARN_ON(rq->prev_mm);
  1630. rq->prev_mm = oldmm;
  1631. }
  1632. /*
  1633. * Since the runqueue lock will be released by the next
  1634. * task (which is an invalid locking op but in the case
  1635. * of the scheduler it's an obvious special-case), so we
  1636. * do an early lockdep release here:
  1637. */
  1638. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1639. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1640. #endif
  1641. /* Here we just switch the register state and the stack. */
  1642. switch_to(prev, next, prev);
  1643. return prev;
  1644. }
  1645. /*
  1646. * nr_running, nr_uninterruptible and nr_context_switches:
  1647. *
  1648. * externally visible scheduler statistics: current number of runnable
  1649. * threads, current number of uninterruptible-sleeping threads, total
  1650. * number of context switches performed since bootup.
  1651. */
  1652. unsigned long nr_running(void)
  1653. {
  1654. unsigned long i, sum = 0;
  1655. for_each_online_cpu(i)
  1656. sum += cpu_rq(i)->nr_running;
  1657. return sum;
  1658. }
  1659. unsigned long nr_uninterruptible(void)
  1660. {
  1661. unsigned long i, sum = 0;
  1662. for_each_possible_cpu(i)
  1663. sum += cpu_rq(i)->nr_uninterruptible;
  1664. /*
  1665. * Since we read the counters lockless, it might be slightly
  1666. * inaccurate. Do not allow it to go below zero though:
  1667. */
  1668. if (unlikely((long)sum < 0))
  1669. sum = 0;
  1670. return sum;
  1671. }
  1672. unsigned long long nr_context_switches(void)
  1673. {
  1674. int i;
  1675. unsigned long long sum = 0;
  1676. for_each_possible_cpu(i)
  1677. sum += cpu_rq(i)->nr_switches;
  1678. return sum;
  1679. }
  1680. unsigned long nr_iowait(void)
  1681. {
  1682. unsigned long i, sum = 0;
  1683. for_each_possible_cpu(i)
  1684. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1685. return sum;
  1686. }
  1687. unsigned long nr_active(void)
  1688. {
  1689. unsigned long i, running = 0, uninterruptible = 0;
  1690. for_each_online_cpu(i) {
  1691. running += cpu_rq(i)->nr_running;
  1692. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1693. }
  1694. if (unlikely((long)uninterruptible < 0))
  1695. uninterruptible = 0;
  1696. return running + uninterruptible;
  1697. }
  1698. #ifdef CONFIG_SMP
  1699. /*
  1700. * Is this task likely cache-hot:
  1701. */
  1702. static inline int
  1703. task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
  1704. {
  1705. return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
  1706. }
  1707. /*
  1708. * double_rq_lock - safely lock two runqueues
  1709. *
  1710. * Note this does not disable interrupts like task_rq_lock,
  1711. * you need to do so manually before calling.
  1712. */
  1713. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1714. __acquires(rq1->lock)
  1715. __acquires(rq2->lock)
  1716. {
  1717. if (rq1 == rq2) {
  1718. spin_lock(&rq1->lock);
  1719. __acquire(rq2->lock); /* Fake it out ;) */
  1720. } else {
  1721. if (rq1 < rq2) {
  1722. spin_lock(&rq1->lock);
  1723. spin_lock(&rq2->lock);
  1724. } else {
  1725. spin_lock(&rq2->lock);
  1726. spin_lock(&rq1->lock);
  1727. }
  1728. }
  1729. }
  1730. /*
  1731. * double_rq_unlock - safely unlock two runqueues
  1732. *
  1733. * Note this does not restore interrupts like task_rq_unlock,
  1734. * you need to do so manually after calling.
  1735. */
  1736. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1737. __releases(rq1->lock)
  1738. __releases(rq2->lock)
  1739. {
  1740. spin_unlock(&rq1->lock);
  1741. if (rq1 != rq2)
  1742. spin_unlock(&rq2->lock);
  1743. else
  1744. __release(rq2->lock);
  1745. }
  1746. /*
  1747. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1748. */
  1749. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1750. __releases(this_rq->lock)
  1751. __acquires(busiest->lock)
  1752. __acquires(this_rq->lock)
  1753. {
  1754. if (unlikely(!spin_trylock(&busiest->lock))) {
  1755. if (busiest < this_rq) {
  1756. spin_unlock(&this_rq->lock);
  1757. spin_lock(&busiest->lock);
  1758. spin_lock(&this_rq->lock);
  1759. } else
  1760. spin_lock(&busiest->lock);
  1761. }
  1762. }
  1763. /*
  1764. * If dest_cpu is allowed for this process, migrate the task to it.
  1765. * This is accomplished by forcing the cpu_allowed mask to only
  1766. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1767. * the cpu_allowed mask is restored.
  1768. */
  1769. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1770. {
  1771. struct migration_req req;
  1772. unsigned long flags;
  1773. struct rq *rq;
  1774. rq = task_rq_lock(p, &flags);
  1775. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1776. || unlikely(cpu_is_offline(dest_cpu)))
  1777. goto out;
  1778. /* force the process onto the specified CPU */
  1779. if (migrate_task(p, dest_cpu, &req)) {
  1780. /* Need to wait for migration thread (might exit: take ref). */
  1781. struct task_struct *mt = rq->migration_thread;
  1782. get_task_struct(mt);
  1783. task_rq_unlock(rq, &flags);
  1784. wake_up_process(mt);
  1785. put_task_struct(mt);
  1786. wait_for_completion(&req.done);
  1787. return;
  1788. }
  1789. out:
  1790. task_rq_unlock(rq, &flags);
  1791. }
  1792. /*
  1793. * sched_exec - execve() is a valuable balancing opportunity, because at
  1794. * this point the task has the smallest effective memory and cache footprint.
  1795. */
  1796. void sched_exec(void)
  1797. {
  1798. int new_cpu, this_cpu = get_cpu();
  1799. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1800. put_cpu();
  1801. if (new_cpu != this_cpu)
  1802. sched_migrate_task(current, new_cpu);
  1803. }
  1804. /*
  1805. * pull_task - move a task from a remote runqueue to the local runqueue.
  1806. * Both runqueues must be locked.
  1807. */
  1808. static void pull_task(struct rq *src_rq, struct prio_array *src_array,
  1809. struct task_struct *p, struct rq *this_rq,
  1810. struct prio_array *this_array, int this_cpu)
  1811. {
  1812. dequeue_task(p, src_array);
  1813. dec_nr_running(p, src_rq);
  1814. set_task_cpu(p, this_cpu);
  1815. inc_nr_running(p, this_rq);
  1816. enqueue_task(p, this_array);
  1817. p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
  1818. + this_rq->timestamp_last_tick;
  1819. /*
  1820. * Note that idle threads have a prio of MAX_PRIO, for this test
  1821. * to be always true for them.
  1822. */
  1823. if (TASK_PREEMPTS_CURR(p, this_rq))
  1824. resched_task(this_rq->curr);
  1825. }
  1826. /*
  1827. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1828. */
  1829. static
  1830. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1831. struct sched_domain *sd, enum idle_type idle,
  1832. int *all_pinned)
  1833. {
  1834. /*
  1835. * We do not migrate tasks that are:
  1836. * 1) running (obviously), or
  1837. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1838. * 3) are cache-hot on their current CPU.
  1839. */
  1840. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1841. return 0;
  1842. *all_pinned = 0;
  1843. if (task_running(rq, p))
  1844. return 0;
  1845. /*
  1846. * Aggressive migration if:
  1847. * 1) task is cache cold, or
  1848. * 2) too many balance attempts have failed.
  1849. */
  1850. if (sd->nr_balance_failed > sd->cache_nice_tries)
  1851. return 1;
  1852. if (task_hot(p, rq->timestamp_last_tick, sd))
  1853. return 0;
  1854. return 1;
  1855. }
  1856. #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
  1857. /*
  1858. * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
  1859. * load from busiest to this_rq, as part of a balancing operation within
  1860. * "domain". Returns the number of tasks moved.
  1861. *
  1862. * Called with both runqueues locked.
  1863. */
  1864. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1865. unsigned long max_nr_move, unsigned long max_load_move,
  1866. struct sched_domain *sd, enum idle_type idle,
  1867. int *all_pinned)
  1868. {
  1869. int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
  1870. best_prio_seen, skip_for_load;
  1871. struct prio_array *array, *dst_array;
  1872. struct list_head *head, *curr;
  1873. struct task_struct *tmp;
  1874. long rem_load_move;
  1875. if (max_nr_move == 0 || max_load_move == 0)
  1876. goto out;
  1877. rem_load_move = max_load_move;
  1878. pinned = 1;
  1879. this_best_prio = rq_best_prio(this_rq);
  1880. best_prio = rq_best_prio(busiest);
  1881. /*
  1882. * Enable handling of the case where there is more than one task
  1883. * with the best priority. If the current running task is one
  1884. * of those with prio==best_prio we know it won't be moved
  1885. * and therefore it's safe to override the skip (based on load) of
  1886. * any task we find with that prio.
  1887. */
  1888. best_prio_seen = best_prio == busiest->curr->prio;
  1889. /*
  1890. * We first consider expired tasks. Those will likely not be
  1891. * executed in the near future, and they are most likely to
  1892. * be cache-cold, thus switching CPUs has the least effect
  1893. * on them.
  1894. */
  1895. if (busiest->expired->nr_active) {
  1896. array = busiest->expired;
  1897. dst_array = this_rq->expired;
  1898. } else {
  1899. array = busiest->active;
  1900. dst_array = this_rq->active;
  1901. }
  1902. new_array:
  1903. /* Start searching at priority 0: */
  1904. idx = 0;
  1905. skip_bitmap:
  1906. if (!idx)
  1907. idx = sched_find_first_bit(array->bitmap);
  1908. else
  1909. idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
  1910. if (idx >= MAX_PRIO) {
  1911. if (array == busiest->expired && busiest->active->nr_active) {
  1912. array = busiest->active;
  1913. dst_array = this_rq->active;
  1914. goto new_array;
  1915. }
  1916. goto out;
  1917. }
  1918. head = array->queue + idx;
  1919. curr = head->prev;
  1920. skip_queue:
  1921. tmp = list_entry(curr, struct task_struct, run_list);
  1922. curr = curr->prev;
  1923. /*
  1924. * To help distribute high priority tasks accross CPUs we don't
  1925. * skip a task if it will be the highest priority task (i.e. smallest
  1926. * prio value) on its new queue regardless of its load weight
  1927. */
  1928. skip_for_load = tmp->load_weight > rem_load_move;
  1929. if (skip_for_load && idx < this_best_prio)
  1930. skip_for_load = !best_prio_seen && idx == best_prio;
  1931. if (skip_for_load ||
  1932. !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
  1933. best_prio_seen |= idx == best_prio;
  1934. if (curr != head)
  1935. goto skip_queue;
  1936. idx++;
  1937. goto skip_bitmap;
  1938. }
  1939. #ifdef CONFIG_SCHEDSTATS
  1940. if (task_hot(tmp, busiest->timestamp_last_tick, sd))
  1941. schedstat_inc(sd, lb_hot_gained[idle]);
  1942. #endif
  1943. pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
  1944. pulled++;
  1945. rem_load_move -= tmp->load_weight;
  1946. /*
  1947. * We only want to steal up to the prescribed number of tasks
  1948. * and the prescribed amount of weighted load.
  1949. */
  1950. if (pulled < max_nr_move && rem_load_move > 0) {
  1951. if (idx < this_best_prio)
  1952. this_best_prio = idx;
  1953. if (curr != head)
  1954. goto skip_queue;
  1955. idx++;
  1956. goto skip_bitmap;
  1957. }
  1958. out:
  1959. /*
  1960. * Right now, this is the only place pull_task() is called,
  1961. * so we can safely collect pull_task() stats here rather than
  1962. * inside pull_task().
  1963. */
  1964. schedstat_add(sd, lb_gained[idle], pulled);
  1965. if (all_pinned)
  1966. *all_pinned = pinned;
  1967. return pulled;
  1968. }
  1969. /*
  1970. * find_busiest_group finds and returns the busiest CPU group within the
  1971. * domain. It calculates and returns the amount of weighted load which
  1972. * should be moved to restore balance via the imbalance parameter.
  1973. */
  1974. static struct sched_group *
  1975. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1976. unsigned long *imbalance, enum idle_type idle, int *sd_idle,
  1977. cpumask_t *cpus)
  1978. {
  1979. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  1980. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  1981. unsigned long max_pull;
  1982. unsigned long busiest_load_per_task, busiest_nr_running;
  1983. unsigned long this_load_per_task, this_nr_running;
  1984. int load_idx;
  1985. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1986. int power_savings_balance = 1;
  1987. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  1988. unsigned long min_nr_running = ULONG_MAX;
  1989. struct sched_group *group_min = NULL, *group_leader = NULL;
  1990. #endif
  1991. max_load = this_load = total_load = total_pwr = 0;
  1992. busiest_load_per_task = busiest_nr_running = 0;
  1993. this_load_per_task = this_nr_running = 0;
  1994. if (idle == NOT_IDLE)
  1995. load_idx = sd->busy_idx;
  1996. else if (idle == NEWLY_IDLE)
  1997. load_idx = sd->newidle_idx;
  1998. else
  1999. load_idx = sd->idle_idx;
  2000. do {
  2001. unsigned long load, group_capacity;
  2002. int local_group;
  2003. int i;
  2004. unsigned long sum_nr_running, sum_weighted_load;
  2005. local_group = cpu_isset(this_cpu, group->cpumask);
  2006. /* Tally up the load of all CPUs in the group */
  2007. sum_weighted_load = sum_nr_running = avg_load = 0;
  2008. for_each_cpu_mask(i, group->cpumask) {
  2009. struct rq *rq;
  2010. if (!cpu_isset(i, *cpus))
  2011. continue;
  2012. rq = cpu_rq(i);
  2013. if (*sd_idle && !idle_cpu(i))
  2014. *sd_idle = 0;
  2015. /* Bias balancing toward cpus of our domain */
  2016. if (local_group)
  2017. load = target_load(i, load_idx);
  2018. else
  2019. load = source_load(i, load_idx);
  2020. avg_load += load;
  2021. sum_nr_running += rq->nr_running;
  2022. sum_weighted_load += rq->raw_weighted_load;
  2023. }
  2024. total_load += avg_load;
  2025. total_pwr += group->cpu_power;
  2026. /* Adjust by relative CPU power of the group */
  2027. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  2028. group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
  2029. if (local_group) {
  2030. this_load = avg_load;
  2031. this = group;
  2032. this_nr_running = sum_nr_running;
  2033. this_load_per_task = sum_weighted_load;
  2034. } else if (avg_load > max_load &&
  2035. sum_nr_running > group_capacity) {
  2036. max_load = avg_load;
  2037. busiest = group;
  2038. busiest_nr_running = sum_nr_running;
  2039. busiest_load_per_task = sum_weighted_load;
  2040. }
  2041. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2042. /*
  2043. * Busy processors will not participate in power savings
  2044. * balance.
  2045. */
  2046. if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2047. goto group_next;
  2048. /*
  2049. * If the local group is idle or completely loaded
  2050. * no need to do power savings balance at this domain
  2051. */
  2052. if (local_group && (this_nr_running >= group_capacity ||
  2053. !this_nr_running))
  2054. power_savings_balance = 0;
  2055. /*
  2056. * If a group is already running at full capacity or idle,
  2057. * don't include that group in power savings calculations
  2058. */
  2059. if (!power_savings_balance || sum_nr_running >= group_capacity
  2060. || !sum_nr_running)
  2061. goto group_next;
  2062. /*
  2063. * Calculate the group which has the least non-idle load.
  2064. * This is the group from where we need to pick up the load
  2065. * for saving power
  2066. */
  2067. if ((sum_nr_running < min_nr_running) ||
  2068. (sum_nr_running == min_nr_running &&
  2069. first_cpu(group->cpumask) <
  2070. first_cpu(group_min->cpumask))) {
  2071. group_min = group;
  2072. min_nr_running = sum_nr_running;
  2073. min_load_per_task = sum_weighted_load /
  2074. sum_nr_running;
  2075. }
  2076. /*
  2077. * Calculate the group which is almost near its
  2078. * capacity but still has some space to pick up some load
  2079. * from other group and save more power
  2080. */
  2081. if (sum_nr_running <= group_capacity - 1) {
  2082. if (sum_nr_running > leader_nr_running ||
  2083. (sum_nr_running == leader_nr_running &&
  2084. first_cpu(group->cpumask) >
  2085. first_cpu(group_leader->cpumask))) {
  2086. group_leader = group;
  2087. leader_nr_running = sum_nr_running;
  2088. }
  2089. }
  2090. group_next:
  2091. #endif
  2092. group = group->next;
  2093. } while (group != sd->groups);
  2094. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2095. goto out_balanced;
  2096. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2097. if (this_load >= avg_load ||
  2098. 100*max_load <= sd->imbalance_pct*this_load)
  2099. goto out_balanced;
  2100. busiest_load_per_task /= busiest_nr_running;
  2101. /*
  2102. * We're trying to get all the cpus to the average_load, so we don't
  2103. * want to push ourselves above the average load, nor do we wish to
  2104. * reduce the max loaded cpu below the average load, as either of these
  2105. * actions would just result in more rebalancing later, and ping-pong
  2106. * tasks around. Thus we look for the minimum possible imbalance.
  2107. * Negative imbalances (*we* are more loaded than anyone else) will
  2108. * be counted as no imbalance for these purposes -- we can't fix that
  2109. * by pulling tasks to us. Be careful of negative numbers as they'll
  2110. * appear as very large values with unsigned longs.
  2111. */
  2112. if (max_load <= busiest_load_per_task)
  2113. goto out_balanced;
  2114. /*
  2115. * In the presence of smp nice balancing, certain scenarios can have
  2116. * max load less than avg load(as we skip the groups at or below
  2117. * its cpu_power, while calculating max_load..)
  2118. */
  2119. if (max_load < avg_load) {
  2120. *imbalance = 0;
  2121. goto small_imbalance;
  2122. }
  2123. /* Don't want to pull so many tasks that a group would go idle */
  2124. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2125. /* How much load to actually move to equalise the imbalance */
  2126. *imbalance = min(max_pull * busiest->cpu_power,
  2127. (avg_load - this_load) * this->cpu_power)
  2128. / SCHED_LOAD_SCALE;
  2129. /*
  2130. * if *imbalance is less than the average load per runnable task
  2131. * there is no gaurantee that any tasks will be moved so we'll have
  2132. * a think about bumping its value to force at least one task to be
  2133. * moved
  2134. */
  2135. if (*imbalance < busiest_load_per_task) {
  2136. unsigned long tmp, pwr_now, pwr_move;
  2137. unsigned int imbn;
  2138. small_imbalance:
  2139. pwr_move = pwr_now = 0;
  2140. imbn = 2;
  2141. if (this_nr_running) {
  2142. this_load_per_task /= this_nr_running;
  2143. if (busiest_load_per_task > this_load_per_task)
  2144. imbn = 1;
  2145. } else
  2146. this_load_per_task = SCHED_LOAD_SCALE;
  2147. if (max_load - this_load >= busiest_load_per_task * imbn) {
  2148. *imbalance = busiest_load_per_task;
  2149. return busiest;
  2150. }
  2151. /*
  2152. * OK, we don't have enough imbalance to justify moving tasks,
  2153. * however we may be able to increase total CPU power used by
  2154. * moving them.
