pxa2xx_spi.c 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487
  1. /*
  2. * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. */
  18. #include <linux/init.h>
  19. #include <linux/module.h>
  20. #include <linux/device.h>
  21. #include <linux/ioport.h>
  22. #include <linux/errno.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/spi/spi.h>
  27. #include <linux/workqueue.h>
  28. #include <linux/errno.h>
  29. #include <linux/delay.h>
  30. #include <asm/io.h>
  31. #include <asm/irq.h>
  32. #include <asm/hardware.h>
  33. #include <asm/delay.h>
  34. #include <asm/dma.h>
  35. #include <asm/arch/hardware.h>
  36. #include <asm/arch/pxa-regs.h>
  37. #include <asm/arch/pxa2xx_spi.h>
  38. MODULE_AUTHOR("Stephen Street");
  39. MODULE_DESCRIPTION("PXA2xx SSP SPI Contoller");
  40. MODULE_LICENSE("GPL");
  41. #define MAX_BUSES 3
  42. #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
  43. #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
  44. #define IS_DMA_ALIGNED(x) (((u32)(x)&0x07)==0)
  45. #define DEFINE_SSP_REG(reg, off) \
  46. static inline u32 read_##reg(void *p) { return __raw_readl(p + (off)); } \
  47. static inline void write_##reg(u32 v, void *p) { __raw_writel(v, p + (off)); }
  48. DEFINE_SSP_REG(SSCR0, 0x00)
  49. DEFINE_SSP_REG(SSCR1, 0x04)
  50. DEFINE_SSP_REG(SSSR, 0x08)
  51. DEFINE_SSP_REG(SSITR, 0x0c)
  52. DEFINE_SSP_REG(SSDR, 0x10)
  53. DEFINE_SSP_REG(SSTO, 0x28)
  54. DEFINE_SSP_REG(SSPSP, 0x2c)
  55. #define START_STATE ((void*)0)
  56. #define RUNNING_STATE ((void*)1)
  57. #define DONE_STATE ((void*)2)
  58. #define ERROR_STATE ((void*)-1)
  59. #define QUEUE_RUNNING 0
  60. #define QUEUE_STOPPED 1
  61. struct driver_data {
  62. /* Driver model hookup */
  63. struct platform_device *pdev;
  64. /* SPI framework hookup */
  65. enum pxa_ssp_type ssp_type;
  66. struct spi_master *master;
  67. /* PXA hookup */
  68. struct pxa2xx_spi_master *master_info;
  69. /* DMA setup stuff */
  70. int rx_channel;
  71. int tx_channel;
  72. u32 *null_dma_buf;
  73. /* SSP register addresses */
  74. void *ioaddr;
  75. u32 ssdr_physical;
  76. /* SSP masks*/
  77. u32 dma_cr1;
  78. u32 int_cr1;
  79. u32 clear_sr;
  80. u32 mask_sr;
  81. /* Driver message queue */
  82. struct workqueue_struct *workqueue;
  83. struct work_struct pump_messages;
  84. spinlock_t lock;
  85. struct list_head queue;
  86. int busy;
  87. int run;
  88. /* Message Transfer pump */
  89. struct tasklet_struct pump_transfers;
  90. /* Current message transfer state info */
  91. struct spi_message* cur_msg;
  92. struct spi_transfer* cur_transfer;
  93. struct chip_data *cur_chip;
  94. size_t len;
  95. void *tx;
  96. void *tx_end;
  97. void *rx;
  98. void *rx_end;
  99. int dma_mapped;
  100. dma_addr_t rx_dma;
  101. dma_addr_t tx_dma;
  102. size_t rx_map_len;
  103. size_t tx_map_len;
  104. u8 n_bytes;
  105. u32 dma_width;
  106. int cs_change;
  107. void (*write)(struct driver_data *drv_data);
  108. void (*read)(struct driver_data *drv_data);
  109. irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
  110. void (*cs_control)(u32 command);
  111. };
  112. struct chip_data {
  113. u32 cr0;
  114. u32 cr1;
  115. u32 to;
  116. u32 psp;
  117. u32 timeout;
  118. u8 n_bytes;
  119. u32 dma_width;
  120. u32 dma_burst_size;
  121. u32 threshold;
  122. u32 dma_threshold;
  123. u8 enable_dma;
  124. u8 bits_per_word;
  125. u32 speed_hz;
  126. void (*write)(struct driver_data *drv_data);
  127. void (*read)(struct driver_data *drv_data);
  128. void (*cs_control)(u32 command);
  129. };
  130. static void pump_messages(struct work_struct *work);
  131. static int flush(struct driver_data *drv_data)
  132. {
  133. unsigned long limit = loops_per_jiffy << 1;