  2155. */
  2156. pwr_now += busiest->cpu_power *
  2157. min(busiest_load_per_task, max_load);
  2158. pwr_now += this->cpu_power *
  2159. min(this_load_per_task, this_load);
  2160. pwr_now /= SCHED_LOAD_SCALE;
  2161. /* Amount of load we'd subtract */
  2162. tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power;
  2163. if (max_load > tmp)
  2164. pwr_move += busiest->cpu_power *
  2165. min(busiest_load_per_task, max_load - tmp);
  2166. /* Amount of load we'd add */
  2167. if (max_load*busiest->cpu_power <
  2168. busiest_load_per_task*SCHED_LOAD_SCALE)
  2169. tmp = max_load*busiest->cpu_power/this->cpu_power;
  2170. else
  2171. tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power;
  2172. pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp);
  2173. pwr_move /= SCHED_LOAD_SCALE;
  2174. /* Move if we gain throughput */
  2175. if (pwr_move <= pwr_now)
  2176. goto out_balanced;
  2177. *imbalance = busiest_load_per_task;
  2178. }
  2179. return busiest;
  2180. out_balanced:
  2181. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2182. if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2183. goto ret;
  2184. if (this == group_leader && group_leader != group_min) {
  2185. *imbalance = min_load_per_task;
  2186. return group_min;
  2187. }
  2188. ret:
  2189. #endif
  2190. *imbalance = 0;
  2191. return NULL;
  2192. }
  2193. /*
  2194. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2195. */
  2196. static struct rq *
  2197. find_busiest_queue(struct sched_group *group, enum idle_type idle,
  2198. unsigned long imbalance, cpumask_t *cpus)
  2199. {
  2200. struct rq *busiest = NULL, *rq;
  2201. unsigned long max_load = 0;
  2202. int i;
  2203. for_each_cpu_mask(i, group->cpumask) {
  2204. if (!cpu_isset(i, *cpus))
  2205. continue;
  2206. rq = cpu_rq(i);
  2207. if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
  2208. continue;
  2209. if (rq->raw_weighted_load > max_load) {
  2210. max_load = rq->raw_weighted_load;
  2211. busiest = rq;
  2212. }
  2213. }
  2214. return busiest;
  2215. }
  2216. /*
  2217. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2218. * so long as it is large enough.
  2219. */
  2220. #define MAX_PINNED_INTERVAL 512
  2221. static inline unsigned long minus_1_or_zero(unsigned long n)
  2222. {
  2223. return n > 0 ? n - 1 : 0;
  2224. }
  2225. /*
  2226. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2227. * tasks if there is an imbalance.
  2228. *
  2229. * Called with this_rq unlocked.
  2230. */
  2231. static int load_balance(int this_cpu, struct rq *this_rq,
  2232. struct sched_domain *sd, enum idle_type idle)
  2233. {
  2234. int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2235. struct sched_group *group;
  2236. unsigned long imbalance;
  2237. struct rq *busiest;
  2238. cpumask_t cpus = CPU_MASK_ALL;
  2239. /*
  2240. * When power savings policy is enabled for the parent domain, idle
  2241. * sibling can pick up load irrespective of busy siblings. In this case,
  2242. * let the state of idle sibling percolate up as IDLE, instead of
  2243. * portraying it as NOT_IDLE.
  2244. */
  2245. if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2246. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2247. sd_idle = 1;
  2248. schedstat_inc(sd, lb_cnt[idle]);
  2249. redo:
  2250. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2251. &cpus);
  2252. if (!group) {
  2253. schedstat_inc(sd, lb_nobusyg[idle]);
  2254. goto out_balanced;
  2255. }
  2256. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2257. if (!busiest) {
  2258. schedstat_inc(sd, lb_nobusyq[idle]);
  2259. goto out_balanced;
  2260. }
  2261. BUG_ON(busiest == this_rq);
  2262. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2263. nr_moved = 0;
  2264. if (busiest->nr_running > 1) {
  2265. /*
  2266. * Attempt to move tasks. If find_busiest_group has found
  2267. * an imbalance but busiest->nr_running <= 1, the group is
  2268. * still unbalanced. nr_moved simply stays zero, so it is
  2269. * correctly treated as an imbalance.
  2270. */
  2271. double_rq_lock(this_rq, busiest);
  2272. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2273. minus_1_or_zero(busiest->nr_running),
  2274. imbalance, sd, idle, &all_pinned);
  2275. double_rq_unlock(this_rq, busiest);
  2276. /* All tasks on this runqueue were pinned by CPU affinity */
  2277. if (unlikely(all_pinned)) {
  2278. cpu_clear(cpu_of(busiest), cpus);
  2279. if (!cpus_empty(cpus))
  2280. goto redo;
  2281. goto out_balanced;
  2282. }
  2283. }
  2284. if (!nr_moved) {
  2285. schedstat_inc(sd, lb_failed[idle]);
  2286. sd->nr_balance_failed++;
  2287. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2288. spin_lock(&busiest->lock);
  2289. /* don't kick the migration_thread, if the curr
  2290. * task on busiest cpu can't be moved to this_cpu
  2291. */
  2292. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2293. spin_unlock(&busiest->lock);
  2294. all_pinned = 1;
  2295. goto out_one_pinned;
  2296. }
  2297. if (!busiest->active_balance) {
  2298. busiest->active_balance = 1;
  2299. busiest->push_cpu = this_cpu;
  2300. active_balance = 1;
  2301. }
  2302. spin_unlock(&busiest->lock);
  2303. if (active_balance)
  2304. wake_up_process(busiest->migration_thread);
  2305. /*
  2306. * We've kicked active balancing, reset the failure
  2307. * counter.
  2308. */
  2309. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2310. }
  2311. } else
  2312. sd->nr_balance_failed = 0;
  2313. if (likely(!active_balance)) {
  2314. /* We were unbalanced, so reset the balancing interval */
  2315. sd->balance_interval = sd->min_interval;
  2316. } else {
  2317. /*
  2318. * If we've begun active balancing, start to back off. This
  2319. * case may not be covered by the all_pinned logic if there
  2320. * is only 1 task on the busy runqueue (because we don't call
  2321. * move_tasks).
  2322. */
  2323. if (sd->balance_interval < sd->max_interval)
  2324. sd->balance_interval *= 2;
  2325. }
  2326. if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2327. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2328. return -1;
  2329. return nr_moved;
  2330. out_balanced:
  2331. schedstat_inc(sd, lb_balanced[idle]);
  2332. sd->nr_balance_failed = 0;
  2333. out_one_pinned:
  2334. /* tune up the balancing interval */
  2335. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2336. (sd->balance_interval < sd->max_interval))
  2337. sd->balance_interval *= 2;
  2338. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2339. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2340. return -1;
  2341. return 0;
  2342. }
  2343. /*
  2344. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2345. * tasks if there is an imbalance.
  2346. *
  2347. * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
  2348. * this_rq is locked.
  2349. */
  2350. static int
  2351. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2352. {
  2353. struct sched_group *group;
  2354. struct rq *busiest = NULL;
  2355. unsigned long imbalance;
  2356. int nr_moved = 0;
  2357. int sd_idle = 0;
  2358. cpumask_t cpus = CPU_MASK_ALL;
  2359. /*
  2360. * When power savings policy is enabled for the parent domain, idle
  2361. * sibling can pick up load irrespective of busy siblings. In this case,
  2362. * let the state of idle sibling percolate up as IDLE, instead of
  2363. * portraying it as NOT_IDLE.
  2364. */
  2365. if (sd->flags & SD_SHARE_CPUPOWER &&
  2366. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2367. sd_idle = 1;
  2368. schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
  2369. redo:
  2370. group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
  2371. &sd_idle, &cpus);
  2372. if (!group) {
  2373. schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
  2374. goto out_balanced;
  2375. }
  2376. busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
  2377. &cpus);
  2378. if (!busiest) {
  2379. schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
  2380. goto out_balanced;
  2381. }
  2382. BUG_ON(busiest == this_rq);
  2383. schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
  2384. nr_moved = 0;
  2385. if (busiest->nr_running > 1) {
  2386. /* Attempt to move tasks */
  2387. double_lock_balance(this_rq, busiest);
  2388. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2389. minus_1_or_zero(busiest->nr_running),
  2390. imbalance, sd, NEWLY_IDLE, NULL);
  2391. spin_unlock(&busiest->lock);
  2392. if (!nr_moved) {
  2393. cpu_clear(cpu_of(busiest), cpus);
  2394. if (!cpus_empty(cpus))
  2395. goto redo;
  2396. }
  2397. }
  2398. if (!nr_moved) {
  2399. schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
  2400. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2401. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2402. return -1;
  2403. } else
  2404. sd->nr_balance_failed = 0;
  2405. return nr_moved;
  2406. out_balanced:
  2407. schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
  2408. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2409. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2410. return -1;
  2411. sd->nr_balance_failed = 0;
  2412. return 0;
  2413. }
  2414. /*
  2415. * idle_balance is called by schedule() if this_cpu is about to become
  2416. * idle. Attempts to pull tasks from other CPUs.
  2417. */
  2418. static void idle_balance(int this_cpu, struct rq *this_rq)
  2419. {
  2420. struct sched_domain *sd;
  2421. for_each_domain(this_cpu, sd) {
  2422. if (sd->flags & SD_BALANCE_NEWIDLE) {
  2423. /* If we've pulled tasks over stop searching: */
  2424. if (load_balance_newidle(this_cpu, this_rq, sd))
  2425. break;
  2426. }
  2427. }
  2428. }
  2429. /*
  2430. * active_load_balance is run by migration threads. It pushes running tasks
  2431. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2432. * running on each physical CPU where possible, and avoids physical /
  2433. * logical imbalances.
  2434. *
  2435. * Called with busiest_rq locked.
  2436. */
  2437. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2438. {
  2439. int target_cpu = busiest_rq->push_cpu;
  2440. struct sched_domain *sd;
  2441. struct rq *target_rq;
  2442. /* Is there any task to move? */
  2443. if (busiest_rq->nr_running <= 1)
  2444. return;
  2445. target_rq = cpu_rq(target_cpu);
  2446. /*
  2447. * This condition is "impossible", if it occurs
  2448. * we need to fix it. Originally reported by
  2449. * Bjorn Helgaas on a 128-cpu setup.
  2450. */
  2451. BUG_ON(busiest_rq == target_rq);
  2452. /* move a task from busiest_rq to target_rq */
  2453. double_lock_balance(busiest_rq, target_rq);
  2454. /* Search for an sd spanning us and the target CPU. */
  2455. for_each_domain(target_cpu, sd) {
  2456. if ((sd->flags & SD_LOAD_BALANCE) &&
  2457. cpu_isset(busiest_cpu, sd->span))
  2458. break;
  2459. }
  2460. if (likely(sd)) {
  2461. schedstat_inc(sd, alb_cnt);
  2462. if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
  2463. RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
  2464. NULL))
  2465. schedstat_inc(sd, alb_pushed);
  2466. else
  2467. schedstat_inc(sd, alb_failed);
  2468. }
  2469. spin_unlock(&target_rq->lock);
  2470. }
  2471. /*
  2472. * rebalance_tick will get called every timer tick, on every CPU.
  2473. *
  2474. * It checks each scheduling domain to see if it is due to be balanced,
  2475. * and initiates a balancing operation if so.
  2476. *
  2477. * Balancing parameters are set up in arch_init_sched_domains.
  2478. */
  2479. /* Don't have all balancing operations going off at once: */
  2480. static inline unsigned long cpu_offset(int cpu)
  2481. {
  2482. return jiffies + cpu * HZ / NR_CPUS;
  2483. }
  2484. static void
  2485. rebalance_tick(int this_cpu, struct rq *this_rq, enum idle_type idle)
  2486. {
  2487. unsigned long this_load, interval, j = cpu_offset(this_cpu);
  2488. struct sched_domain *sd;
  2489. int i, scale;
  2490. this_load = this_rq->raw_weighted_load;
  2491. /* Update our load: */
  2492. for (i = 0, scale = 1; i < 3; i++, scale <<= 1) {
  2493. unsigned long old_load, new_load;
  2494. old_load = this_rq->cpu_load[i];
  2495. new_load = this_load;
  2496. /*
  2497. * Round up the averaging division if load is increasing. This
  2498. * prevents us from getting stuck on 9 if the load is 10, for
  2499. * example.
  2500. */
  2501. if (new_load > old_load)
  2502. new_load += scale-1;
  2503. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
  2504. }
  2505. for_each_domain(this_cpu, sd) {
  2506. if (!(sd->flags & SD_LOAD_BALANCE))
  2507. continue;
  2508. interval = sd->balance_interval;
  2509. if (idle != SCHED_IDLE)
  2510. interval *= sd->busy_factor;
  2511. /* scale ms to jiffies */
  2512. interval = msecs_to_jiffies(interval);
  2513. if (unlikely(!interval))
  2514. interval = 1;
  2515. if (j - sd->last_balance >= interval) {
  2516. if (load_balance(this_cpu, this_rq, sd, idle)) {
  2517. /*
  2518. * We've pulled tasks over so either we're no
  2519. * longer idle, or one of our SMT siblings is
  2520. * not idle.
  2521. */
  2522. idle = NOT_IDLE;
  2523. }
  2524. sd->last_balance += interval;
  2525. }
  2526. }
  2527. }
  2528. #else
  2529. /*
  2530. * on UP we do not need to balance between CPUs:
  2531. */
  2532. static inline void rebalance_tick(int cpu, struct rq *rq, enum idle_type idle)
  2533. {
  2534. }
  2535. static inline void idle_balance(int cpu, struct rq *rq)
  2536. {
  2537. }
  2538. #endif
  2539. static inline int wake_priority_sleeper(struct rq *rq)
  2540. {
  2541. int ret = 0;
  2542. #ifdef CONFIG_SCHED_SMT
  2543. spin_lock(&rq->lock);
  2544. /*
  2545. * If an SMT sibling task has been put to sleep for priority
  2546. * reasons reschedule the idle task to see if it can now run.
  2547. */
  2548. if (rq->nr_running) {
  2549. resched_task(rq->idle);
  2550. ret = 1;
  2551. }
  2552. spin_unlock(&rq->lock);
  2553. #endif
  2554. return ret;
  2555. }
  2556. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2557. EXPORT_PER_CPU_SYMBOL(kstat);
  2558. /*
  2559. * This is called on clock ticks and on context switches.
  2560. * Bank in p->sched_time the ns elapsed since the last tick or switch.
  2561. */
  2562. static inline void
  2563. update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
  2564. {
  2565. p->sched_time += now - max(p->timestamp, rq->timestamp_last_tick);
  2566. }
  2567. /*
  2568. * Return current->sched_time plus any more ns on the sched_clock
  2569. * that have not yet been banked.
  2570. */
  2571. unsigned long long current_sched_time(const struct task_struct *p)
  2572. {
  2573. unsigned long long ns;
  2574. unsigned long flags;
  2575. local_irq_save(flags);
  2576. ns = max(p->timestamp, task_rq(p)->timestamp_last_tick);
  2577. ns = p->sched_time + sched_clock() - ns;
  2578. local_irq_restore(flags);
  2579. return ns;
  2580. }
  2581. /*
  2582. * We place interactive tasks back into the active array, if possible.
  2583. *
  2584. * To guarantee that this does not starve expired tasks we ignore the
  2585. * interactivity of a task if the first expired task had to wait more
  2586. * than a 'reasonable' amount of time. This deadline timeout is
  2587. * load-dependent, as the frequency of array switched decreases with
  2588. * increasing number of running tasks. We also ignore the interactivity
  2589. * if a better static_prio task has expired:
  2590. */
  2591. static inline int expired_starving(struct rq *rq)
  2592. {
  2593. if (rq->curr->static_prio > rq->best_expired_prio)
  2594. return 1;
  2595. if (!STARVATION_LIMIT || !rq->expired_timestamp)
  2596. return 0;
  2597. if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
  2598. return 1;
  2599. return 0;
  2600. }
  2601. /*
  2602. * Account user cpu time to a process.
  2603. * @p: the process that the cpu time gets accounted to
  2604. * @hardirq_offset: the offset to subtract from hardirq_count()
  2605. * @cputime: the cpu time spent in user space since the last update
  2606. */
  2607. void account_user_time(struct task_struct *p, cputime_t cputime)
  2608. {
  2609. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2610. cputime64_t tmp;
  2611. p->utime = cputime_add(p->utime, cputime);
  2612. /* Add user time to cpustat. */
  2613. tmp = cputime_to_cputime64(cputime);
  2614. if (TASK_NICE(p) > 0)
  2615. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2616. else
  2617. cpustat->user = cputime64_add(cpustat->user, tmp);
  2618. }
  2619. /*
  2620. * Account system cpu time to a process.
  2621. * @p: the process that the cpu time gets accounted to
  2622. * @hardirq_offset: the offset to subtract from hardirq_count()
  2623. * @cputime: the cpu time spent in kernel space since the last update
  2624. */
  2625. void account_system_time(struct task_struct *p, int hardirq_offset,
  2626. cputime_t cputime)
  2627. {
  2628. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2629. struct rq *rq = this_rq();
  2630. cputime64_t tmp;
  2631. p->stime = cputime_add(p->stime, cputime);
  2632. /* Add system time to cpustat. */
  2633. tmp = cputime_to_cputime64(cputime);
  2634. if (hardirq_count() - hardirq_offset)
  2635. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2636. else if (softirq_count())
  2637. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2638. else if (p != rq->idle)
  2639. cpustat->system = cputime64_add(cpustat->system, tmp);
  2640. else if (atomic_read(&rq->nr_iowait) > 0)
  2641. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2642. else
  2643. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2644. /* Account for system time used */
  2645. acct_update_integrals(p);
  2646. }
  2647. /*
  2648. * Account for involuntary wait time.
  2649. * @p: the process from which the cpu time has been stolen
  2650. * @steal: the cpu time spent in involuntary wait
  2651. */
  2652. void account_steal_time(struct task_struct *p, cputime_t steal)
  2653. {
  2654. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2655. cputime64_t tmp = cputime_to_cputime64(steal);
  2656. struct rq *rq = this_rq();
  2657. if (p == rq->idle) {
  2658. p->stime = cputime_add(p->stime, steal);
  2659. if (atomic_read(&rq->nr_iowait) > 0)
  2660. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2661. else
  2662. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2663. } else
  2664. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2665. }
  2666. /*
  2667. * This function gets called by the timer code, with HZ frequency.
  2668. * We call it with interrupts disabled.
  2669. *
  2670. * It also gets called by the fork code, when changing the parent's
  2671. * timeslices.
  2672. */
  2673. void scheduler_tick(void)
  2674. {
  2675. unsigned long long now = sched_clock();
  2676. struct task_struct *p = current;
  2677. int cpu = smp_processor_id();
  2678. struct rq *rq = cpu_rq(cpu);
  2679. update_cpu_clock(p, rq, now);
  2680. rq->timestamp_last_tick = now;
  2681. if (p == rq->idle) {
  2682. if (wake_priority_sleeper(rq))
  2683. goto out;
  2684. rebalance_tick(cpu, rq, SCHED_IDLE);
  2685. return;
  2686. }
  2687. /* Task might have expired already, but not scheduled off yet */
  2688. if (p->array != rq->active) {
  2689. set_tsk_need_resched(p);
  2690. goto out;
  2691. }
  2692. spin_lock(&rq->lock);
  2693. /*
  2694. * The task was running during this tick - update the
  2695. * time slice counter. Note: we do not update a thread's
  2696. * priority until it either goes to sleep or uses up its
  2697. * timeslice. This makes it possible for interactive tasks
  2698. * to use up their timeslices at their highest priority levels.
  2699. */
  2700. if (rt_task(p)) {
  2701. /*
  2702. * RR tasks need a special form of timeslice management.
  2703. * FIFO tasks have no timeslices.
  2704. */
  2705. if ((p->policy == SCHED_RR) && !--p->time_slice) {
  2706. p->time_slice = task_timeslice(p);
  2707. p->first_time_slice = 0;
  2708. set_tsk_need_resched(p);
  2709. /* put it at the end of the queue: */
  2710. requeue_task(p, rq->active);
  2711. }
  2712. goto out_unlock;
  2713. }
  2714. if (!--p->time_slice) {
  2715. dequeue_task(p, rq->active);
  2716. set_tsk_need_resched(p);
  2717. p->prio = effective_prio(p);
  2718. p->time_slice = task_timeslice(p);
  2719. p->first_time_slice = 0;
  2720. if (!rq->expired_timestamp)
  2721. rq->expired_timestamp = jiffies;
  2722. if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
  2723. enqueue_task(p, rq->expired);
  2724. if (p->static_prio < rq->best_expired_prio)
  2725. rq->best_expired_prio = p->static_prio;
  2726. } else
  2727. enqueue_task(p, rq->active);
  2728. } else {
  2729. /*
  2730. * Prevent a too long timeslice allowing a task to monopolize
  2731. * the CPU. We do this by splitting up the timeslice into
  2732. * smaller pieces.
  2733. *
  2734. * Note: this does not mean the task's timeslices expire or
  2735. * get lost in any way, they just might be preempted by
  2736. * another task of equal priority. (one with higher
  2737. * priority would have preempted this task already.) We
  2738. * requeue this task to the end of the list on this priority
  2739. * level, which is in essence a round-robin of tasks with
  2740. * equal priority.
  2741. *
  2742. * This only applies to tasks in the interactive
  2743. * delta range with at least TIMESLICE_GRANULARITY to requeue.