  134. void *reg = drv_data->ioaddr;
  135. do {
  136. while (read_SSSR(reg) & SSSR_RNE) {
  137. read_SSDR(reg);
  138. }
  139. } while ((read_SSSR(reg) & SSSR_BSY) && limit--);
  140. write_SSSR(SSSR_ROR, reg);
  141. return limit;
  142. }
  143. static void restore_state(struct driver_data *drv_data)
  144. {
  145. void *reg = drv_data->ioaddr;
  146. /* Clear status and disable clock */
  147. write_SSSR(drv_data->clear_sr, reg);
  148. write_SSCR0(drv_data->cur_chip->cr0 & ~SSCR0_SSE, reg);
  149. /* Load the registers */
  150. write_SSCR1(drv_data->cur_chip->cr1, reg);
  151. write_SSCR0(drv_data->cur_chip->cr0, reg);
  152. if (drv_data->ssp_type != PXA25x_SSP) {
  153. write_SSTO(0, reg);
  154. write_SSPSP(drv_data->cur_chip->psp, reg);
  155. }
  156. }
  157. static void null_cs_control(u32 command)
  158. {
  159. }
  160. static void null_writer(struct driver_data *drv_data)
  161. {
  162. void *reg = drv_data->ioaddr;
  163. u8 n_bytes = drv_data->n_bytes;
  164. while ((read_SSSR(reg) & SSSR_TNF)
  165. && (drv_data->tx < drv_data->tx_end)) {
  166. write_SSDR(0, reg);
  167. drv_data->tx += n_bytes;
  168. }
  169. }
  170. static void null_reader(struct driver_data *drv_data)
  171. {
  172. void *reg = drv_data->ioaddr;
  173. u8 n_bytes = drv_data->n_bytes;
  174. while ((read_SSSR(reg) & SSSR_RNE)
  175. && (drv_data->rx < drv_data->rx_end)) {
  176. read_SSDR(reg);
  177. drv_data->rx += n_bytes;
  178. }
  179. }
  180. static void u8_writer(struct driver_data *drv_data)
  181. {
  182. void *reg = drv_data->ioaddr;
  183. while ((read_SSSR(reg) & SSSR_TNF)
  184. && (drv_data->tx < drv_data->tx_end)) {
  185. write_SSDR(*(u8 *)(drv_data->tx), reg);
  186. ++drv_data->tx;
  187. }
  188. }
  189. static void u8_reader(struct driver_data *drv_data)
  190. {
  191. void *reg = drv_data->ioaddr;
  192. while ((read_SSSR(reg) & SSSR_RNE)
  193. && (drv_data->rx < drv_data->rx_end)) {
  194. *(u8 *)(drv_data->rx) = read_SSDR(reg);
  195. ++drv_data->rx;
  196. }
  197. }
  198. static void u16_writer(struct driver_data *drv_data)
  199. {
  200. void *reg = drv_data->ioaddr;
  201. while ((read_SSSR(reg) & SSSR_TNF)
  202. && (drv_data->tx < drv_data->tx_end)) {
  203. write_SSDR(*(u16 *)(drv_data->tx), reg);
  204. drv_data->tx += 2;
  205. }
  206. }
  207. static void u16_reader(struct driver_data *drv_data)
  208. {
  209. void *reg = drv_data->ioaddr;
  210. while ((read_SSSR(reg) & SSSR_RNE)
  211. && (drv_data->rx < drv_data->rx_end)) {
  212. *(u16 *)(drv_data->rx) = read_SSDR(reg);
  213. drv_data->rx += 2;
  214. }
  215. }
  216. static void u32_writer(struct driver_data *drv_data)
  217. {
  218. void *reg = drv_data->ioaddr;
  219. while ((read_SSSR(reg) & SSSR_TNF)
  220. && (drv_data->tx < drv_data->tx_end)) {
  221. write_SSDR(*(u32 *)(drv_data->tx), reg);
  222. drv_data->tx += 4;
  223. }
  224. }
  225. static void u32_reader(struct driver_data *drv_data)
  226. {
  227. void *reg = drv_data->ioaddr;
  228. while ((read_SSSR(reg) & SSSR_RNE)
  229. && (drv_data->rx < drv_data->rx_end)) {
  230. *(u32 *)(drv_data->rx) = read_SSDR(reg);
  231. drv_data->rx += 4;
  232. }
  233. }
  234. static void *next_transfer(struct driver_data *drv_data)
  235. {
  236. struct spi_message *msg = drv_data->cur_msg;
  237. struct spi_transfer *trans = drv_data->cur_transfer;
  238. /* Move to next transfer */
  239. if (trans->transfer_list.next != &msg->transfers) {
  240. drv_data->cur_transfer =
  241. list_entry(trans->transfer_list.next,
  242. struct spi_transfer,
  243. transfer_list);
  244. return RUNNING_STATE;
  245. } else
  246. return DONE_STATE;
  247. }
  248. static int map_dma_buffers(struct driver_data *drv_data)
  249. {
  250. struct spi_message *msg = drv_data->cur_msg;
  251. struct device *dev = &msg->spi->dev;
  252. if (!drv_data->cur_chip->enable_dma)
  253. return 0;
  254. if (msg->is_dma_mapped)
  255. return drv_data->rx_dma && drv_data->tx_dma;
  256. if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
  257. return 0;
  258. /* Modify setup if rx buffer is null */
  259. if (drv_data->rx == NULL) {
  260. *drv_data->null_dma_buf = 0;
  261. drv_data->rx = drv_data->null_dma_buf;
  262. drv_data->rx_map_len = 4;
  263. } else
  264. drv_data->rx_map_len = drv_data->len;
  265. /* Modify setup if tx buffer is null */
  266. if (drv_data->tx == NULL) {
  267. *drv_data->null_dma_buf = 0;
  268. drv_data->tx = drv_data->null_dma_buf;
  269. drv_data->tx_map_len = 4;
  270. } else
  271. drv_data->tx_map_len = drv_data->len;
  272. /* Stream map the rx buffer */
  273. drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
  274. drv_data->rx_map_len,
  275. DMA_FROM_DEVICE);
  276. if (dma_mapping_error(drv_data->rx_dma))
  277. return 0;
  278. /* Stream map the tx buffer */
  279. drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
  280. drv_data->tx_map_len,
  281. DMA_TO_DEVICE);
  282. if (dma_mapping_error(drv_data->tx_dma)) {
  283. dma_unmap_single(dev, drv_data->rx_dma,
  284. drv_data->rx_map_len, DMA_FROM_DEVICE);
  285. return 0;
  286. }
  287. return 1;
  288. }
  289. static void unmap_dma_buffers(struct driver_data *drv_data)
  290. {
  291. struct device *dev;
  292. if (!drv_data->dma_mapped)
  293. return;
  294. if (!drv_data->cur_msg->is_dma_mapped) {
  295. dev = &drv_data->cur_msg->spi->dev;
  296. dma_unmap_single(dev, drv_data->rx_dma,
  297. drv_data->rx_map_len, DMA_FROM_DEVICE);
  298. dma_unmap_single(dev, drv_data->tx_dma,
  299. drv_data->tx_map_len, DMA_TO_DEVICE);
  300. }
  301. drv_data->dma_mapped = 0;
  302. }
  303. /* caller already set message->status; dma and pio irqs are blocked */
  304. static void giveback(struct driver_data *drv_data)
  305. {
  306. struct spi_transfer* last_transfer;
  307. unsigned long flags;
  308. struct spi_message *msg;
  309. spin_lock_irqsave(&drv_data->lock, flags);
  310. msg = drv_data->cur_msg;
  311. drv_data->cur_msg = NULL;
  312. drv_data->cur_transfer = NULL;
  313. drv_data->cur_chip = NULL;
  314. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  315. spin_unlock_irqrestore(&drv_data->lock, flags);
  316. last_transfer = list_entry(msg->transfers.prev,
  317. struct spi_transfer,
  318. transfer_list);
  319. if (!last_transfer->cs_change)
  320. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  321. msg->state = NULL;
  322. if (msg->complete)
  323. msg->complete(msg->context);
  324. }
  325. static int wait_ssp_rx_stall(void *ioaddr)
  326. {
  327. unsigned long limit = loops_per_jiffy << 1;
  328. while ((read_SSSR(ioaddr) & SSSR_BSY) && limit--)
  329. cpu_relax();
  330. return limit;
  331. }
  332. static int wait_dma_channel_stop(int channel)
  333. {
  334. unsigned long limit = loops_per_jiffy << 1;
  335. while (!(DCSR(channel) & DCSR_STOPSTATE) && limit--)
  336. cpu_relax();
  337. return limit;
  338. }
  339. static void dma_handler(int channel, void *data)
  340. {
  341. struct driver_data *drv_data = data;
  342. struct spi_message *msg = drv_data->cur_msg;
  343. void *reg = drv_data->ioaddr;
  344. u32 irq_status = DCSR(channel) & DMA_INT_MASK;
  345. u32 trailing_sssr = 0;
  346. if (irq_status & DCSR_BUSERR) {
  347. /* Disable interrupts, clear status and reset DMA */
  348. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  349. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  350. if (drv_data->ssp_type != PXA25x_SSP)
  351. write_SSTO(0, reg);
  352. write_SSSR(drv_data->clear_sr, reg);