  2744. */
  2745. if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
  2746. p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
  2747. (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
  2748. (p->array == rq->active)) {
  2749. requeue_task(p, rq->active);
  2750. set_tsk_need_resched(p);
  2751. }
  2752. }
  2753. out_unlock:
  2754. spin_unlock(&rq->lock);
  2755. out:
  2756. rebalance_tick(cpu, rq, NOT_IDLE);
  2757. }
  2758. #ifdef CONFIG_SCHED_SMT
  2759. static inline void wakeup_busy_runqueue(struct rq *rq)
  2760. {
  2761. /* If an SMT runqueue is sleeping due to priority reasons wake it up */
  2762. if (rq->curr == rq->idle && rq->nr_running)
  2763. resched_task(rq->idle);
  2764. }
  2765. /*
  2766. * Called with interrupt disabled and this_rq's runqueue locked.
  2767. */
  2768. static void wake_sleeping_dependent(int this_cpu)
  2769. {
  2770. struct sched_domain *tmp, *sd = NULL;
  2771. int i;
  2772. for_each_domain(this_cpu, tmp) {
  2773. if (tmp->flags & SD_SHARE_CPUPOWER) {
  2774. sd = tmp;
  2775. break;
  2776. }
  2777. }
  2778. if (!sd)
  2779. return;
  2780. for_each_cpu_mask(i, sd->span) {
  2781. struct rq *smt_rq = cpu_rq(i);
  2782. if (i == this_cpu)
  2783. continue;
  2784. if (unlikely(!spin_trylock(&smt_rq->lock)))
  2785. continue;
  2786. wakeup_busy_runqueue(smt_rq);
  2787. spin_unlock(&smt_rq->lock);
  2788. }
  2789. }
  2790. /*
  2791. * number of 'lost' timeslices this task wont be able to fully
  2792. * utilize, if another task runs on a sibling. This models the
  2793. * slowdown effect of other tasks running on siblings:
  2794. */
  2795. static inline unsigned long
  2796. smt_slice(struct task_struct *p, struct sched_domain *sd)
  2797. {
  2798. return p->time_slice * (100 - sd->per_cpu_gain) / 100;
  2799. }
  2800. /*
  2801. * To minimise lock contention and not have to drop this_rq's runlock we only
  2802. * trylock the sibling runqueues and bypass those runqueues if we fail to
  2803. * acquire their lock. As we only trylock the normal locking order does not
  2804. * need to be obeyed.
  2805. */
  2806. static int
  2807. dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
  2808. {
  2809. struct sched_domain *tmp, *sd = NULL;
  2810. int ret = 0, i;
  2811. /* kernel/rt threads do not participate in dependent sleeping */
  2812. if (!p->mm || rt_task(p))
  2813. return 0;
  2814. for_each_domain(this_cpu, tmp) {
  2815. if (tmp->flags & SD_SHARE_CPUPOWER) {
  2816. sd = tmp;
  2817. break;
  2818. }
  2819. }
  2820. if (!sd)
  2821. return 0;
  2822. for_each_cpu_mask(i, sd->span) {
  2823. struct task_struct *smt_curr;
  2824. struct rq *smt_rq;
  2825. if (i == this_cpu)
  2826. continue;
  2827. smt_rq = cpu_rq(i);
  2828. if (unlikely(!spin_trylock(&smt_rq->lock)))
  2829. continue;
  2830. smt_curr = smt_rq->curr;
  2831. if (!smt_curr->mm)
  2832. goto unlock;
  2833. /*
  2834. * If a user task with lower static priority than the
  2835. * running task on the SMT sibling is trying to schedule,
  2836. * delay it till there is proportionately less timeslice
  2837. * left of the sibling task to prevent a lower priority
  2838. * task from using an unfair proportion of the
  2839. * physical cpu's resources. -ck
  2840. */
  2841. if (rt_task(smt_curr)) {
  2842. /*
  2843. * With real time tasks we run non-rt tasks only
  2844. * per_cpu_gain% of the time.
  2845. */
  2846. if ((jiffies % DEF_TIMESLICE) >
  2847. (sd->per_cpu_gain * DEF_TIMESLICE / 100))
  2848. ret = 1;
  2849. } else {
  2850. if (smt_curr->static_prio < p->static_prio &&
  2851. !TASK_PREEMPTS_CURR(p, smt_rq) &&
  2852. smt_slice(smt_curr, sd) > task_timeslice(p))
  2853. ret = 1;
  2854. }
  2855. unlock:
  2856. spin_unlock(&smt_rq->lock);
  2857. }
  2858. return ret;
  2859. }
  2860. #else
  2861. static inline void wake_sleeping_dependent(int this_cpu)
  2862. {
  2863. }
  2864. static inline int
  2865. dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
  2866. {
  2867. return 0;
  2868. }
  2869. #endif
  2870. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2871. void fastcall add_preempt_count(int val)
  2872. {
  2873. /*
  2874. * Underflow?
  2875. */
  2876. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2877. return;
  2878. preempt_count() += val;
  2879. /*
  2880. * Spinlock count overflowing soon?
  2881. */
  2882. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
  2883. }
  2884. EXPORT_SYMBOL(add_preempt_count);
  2885. void fastcall sub_preempt_count(int val)
  2886. {
  2887. /*
  2888. * Underflow?
  2889. */
  2890. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2891. return;
  2892. /*
  2893. * Is the spinlock portion underflowing?
  2894. */
  2895. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2896. !(preempt_count() & PREEMPT_MASK)))
  2897. return;
  2898. preempt_count() -= val;
  2899. }
  2900. EXPORT_SYMBOL(sub_preempt_count);
  2901. #endif
  2902. static inline int interactive_sleep(enum sleep_type sleep_type)
  2903. {
  2904. return (sleep_type == SLEEP_INTERACTIVE ||
  2905. sleep_type == SLEEP_INTERRUPTED);
  2906. }
  2907. /*
  2908. * schedule() is the main scheduler function.
  2909. */
  2910. asmlinkage void __sched schedule(void)
  2911. {
  2912. struct task_struct *prev, *next;
  2913. struct prio_array *array;
  2914. struct list_head *queue;
  2915. unsigned long long now;
  2916. unsigned long run_time;
  2917. int cpu, idx, new_prio;
  2918. long *switch_count;
  2919. struct rq *rq;
  2920. /*
  2921. * Test if we are atomic. Since do_exit() needs to call into
  2922. * schedule() atomically, we ignore that path for now.
  2923. * Otherwise, whine if we are scheduling when we should not be.
  2924. */
  2925. if (unlikely(in_atomic() && !current->exit_state)) {
  2926. printk(KERN_ERR "BUG: scheduling while atomic: "
  2927. "%s/0x%08x/%d\n",
  2928. current->comm, preempt_count(), current->pid);
  2929. debug_show_held_locks(current);
  2930. dump_stack();
  2931. }
  2932. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2933. need_resched:
  2934. preempt_disable();
  2935. prev = current;
  2936. release_kernel_lock(prev);
  2937. need_resched_nonpreemptible:
  2938. rq = this_rq();
  2939. /*
  2940. * The idle thread is not allowed to schedule!
  2941. * Remove this check after it has been exercised a bit.
  2942. */
  2943. if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
  2944. printk(KERN_ERR "bad: scheduling from the idle thread!\n");
  2945. dump_stack();
  2946. }
  2947. schedstat_inc(rq, sched_cnt);
  2948. now = sched_clock();
  2949. if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
  2950. run_time = now - prev->timestamp;
  2951. if (unlikely((long long)(now - prev->timestamp) < 0))
  2952. run_time = 0;
  2953. } else
  2954. run_time = NS_MAX_SLEEP_AVG;
  2955. /*
  2956. * Tasks charged proportionately less run_time at high sleep_avg to
  2957. * delay them losing their interactive status
  2958. */
  2959. run_time /= (CURRENT_BONUS(prev) ? : 1);
  2960. spin_lock_irq(&rq->lock);
  2961. switch_count = &prev->nivcsw;
  2962. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2963. switch_count = &prev->nvcsw;
  2964. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  2965. unlikely(signal_pending(prev))))
  2966. prev->state = TASK_RUNNING;
  2967. else {
  2968. if (prev->state == TASK_UNINTERRUPTIBLE)
  2969. rq->nr_uninterruptible++;
  2970. deactivate_task(prev, rq);
  2971. }
  2972. }
  2973. cpu = smp_processor_id();
  2974. if (unlikely(!rq->nr_running)) {
  2975. idle_balance(cpu, rq);
  2976. if (!rq->nr_running) {
  2977. next = rq->idle;
  2978. rq->expired_timestamp = 0;
  2979. wake_sleeping_dependent(cpu);
  2980. goto switch_tasks;
  2981. }
  2982. }
  2983. array = rq->active;
  2984. if (unlikely(!array->nr_active)) {
  2985. /*
  2986. * Switch the active and expired arrays.
  2987. */
  2988. schedstat_inc(rq, sched_switch);
  2989. rq->active = rq->expired;
  2990. rq->expired = array;
  2991. array = rq->active;
  2992. rq->expired_timestamp = 0;
  2993. rq->best_expired_prio = MAX_PRIO;
  2994. }
  2995. idx = sched_find_first_bit(array->bitmap);
  2996. queue = array->queue + idx;
  2997. next = list_entry(queue->next, struct task_struct, run_list);
  2998. if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
  2999. unsigned long long delta = now - next->timestamp;
  3000. if (unlikely((long long)(now - next->timestamp) < 0))
  3001. delta = 0;
  3002. if (next->sleep_type == SLEEP_INTERACTIVE)
  3003. delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
  3004. array = next->array;
  3005. new_prio = recalc_task_prio(next, next->timestamp + delta);
  3006. if (unlikely(next->prio != new_prio)) {
  3007. dequeue_task(next, array);
  3008. next->prio = new_prio;
  3009. enqueue_task(next, array);
  3010. }
  3011. }
  3012. next->sleep_type = SLEEP_NORMAL;
  3013. if (dependent_sleeper(cpu, rq, next))
  3014. next = rq->idle;
  3015. switch_tasks:
  3016. if (next == rq->idle)
  3017. schedstat_inc(rq, sched_goidle);
  3018. prefetch(next);
  3019. prefetch_stack(next);
  3020. clear_tsk_need_resched(prev);
  3021. rcu_qsctr_inc(task_cpu(prev));
  3022. update_cpu_clock(prev, rq, now);
  3023. prev->sleep_avg -= run_time;
  3024. if ((long)prev->sleep_avg <= 0)
  3025. prev->sleep_avg = 0;
  3026. prev->timestamp = prev->last_ran = now;
  3027. sched_info_switch(prev, next);
  3028. if (likely(prev != next)) {
  3029. next->timestamp = now;
  3030. rq->nr_switches++;
  3031. rq->curr = next;
  3032. ++*switch_count;
  3033. prepare_task_switch(rq, next);
  3034. prev = context_switch(rq, prev, next);
  3035. barrier();
  3036. /*
  3037. * this_rq must be evaluated again because prev may have moved
  3038. * CPUs since it called schedule(), thus the 'rq' on its stack
  3039. * frame will be invalid.
  3040. */
  3041. finish_task_switch(this_rq(), prev);
  3042. } else
  3043. spin_unlock_irq(&rq->lock);
  3044. prev = current;
  3045. if (unlikely(reacquire_kernel_lock(prev) < 0))
  3046. goto need_resched_nonpreemptible;
  3047. preempt_enable_no_resched();
  3048. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3049. goto need_resched;
  3050. }
  3051. EXPORT_SYMBOL(schedule);
  3052. #ifdef CONFIG_PREEMPT
  3053. /*
  3054. * this is the entry point to schedule() from in-kernel preemption
  3055. * off of preempt_enable. Kernel preemptions off return from interrupt
  3056. * occur there and call schedule directly.
  3057. */
  3058. asmlinkage void __sched preempt_schedule(void)
  3059. {
  3060. struct thread_info *ti = current_thread_info();
  3061. #ifdef CONFIG_PREEMPT_BKL
  3062. struct task_struct *task = current;
  3063. int saved_lock_depth;
  3064. #endif
  3065. /*
  3066. * If there is a non-zero preempt_count or interrupts are disabled,
  3067. * we do not want to preempt the current task. Just return..
  3068. */
  3069. if (likely(ti->preempt_count || irqs_disabled()))
  3070. return;
  3071. need_resched:
  3072. add_preempt_count(PREEMPT_ACTIVE);
  3073. /*
  3074. * We keep the big kernel semaphore locked, but we
  3075. * clear ->lock_depth so that schedule() doesnt
  3076. * auto-release the semaphore:
  3077. */
  3078. #ifdef CONFIG_PREEMPT_BKL
  3079. saved_lock_depth = task->lock_depth;
  3080. task->lock_depth = -1;
  3081. #endif
  3082. schedule();
  3083. #ifdef CONFIG_PREEMPT_BKL
  3084. task->lock_depth = saved_lock_depth;
  3085. #endif
  3086. sub_preempt_count(PREEMPT_ACTIVE);
  3087. /* we could miss a preemption opportunity between schedule and now */
  3088. barrier();
  3089. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3090. goto need_resched;
  3091. }
  3092. EXPORT_SYMBOL(preempt_schedule);
  3093. /*
  3094. * this is the entry point to schedule() from kernel preemption
  3095. * off of irq context.
  3096. * Note, that this is called and return with irqs disabled. This will
  3097. * protect us against recursive calling from irq.
  3098. */
  3099. asmlinkage void __sched preempt_schedule_irq(void)
  3100. {
  3101. struct thread_info *ti = current_thread_info();
  3102. #ifdef CONFIG_PREEMPT_BKL
  3103. struct task_struct *task = current;
  3104. int saved_lock_depth;
  3105. #endif
  3106. /* Catch callers which need to be fixed */
  3107. BUG_ON(ti->preempt_count || !irqs_disabled());
  3108. need_resched:
  3109. add_preempt_count(PREEMPT_ACTIVE);
  3110. /*
  3111. * We keep the big kernel semaphore locked, but we
  3112. * clear ->lock_depth so that schedule() doesnt
  3113. * auto-release the semaphore:
  3114. */
  3115. #ifdef CONFIG_PREEMPT_BKL
  3116. saved_lock_depth = task->lock_depth;
  3117. task->lock_depth = -1;
  3118. #endif
  3119. local_irq_enable();
  3120. schedule();
  3121. local_irq_disable();
  3122. #ifdef CONFIG_PREEMPT_BKL
  3123. task->lock_depth = saved_lock_depth;
  3124. #endif
  3125. sub_preempt_count(PREEMPT_ACTIVE);
  3126. /* we could miss a preemption opportunity between schedule and now */
  3127. barrier();
  3128. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3129. goto need_resched;
  3130. }
  3131. #endif /* CONFIG_PREEMPT */
  3132. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3133. void *key)
  3134. {
  3135. return try_to_wake_up(curr->private, mode, sync);
  3136. }
  3137. EXPORT_SYMBOL(default_wake_function);
  3138. /*
  3139. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3140. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3141. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3142. *
  3143. * There are circumstances in which we can try to wake a task which has already
  3144. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3145. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3146. */
  3147. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3148. int nr_exclusive, int sync, void *key)
  3149. {
  3150. struct list_head *tmp, *next;
  3151. list_for_each_safe(tmp, next, &q->task_list) {
  3152. wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
  3153. unsigned flags = curr->flags;
  3154. if (curr->func(curr, mode, sync, key) &&
  3155. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3156. break;
  3157. }
  3158. }
  3159. /**
  3160. * __wake_up - wake up threads blocked on a waitqueue.
  3161. * @q: the waitqueue
  3162. * @mode: which threads
  3163. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3164. * @key: is directly passed to the wakeup function
  3165. */
  3166. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3167. int nr_exclusive, void *key)
  3168. {
  3169. unsigned long flags;
  3170. spin_lock_irqsave(&q->lock, flags);
  3171. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3172. spin_unlock_irqrestore(&q->lock, flags);
  3173. }
  3174. EXPORT_SYMBOL(__wake_up);
  3175. /*
  3176. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3177. */
  3178. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3179. {
  3180. __wake_up_common(q, mode, 1, 0, NULL);
  3181. }
  3182. /**
  3183. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3184. * @q: the waitqueue
  3185. * @mode: which threads
  3186. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3187. *
  3188. * The sync wakeup differs that the waker knows that it will schedule
  3189. * away soon, so while the target thread will be woken up, it will not
  3190. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3191. * with each other. This can prevent needless bouncing between CPUs.
  3192. *
  3193. * On UP it can prevent extra preemption.
  3194. */
  3195. void fastcall
  3196. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3197. {
  3198. unsigned long flags;
  3199. int sync = 1;
  3200. if (unlikely(!q))
  3201. return;
  3202. if (unlikely(!nr_exclusive))
  3203. sync = 0;
  3204. spin_lock_irqsave(&q->lock, flags);
  3205. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3206. spin_unlock_irqrestore(&q->lock, flags);
  3207. }
  3208. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3209. void fastcall complete(struct completion *x)
  3210. {
  3211. unsigned long flags;
  3212. spin_lock_irqsave(&x->wait.lock, flags);
  3213. x->done++;
  3214. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3215. 1, 0, NULL);
  3216. spin_unlock_irqrestore(&x->wait.lock, flags);
  3217. }
  3218. EXPORT_SYMBOL(complete);
  3219. void fastcall complete_all(struct completion *x)
  3220. {
  3221. unsigned long flags;
  3222. spin_lock_irqsave(&x->wait.lock, flags);
  3223. x->done += UINT_MAX/2;
  3224. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3225. 0, 0, NULL);
  3226. spin_unlock_irqrestore(&x->wait.lock, flags);
  3227. }
  3228. EXPORT_SYMBOL(complete_all);
  3229. void fastcall __sched wait_for_completion(struct completion *x)
  3230. {
  3231. might_sleep();
  3232. spin_lock_irq(&x->wait.lock);
  3233. if (!x->done) {
  3234. DECLARE_WAITQUEUE(wait, current);
  3235. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3236. __add_wait_queue_tail(&x->wait, &wait);
  3237. do {
  3238. __set_current_state(TASK_UNINTERRUPTIBLE);
  3239. spin_unlock_irq(&x->wait.lock);
  3240. schedule();
  3241. spin_lock_irq(&x->wait.lock);
  3242. } while (!x->done);
  3243. __remove_wait_queue(&x->wait, &wait);
  3244. }
  3245. x->done--;
  3246. spin_unlock_irq(&x->wait.lock);
  3247. }
  3248. EXPORT_SYMBOL(wait_for_completion);
  3249. unsigned long fastcall __sched
  3250. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3251. {
  3252. might_sleep();
  3253. spin_lock_irq(&x->wait.lock);
  3254. if (!x->done) {
  3255. DECLARE_WAITQUEUE(wait, current);
  3256. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3257. __add_wait_queue_tail(&x->wait, &wait);
  3258. do {
  3259. __set_current_state(TASK_UNINTERRUPTIBLE);
  3260. spin_unlock_irq(&x->wait.lock);
  3261. timeout = schedule_timeout(timeout);
  3262. spin_lock_irq(&x->wait.lock);
  3263. if (!timeout) {
  3264. __remove_wait_queue(&x->wait, &wait);
  3265. goto out;
  3266. }
  3267. } while (!x->done);
  3268. __remove_wait_queue(&x->wait, &wait);
  3269. }
  3270. x->done--;
  3271. out:
  3272. spin_unlock_irq(&x->wait.lock);
  3273. return timeout;
  3274. }
  3275. EXPORT_SYMBOL(wait_for_completion_timeout);
  3276. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3277. {
  3278. int ret = 0;
  3279. might_sleep();
  3280. spin_lock_irq(&x->wait.lock);
  3281. if (!x->done) {
  3282. DECLARE_WAITQUEUE(wait, current);
  3283. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3284. __add_wait_queue_tail(&x->wait, &wait);
  3285. do {
  3286. if (signal_pending(current)) {
  3287. ret = -ERESTARTSYS;
  3288. __remove_wait_queue(&x->wait, &wait);
  3289. goto out;
  3290. }
  3291. __set_current_state(TASK_INTERRUPTIBLE);
  3292. spin_unlock_irq(&x->wait.lock);
  3293. schedule();
  3294. spin_lock_irq(&x->wait.lock);
  3295. } while (!x->done);
  3296. __remove_wait_queue(&x->wait, &wait);
  3297. }
  3298. x->done--;
  3299. out:
  3300. spin_unlock_irq(&x->wait.lock);
  3301. return ret;
  3302. }
  3303. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3304. unsigned long fastcall __sched
  3305. wait_for_completion_interruptible_timeout(struct completion *x,
  3306. unsigned long timeout)
  3307. {
  3308. might_sleep();
  3309. spin_lock_irq(&x->wait.lock);
  3310. if (!x->done) {
  3311. DECLARE_WAITQUEUE(wait, current);
  3312. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3313. __add_wait_queue_tail(&x->wait, &wait);
  3314. do {
  3315. if (signal_pending(current)) {
  3316. timeout = -ERESTARTSYS;
  3317. __remove_wait_queue(&x->wait, &wait);
  3318. goto out;
  3319. }
  3320. __set_current_state(TASK_INTERRUPTIBLE);
  3321. spin_unlock_irq(&x->wait.lock);
  3322. timeout = schedule_timeout(timeout);
  3323. spin_lock_irq(&x->wait.lock);
  3324. if (!timeout) {
  3325. __remove_wait_queue(&x->wait, &wait);
  3326. goto out;
  3327. }
  3328. } while (!x->done);
  3329. __remove_wait_queue(&x->wait, &wait);
  3330. }
  3331. x->done--;
  3332. out:
  3333. spin_unlock_irq(&x->wait.lock);
  3334. return timeout;
  3335. }
  3336. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3337. #define SLEEP_ON_VAR \
  3338. unsigned long flags; \
  3339. wait_queue_t wait; \
  3340. init_waitqueue_entry(&wait, current);
  3341. #define SLEEP_ON_HEAD \
  3342. spin_lock_irqsave(&q->lock,flags); \
  3343. __add_wait_queue(q, &wait); \
  3344. spin_unlock(&q->lock);
  3345. #define SLEEP_ON_TAIL \
  3346. spin_lock_irq(&q->lock); \
  3347. __remove_wait_queue(q, &wait); \
  3348. spin_unlock_irqrestore(&q->lock, flags);
  3349. void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
  3350. {
  3351. SLEEP_ON_VAR
  3352. current->state = TASK_INTERRUPTIBLE;
  3353. SLEEP_ON_HEAD
  3354. schedule();
  3355. SLEEP_ON_TAIL
  3356. }
  3357. EXPORT_SYMBOL(interruptible_sleep_on);
  3358. long fastcall __sched
  3359. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3360. {
  3361. SLEEP_ON_VAR
  3362. current->state = TASK_INTERRUPTIBLE;
  3363. SLEEP_ON_HEAD
  3364. timeout = schedule_timeout(timeout);
  3365. SLEEP_ON_TAIL
  3366. return timeout;
  3367. }
  3368. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3369. void fastcall __sched sleep_on(wait_queue_head_t *q)
  3370. {
  3371. SLEEP_ON_VAR
  3372. current->state = TASK_UNINTERRUPTIBLE;
  3373. SLEEP_ON_HEAD
  3374. schedule();
  3375. SLEEP_ON_TAIL
  3376. }
  3377. EXPORT_SYMBOL(sleep_on);
  3378. long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3379. {
  3380. SLEEP_ON_VAR
  3381. current->state = TASK_UNINTERRUPTIBLE;
  3382. SLEEP_ON_HEAD
  3383. timeout = schedule_timeout(timeout);
  3384. SLEEP_ON_TAIL
  3385. return timeout;
  3386. }
  3387. EXPORT_SYMBOL(sleep_on_timeout);
  3388. #ifdef CONFIG_RT_MUTEXES
  3389. /*
  3390. * rt_mutex_setprio - set the current priority of a task
  3391. * @p: task
  3392. * @prio: prio value (kernel-internal form)
  3393. *
  3394. * This function changes the 'effective' priority of a task. It does
  3395. * not touch ->normal_prio like __setscheduler().