  353. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  354. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  355. if (flush(drv_data) == 0)
  356. dev_err(&drv_data->pdev->dev,
  357. "dma_handler: flush fail\n");
  358. unmap_dma_buffers(drv_data);
  359. if (channel == drv_data->tx_channel)
  360. dev_err(&drv_data->pdev->dev,
  361. "dma_handler: bad bus address on "
  362. "tx channel %d, source %x target = %x\n",
  363. channel, DSADR(channel), DTADR(channel));
  364. else
  365. dev_err(&drv_data->pdev->dev,
  366. "dma_handler: bad bus address on "
  367. "rx channel %d, source %x target = %x\n",
  368. channel, DSADR(channel), DTADR(channel));
  369. msg->state = ERROR_STATE;
  370. tasklet_schedule(&drv_data->pump_transfers);
  371. }
  372. /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
  373. if ((drv_data->ssp_type == PXA25x_SSP)
  374. && (channel == drv_data->tx_channel)
  375. && (irq_status & DCSR_ENDINTR)) {
  376. /* Wait for rx to stall */
  377. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  378. dev_err(&drv_data->pdev->dev,
  379. "dma_handler: ssp rx stall failed\n");
  380. /* Clear and disable interrupts on SSP and DMA channels*/
  381. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  382. write_SSSR(drv_data->clear_sr, reg);
  383. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  384. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  385. if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
  386. dev_err(&drv_data->pdev->dev,
  387. "dma_handler: dma rx channel stop failed\n");
  388. unmap_dma_buffers(drv_data);
  389. /* Read trailing bytes */
  390. /* Calculate number of trailing bytes, read them */
  391. trailing_sssr = read_SSSR(reg);
  392. if ((trailing_sssr & 0xf008) != 0xf000) {
  393. drv_data->rx = drv_data->rx_end -
  394. (((trailing_sssr >> 12) & 0x0f) + 1);
  395. drv_data->read(drv_data);
  396. }
  397. msg->actual_length += drv_data->len;
  398. /* Release chip select if requested, transfer delays are
  399. * handled in pump_transfers */
  400. if (drv_data->cs_change)
  401. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  402. /* Move to next transfer */
  403. msg->state = next_transfer(drv_data);
  404. /* Schedule transfer tasklet */
  405. tasklet_schedule(&drv_data->pump_transfers);
  406. }
  407. }
  408. static irqreturn_t dma_transfer(struct driver_data *drv_data)
  409. {
  410. u32 irq_status;
  411. u32 trailing_sssr = 0;
  412. struct spi_message *msg = drv_data->cur_msg;
  413. void *reg = drv_data->ioaddr;
  414. irq_status = read_SSSR(reg) & drv_data->mask_sr;
  415. if (irq_status & SSSR_ROR) {
  416. /* Clear and disable interrupts on SSP and DMA channels*/
  417. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  418. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  419. if (drv_data->ssp_type != PXA25x_SSP)
  420. write_SSTO(0, reg);
  421. write_SSSR(drv_data->clear_sr, reg);
  422. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  423. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  424. unmap_dma_buffers(drv_data);
  425. if (flush(drv_data) == 0)
  426. dev_err(&drv_data->pdev->dev,
  427. "dma_transfer: flush fail\n");
  428. dev_warn(&drv_data->pdev->dev, "dma_transfer: fifo overun\n");
  429. drv_data->cur_msg->state = ERROR_STATE;
  430. tasklet_schedule(&drv_data->pump_transfers);
  431. return IRQ_HANDLED;
  432. }
  433. /* Check for false positive timeout */
  434. if ((irq_status & SSSR_TINT) && DCSR(drv_data->tx_channel) & DCSR_RUN) {
  435. write_SSSR(SSSR_TINT, reg);
  436. return IRQ_HANDLED;
  437. }
  438. if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
  439. /* Clear and disable interrupts on SSP and DMA channels*/
  440. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  441. if (drv_data->ssp_type != PXA25x_SSP)