  3396. *
  3397. * Used by the rt_mutex code to implement priority inheritance logic.
  3398. */
  3399. void rt_mutex_setprio(struct task_struct *p, int prio)
  3400. {
  3401. struct prio_array *array;
  3402. unsigned long flags;
  3403. struct rq *rq;
  3404. int oldprio;
  3405. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3406. rq = task_rq_lock(p, &flags);
  3407. oldprio = p->prio;
  3408. array = p->array;
  3409. if (array)
  3410. dequeue_task(p, array);
  3411. p->prio = prio;
  3412. if (array) {
  3413. /*
  3414. * If changing to an RT priority then queue it
  3415. * in the active array!
  3416. */
  3417. if (rt_task(p))
  3418. array = rq->active;
  3419. enqueue_task(p, array);
  3420. /*
  3421. * Reschedule if we are currently running on this runqueue and
  3422. * our priority decreased, or if we are not currently running on
  3423. * this runqueue and our priority is higher than the current's
  3424. */
  3425. if (task_running(rq, p)) {
  3426. if (p->prio > oldprio)
  3427. resched_task(rq->curr);
  3428. } else if (TASK_PREEMPTS_CURR(p, rq))
  3429. resched_task(rq->curr);
  3430. }
  3431. task_rq_unlock(rq, &flags);
  3432. }
  3433. #endif
  3434. void set_user_nice(struct task_struct *p, long nice)
  3435. {
  3436. struct prio_array *array;
  3437. int old_prio, delta;
  3438. unsigned long flags;
  3439. struct rq *rq;
  3440. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3441. return;
  3442. /*
  3443. * We have to be careful, if called from sys_setpriority(),
  3444. * the task might be in the middle of scheduling on another CPU.
  3445. */
  3446. rq = task_rq_lock(p, &flags);
  3447. /*
  3448. * The RT priorities are set via sched_setscheduler(), but we still
  3449. * allow the 'normal' nice value to be set - but as expected
  3450. * it wont have any effect on scheduling until the task is
  3451. * not SCHED_NORMAL/SCHED_BATCH:
  3452. */
  3453. if (has_rt_policy(p)) {
  3454. p->static_prio = NICE_TO_PRIO(nice);
  3455. goto out_unlock;
  3456. }
  3457. array = p->array;
  3458. if (array) {
  3459. dequeue_task(p, array);
  3460. dec_raw_weighted_load(rq, p);
  3461. }
  3462. p->static_prio = NICE_TO_PRIO(nice);
  3463. set_load_weight(p);
  3464. old_prio = p->prio;
  3465. p->prio = effective_prio(p);
  3466. delta = p->prio - old_prio;
  3467. if (array) {
  3468. enqueue_task(p, array);
  3469. inc_raw_weighted_load(rq, p);
  3470. /*
  3471. * If the task increased its priority or is running and
  3472. * lowered its priority, then reschedule its CPU:
  3473. */
  3474. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3475. resched_task(rq->curr);
  3476. }
  3477. out_unlock:
  3478. task_rq_unlock(rq, &flags);
  3479. }
  3480. EXPORT_SYMBOL(set_user_nice);
  3481. /*
  3482. * can_nice - check if a task can reduce its nice value
  3483. * @p: task
  3484. * @nice: nice value
  3485. */
  3486. int can_nice(const struct task_struct *p, const int nice)
  3487. {
  3488. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3489. int nice_rlim = 20 - nice;
  3490. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3491. capable(CAP_SYS_NICE));
  3492. }
  3493. #ifdef __ARCH_WANT_SYS_NICE
  3494. /*
  3495. * sys_nice - change the priority of the current process.
  3496. * @increment: priority increment
  3497. *
  3498. * sys_setpriority is a more generic, but much slower function that
  3499. * does similar things.
  3500. */
  3501. asmlinkage long sys_nice(int increment)
  3502. {
  3503. long nice, retval;
  3504. /*
  3505. * Setpriority might change our priority at the same moment.
  3506. * We don't have to worry. Conceptually one call occurs first
  3507. * and we have a single winner.
  3508. */
  3509. if (increment < -40)
  3510. increment = -40;
  3511. if (increment > 40)
  3512. increment = 40;
  3513. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3514. if (nice < -20)
  3515. nice = -20;
  3516. if (nice > 19)
  3517. nice = 19;
  3518. if (increment < 0 && !can_nice(current, nice))
  3519. return -EPERM;
  3520. retval = security_task_setnice(current, nice);
  3521. if (retval)
  3522. return retval;
  3523. set_user_nice(current, nice);
  3524. return 0;
  3525. }
  3526. #endif
  3527. /**
  3528. * task_prio - return the priority value of a given task.
  3529. * @p: the task in question.
  3530. *
  3531. * This is the priority value as seen by users in /proc.
  3532. * RT tasks are offset by -200. Normal tasks are centered
  3533. * around 0, value goes from -16 to +15.
  3534. */
  3535. int task_prio(const struct task_struct *p)
  3536. {
  3537. return p->prio - MAX_RT_PRIO;
  3538. }
  3539. /**
  3540. * task_nice - return the nice value of a given task.
  3541. * @p: the task in question.
  3542. */
  3543. int task_nice(const struct task_struct *p)
  3544. {
  3545. return TASK_NICE(p);
  3546. }
  3547. EXPORT_SYMBOL_GPL(task_nice);
  3548. /**
  3549. * idle_cpu - is a given cpu idle currently?
  3550. * @cpu: the processor in question.
  3551. */
  3552. int idle_cpu(int cpu)
  3553. {
  3554. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3555. }
  3556. /**
  3557. * idle_task - return the idle task for a given cpu.
  3558. * @cpu: the processor in question.
  3559. */
  3560. struct task_struct *idle_task(int cpu)
  3561. {
  3562. return cpu_rq(cpu)->idle;
  3563. }
  3564. /**
  3565. * find_process_by_pid - find a process with a matching PID value.
  3566. * @pid: the pid in question.
  3567. */
  3568. static inline struct task_struct *find_process_by_pid(pid_t pid)
  3569. {
  3570. return pid ? find_task_by_pid(pid) : current;
  3571. }
  3572. /* Actually do priority change: must hold rq lock. */
  3573. static void __setscheduler(struct task_struct *p, int policy, int prio)
  3574. {
  3575. BUG_ON(p->array);
  3576. p->policy = policy;
  3577. p->rt_priority = prio;
  3578. p->normal_prio = normal_prio(p);
  3579. /* we are holding p->pi_lock already */
  3580. p->prio = rt_mutex_getprio(p);
  3581. /*
  3582. * SCHED_BATCH tasks are treated as perpetual CPU hogs:
  3583. */
  3584. if (policy == SCHED_BATCH)
  3585. p->sleep_avg = 0;
  3586. set_load_weight(p);
  3587. }
  3588. /**
  3589. * sched_setscheduler - change the scheduling policy and/or RT priority of
  3590. * a thread.
  3591. * @p: the task in question.
  3592. * @policy: new policy.
  3593. * @param: structure containing the new RT priority.
  3594. *
  3595. * NOTE: the task may be already dead
  3596. */
  3597. int sched_setscheduler(struct task_struct *p, int policy,
  3598. struct sched_param *param)
  3599. {
  3600. int retval, oldprio, oldpolicy = -1;
  3601. struct prio_array *array;
  3602. unsigned long flags;
  3603. struct rq *rq;
  3604. /* may grab non-irq protected spin_locks */
  3605. BUG_ON(in_interrupt());
  3606. recheck:
  3607. /* double check policy once rq lock held */
  3608. if (policy < 0)
  3609. policy = oldpolicy = p->policy;
  3610. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3611. policy != SCHED_NORMAL && policy != SCHED_BATCH)
  3612. return -EINVAL;
  3613. /*
  3614. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3615. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
  3616. * SCHED_BATCH is 0.
  3617. */
  3618. if (param->sched_priority < 0 ||
  3619. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3620. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3621. return -EINVAL;
  3622. if (is_rt_policy(policy) != (param->sched_priority != 0))
  3623. return -EINVAL;
  3624. /*
  3625. * Allow unprivileged RT tasks to decrease priority:
  3626. */
  3627. if (!capable(CAP_SYS_NICE)) {
  3628. if (is_rt_policy(policy)) {
  3629. unsigned long rlim_rtprio;
  3630. unsigned long flags;
  3631. if (!lock_task_sighand(p, &flags))
  3632. return -ESRCH;
  3633. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3634. unlock_task_sighand(p, &flags);
  3635. /* can't set/change the rt policy */
  3636. if (policy != p->policy && !rlim_rtprio)
  3637. return -EPERM;
  3638. /* can't increase priority */
  3639. if (param->sched_priority > p->rt_priority &&
  3640. param->sched_priority > rlim_rtprio)
  3641. return -EPERM;
  3642. }
  3643. /* can't change other user's priorities */
  3644. if ((current->euid != p->euid) &&
  3645. (current->euid != p->uid))
  3646. return -EPERM;
  3647. }
  3648. retval = security_task_setscheduler(p, policy, param);
  3649. if (retval)
  3650. return retval;
  3651. /*
  3652. * make sure no PI-waiters arrive (or leave) while we are
  3653. * changing the priority of the task:
  3654. */
  3655. spin_lock_irqsave(&p->pi_lock, flags);
  3656. /*
  3657. * To be able to change p->policy safely, the apropriate
  3658. * runqueue lock must be held.
  3659. */
  3660. rq = __task_rq_lock(p);
  3661. /* recheck policy now with rq lock held */
  3662. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3663. policy = oldpolicy = -1;
  3664. __task_rq_unlock(rq);
  3665. spin_unlock_irqrestore(&p->pi_lock, flags);
  3666. goto recheck;
  3667. }
  3668. array = p->array;
  3669. if (array)
  3670. deactivate_task(p, rq);
  3671. oldprio = p->prio;
  3672. __setscheduler(p, policy, param->sched_priority);
  3673. if (array) {
  3674. __activate_task(p, rq);
  3675. /*
  3676. * Reschedule if we are currently running on this runqueue and
  3677. * our priority decreased, or if we are not currently running on
  3678. * this runqueue and our priority is higher than the current's
  3679. */
  3680. if (task_running(rq, p)) {
  3681. if (p->prio > oldprio)
  3682. resched_task(rq->curr);
  3683. } else if (TASK_PREEMPTS_CURR(p, rq))
  3684. resched_task(rq->curr);
  3685. }
  3686. __task_rq_unlock(rq);
  3687. spin_unlock_irqrestore(&p->pi_lock, flags);
  3688. rt_mutex_adjust_pi(p);
  3689. return 0;
  3690. }
  3691. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3692. static int
  3693. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3694. {
  3695. struct sched_param lparam;
  3696. struct task_struct *p;
  3697. int retval;
  3698. if (!param || pid < 0)
  3699. return -EINVAL;
  3700. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3701. return -EFAULT;
  3702. rcu_read_lock();
  3703. retval = -ESRCH;
  3704. p = find_process_by_pid(pid);
  3705. if (p != NULL)
  3706. retval = sched_setscheduler(p, policy, &lparam);
  3707. rcu_read_unlock();
  3708. return retval;
  3709. }
  3710. /**
  3711. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3712. * @pid: the pid in question.
  3713. * @policy: new policy.
  3714. * @param: structure containing the new RT priority.
  3715. */
  3716. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3717. struct sched_param __user *param)
  3718. {
  3719. /* negative values for policy are not valid */
  3720. if (policy < 0)
  3721. return -EINVAL;
  3722. return do_sched_setscheduler(pid, policy, param);
  3723. }
  3724. /**
  3725. * sys_sched_setparam - set/change the RT priority of a thread
  3726. * @pid: the pid in question.
  3727. * @param: structure containing the new RT priority.
  3728. */
  3729. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3730. {
  3731. return do_sched_setscheduler(pid, -1, param);
  3732. }
  3733. /**
  3734. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3735. * @pid: the pid in question.
  3736. */
  3737. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3738. {
  3739. struct task_struct *p;
  3740. int retval = -EINVAL;
  3741. if (pid < 0)
  3742. goto out_nounlock;
  3743. retval = -ESRCH;
  3744. read_lock(&tasklist_lock);
  3745. p = find_process_by_pid(pid);
  3746. if (p) {
  3747. retval = security_task_getscheduler(p);
  3748. if (!retval)
  3749. retval = p->policy;
  3750. }
  3751. read_unlock(&tasklist_lock);
  3752. out_nounlock:
  3753. return retval;
  3754. }
  3755. /**
  3756. * sys_sched_getscheduler - get the RT priority of a thread
  3757. * @pid: the pid in question.
  3758. * @param: structure containing the RT priority.
  3759. */
  3760. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3761. {
  3762. struct sched_param lp;
  3763. struct task_struct *p;
  3764. int retval = -EINVAL;
  3765. if (!param || pid < 0)
  3766. goto out_nounlock;
  3767. read_lock(&tasklist_lock);
  3768. p = find_process_by_pid(pid);
  3769. retval = -ESRCH;
  3770. if (!p)
  3771. goto out_unlock;
  3772. retval = security_task_getscheduler(p);
  3773. if (retval)
  3774. goto out_unlock;
  3775. lp.sched_priority = p->rt_priority;
  3776. read_unlock(&tasklist_lock);
  3777. /*
  3778. * This one might sleep, we cannot do it with a spinlock held ...
  3779. */
  3780. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3781. out_nounlock:
  3782. return retval;
  3783. out_unlock:
  3784. read_unlock(&tasklist_lock);
  3785. return retval;
  3786. }
  3787. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3788. {
  3789. cpumask_t cpus_allowed;
  3790. struct task_struct *p;
  3791. int retval;
  3792. lock_cpu_hotplug();
  3793. read_lock(&tasklist_lock);
  3794. p = find_process_by_pid(pid);
  3795. if (!p) {
  3796. read_unlock(&tasklist_lock);
  3797. unlock_cpu_hotplug();
  3798. return -ESRCH;
  3799. }
  3800. /*
  3801. * It is not safe to call set_cpus_allowed with the
  3802. * tasklist_lock held. We will bump the task_struct's
  3803. * usage count and then drop tasklist_lock.
  3804. */
  3805. get_task_struct(p);
  3806. read_unlock(&tasklist_lock);
  3807. retval = -EPERM;
  3808. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3809. !capable(CAP_SYS_NICE))
  3810. goto out_unlock;
  3811. retval = security_task_setscheduler(p, 0, NULL);
  3812. if (retval)
  3813. goto out_unlock;
  3814. cpus_allowed = cpuset_cpus_allowed(p);
  3815. cpus_and(new_mask, new_mask, cpus_allowed);
  3816. retval = set_cpus_allowed(p, new_mask);
  3817. out_unlock:
  3818. put_task_struct(p);
  3819. unlock_cpu_hotplug();
  3820. return retval;
  3821. }
  3822. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3823. cpumask_t *new_mask)
  3824. {
  3825. if (len < sizeof(cpumask_t)) {
  3826. memset(new_mask, 0, sizeof(cpumask_t));
  3827. } else if (len > sizeof(cpumask_t)) {
  3828. len = sizeof(cpumask_t);
  3829. }
  3830. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3831. }
  3832. /**
  3833. * sys_sched_setaffinity - set the cpu affinity of a process
  3834. * @pid: pid of the process
  3835. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3836. * @user_mask_ptr: user-space pointer to the new cpu mask
  3837. */
  3838. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3839. unsigned long __user *user_mask_ptr)
  3840. {
  3841. cpumask_t new_mask;
  3842. int retval;
  3843. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3844. if (retval)
  3845. return retval;
  3846. return sched_setaffinity(pid, new_mask);
  3847. }
  3848. /*
  3849. * Represents all cpu's present in the system
  3850. * In systems capable of hotplug, this map could dynamically grow
  3851. * as new cpu's are detected in the system via any platform specific
  3852. * method, such as ACPI for e.g.
  3853. */
  3854. cpumask_t cpu_present_map __read_mostly;
  3855. EXPORT_SYMBOL(cpu_present_map);
  3856. #ifndef CONFIG_SMP
  3857. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3858. EXPORT_SYMBOL(cpu_online_map);
  3859. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3860. EXPORT_SYMBOL(cpu_possible_map);
  3861. #endif
  3862. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3863. {
  3864. struct task_struct *p;
  3865. int retval;
  3866. lock_cpu_hotplug();
  3867. read_lock(&tasklist_lock);
  3868. retval = -ESRCH;
  3869. p = find_process_by_pid(pid);
  3870. if (!p)
  3871. goto out_unlock;
  3872. retval = security_task_getscheduler(p);
  3873. if (retval)
  3874. goto out_unlock;
  3875. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3876. out_unlock:
  3877. read_unlock(&tasklist_lock);
  3878. unlock_cpu_hotplug();
  3879. if (retval)
  3880. return retval;
  3881. return 0;
  3882. }
  3883. /**
  3884. * sys_sched_getaffinity - get the cpu affinity of a process
  3885. * @pid: pid of the process
  3886. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3887. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3888. */
  3889. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3890. unsigned long __user *user_mask_ptr)
  3891. {
  3892. int ret;
  3893. cpumask_t mask;
  3894. if (len < sizeof(cpumask_t))
  3895. return -EINVAL;
  3896. ret = sched_getaffinity(pid, &mask);
  3897. if (ret < 0)
  3898. return ret;
  3899. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3900. return -EFAULT;
  3901. return sizeof(cpumask_t);
  3902. }
  3903. /**
  3904. * sys_sched_yield - yield the current processor to other threads.
  3905. *
  3906. * this function yields the current CPU by moving the calling thread
  3907. * to the expired array. If there are no other threads running on this
  3908. * CPU then this function will return.
  3909. */
  3910. asmlinkage long sys_sched_yield(void)
  3911. {
  3912. struct rq *rq = this_rq_lock();
  3913. struct prio_array *array = current->array, *target = rq->expired;
  3914. schedstat_inc(rq, yld_cnt);
  3915. /*
  3916. * We implement yielding by moving the task into the expired
  3917. * queue.
  3918. *
  3919. * (special rule: RT tasks will just roundrobin in the active
  3920. * array.)
  3921. */
  3922. if (rt_task(current))
  3923. target = rq->active;
  3924. if (array->nr_active == 1) {
  3925. schedstat_inc(rq, yld_act_empty);
  3926. if (!rq->expired->nr_active)
  3927. schedstat_inc(rq, yld_both_empty);
  3928. } else if (!rq->expired->nr_active)
  3929. schedstat_inc(rq, yld_exp_empty);
  3930. if (array != target) {
  3931. dequeue_task(current, array);
  3932. enqueue_task(current, target);
  3933. } else
  3934. /*
  3935. * requeue_task is cheaper so perform that if possible.
  3936. */
  3937. requeue_task(current, array);
  3938. /*
  3939. * Since we are going to call schedule() anyway, there's
  3940. * no need to preempt or enable interrupts:
  3941. */
  3942. __release(rq->lock);
  3943. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3944. _raw_spin_unlock(&rq->lock);
  3945. preempt_enable_no_resched();
  3946. schedule();
  3947. return 0;
  3948. }
  3949. static inline int __resched_legal(int expected_preempt_count)
  3950. {
  3951. if (unlikely(preempt_count() != expected_preempt_count))
  3952. return 0;
  3953. if (unlikely(system_state != SYSTEM_RUNNING))
  3954. return 0;
  3955. return 1;
  3956. }
  3957. static void __cond_resched(void)
  3958. {
  3959. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  3960. __might_sleep(__FILE__, __LINE__);
  3961. #endif
  3962. /*
  3963. * The BKS might be reacquired before we have dropped
  3964. * PREEMPT_ACTIVE, which could trigger a second
  3965. * cond_resched() call.
  3966. */
  3967. do {
  3968. add_preempt_count(PREEMPT_ACTIVE);
  3969. schedule();
  3970. sub_preempt_count(PREEMPT_ACTIVE);
  3971. } while (need_resched());
  3972. }
  3973. int __sched cond_resched(void)
  3974. {
  3975. if (need_resched() && __resched_legal(0)) {
  3976. __cond_resched();
  3977. return 1;
  3978. }
  3979. return 0;
  3980. }
  3981. EXPORT_SYMBOL(cond_resched);
  3982. /*
  3983. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3984. * call schedule, and on return reacquire the lock.
  3985. *
  3986. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3987. * operations here to prevent schedule() from being called twice (once via
  3988. * spin_unlock(), once by hand).
  3989. */
  3990. int cond_resched_lock(spinlock_t *lock)
  3991. {
  3992. int ret = 0;
  3993. if (need_lockbreak(lock)) {
  3994. spin_unlock(lock);
  3995. cpu_relax();
  3996. ret = 1;
  3997. spin_lock(lock);
  3998. }
  3999. if (need_resched() && __resched_legal(1)) {
  4000. spin_release(&lock->dep_map, 1, _THIS_IP_);
  4001. _raw_spin_unlock(lock);
  4002. preempt_enable_no_resched();
  4003. __cond_resched();
  4004. ret = 1;
  4005. spin_lock(lock);
  4006. }
  4007. return ret;
  4008. }
  4009. EXPORT_SYMBOL(cond_resched_lock);
  4010. int __sched cond_resched_softirq(void)
  4011. {
  4012. BUG_ON(!in_softirq());
  4013. if (need_resched() && __resched_legal(0)) {
  4014. raw_local_irq_disable();
  4015. _local_bh_enable();
  4016. raw_local_irq_enable();
  4017. __cond_resched();
  4018. local_bh_disable();
  4019. return 1;
  4020. }
  4021. return 0;
  4022. }
  4023. EXPORT_SYMBOL(cond_resched_softirq);
  4024. /**
  4025. * yield - yield the current processor to other threads.
  4026. *
  4027. * this is a shortcut for kernel-space yielding - it marks the
  4028. * thread runnable and calls sys_sched_yield().
  4029. */
  4030. void __sched yield(void)
  4031. {
  4032. set_current_state(TASK_RUNNING);
  4033. sys_sched_yield();
  4034. }
  4035. EXPORT_SYMBOL(yield);
  4036. /*
  4037. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4038. * that process accounting knows that this is a task in IO wait state.
  4039. *
  4040. * But don't do that if it is a deliberate, throttling IO wait (this task
  4041. * has set its backing_dev_info: the queue against which it should throttle)
  4042. */
  4043. void __sched io_schedule(void)
  4044. {
  4045. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4046. delayacct_blkio_start();
  4047. atomic_inc(&rq->nr_iowait);
  4048. schedule();
  4049. atomic_dec(&rq->nr_iowait);
  4050. delayacct_blkio_end();
  4051. }
  4052. EXPORT_SYMBOL(io_schedule);
  4053. long __sched io_schedule_timeout(long timeout)
  4054. {
  4055. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4056. long ret;
  4057. delayacct_blkio_start();
  4058. atomic_inc(&rq->nr_iowait);
  4059. ret = schedule_timeout(timeout);
  4060. atomic_dec(&rq->nr_iowait);
  4061. delayacct_blkio_end();
  4062. return ret;
  4063. }
  4064. /**
  4065. * sys_sched_get_priority_max - return maximum RT priority.
  4066. * @policy: scheduling class.
  4067. *
  4068. * this syscall returns the maximum rt_priority that can be used
  4069. * by a given scheduling class.
  4070. */
  4071. asmlinkage long sys_sched_get_priority_max(int policy)
  4072. {
  4073. int ret = -EINVAL;
  4074. switch (policy) {
  4075. case SCHED_FIFO:
  4076. case SCHED_RR:
  4077. ret = MAX_USER_RT_PRIO-1;
  4078. break;
  4079. case SCHED_NORMAL:
  4080. case SCHED_BATCH:
  4081. ret = 0;
  4082. break;
  4083. }
  4084. return ret;
  4085. }
  4086. /**
  4087. * sys_sched_get_priority_min - return minimum RT priority.
  4088. * @policy: scheduling class.
  4089. *
  4090. * this syscall returns the minimum rt_priority that can be used
  4091. * by a given scheduling class.
  4092. */
  4093. asmlinkage long sys_sched_get_priority_min(int policy)
  4094. {
  4095. int ret = -EINVAL;
  4096. switch (policy) {
  4097. case SCHED_FIFO:
  4098. case SCHED_RR:
  4099. ret = 1;
  4100. break;
  4101. case SCHED_NORMAL:
  4102. case SCHED_BATCH:
  4103. ret = 0;
  4104. }
  4105. return ret;
  4106. }
  4107. /**
  4108. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4109. * @pid: pid of the process.
  4110. * @interval: userspace pointer to the timeslice value.
  4111. *
  4112. * this syscall writes the default timeslice value of a given process
  4113. * into the user-space timespec buffer. A value of '0' means infinity.
  4114. */
  4115. asmlinkage
  4116. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4117. {
  4118. struct task_struct *p;
  4119. int retval = -EINVAL;
  4120. struct timespec t;
  4121. if (pid < 0)
  4122. goto out_nounlock;
  4123. retval = -ESRCH;
  4124. read_lock(&tasklist_lock);
  4125. p = find_process_by_pid(pid);
  4126. if (!p)
  4127. goto out_unlock;
  4128. retval = security_task_getscheduler(p);
  4129. if (retval)
  4130. goto out_unlock;
  4131. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  4132. 0 : task_timeslice(p), &t);
  4133. read_unlock(&tasklist_lock);
  4134. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4135. out_nounlock:
  4136. return retval;
  4137. out_unlock:
  4138. read_unlock(&tasklist_lock);
  4139. return retval;
  4140. }
  4141. static inline struct task_struct *eldest_child(struct task_struct *p)
  4142. {
  4143. if (list_empty(&p->children))
  4144. return NULL;
  4145. return list_entry(p->children.next,struct task_struct,sibling);
  4146. }
  4147. static inline struct task_struct *older_sibling(struct task_struct *p)
  4148. {
  4149. if (p->sibling.prev==&p->parent->children)
  4150. return NULL;
  4151. return list_entry(p->sibling.prev,struct task_struct,sibling);
  4152. }
  4153. static inline struct task_struct *younger_sibling(struct task_struct *p)
  4154. {
  4155. if (p->sibling.next==&p->parent->children)
  4156. return NULL;
  4157. return list_entry(p->sibling.next,struct task_struct,sibling);
  4158. }
  4159. static const char stat_nam[] = "RSDTtZX";
  4160. static void show_task(struct task_struct *p)
  4161. {
  4162. struct task_struct *relative;
  4163. unsigned long free = 0;
  4164. unsigned state;
  4165. state = p->state ? __ffs(p->state) + 1 : 0;
  4166. printk("%-13.13s %c", p->comm,
  4167. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4168. #if (BITS_PER_LONG == 32)
  4169. if (state == TASK_RUNNING)
  4170. printk(" running ");
  4171. else
  4172. printk(" %08lX ", thread_saved_pc(p));
  4173. #else
  4174. if (state == TASK_RUNNING)
  4175. printk(" running task ");
  4176. else
  4177. printk(" %016lx ", thread_saved_pc(p));
  4178. #endif
  4179. #ifdef CONFIG_DEBUG_STACK_USAGE
  4180. {
  4181. unsigned long *n = end_of_stack(p);
  4182. while (!*n)
  4183. n++;
  4184. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4185. }
  4186. #endif
  4187. printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
  4188. if ((relative = eldest_child(p)))
  4189. printk("%5d ", relative->pid);
  4190. else
  4191. printk(" ");
  4192. if ((relative = younger_sibling(p)))
  4193. printk("%7d", relative->pid);
  4194. else
  4195. printk(" ");
  4196. if ((relative = older_sibling(p)))
  4197. printk(" %5d", relative->pid);
  4198. else
  4199. printk(" ");
  4200. if (!p->mm)
  4201. printk(" (L-TLB)\n");
  4202. else
  4203. printk(" (NOTLB)\n");
  4204. if (state != TASK_RUNNING)
  4205. show_stack(p, NULL);
  4206. }
  4207. void show_state_filter(unsigned long state_filter)
  4208. {
  4209. struct task_struct *g, *p;
  4210. #if (BITS_PER_LONG == 32)
  4211. printk("\n"
  4212. " free sibling\n");
  4213. printk(" task PC stack pid father child younger older\n");
  4214. #else
  4215. printk("\n"
  4216. " free sibling\n");
  4217. printk(" task PC stack pid father child younger older\n");
  4218. #endif
  4219. read_lock(&tasklist_lock);
  4220. do_each_thread(g, p) {
  4221. /*
  4222. * reset the NMI-timeout, listing all files on a slow
  4223. * console might take alot of time:
  4224. */
  4225. touch_nmi_watchdog();
  4226. if (p->state & state_filter)
  4227. show_task(p);
  4228. } while_each_thread(g, p);
  4229. read_unlock(&tasklist_lock);
  4230. /*
  4231. * Only show locks if all tasks are dumped:
  4232. */
  4233. if (state_filter == -1)
  4234. debug_show_all_locks();
  4235. }
  4236. /**
  4237. * init_idle - set up an idle thread for a given CPU
  4238. * @idle: task in question
  4239. * @cpu: cpu the idle task belongs to
  4240. *
  4241. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4242. * flag, to make booting more robust.
  4243. */
  4244. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4245. {
  4246. struct rq *rq = cpu_rq(cpu);
  4247. unsigned long flags;
  4248. idle->timestamp = sched_clock();
  4249. idle->sleep_avg = 0;
  4250. idle->array = NULL;
  4251. idle->prio = idle->normal_prio = MAX_PRIO;
  4252. idle->state = TASK_RUNNING;
  4253. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4254. set_task_cpu(idle, cpu);
  4255. spin_lock_irqsave(&rq->lock, flags);
  4256. rq->curr = rq->idle = idle;
  4257. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4258. idle->oncpu = 1;
  4259. #endif
  4260. spin_unlock_irqrestore(&rq->lock, flags);
  4261. /* Set the preempt count _outside_ the spinlocks! */
  4262. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4263. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4264. #else
  4265. task_thread_info(idle)->preempt_count = 0;
  4266. #endif
  4267. }
  4268. /*
  4269. * In a system that switches off the HZ timer nohz_cpu_mask
  4270. * indicates which cpus entered this state. This is used
  4271. * in the rcu update to wait only for active cpus. For system
  4272. * which do not switch off the HZ timer nohz_cpu_mask should
  4273. * always be CPU_MASK_NONE.
  4274. */
  4275. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4276. #ifdef CONFIG_SMP
  4277. /*
  4278. * This is how migration works:
  4279. *
  4280. * 1) we queue a struct migration_req structure in the source CPU's
  4281. * runqueue and wake up that CPU's migration thread.
  4282. * 2) we down() the locked semaphore => thread blocks.
  4283. * 3) migration thread wakes up (implicitly it forces the migrated
  4284. * thread off the CPU)
  4285. * 4) it gets the migration request and checks whether the migrated
  4286. * task is still in the wrong runqueue.
  4287. * 5) if it's in the wrong runqueue then the migration thread removes
  4288. * it and puts it into the right queue.
  4289. * 6) migration thread up()s the semaphore.
  4290. * 7) we wake up and the migration is done.
  4291. */
  4292. /*
  4293. * Change a given task's CPU affinity. Migrate the thread to a
  4294. * proper CPU and schedule it away if the CPU it's executing on
  4295. * is removed from the allowed bitmask.
  4296. *
  4297. * NOTE: the caller must have a valid reference to the task, the
  4298. * task must not exit() & deallocate itself prematurely. The
  4299. * call is not atomic; no spinlocks may be held.
  4300. */
  4301. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4302. {
  4303. struct migration_req req;
  4304. unsigned long flags;
  4305. struct rq *rq;
  4306. int ret = 0;
  4307. rq = task_rq_lock(p, &flags);
  4308. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4309. ret = -EINVAL;
  4310. goto out;
  4311. }
  4312. p->cpus_allowed = new_mask;
  4313. /* Can the task run on the task's current CPU? If so, we're done */
  4314. if (cpu_isset(task_cpu(p), new_mask))
  4315. goto out;
  4316. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4317. /* Need help from migration thread: drop lock and wait. */
  4318. task_rq_unlock(rq, &flags);
  4319. wake_up_process(rq->migration_thread);
  4320. wait_for_completion(&req.done);
  4321. tlb_migrate_finish(p->mm);
  4322. return 0;
  4323. }
  4324. out:
  4325. task_rq_unlock(rq, &flags);
  4326. return ret;
  4327. }
  4328. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4329. /*
  4330. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4331. * this because either it can't run here any more (set_cpus_allowed()
  4332. * away from this CPU, or CPU going down), or because we're
  4333. * attempting to rebalance this task on exec (sched_exec).
  4334. *
  4335. * So we race with normal scheduler movements, but that's OK, as long
  4336. * as the task is no longer on this CPU.
  4337. *
  4338. * Returns non-zero if task was successfully migrated.
  4339. */
  4340. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4341. {
  4342. struct rq *rq_dest, *rq_src;
  4343. int ret = 0;
  4344. if (unlikely(cpu_is_offline(dest_cpu)))
  4345. return ret;
  4346. rq_src = cpu_rq(src_cpu);
  4347. rq_dest = cpu_rq(dest_cpu);
  4348. double_rq_lock(rq_src, rq_dest);
  4349. /* Already moved. */
  4350. if (task_cpu(p) != src_cpu)
  4351. goto out;
  4352. /* Affinity changed (again). */
  4353. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4354. goto out;
  4355. set_task_cpu(p, dest_cpu);
  4356. if (p->array) {
  4357. /*
  4358. * Sync timestamp with rq_dest's before activating.
  4359. * The same thing could be achieved by doing this step
  4360. * afterwards, and pretending it was a local activate.
  4361. * This way is cleaner and logically correct.
  4362. */
  4363. p->timestamp = p->timestamp - rq_src->timestamp_last_tick
  4364. + rq_dest->timestamp_last_tick;
  4365. deactivate_task(p, rq_src);
  4366. __activate_task(p, rq_dest);
  4367. if (TASK_PREEMPTS_CURR(p, rq_dest))
  4368. resched_task(rq_dest->curr);
  4369. }
  4370. ret = 1;
  4371. out:
  4372. double_rq_unlock(rq_src, rq_dest);
  4373. return ret;
  4374. }
  4375. /*
  4376. * migration_thread - this is a highprio system thread that performs
  4377. * thread migration by bumping thread off CPU then 'pushing' onto
  4378. * another runqueue.
  4379. */
  4380. static int migration_thread(void *data)
  4381. {
  4382. int cpu = (long)data;
  4383. struct rq *rq;
  4384. rq = cpu_rq(cpu);
  4385. BUG_ON(rq->migration_thread != current);
  4386. set_current_state(TASK_INTERRUPTIBLE);
  4387. while (!kthread_should_stop()) {
  4388. struct migration_req *req;
  4389. struct list_head *head;
  4390. try_to_freeze();
  4391. spin_lock_irq(&rq->lock);
  4392. if (cpu_is_offline(cpu)) {
  4393. spin_unlock_irq(&rq->lock);
  4394. goto wait_to_die;
  4395. }
  4396. if (rq->active_balance) {
  4397. active_load_balance(rq, cpu);
  4398. rq->active_balance = 0;
  4399. }
  4400. head = &rq->migration_queue;
  4401. if (list_empty(head)) {
  4402. spin_unlock_irq(&rq->lock);
  4403. schedule();
  4404. set_current_state(TASK_INTERRUPTIBLE);
  4405. continue;
  4406. }
  4407. req = list_entry(head->next, struct migration_req, list);
  4408. list_del_init(head->next);
  4409. spin_unlock(&rq->lock);
  4410. __migrate_task(req->task, cpu, req->dest_cpu);
  4411. local_irq_enable();
  4412. complete(&req->done);
  4413. }
  4414. __set_current_state(TASK_RUNNING);
  4415. return 0;
  4416. wait_to_die:
  4417. /* Wait for kthread_stop */
  4418. set_current_state(TASK_INTERRUPTIBLE);
  4419. while (!kthread_should_stop()) {
  4420. schedule();
  4421. set_current_state(TASK_INTERRUPTIBLE);
  4422. }
  4423. __set_current_state(TASK_RUNNING);
  4424. return 0;
  4425. }
  4426. #ifdef CONFIG_HOTPLUG_CPU
  4427. /* Figure out where task on dead CPU should go, use force if neccessary. */
  4428. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4429. {
  4430. unsigned long flags;
  4431. cpumask_t mask;
  4432. struct rq *rq;
  4433. int dest_cpu;
  4434. restart:
  4435. /* On same node? */
  4436. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4437. cpus_and(mask, mask, p->cpus_allowed);
  4438. dest_cpu = any_online_cpu(mask);
  4439. /* On any allowed CPU? */
  4440. if (dest_cpu == NR_CPUS)
  4441. dest_cpu = any_online_cpu(p->cpus_allowed);
  4442. /* No more Mr. Nice Guy. */
  4443. if (dest_cpu == NR_CPUS) {
  4444. rq = task_rq_lock(p, &flags);
  4445. cpus_setall(p->cpus_allowed);
  4446. dest_cpu = any_online_cpu(p->cpus_allowed);
  4447. task_rq_unlock(rq, &flags);
  4448. /*
  4449. * Don't tell them about moving exiting tasks or
  4450. * kernel threads (both mm NULL), since they never
  4451. * leave kernel.