  442. write_SSTO(0, reg);
  443. write_SSSR(drv_data->clear_sr, reg);
  444. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  445. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  446. if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
  447. dev_err(&drv_data->pdev->dev,
  448. "dma_transfer: dma rx channel stop failed\n");
  449. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  450. dev_err(&drv_data->pdev->dev,
  451. "dma_transfer: ssp rx stall failed\n");
  452. unmap_dma_buffers(drv_data);
  453. /* Calculate number of trailing bytes, read them */
  454. trailing_sssr = read_SSSR(reg);
  455. if ((trailing_sssr & 0xf008) != 0xf000) {
  456. drv_data->rx = drv_data->rx_end -
  457. (((trailing_sssr >> 12) & 0x0f) + 1);
  458. drv_data->read(drv_data);
  459. }
  460. msg->actual_length += drv_data->len;
  461. /* Release chip select if requested, transfer delays are
  462. * handled in pump_transfers */
  463. if (drv_data->cs_change)
  464. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  465. /* Move to next transfer */
  466. msg->state = next_transfer(drv_data);
  467. /* Schedule transfer tasklet */
  468. tasklet_schedule(&drv_data->pump_transfers);
  469. return IRQ_HANDLED;
  470. }
  471. /* Opps problem detected */
  472. return IRQ_NONE;
  473. }
  474. static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
  475. {
  476. struct spi_message *msg = drv_data->cur_msg;
  477. void *reg = drv_data->ioaddr;
  478. unsigned long limit = loops_per_jiffy << 1;
  479. u32 irq_status;
  480. u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
  481. drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
  482. while ((irq_status = read_SSSR(reg) & irq_mask)) {
  483. if (irq_status & SSSR_ROR) {
  484. /* Clear and disable interrupts */
  485. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  486. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  487. if (drv_data->ssp_type != PXA25x_SSP)
  488. write_SSTO(0, reg);
  489. write_SSSR(drv_data->clear_sr, reg);
  490. if (flush(drv_data) == 0)
  491. dev_err(&drv_data->pdev->dev,
  492. "interrupt_transfer: flush fail\n");
  493. /* Stop the SSP */
  494. dev_warn(&drv_data->pdev->dev,
  495. "interrupt_transfer: fifo overun\n");
  496. msg->state = ERROR_STATE;
  497. tasklet_schedule(&drv_data->pump_transfers);
  498. return IRQ_HANDLED;
  499. }
  500. /* Look for false positive timeout */
  501. if ((irq_status & SSSR_TINT)
  502. && (drv_data->rx < drv_data->rx_end))
  503. write_SSSR(SSSR_TINT, reg);
  504. /* Pump data */
  505. drv_data->read(drv_data);
  506. drv_data->write(drv_data);
  507. if (drv_data->tx == drv_data->tx_end) {
  508. /* Disable tx interrupt */
  509. write_SSCR1(read_SSCR1(reg) & ~SSCR1_TIE, reg);
  510. irq_mask = drv_data->mask_sr & ~SSSR_TFS;
  511. /* PXA25x_SSP has no timeout, read trailing bytes */
  512. if (drv_data->ssp_type == PXA25x_SSP) {
  513. while ((read_SSSR(reg) & SSSR_BSY) && limit--)
  514. drv_data->read(drv_data);
  515. if (limit == 0)
  516. dev_err(&drv_data->pdev->dev,
  517. "interrupt_transfer: "
  518. "trailing byte read failed\n");
  519. }
  520. }
  521. if ((irq_status & SSSR_TINT)
  522. || (drv_data->rx == drv_data->rx_end)) {
  523. /* Clear timeout */
  524. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  525. if (drv_data->ssp_type != PXA25x_SSP)
  526. write_SSTO(0, reg);
  527. write_SSSR(drv_data->clear_sr, reg);
  528. /* Update total byte transfered */
  529. msg->actual_length += drv_data->len;
  530. /* Release chip select if requested, transfer delays are
  531. * handled in pump_transfers */
  532. if (drv_data->cs_change)
  533. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  534. /* Move to next transfer */
  535. msg->state = next_transfer(drv_data);