  4452. */
  4453. if (p->mm && printk_ratelimit())
  4454. printk(KERN_INFO "process %d (%s) no "
  4455. "longer affine to cpu%d\n",
  4456. p->pid, p->comm, dead_cpu);
  4457. }
  4458. if (!__migrate_task(p, dead_cpu, dest_cpu))
  4459. goto restart;
  4460. }
  4461. /*
  4462. * While a dead CPU has no uninterruptible tasks queued at this point,
  4463. * it might still have a nonzero ->nr_uninterruptible counter, because
  4464. * for performance reasons the counter is not stricly tracking tasks to
  4465. * their home CPUs. So we just add the counter to another CPU's counter,
  4466. * to keep the global sum constant after CPU-down:
  4467. */
  4468. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4469. {
  4470. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4471. unsigned long flags;
  4472. local_irq_save(flags);
  4473. double_rq_lock(rq_src, rq_dest);
  4474. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4475. rq_src->nr_uninterruptible = 0;
  4476. double_rq_unlock(rq_src, rq_dest);
  4477. local_irq_restore(flags);
  4478. }
  4479. /* Run through task list and migrate tasks from the dead cpu. */
  4480. static void migrate_live_tasks(int src_cpu)
  4481. {
  4482. struct task_struct *p, *t;
  4483. write_lock_irq(&tasklist_lock);
  4484. do_each_thread(t, p) {
  4485. if (p == current)
  4486. continue;
  4487. if (task_cpu(p) == src_cpu)
  4488. move_task_off_dead_cpu(src_cpu, p);
  4489. } while_each_thread(t, p);
  4490. write_unlock_irq(&tasklist_lock);
  4491. }
  4492. /* Schedules idle task to be the next runnable task on current CPU.
  4493. * It does so by boosting its priority to highest possible and adding it to
  4494. * the _front_ of the runqueue. Used by CPU offline code.
  4495. */
  4496. void sched_idle_next(void)
  4497. {
  4498. int this_cpu = smp_processor_id();
  4499. struct rq *rq = cpu_rq(this_cpu);
  4500. struct task_struct *p = rq->idle;
  4501. unsigned long flags;
  4502. /* cpu has to be offline */
  4503. BUG_ON(cpu_online(this_cpu));
  4504. /*
  4505. * Strictly not necessary since rest of the CPUs are stopped by now
  4506. * and interrupts disabled on the current cpu.
  4507. */
  4508. spin_lock_irqsave(&rq->lock, flags);
  4509. __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
  4510. /* Add idle task to the _front_ of its priority queue: */
  4511. __activate_idle_task(p, rq);
  4512. spin_unlock_irqrestore(&rq->lock, flags);
  4513. }
  4514. /*
  4515. * Ensures that the idle task is using init_mm right before its cpu goes
  4516. * offline.
  4517. */
  4518. void idle_task_exit(void)
  4519. {
  4520. struct mm_struct *mm = current->active_mm;
  4521. BUG_ON(cpu_online(smp_processor_id()));
  4522. if (mm != &init_mm)
  4523. switch_mm(mm, &init_mm, current);
  4524. mmdrop(mm);
  4525. }
  4526. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4527. {
  4528. struct rq *rq = cpu_rq(dead_cpu);
  4529. /* Must be exiting, otherwise would be on tasklist. */
  4530. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4531. /* Cannot have done final schedule yet: would have vanished. */
  4532. BUG_ON(p->state == TASK_DEAD);
  4533. get_task_struct(p);
  4534. /*
  4535. * Drop lock around migration; if someone else moves it,
  4536. * that's OK. No task can be added to this CPU, so iteration is
  4537. * fine.
  4538. */
  4539. spin_unlock_irq(&rq->lock);
  4540. move_task_off_dead_cpu(dead_cpu, p);
  4541. spin_lock_irq(&rq->lock);
  4542. put_task_struct(p);
  4543. }
  4544. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4545. static void migrate_dead_tasks(unsigned int dead_cpu)
  4546. {
  4547. struct rq *rq = cpu_rq(dead_cpu);
  4548. unsigned int arr, i;
  4549. for (arr = 0; arr < 2; arr++) {
  4550. for (i = 0; i < MAX_PRIO; i++) {
  4551. struct list_head *list = &rq->arrays[arr].queue[i];
  4552. while (!list_empty(list))
  4553. migrate_dead(dead_cpu, list_entry(list->next,
  4554. struct task_struct, run_list));
  4555. }
  4556. }
  4557. }
  4558. #endif /* CONFIG_HOTPLUG_CPU */
  4559. /*
  4560. * migration_call - callback that gets triggered when a CPU is added.
  4561. * Here we can start up the necessary migration thread for the new CPU.
  4562. */
  4563. static int __cpuinit
  4564. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4565. {
  4566. struct task_struct *p;
  4567. int cpu = (long)hcpu;
  4568. unsigned long flags;
  4569. struct rq *rq;
  4570. switch (action) {
  4571. case CPU_UP_PREPARE:
  4572. p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
  4573. if (IS_ERR(p))
  4574. return NOTIFY_BAD;
  4575. p->flags |= PF_NOFREEZE;
  4576. kthread_bind(p, cpu);
  4577. /* Must be high prio: stop_machine expects to yield to it. */
  4578. rq = task_rq_lock(p, &flags);
  4579. __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
  4580. task_rq_unlock(rq, &flags);
  4581. cpu_rq(cpu)->migration_thread = p;
  4582. break;
  4583. case CPU_ONLINE:
  4584. /* Strictly unneccessary, as first user will wake it. */
  4585. wake_up_process(cpu_rq(cpu)->migration_thread);
  4586. break;
  4587. #ifdef CONFIG_HOTPLUG_CPU
  4588. case CPU_UP_CANCELED:
  4589. if (!cpu_rq(cpu)->migration_thread)
  4590. break;
  4591. /* Unbind it from offline cpu so it can run. Fall thru. */
  4592. kthread_bind(cpu_rq(cpu)->migration_thread,
  4593. any_online_cpu(cpu_online_map));
  4594. kthread_stop(cpu_rq(cpu)->migration_thread);
  4595. cpu_rq(cpu)->migration_thread = NULL;
  4596. break;
  4597. case CPU_DEAD:
  4598. migrate_live_tasks(cpu);
  4599. rq = cpu_rq(cpu);
  4600. kthread_stop(rq->migration_thread);
  4601. rq->migration_thread = NULL;
  4602. /* Idle task back to normal (off runqueue, low prio) */
  4603. rq = task_rq_lock(rq->idle, &flags);
  4604. deactivate_task(rq->idle, rq);
  4605. rq->idle->static_prio = MAX_PRIO;
  4606. __setscheduler(rq->idle, SCHED_NORMAL, 0);
  4607. migrate_dead_tasks(cpu);
  4608. task_rq_unlock(rq, &flags);
  4609. migrate_nr_uninterruptible(rq);
  4610. BUG_ON(rq->nr_running != 0);
  4611. /* No need to migrate the tasks: it was best-effort if
  4612. * they didn't do lock_cpu_hotplug(). Just wake up
  4613. * the requestors. */
  4614. spin_lock_irq(&rq->lock);
  4615. while (!list_empty(&rq->migration_queue)) {
  4616. struct migration_req *req;
  4617. req = list_entry(rq->migration_queue.next,
  4618. struct migration_req, list);
  4619. list_del_init(&req->list);
  4620. complete(&req->done);
  4621. }
  4622. spin_unlock_irq(&rq->lock);
  4623. break;
  4624. #endif
  4625. }
  4626. return NOTIFY_OK;
  4627. }
  4628. /* Register at highest priority so that task migration (migrate_all_tasks)
  4629. * happens before everything else.
  4630. */
  4631. static struct notifier_block __cpuinitdata migration_notifier = {
  4632. .notifier_call = migration_call,
  4633. .priority = 10
  4634. };
  4635. int __init migration_init(void)
  4636. {
  4637. void *cpu = (void *)(long)smp_processor_id();
  4638. int err;
  4639. /* Start one for the boot CPU: */
  4640. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4641. BUG_ON(err == NOTIFY_BAD);
  4642. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4643. register_cpu_notifier(&migration_notifier);
  4644. return 0;
  4645. }
  4646. #endif
  4647. #ifdef CONFIG_SMP
  4648. #undef SCHED_DOMAIN_DEBUG
  4649. #ifdef SCHED_DOMAIN_DEBUG
  4650. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4651. {
  4652. int level = 0;
  4653. if (!sd) {
  4654. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4655. return;
  4656. }
  4657. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4658. do {
  4659. int i;
  4660. char str[NR_CPUS];
  4661. struct sched_group *group = sd->groups;
  4662. cpumask_t groupmask;
  4663. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4664. cpus_clear(groupmask);
  4665. printk(KERN_DEBUG);
  4666. for (i = 0; i < level + 1; i++)
  4667. printk(" ");
  4668. printk("domain %d: ", level);
  4669. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4670. printk("does not load-balance\n");
  4671. if (sd->parent)
  4672. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
  4673. break;
  4674. }
  4675. printk("span %s\n", str);
  4676. if (!cpu_isset(cpu, sd->span))
  4677. printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
  4678. if (!cpu_isset(cpu, group->cpumask))
  4679. printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
  4680. printk(KERN_DEBUG);
  4681. for (i = 0; i < level + 2; i++)
  4682. printk(" ");
  4683. printk("groups:");
  4684. do {
  4685. if (!group) {
  4686. printk("\n");
  4687. printk(KERN_ERR "ERROR: group is NULL\n");
  4688. break;
  4689. }
  4690. if (!group->cpu_power) {
  4691. printk("\n");
  4692. printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
  4693. }
  4694. if (!cpus_weight(group->cpumask)) {
  4695. printk("\n");
  4696. printk(KERN_ERR "ERROR: empty group\n");
  4697. }
  4698. if (cpus_intersects(groupmask, group->cpumask)) {
  4699. printk("\n");
  4700. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4701. }
  4702. cpus_or(groupmask, groupmask, group->cpumask);
  4703. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4704. printk(" %s", str);
  4705. group = group->next;
  4706. } while (group != sd->groups);
  4707. printk("\n");
  4708. if (!cpus_equal(sd->span, groupmask))
  4709. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4710. level++;
  4711. sd = sd->parent;
  4712. if (sd) {
  4713. if (!cpus_subset(groupmask, sd->span))
  4714. printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
  4715. }
  4716. } while (sd);
  4717. }
  4718. #else
  4719. # define sched_domain_debug(sd, cpu) do { } while (0)
  4720. #endif
  4721. static int sd_degenerate(struct sched_domain *sd)
  4722. {
  4723. if (cpus_weight(sd->span) == 1)
  4724. return 1;
  4725. /* Following flags need at least 2 groups */
  4726. if (sd->flags & (SD_LOAD_BALANCE |
  4727. SD_BALANCE_NEWIDLE |
  4728. SD_BALANCE_FORK |
  4729. SD_BALANCE_EXEC |
  4730. SD_SHARE_CPUPOWER |
  4731. SD_SHARE_PKG_RESOURCES)) {
  4732. if (sd->groups != sd->groups->next)
  4733. return 0;
  4734. }
  4735. /* Following flags don't use groups */
  4736. if (sd->flags & (SD_WAKE_IDLE |
  4737. SD_WAKE_AFFINE |
  4738. SD_WAKE_BALANCE))
  4739. return 0;
  4740. return 1;
  4741. }
  4742. static int
  4743. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4744. {
  4745. unsigned long cflags = sd->flags, pflags = parent->flags;
  4746. if (sd_degenerate(parent))
  4747. return 1;
  4748. if (!cpus_equal(sd->span, parent->span))
  4749. return 0;
  4750. /* Does parent contain flags not in child? */
  4751. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4752. if (cflags & SD_WAKE_AFFINE)
  4753. pflags &= ~SD_WAKE_BALANCE;
  4754. /* Flags needing groups don't count if only 1 group in parent */
  4755. if (parent->groups == parent->groups->next) {
  4756. pflags &= ~(SD_LOAD_BALANCE |
  4757. SD_BALANCE_NEWIDLE |
  4758. SD_BALANCE_FORK |
  4759. SD_BALANCE_EXEC |
  4760. SD_SHARE_CPUPOWER |
  4761. SD_SHARE_PKG_RESOURCES);
  4762. }
  4763. if (~cflags & pflags)
  4764. return 0;
  4765. return 1;
  4766. }
  4767. /*
  4768. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4769. * hold the hotplug lock.
  4770. */
  4771. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4772. {
  4773. struct rq *rq = cpu_rq(cpu);
  4774. struct sched_domain *tmp;
  4775. /* Remove the sched domains which do not contribute to scheduling. */
  4776. for (tmp = sd; tmp; tmp = tmp->parent) {
  4777. struct sched_domain *parent = tmp->parent;
  4778. if (!parent)
  4779. break;
  4780. if (sd_parent_degenerate(tmp, parent)) {
  4781. tmp->parent = parent->parent;
  4782. if (parent->parent)
  4783. parent->parent->child = tmp;
  4784. }
  4785. }
  4786. if (sd && sd_degenerate(sd)) {
  4787. sd = sd->parent;
  4788. if (sd)
  4789. sd->child = NULL;
  4790. }
  4791. sched_domain_debug(sd, cpu);
  4792. rcu_assign_pointer(rq->sd, sd);
  4793. }
  4794. /* cpus with isolated domains */
  4795. static cpumask_t __cpuinitdata cpu_isolated_map = CPU_MASK_NONE;
  4796. /* Setup the mask of cpus configured for isolated domains */
  4797. static int __init isolated_cpu_setup(char *str)
  4798. {
  4799. int ints[NR_CPUS], i;
  4800. str = get_options(str, ARRAY_SIZE(ints), ints);
  4801. cpus_clear(cpu_isolated_map);
  4802. for (i = 1; i <= ints[0]; i++)
  4803. if (ints[i] < NR_CPUS)
  4804. cpu_set(ints[i], cpu_isolated_map);
  4805. return 1;
  4806. }
  4807. __setup ("isolcpus=", isolated_cpu_setup);
  4808. /*
  4809. * init_sched_build_groups takes an array of groups, the cpumask we wish
  4810. * to span, and a pointer to a function which identifies what group a CPU
  4811. * belongs to. The return value of group_fn must be a valid index into the
  4812. * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
  4813. * keep track of groups covered with a cpumask_t).
  4814. *
  4815. * init_sched_build_groups will build a circular linked list of the groups
  4816. * covered by the given span, and will set each group's ->cpumask correctly,
  4817. * and ->cpu_power to 0.
  4818. */
  4819. static void
  4820. init_sched_build_groups(struct sched_group groups[], cpumask_t span,
  4821. const cpumask_t *cpu_map,
  4822. int (*group_fn)(int cpu, const cpumask_t *cpu_map))
  4823. {
  4824. struct sched_group *first = NULL, *last = NULL;
  4825. cpumask_t covered = CPU_MASK_NONE;
  4826. int i;
  4827. for_each_cpu_mask(i, span) {
  4828. int group = group_fn(i, cpu_map);
  4829. struct sched_group *sg = &groups[group];
  4830. int j;
  4831. if (cpu_isset(i, covered))
  4832. continue;
  4833. sg->cpumask = CPU_MASK_NONE;
  4834. sg->cpu_power = 0;
  4835. for_each_cpu_mask(j, span) {
  4836. if (group_fn(j, cpu_map) != group)
  4837. continue;
  4838. cpu_set(j, covered);
  4839. cpu_set(j, sg->cpumask);
  4840. }
  4841. if (!first)
  4842. first = sg;
  4843. if (last)
  4844. last->next = sg;
  4845. last = sg;
  4846. }
  4847. last->next = first;
  4848. }
  4849. #define SD_NODES_PER_DOMAIN 16
  4850. /*
  4851. * Self-tuning task migration cost measurement between source and target CPUs.
  4852. *
  4853. * This is done by measuring the cost of manipulating buffers of varying
  4854. * sizes. For a given buffer-size here are the steps that are taken:
  4855. *
  4856. * 1) the source CPU reads+dirties a shared buffer
  4857. * 2) the target CPU reads+dirties the same shared buffer
  4858. *
  4859. * We measure how long they take, in the following 4 scenarios:
  4860. *
  4861. * - source: CPU1, target: CPU2 | cost1
  4862. * - source: CPU2, target: CPU1 | cost2
  4863. * - source: CPU1, target: CPU1 | cost3
  4864. * - source: CPU2, target: CPU2 | cost4
  4865. *
  4866. * We then calculate the cost3+cost4-cost1-cost2 difference - this is
  4867. * the cost of migration.
  4868. *
  4869. * We then start off from a small buffer-size and iterate up to larger
  4870. * buffer sizes, in 5% steps - measuring each buffer-size separately, and
  4871. * doing a maximum search for the cost. (The maximum cost for a migration
  4872. * normally occurs when the working set size is around the effective cache
  4873. * size.)
  4874. */
  4875. #define SEARCH_SCOPE 2
  4876. #define MIN_CACHE_SIZE (64*1024U)
  4877. #define DEFAULT_CACHE_SIZE (5*1024*1024U)
  4878. #define ITERATIONS 1
  4879. #define SIZE_THRESH 130
  4880. #define COST_THRESH 130
  4881. /*
  4882. * The migration cost is a function of 'domain distance'. Domain
  4883. * distance is the number of steps a CPU has to iterate down its
  4884. * domain tree to share a domain with the other CPU. The farther
  4885. * two CPUs are from each other, the larger the distance gets.
  4886. *
  4887. * Note that we use the distance only to cache measurement results,
  4888. * the distance value is not used numerically otherwise. When two
  4889. * CPUs have the same distance it is assumed that the migration
  4890. * cost is the same. (this is a simplification but quite practical)
  4891. */
  4892. #define MAX_DOMAIN_DISTANCE 32
  4893. static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
  4894. { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
  4895. /*
  4896. * Architectures may override the migration cost and thus avoid
  4897. * boot-time calibration. Unit is nanoseconds. Mostly useful for
  4898. * virtualized hardware:
  4899. */
  4900. #ifdef CONFIG_DEFAULT_MIGRATION_COST
  4901. CONFIG_DEFAULT_MIGRATION_COST
  4902. #else
  4903. -1LL
  4904. #endif
  4905. };
  4906. /*
  4907. * Allow override of migration cost - in units of microseconds.
  4908. * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
  4909. * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
  4910. */
  4911. static int __init migration_cost_setup(char *str)
  4912. {
  4913. int ints[MAX_DOMAIN_DISTANCE+1], i;
  4914. str = get_options(str, ARRAY_SIZE(ints), ints);
  4915. printk("#ints: %d\n", ints[0]);
  4916. for (i = 1; i <= ints[0]; i++) {
  4917. migration_cost[i-1] = (unsigned long long)ints[i]*1000;
  4918. printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
  4919. }
  4920. return 1;
  4921. }
  4922. __setup ("migration_cost=", migration_cost_setup);
  4923. /*
  4924. * Global multiplier (divisor) for migration-cutoff values,
  4925. * in percentiles. E.g. use a value of 150 to get 1.5 times
  4926. * longer cache-hot cutoff times.
  4927. *
  4928. * (We scale it from 100 to 128 to long long handling easier.)
  4929. */
  4930. #define MIGRATION_FACTOR_SCALE 128
  4931. static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
  4932. static int __init setup_migration_factor(char *str)
  4933. {
  4934. get_option(&str, &migration_factor);
  4935. migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
  4936. return 1;
  4937. }
  4938. __setup("migration_factor=", setup_migration_factor);
  4939. /*
  4940. * Estimated distance of two CPUs, measured via the number of domains
  4941. * we have to pass for the two CPUs to be in the same span:
  4942. */
  4943. static unsigned long domain_distance(int cpu1, int cpu2)
  4944. {
  4945. unsigned long distance = 0;
  4946. struct sched_domain *sd;
  4947. for_each_domain(cpu1, sd) {
  4948. WARN_ON(!cpu_isset(cpu1, sd->span));
  4949. if (cpu_isset(cpu2, sd->span))
  4950. return distance;
  4951. distance++;
  4952. }
  4953. if (distance >= MAX_DOMAIN_DISTANCE) {
  4954. WARN_ON(1);
  4955. distance = MAX_DOMAIN_DISTANCE-1;
  4956. }
  4957. return distance;
  4958. }
  4959. static unsigned int migration_debug;
  4960. static int __init setup_migration_debug(char *str)
  4961. {
  4962. get_option(&str, &migration_debug);
  4963. return 1;
  4964. }
  4965. __setup("migration_debug=", setup_migration_debug);
  4966. /*
  4967. * Maximum cache-size that the scheduler should try to measure.
  4968. * Architectures with larger caches should tune this up during
  4969. * bootup. Gets used in the domain-setup code (i.e. during SMP
  4970. * bootup).
  4971. */
  4972. unsigned int max_cache_size;
  4973. static int __init setup_max_cache_size(char *str)
  4974. {
  4975. get_option(&str, &max_cache_size);
  4976. return 1;
  4977. }
  4978. __setup("max_cache_size=", setup_max_cache_size);
  4979. /*
  4980. * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
  4981. * is the operation that is timed, so we try to generate unpredictable
  4982. * cachemisses that still end up filling the L2 cache:
  4983. */
  4984. static void touch_cache(void *__cache, unsigned long __size)
  4985. {
  4986. unsigned long size = __size/sizeof(long), chunk1 = size/3,
  4987. chunk2 = 2*size/3;
  4988. unsigned long *cache = __cache;
  4989. int i;
  4990. for (i = 0; i < size/6; i += 8) {
  4991. switch (i % 6) {
  4992. case 0: cache[i]++;
  4993. case 1: cache[size-1-i]++;
  4994. case 2: cache[chunk1-i]++;
  4995. case 3: cache[chunk1+i]++;
  4996. case 4: cache[chunk2-i]++;
  4997. case 5: cache[chunk2+i]++;
  4998. }
  4999. }
  5000. }
  5001. /*
  5002. * Measure the cache-cost of one task migration. Returns in units of nsec.
  5003. */
  5004. static unsigned long long
  5005. measure_one(void *cache, unsigned long size, int source, int target)
  5006. {
  5007. cpumask_t mask, saved_mask;
  5008. unsigned long long t0, t1, t2, t3, cost;
  5009. saved_mask = current->cpus_allowed;
  5010. /*
  5011. * Flush source caches to RAM and invalidate them:
  5012. */
  5013. sched_cacheflush();
  5014. /*
  5015. * Migrate to the source CPU:
  5016. */
  5017. mask = cpumask_of_cpu(source);
  5018. set_cpus_allowed(current, mask);
  5019. WARN_ON(smp_processor_id() != source);
  5020. /*
  5021. * Dirty the working set:
  5022. */
  5023. t0 = sched_clock();
  5024. touch_cache(cache, size);
  5025. t1 = sched_clock();
  5026. /*
  5027. * Migrate to the target CPU, dirty the L2 cache and access
  5028. * the shared buffer. (which represents the working set
  5029. * of a migrated task.)
  5030. */
  5031. mask = cpumask_of_cpu(target);
  5032. set_cpus_allowed(current, mask);
  5033. WARN_ON(smp_processor_id() != target);
  5034. t2 = sched_clock();
  5035. touch_cache(cache, size);
  5036. t3 = sched_clock();
  5037. cost = t1-t0 + t3-t2;
  5038. if (migration_debug >= 2)
  5039. printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
  5040. source, target, t1-t0, t1-t0, t3-t2, cost);
  5041. /*
  5042. * Flush target caches to RAM and invalidate them:
  5043. */
  5044. sched_cacheflush();
  5045. set_cpus_allowed(current, saved_mask);
  5046. return cost;
  5047. }
  5048. /*
  5049. * Measure a series of task migrations and return the average
  5050. * result. Since this code runs early during bootup the system
  5051. * is 'undisturbed' and the average latency makes sense.
  5052. *
  5053. * The algorithm in essence auto-detects the relevant cache-size,
  5054. * so it will properly detect different cachesizes for different
  5055. * cache-hierarchies, depending on how the CPUs are connected.
  5056. *
  5057. * Architectures can prime the upper limit of the search range via
  5058. * max_cache_size, otherwise the search range defaults to 20MB...64K.
  5059. */
  5060. static unsigned long long
  5061. measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
  5062. {
  5063. unsigned long long cost1, cost2;
  5064. int i;
  5065. /*
  5066. * Measure the migration cost of 'size' bytes, over an
  5067. * average of 10 runs:
  5068. *
  5069. * (We perturb the cache size by a small (0..4k)
  5070. * value to compensate size/alignment related artifacts.
  5071. * We also subtract the cost of the operation done on
  5072. * the same CPU.)
  5073. */
  5074. cost1 = 0;
  5075. /*
  5076. * dry run, to make sure we start off cache-cold on cpu1,
  5077. * and to get any vmalloc pagefaults in advance:
  5078. */
  5079. measure_one(cache, size, cpu1, cpu2);
  5080. for (i = 0; i < ITERATIONS; i++)
  5081. cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
  5082. measure_one(cache, size, cpu2, cpu1);
  5083. for (i = 0; i < ITERATIONS; i++)
  5084. cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
  5085. /*
  5086. * (We measure the non-migrating [cached] cost on both
  5087. * cpu1 and cpu2, to handle CPUs with different speeds)
  5088. */
  5089. cost2 = 0;
  5090. measure_one(cache, size, cpu1, cpu1);
  5091. for (i = 0; i < ITERATIONS; i++)
  5092. cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
  5093. measure_one(cache, size, cpu2, cpu2);
  5094. for (i = 0; i < ITERATIONS; i++)
  5095. cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
  5096. /*
  5097. * Get the per-iteration migration cost:
  5098. */
  5099. do_div(cost1, 2*ITERATIONS);
  5100. do_div(cost2, 2*ITERATIONS);
  5101. return cost1 - cost2;
  5102. }
  5103. static unsigned long long measure_migration_cost(int cpu1, int cpu2)
  5104. {
  5105. unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
  5106. unsigned int max_size, size, size_found = 0;
  5107. long long cost = 0, prev_cost;
  5108. void *cache;
  5109. /*
  5110. * Search from max_cache_size*5 down to 64K - the real relevant
  5111. * cachesize has to lie somewhere inbetween.
  5112. */
  5113. if (max_cache_size) {
  5114. max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
  5115. size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
  5116. } else {
  5117. /*
  5118. * Since we have no estimation about the relevant
  5119. * search range
  5120. */
  5121. max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
  5122. size = MIN_CACHE_SIZE;
  5123. }
  5124. if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
  5125. printk("cpu %d and %d not both online!\n", cpu1, cpu2);
  5126. return 0;
  5127. }
  5128. /*
  5129. * Allocate the working set:
  5130. */
  5131. cache = vmalloc(max_size);
  5132. if (!cache) {
  5133. printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
  5134. return 1000000; /* return 1 msec on very small boxen */
  5135. }
  5136. while (size <= max_size) {
  5137. prev_cost = cost;
  5138. cost = measure_cost(cpu1, cpu2, cache, size);
  5139. /*
  5140. * Update the max:
  5141. */
  5142. if (cost > 0) {
  5143. if (max_cost < cost) {
  5144. max_cost = cost;
  5145. size_found = size;
  5146. }
  5147. }
  5148. /*
  5149. * Calculate average fluctuation, we use this to prevent
  5150. * noise from triggering an early break out of the loop:
  5151. */
  5152. fluct = abs(cost - prev_cost);
  5153. avg_fluct = (avg_fluct + fluct)/2;
  5154. if (migration_debug)
  5155. printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
  5156. cpu1, cpu2, size,
  5157. (long)cost / 1000000,
  5158. ((long)cost / 100000) % 10,
  5159. (long)max_cost / 1000000,
  5160. ((long)max_cost / 100000) % 10,
  5161. domain_distance(cpu1, cpu2),
  5162. cost, avg_fluct);
  5163. /*
  5164. * If we iterated at least 20% past the previous maximum,
  5165. * and the cost has dropped by more than 20% already,
  5166. * (taking fluctuations into account) then we assume to
  5167. * have found the maximum and break out of the loop early:
  5168. */
  5169. if (size_found && (size*100 > size_found*SIZE_THRESH))
  5170. if (cost+avg_fluct <= 0 ||
  5171. max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
  5172. if (migration_debug)
  5173. printk("-> found max.\n");
  5174. break;
  5175. }
  5176. /*
  5177. * Increase the cachesize in 10% steps:
  5178. */
  5179. size = size * 10 / 9;
  5180. }
  5181. if (migration_debug)
  5182. printk("[%d][%d] working set size found: %d, cost: %Ld\n",
  5183. cpu1, cpu2, size_found, max_cost);
  5184. vfree(cache);
  5185. /*
  5186. * A task is considered 'cache cold' if at least 2 times
  5187. * the worst-case cost of migration has passed.
  5188. *
  5189. * (this limit is only listened to if the load-balancing
  5190. * situation is 'nice' - if there is a large imbalance we
  5191. * ignore it for the sake of CPU utilization and
  5192. * processing fairness.)
  5193. */
  5194. return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
  5195. }
  5196. static void calibrate_migration_costs(const cpumask_t *cpu_map)
  5197. {
  5198. int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
  5199. unsigned long j0, j1, distance, max_distance = 0;
  5200. struct sched_domain *sd;
  5201. j0 = jiffies;
  5202. /*
  5203. * First pass - calculate the cacheflush times:
  5204. */
  5205. for_each_cpu_mask(cpu1, *cpu_map) {
  5206. for_each_cpu_mask(cpu2, *cpu_map) {
  5207. if (cpu1 == cpu2)
  5208. continue;
  5209. distance = domain_distance(cpu1, cpu2);
  5210. max_distance = max(max_distance, distance);
  5211. /*
  5212. * No result cached yet?
  5213. */
  5214. if (migration_cost[distance] == -1LL)
  5215. migration_cost[distance] =
  5216. measure_migration_cost(cpu1, cpu2);
  5217. }
  5218. }
  5219. /*
  5220. * Second pass - update the sched domain hierarchy with
  5221. * the new cache-hot-time estimations:
  5222. */
  5223. for_each_cpu_mask(cpu, *cpu_map) {
  5224. distance = 0;
  5225. for_each_domain(cpu, sd) {
  5226. sd->cache_hot_time = migration_cost[distance];
  5227. distance++;
  5228. }
  5229. }
  5230. /*
  5231. * Print the matrix:
  5232. */
  5233. if (migration_debug)
  5234. printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
  5235. max_cache_size,
  5236. #ifdef CONFIG_X86
  5237. cpu_khz/1000
  5238. #else
  5239. -1
  5240. #endif
  5241. );
  5242. if (system_state == SYSTEM_BOOTING) {
  5243. if (num_online_cpus() > 1) {
  5244. printk("migration_cost=");
  5245. for (distance = 0; distance <= max_distance; distance++) {
  5246. if (distance)
  5247. printk(",");
  5248. printk("%ld", (long)migration_cost[distance] / 1000);
  5249. }
  5250. printk("\n");
  5251. }
  5252. }
  5253. j1 = jiffies;
  5254. if (migration_debug)
  5255. printk("migration: %ld seconds\n", (j1-j0)/HZ);
  5256. /*
  5257. * Move back to the original CPU. NUMA-Q gets confused
  5258. * if we migrate to another quad during bootup.
  5259. */
  5260. if (raw_smp_processor_id() != orig_cpu) {
  5261. cpumask_t mask = cpumask_of_cpu(orig_cpu),
  5262. saved_mask = current->cpus_allowed;
  5263. set_cpus_allowed(current, mask);
  5264. set_cpus_allowed(current, saved_mask);
  5265. }
  5266. }
  5267. #ifdef CONFIG_NUMA
  5268. /**
  5269. * find_next_best_node - find the next node to include in a sched_domain
  5270. * @node: node whose sched_domain we're building
  5271. * @used_nodes: nodes already in the sched_domain
  5272. *
  5273. * Find the next node to include in a given scheduling domain. Simply
  5274. * finds the closest node not already in the @used_nodes map.
  5275. *
  5276. * Should use nodemask_t.
  5277. */
  5278. static int find_next_best_node(int node, unsigned long *used_nodes)
  5279. {
  5280. int i, n, val, min_val, best_node = 0;
  5281. min_val = INT_MAX;
  5282. for (i = 0; i < MAX_NUMNODES; i++) {
  5283. /* Start at @node */
  5284. n = (node + i) % MAX_NUMNODES;
  5285. if (!nr_cpus_node(n))
  5286. continue;
  5287. /* Skip already used nodes */
  5288. if (test_bit(n, used_nodes))
  5289. continue;
  5290. /* Simple min distance search */
  5291. val = node_distance(node, n);
  5292. if (val < min_val) {
  5293. min_val = val;
  5294. best_node = n;
  5295. }
  5296. }
  5297. set_bit(best_node, used_nodes);
  5298. return best_node;
  5299. }
  5300. /**
  5301. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5302. * @node: node whose cpumask we're constructing
  5303. * @size: number of nodes to include in this span
  5304. *
  5305. * Given a node, construct a good cpumask for its sched_domain to span. It
  5306. * should be one that prevents unnecessary balancing, but also spreads tasks
  5307. * out optimally.
  5308. */
  5309. static cpumask_t sched_domain_node_span(int node)
  5310. {
  5311. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5312. cpumask_t span, nodemask;
  5313. int i;
  5314. cpus_clear(span);
  5315. bitmap_zero(used_nodes, MAX_NUMNODES);
  5316. nodemask = node_to_cpumask(node);
  5317. cpus_or(span, span, nodemask);
  5318. set_bit(node, used_nodes);
  5319. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5320. int next_node = find_next_best_node(node, used_nodes);
  5321. nodemask = node_to_cpumask(next_node);
  5322. cpus_or(span, span, nodemask);
  5323. }
  5324. return span;
  5325. }
  5326. #endif
  5327. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5328. /*
  5329. * SMT sched-domains:
  5330. */
  5331. #ifdef CONFIG_SCHED_SMT
  5332. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5333. static struct sched_group sched_group_cpus[NR_CPUS];
  5334. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map)
  5335. {
  5336. return cpu;
  5337. }
  5338. #endif
  5339. /*
  5340. * multi-core sched-domains:
  5341. */
  5342. #ifdef CONFIG_SCHED_MC
  5343. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5344. static struct sched_group sched_group_core[NR_CPUS];
  5345. #endif
  5346. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5347. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map)
  5348. {
  5349. cpumask_t mask = cpu_sibling_map[cpu];
  5350. cpus_and(mask, mask, *cpu_map);
  5351. return first_cpu(mask);
  5352. }
  5353. #elif defined(CONFIG_SCHED_MC)
  5354. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map)
  5355. {
  5356. return cpu;
  5357. }
  5358. #endif
  5359. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5360. static struct sched_group sched_group_phys[NR_CPUS];
  5361. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map)
  5362. {
  5363. #ifdef CONFIG_SCHED_MC
  5364. cpumask_t mask = cpu_coregroup_map(cpu);
  5365. cpus_and(mask, mask, *cpu_map);
  5366. return first_cpu(mask);
  5367. #elif defined(CONFIG_SCHED_SMT)
  5368. cpumask_t mask = cpu_sibling_map[cpu];
  5369. cpus_and(mask, mask, *cpu_map);
  5370. return first_cpu(mask);
  5371. #else
  5372. return cpu;
  5373. #endif
  5374. }
  5375. #ifdef CONFIG_NUMA
  5376. /*
  5377. * The init_sched_build_groups can't handle what we want to do with node
  5378. * groups, so roll our own. Now each node has its own list of groups which
  5379. * gets dynamically allocated.
  5380. */
  5381. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5382. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5383. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5384. static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
  5385. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map)
  5386. {
  5387. return cpu_to_node(cpu);
  5388. }
  5389. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5390. {
  5391. struct sched_group *sg = group_head;
  5392. int j;
  5393. if (!sg)
  5394. return;
  5395. next_sg:
  5396. for_each_cpu_mask(j, sg->cpumask) {
  5397. struct sched_domain *sd;
  5398. sd = &per_cpu(phys_domains, j);
  5399. if (j != first_cpu(sd->groups->cpumask)) {
  5400. /*
  5401. * Only add "power" once for each
  5402. * physical package.
  5403. */
  5404. continue;
  5405. }
  5406. sg->cpu_power += sd->groups->cpu_power;
  5407. }
  5408. sg = sg->next;
  5409. if (sg != group_head)
  5410. goto next_sg;
  5411. }
  5412. #endif
  5413. #ifdef CONFIG_NUMA
  5414. /* Free memory allocated for various sched_group structures */
  5415. static void free_sched_groups(const cpumask_t *cpu_map)
  5416. {
  5417. int cpu, i;
  5418. for_each_cpu_mask(cpu, *cpu_map) {
  5419. struct sched_group *sched_group_allnodes
  5420. = sched_group_allnodes_bycpu[cpu];
  5421. struct sched_group **sched_group_nodes
  5422. = sched_group_nodes_bycpu[cpu];
  5423. if (sched_group_allnodes) {
  5424. kfree(sched_group_allnodes);
  5425. sched_group_allnodes_bycpu[cpu] = NULL;
  5426. }
  5427. if (!sched_group_nodes)
  5428. continue;
  5429. for (i = 0; i < MAX_NUMNODES; i++) {
  5430. cpumask_t nodemask = node_to_cpumask(i);
  5431. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5432. cpus_and(nodemask, nodemask, *cpu_map);
  5433. if (cpus_empty(nodemask))
  5434. continue;
  5435. if (sg == NULL)
  5436. continue;
  5437. sg = sg->next;
  5438. next_sg:
  5439. oldsg = sg;
  5440. sg = sg->next;
  5441. kfree(oldsg);
  5442. if (oldsg != sched_group_nodes[i])
  5443. goto next_sg;
  5444. }
  5445. kfree(sched_group_nodes);
  5446. sched_group_nodes_bycpu[cpu] = NULL;
  5447. }
  5448. }
  5449. #else
  5450. static void free_sched_groups(const cpumask_t *cpu_map)
  5451. {
  5452. }
  5453. #endif
  5454. /*
  5455. * Initialize sched groups cpu_power.
  5456. *
  5457. * cpu_power indicates the capacity of sched group, which is used while
  5458. * distributing the load between different sched groups in a sched domain.
  5459. * Typically cpu_power for all the groups in a sched domain will be same unless
  5460. * there are asymmetries in the topology. If there are asymmetries, group
  5461. * having more cpu_power will pickup more load compared to the group having
  5462. * less cpu_power.
  5463. *
  5464. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5465. * the maximum number of tasks a group can handle in the presence of other idle
  5466. * or lightly loaded groups in the same sched domain.
  5467. */
  5468. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5469. {
  5470. struct sched_domain *child;
  5471. struct sched_group *group;
  5472. WARN_ON(!sd || !sd->groups);
  5473. if (cpu != first_cpu(sd->groups->cpumask))
  5474. return;
  5475. child = sd->child;
  5476. /*
  5477. * For perf policy, if the groups in child domain share resources
  5478. * (for example cores sharing some portions of the cache hierarchy
  5479. * or SMT), then set this domain groups cpu_power such that each group
  5480. * can handle only one task, when there are other idle groups in the
  5481. * same sched domain.
  5482. */
  5483. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5484. (child->flags &
  5485. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5486. sd->groups->cpu_power = SCHED_LOAD_SCALE;
  5487. return;
  5488. }
  5489. sd->groups->cpu_power = 0;
  5490. /*
  5491. * add cpu_power of each child group to this groups cpu_power
  5492. */
  5493. group = child->groups;
  5494. do {
  5495. sd->groups->cpu_power += group->cpu_power;
  5496. group = group->next;
  5497. } while (group != child->groups);
  5498. }
  5499. /*
  5500. * Build sched domains for a given set of cpus and attach the sched domains
  5501. * to the individual cpus
  5502. */
  5503. static int build_sched_domains(const cpumask_t *cpu_map)
  5504. {
  5505. int i;
  5506. struct sched_domain *sd;
  5507. #ifdef CONFIG_NUMA
  5508. struct sched_group **sched_group_nodes = NULL;
  5509. struct sched_group *sched_group_allnodes = NULL;
  5510. /*
  5511. * Allocate the per-node list of sched groups
  5512. */
  5513. sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
  5514. GFP_KERNEL);
  5515. if (!sched_group_nodes) {
  5516. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5517. return -ENOMEM;
  5518. }
  5519. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5520. #endif
  5521. /*
  5522. * Set up domains for cpus specified by the cpu_map.
  5523. */
  5524. for_each_cpu_mask(i, *cpu_map) {
  5525. int group;
  5526. struct sched_domain *sd = NULL, *p;
  5527. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5528. cpus_and(nodemask, nodemask, *cpu_map);
  5529. #ifdef CONFIG_NUMA
  5530. if (cpus_weight(*cpu_map)
  5531. > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5532. if (!sched_group_allnodes) {
  5533. sched_group_allnodes
  5534. = kmalloc_node(sizeof(struct sched_group)
  5535. * MAX_NUMNODES,
  5536. GFP_KERNEL,
  5537. cpu_to_node(i));
  5538. if (!sched_group_allnodes) {
  5539. printk(KERN_WARNING
  5540. "Can not alloc allnodes sched group\n");
  5541. goto error;
  5542. }
  5543. sched_group_allnodes_bycpu[i]
  5544. = sched_group_allnodes;
  5545. }
  5546. sd = &per_cpu(allnodes_domains, i);
  5547. *sd = SD_ALLNODES_INIT;
  5548. sd->span = *cpu_map;
  5549. group = cpu_to_allnodes_group(i, cpu_map);
  5550. sd->groups = &sched_group_allnodes[group];
  5551. p = sd;
  5552. } else
  5553. p = NULL;
  5554. sd = &per_cpu(node_domains, i);
  5555. *sd = SD_NODE_INIT;
  5556. sd->span = sched_domain_node_span(cpu_to_node(i));
  5557. sd->parent = p;
  5558. if (p)
  5559. p->child = sd;
  5560. cpus_and(sd->span, sd->span, *cpu_map);
  5561. #endif
  5562. p = sd;
  5563. sd = &per_cpu(phys_domains, i);
  5564. group = cpu_to_phys_group(i, cpu_map);
  5565. *sd = SD_CPU_INIT;
  5566. sd->span = nodemask;
  5567. sd->parent = p;
  5568. if (p)
  5569. p->child = sd;
  5570. sd->groups = &sched_group_phys[group];
  5571. #ifdef CONFIG_SCHED_MC
  5572. p = sd;
  5573. sd = &per_cpu(core_domains, i);
  5574. group = cpu_to_core_group(i, cpu_map);
  5575. *sd = SD_MC_INIT;
  5576. sd->span = cpu_coregroup_map(i);
  5577. cpus_and(sd->span, sd->span, *cpu_map);
  5578. sd->parent = p;
  5579. p->child = sd;
  5580. sd->groups = &sched_group_core[group];
  5581. #endif
  5582. #ifdef CONFIG_SCHED_SMT
  5583. p = sd;
  5584. sd = &per_cpu(cpu_domains, i);
  5585. group = cpu_to_cpu_group(i, cpu_map);
  5586. *sd = SD_SIBLING_INIT;
  5587. sd->span = cpu_sibling_map[i];
  5588. cpus_and(sd->span, sd->span, *cpu_map);
  5589. sd->parent = p;
  5590. p->child = sd;
  5591. sd->groups = &sched_group_cpus[group];
  5592. #endif
  5593. }
  5594. #ifdef CONFIG_SCHED_SMT
  5595. /* Set up CPU (sibling) groups */
  5596. for_each_cpu_mask(i, *cpu_map) {
  5597. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5598. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5599. if (i != first_cpu(this_sibling_map))
  5600. continue;
  5601. init_sched_build_groups(sched_group_cpus, this_sibling_map,
  5602. cpu_map, &cpu_to_cpu_group);
  5603. }
  5604. #endif
  5605. #ifdef CONFIG_SCHED_MC
  5606. /* Set up multi-core groups */
  5607. for_each_cpu_mask(i, *cpu_map) {
  5608. cpumask_t this_core_map = cpu_coregroup_map(i);
  5609. cpus_and(this_core_map, this_core_map, *cpu_map);
  5610. if (i != first_cpu(this_core_map))
  5611. continue;
  5612. init_sched_build_groups(sched_group_core, this_core_map,
  5613. cpu_map, &cpu_to_core_group);
  5614. }
  5615. #endif
  5616. /* Set up physical groups */
  5617. for (i = 0; i < MAX_NUMNODES; i++) {
  5618. cpumask_t nodemask = node_to_cpumask(i);
  5619. cpus_and(nodemask, nodemask, *cpu_map);
  5620. if (cpus_empty(nodemask))
  5621. continue;
  5622. init_sched_build_groups(sched_group_phys, nodemask,
  5623. cpu_map, &cpu_to_phys_group);
  5624. }
  5625. #ifdef CONFIG_NUMA
  5626. /* Set up node groups */
  5627. if (sched_group_allnodes)
  5628. init_sched_build_groups(sched_group_allnodes, *cpu_map,
  5629. cpu_map, &cpu_to_allnodes_group);
  5630. for (i = 0; i < MAX_NUMNODES; i++) {
  5631. /* Set up node groups */
  5632. struct sched_group *sg, *prev;
  5633. cpumask_t nodemask = node_to_cpumask(i);
  5634. cpumask_t domainspan;
  5635. cpumask_t covered = CPU_MASK_NONE;
  5636. int j;
  5637. cpus_and(nodemask, nodemask, *cpu_map);
  5638. if (cpus_empty(nodemask)) {
  5639. sched_group_nodes[i] = NULL;
  5640. continue;
  5641. }
  5642. domainspan = sched_domain_node_span(i);
  5643. cpus_and(domainspan, domainspan, *cpu_map);
  5644. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5645. if (!sg) {
  5646. printk(KERN_WARNING "Can not alloc domain group for "
  5647. "node %d\n", i);
  5648. goto error;
  5649. }
  5650. sched_group_nodes[i] = sg;
  5651. for_each_cpu_mask(j, nodemask) {
  5652. struct sched_domain *sd;
  5653. sd = &per_cpu(node_domains, j);
  5654. sd->groups = sg;
  5655. }
  5656. sg->cpu_power = 0;
  5657. sg->cpumask = nodemask;
  5658. sg->next = sg;
  5659. cpus_or(covered, covered, nodemask);
  5660. prev = sg;
  5661. for (j = 0; j < MAX_NUMNODES; j++) {
  5662. cpumask_t tmp, notcovered;
  5663. int n = (i + j) % MAX_NUMNODES;
  5664. cpus_complement(notcovered, covered);
  5665. cpus_and(tmp, notcovered, *cpu_map);
  5666. cpus_and(tmp, tmp, domainspan);
  5667. if (cpus_empty(tmp))
  5668. break;
  5669. nodemask = node_to_cpumask(n);
  5670. cpus_and(tmp, tmp, nodemask);
  5671. if (cpus_empty(tmp))
  5672. continue;
  5673. sg = kmalloc_node(sizeof(struct sched_group),
  5674. GFP_KERNEL, i);
  5675. if (!sg) {
  5676. printk(KERN_WARNING
  5677. "Can not alloc domain group for node %d\n", j);
  5678. goto error;
  5679. }
  5680. sg->cpu_power = 0;
  5681. sg->cpumask = tmp;
  5682. sg->next = prev->next;
  5683. cpus_or(covered, covered, tmp);
  5684. prev->next = sg;
  5685. prev = sg;
  5686. }
  5687. }
  5688. #endif
  5689. /* Calculate CPU power for physical packages and nodes */
  5690. #ifdef CONFIG_SCHED_SMT
  5691. for_each_cpu_mask(i, *cpu_map) {
  5692. sd = &per_cpu(cpu_domains, i);
  5693. init_sched_groups_power(i, sd);
  5694. }
  5695. #endif
  5696. #ifdef CONFIG_SCHED_MC
  5697. for_each_cpu_mask(i, *cpu_map) {
  5698. sd = &per_cpu(core_domains, i);
  5699. init_sched_groups_power(i, sd);
  5700. }
  5701. #endif
  5702. for_each_cpu_mask(i, *cpu_map) {
  5703. sd = &per_cpu(phys_domains, i);
  5704. init_sched_groups_power(i, sd);
  5705. }
  5706. #ifdef CONFIG_NUMA
  5707. for (i = 0; i < MAX_NUMNODES; i++)
  5708. init_numa_sched_groups_power(sched_group_nodes[i]);
  5709. if (sched_group_allnodes) {
  5710. int group = cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map);
  5711. struct sched_group *sg = &sched_group_allnodes[group];
  5712. init_numa_sched_groups_power(sg);
  5713. }
  5714. #endif
  5715. /* Attach the domains */
  5716. for_each_cpu_mask(i, *cpu_map) {
  5717. struct sched_domain *sd;
  5718. #ifdef CONFIG_SCHED_SMT
  5719. sd = &per_cpu(cpu_domains, i);
  5720. #elif defined(CONFIG_SCHED_MC)
  5721. sd = &per_cpu(core_domains, i);
  5722. #else
  5723. sd = &per_cpu(phys_domains, i);
  5724. #endif
  5725. cpu_attach_domain(sd, i);
  5726. }
  5727. /*
  5728. * Tune cache-hot values:
  5729. */
  5730. calibrate_migration_costs(cpu_map);
  5731. return 0;
  5732. #ifdef CONFIG_NUMA
  5733. error:
  5734. free_sched_groups(cpu_map);
  5735. return -ENOMEM;
  5736. #endif
  5737. }
  5738. /*
  5739. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5740. */
  5741. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5742. {
  5743. cpumask_t cpu_default_map;
  5744. int err;
  5745. /*
  5746. * Setup mask for cpus without special case scheduling requirements.
  5747. * For now this just excludes isolated cpus, but could be used to
  5748. * exclude other special cases in the future.
  5749. */
  5750. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5751. err = build_sched_domains(&cpu_default_map);
  5752. return err;
  5753. }
  5754. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5755. {
  5756. free_sched_groups(cpu_map);
  5757. }
  5758. /*
  5759. * Detach sched domains from a group of cpus specified in cpu_map
  5760. * These cpus will now be attached to the NULL domain
  5761. */
  5762. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5763. {
  5764. int i;
  5765. for_each_cpu_mask(i, *cpu_map)
  5766. cpu_attach_domain(NULL, i);
  5767. synchronize_sched();
  5768. arch_destroy_sched_domains(cpu_map);
  5769. }
  5770. /*
  5771. * Partition sched domains as specified by the cpumasks below.
  5772. * This attaches all cpus from the cpumasks to the NULL domain,
  5773. * waits for a RCU quiescent period, recalculates sched
  5774. * domain information and then attaches them back to the
  5775. * correct sched domains
  5776. * Call with hotplug lock held
  5777. */
  5778. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5779. {
  5780. cpumask_t change_map;
  5781. int err = 0;
  5782. cpus_and(*partition1, *partition1, cpu_online_map);
  5783. cpus_and(*partition2, *partition2, cpu_online_map);
  5784. cpus_or(change_map, *partition1, *partition2);
  5785. /* Detach sched domains from all of the affected cpus */
  5786. detach_destroy_domains(&change_map);
  5787. if (!cpus_empty(*partition1))
  5788. err = build_sched_domains(partition1);
  5789. if (!err && !cpus_empty(*partition2))
  5790. err = build_sched_domains(partition2);
  5791. return err;
  5792. }
  5793. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5794. int arch_reinit_sched_domains(void)
  5795. {
  5796. int err;
  5797. lock_cpu_hotplug();
  5798. detach_destroy_domains(&cpu_online_map);
  5799. err = arch_init_sched_domains(&cpu_online_map);
  5800. unlock_cpu_hotplug();
  5801. return err;
  5802. }
  5803. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5804. {
  5805. int ret;
  5806. if (buf[0] != '0' && buf[0] != '1')
  5807. return -EINVAL;
  5808. if (smt)
  5809. sched_smt_power_savings = (buf[0] == '1');
  5810. else
  5811. sched_mc_power_savings = (buf[0] == '1');
  5812. ret = arch_reinit_sched_domains();
  5813. return ret ? ret : count;
  5814. }
  5815. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5816. {
  5817. int err = 0;
  5818. #ifdef CONFIG_SCHED_SMT
  5819. if (smt_capable())
  5820. err = sysfs_create_file(&cls->kset.kobj,
  5821. &attr_sched_smt_power_savings.attr);
  5822. #endif
  5823. #ifdef CONFIG_SCHED_MC
  5824. if (!err && mc_capable())
  5825. err = sysfs_create_file(&cls->kset.kobj,
  5826. &attr_sched_mc_power_savings.attr);
  5827. #endif
  5828. return err;
  5829. }
  5830. #endif
  5831. #ifdef CONFIG_SCHED_MC
  5832. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5833. {
  5834. return sprintf(page, "%u\n", sched_mc_power_savings);
  5835. }
  5836. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5837. const char *buf, size_t count)
  5838. {
  5839. return sched_power_savings_store(buf, count, 0);
  5840. }
  5841. SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5842. sched_mc_power_savings_store);
  5843. #endif
  5844. #ifdef CONFIG_SCHED_SMT
  5845. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5846. {
  5847. return sprintf(page, "%u\n", sched_smt_power_savings);
  5848. }
  5849. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5850. const char *buf, size_t count)
  5851. {
  5852. return sched_power_savings_store(buf, count, 1);
  5853. }
  5854. SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5855. sched_smt_power_savings_store);
  5856. #endif
  5857. /*
  5858. * Force a reinitialization of the sched domains hierarchy. The domains
  5859. * and groups cannot be updated in place without racing with the balancing
  5860. * code, so we temporarily attach all running cpus to the NULL domain
  5861. * which will prevent rebalancing while the sched domains are recalculated.
  5862. */
  5863. static int update_sched_domains(struct notifier_block *nfb,
  5864. unsigned long action, void *hcpu)
  5865. {
  5866. switch (action) {
  5867. case CPU_UP_PREPARE:
  5868. case CPU_DOWN_PREPARE:
  5869. detach_destroy_domains(&cpu_online_map);
  5870. return NOTIFY_OK;
  5871. case CPU_UP_CANCELED:
  5872. case CPU_DOWN_FAILED:
  5873. case CPU_ONLINE:
  5874. case CPU_DEAD:
  5875. /*
  5876. * Fall through and re-initialise the domains.
  5877. */
  5878. break;
  5879. default:
  5880. return NOTIFY_DONE;
  5881. }
  5882. /* The hotplug lock is already held by cpu_up/cpu_down */
  5883. arch_init_sched_domains(&cpu_online_map);
  5884. return NOTIFY_OK;
  5885. }
  5886. void __init sched_init_smp(void)
  5887. {
  5888. cpumask_t non_isolated_cpus;
  5889. lock_cpu_hotplug();
  5890. arch_init_sched_domains(&cpu_online_map);
  5891. cpus_andnot(non_isolated_cpus, cpu_online_map, cpu_isolated_map);
  5892. if (cpus_empty(non_isolated_cpus))
  5893. cpu_set(smp_processor_id(), non_isolated_cpus);
  5894. unlock_cpu_hotplug();
  5895. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5896. hotcpu_notifier(update_sched_domains, 0);
  5897. /* Move init over to a non-isolated CPU */
  5898. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5899. BUG();
  5900. }
  5901. #else
  5902. void __init sched_init_smp(void)
  5903. {
  5904. }
  5905. #endif /* CONFIG_SMP */
  5906. int in_sched_functions(unsigned long addr)
  5907. {
  5908. /* Linker adds these: start and end of __sched functions */
  5909. extern char __sched_text_start[], __sched_text_end[];
  5910. return in_lock_functions(addr) ||
  5911. (addr >= (unsigned long)__sched_text_start
  5912. && addr < (unsigned long)__sched_text_end);
  5913. }
  5914. void __init sched_init(void)
  5915. {
  5916. int i, j, k;
  5917. for_each_possible_cpu(i) {
  5918. struct prio_array *array;
  5919. struct rq *rq;
  5920. rq = cpu_rq(i);
  5921. spin_lock_init(&rq->lock);
  5922. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5923. rq->nr_running = 0;
  5924. rq->active = rq->arrays;
  5925. rq->expired = rq->arrays + 1;
  5926. rq->best_expired_prio = MAX_PRIO;
  5927. #ifdef CONFIG_SMP
  5928. rq->sd = NULL;
  5929. for (j = 1; j < 3; j++)
  5930. rq->cpu_load[j] = 0;
  5931. rq->active_balance = 0;
  5932. rq->push_cpu = 0;
  5933. rq->cpu = i;
  5934. rq->migration_thread = NULL;
  5935. INIT_LIST_HEAD(&rq->migration_queue);
  5936. #endif
  5937. atomic_set(&rq->nr_iowait, 0);
  5938. for (j = 0; j < 2; j++) {
  5939. array = rq->arrays + j;
  5940. for (k = 0; k < MAX_PRIO; k++) {
  5941. INIT_LIST_HEAD(array->queue + k);
  5942. __clear_bit(k, array->bitmap);
  5943. }
  5944. // delimiter for bitsearch
  5945. __set_bit(MAX_PRIO, array->bitmap);
  5946. }
  5947. }
  5948. set_load_weight(&init_task);
  5949. #ifdef CONFIG_RT_MUTEXES
  5950. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5951. #endif
  5952. /*
  5953. * The boot idle thread does lazy MMU switching as well:
  5954. */
  5955. atomic_inc(&init_mm.mm_count);
  5956. enter_lazy_tlb(&init_mm, current);
  5957. /*
  5958. * Make us the idle thread. Technically, schedule() should not be
  5959. * called from this thread, however somewhere below it might be,
  5960. * but because we are the idle thread, we just pick up running again
  5961. * when this runqueue becomes "idle".
  5962. */
  5963. init_idle(current, smp_processor_id());
  5964. }
  5965. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5966. void __might_sleep(char *file, int line)
  5967. {
  5968. #ifdef in_atomic
  5969. static unsigned long prev_jiffy; /* ratelimiting */
  5970. if ((in_atomic() || irqs_disabled()) &&
  5971. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5972. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5973. return;
  5974. prev_jiffy = jiffies;
  5975. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5976. " context at %s:%d\n", file, line);
  5977. printk("in_atomic():%d, irqs_disabled():%d\n",
  5978. in_atomic(), irqs_disabled());
  5979. debug_show_held_locks(current);
  5980. dump_stack();
  5981. }
  5982. #endif
  5983. }
  5984. EXPORT_SYMBOL(__might_sleep);
  5985. #endif
  5986. #ifdef CONFIG_MAGIC_SYSRQ
  5987. void normalize_rt_tasks(void)
  5988. {
  5989. struct prio_array *array;
  5990. struct task_struct *p;
  5991. unsigned long flags;
  5992. struct rq *rq;
  5993. read_lock_irq(&tasklist_lock);
  5994. for_each_process(p) {
  5995. if (!rt_task(p))
  5996. continue;
  5997. spin_lock_irqsave(&p->pi_lock, flags);
  5998. rq = __task_rq_lock(p);
  5999. array = p->array;
  6000. if (array)
  6001. deactivate_task(p, task_rq(p));
  6002. __setscheduler(p, SCHED_NORMAL, 0);
  6003. if (array) {
  6004. __activate_task(p, task_rq(p));
  6005. resched_task(rq->curr);
  6006. }
  6007. __task_rq_unlock(rq);
  6008. spin_unlock_irqrestore(&p->pi_lock, flags);
  6009. }
  6010. read_unlock_irq(&tasklist_lock);
  6011. }
  6012. #endif /* CONFIG_MAGIC_SYSRQ */
  6013. #ifdef CONFIG_IA64
  6014. /*
  6015. * These functions are only useful for the IA64 MCA handling.
  6016. *
  6017. * They can only be called when the whole system has been
  6018. * stopped - every CPU needs to be quiescent, and no scheduling
  6019. * activity can take place. Using them for anything else would
  6020. * be a serious bug, and as a result, they aren't even visible
  6021. * under any other configuration.
  6022. */
  6023. /**
  6024. * curr_task - return the current task for a given cpu.
  6025. * @cpu: the processor in question.
  6026. *
  6027. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6028. */
  6029. struct task_struct *curr_task(int cpu)
  6030. {
  6031. return cpu_curr(cpu);
  6032. }
  6033. /**
  6034. * set_curr_task - set the current task for a given cpu.
  6035. * @cpu: the processor in question.
  6036. * @p: the task pointer to set.
  6037. *
  6038. * Description: This function must only be used when non-maskable interrupts
  6039. * are serviced on a separate stack. It allows the architecture to switch the
  6040. * notion of the current task on a cpu in a non-blocking manner. This function
  6041. * must be called with all CPU's synchronized, and interrupts disabled, the
  6042. * and caller must save the original value of the current task (see
  6043. * curr_task() above) and restore that value before reenabling interrupts and
  6044. * re-starting the system.
  6045. *
  6046. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6047. */
  6048. void set_curr_task(int cpu, struct task_struct *p)
  6049. {
  6050. cpu_curr(cpu) = p;
  6051. }
  6052. #endif