  536. /* Schedule transfer tasklet */
  537. tasklet_schedule(&drv_data->pump_transfers);
  538. }
  539. }
  540. /* We did something */
  541. return IRQ_HANDLED;
  542. }
  543. static irqreturn_t ssp_int(int irq, void *dev_id)
  544. {
  545. struct driver_data *drv_data = dev_id;
  546. void *reg = drv_data->ioaddr;
  547. if (!drv_data->cur_msg) {
  548. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  549. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  550. if (drv_data->ssp_type != PXA25x_SSP)
  551. write_SSTO(0, reg);
  552. write_SSSR(drv_data->clear_sr, reg);
  553. dev_err(&drv_data->pdev->dev, "bad message state "
  554. "in interrupt handler");
  555. /* Never fail */
  556. return IRQ_HANDLED;
  557. }
  558. return drv_data->transfer_handler(drv_data);
  559. }
  560. static void pump_transfers(unsigned long data)
  561. {
  562. struct driver_data *drv_data = (struct driver_data *)data;
  563. struct spi_message *message = NULL;
  564. struct spi_transfer *transfer = NULL;
  565. struct spi_transfer *previous = NULL;
  566. struct chip_data *chip = NULL;
  567. void *reg = drv_data->ioaddr;
  568. u32 clk_div = 0;
  569. u8 bits = 0;
  570. u32 speed = 0;
  571. u32 cr0;
  572. /* Get current state information */
  573. message = drv_data->cur_msg;
  574. transfer = drv_data->cur_transfer;
  575. chip = drv_data->cur_chip;
  576. /* Handle for abort */
  577. if (message->state == ERROR_STATE) {
  578. message->status = -EIO;
  579. giveback(drv_data);
  580. return;
  581. }
  582. /* Handle end of message */
  583. if (message->state == DONE_STATE) {
  584. message->status = 0;
  585. giveback(drv_data);
  586. return;
  587. }
  588. /* Delay if requested at end of transfer*/
  589. if (message->state == RUNNING_STATE) {
  590. previous = list_entry(transfer->transfer_list.prev,
  591. struct spi_transfer,
  592. transfer_list);
  593. if (previous->delay_usecs)
  594. udelay(previous->delay_usecs);
  595. }
  596. /* Setup the transfer state based on the type of transfer */
  597. if (flush(drv_data) == 0) {
  598. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  599. message->status = -EIO;
  600. giveback(drv_data);
  601. return;
  602. }
  603. drv_data->n_bytes = chip->n_bytes;
  604. drv_data->dma_width = chip->dma_width;
  605. drv_data->cs_control = chip->cs_control;
  606. drv_data->tx = (void *)transfer->tx_buf;
  607. drv_data->tx_end = drv_data->tx + transfer->len;
  608. drv_data->rx = transfer->rx_buf;
  609. drv_data->rx_end = drv_data->rx + transfer->len;
  610. drv_data->rx_dma = transfer->rx_dma;
  611. drv_data->tx_dma = transfer->tx_dma;
  612. drv_data->len = transfer->len;
  613. drv_data->write = drv_data->tx ? chip->write : null_writer;
  614. drv_data->read = drv_data->rx ? chip->read : null_reader;
  615. drv_data->cs_change = transfer->cs_change;
  616. /* Change speed and bit per word on a per transfer */
  617. if (transfer->speed_hz || transfer->bits_per_word) {
  618. /* Disable clock */
  619. write_SSCR0(chip->cr0 & ~SSCR0_SSE, reg);
  620. cr0 = chip->cr0;
  621. bits = chip->bits_per_word;
  622. speed = chip->speed_hz;
  623. if (transfer->speed_hz)
  624. speed = transfer->speed_hz;
  625. if (transfer->bits_per_word)
  626. bits = transfer->bits_per_word;
  627. if (reg == SSP1_VIRT)
  628. clk_div = SSP1_SerClkDiv(speed);
  629. else if (reg == SSP2_VIRT)
  630. clk_div = SSP2_SerClkDiv(speed);
  631. else if (reg == SSP3_VIRT)
  632. clk_div = SSP3_SerClkDiv(speed);
  633. if (bits <= 8) {
  634. drv_data->n_bytes = 1;
  635. drv_data->dma_width = DCMD_WIDTH1;
  636. drv_data->read = drv_data->read != null_reader ?
  637. u8_reader : null_reader;
  638. drv_data->write = drv_data->write != null_writer ?
  639. u8_writer : null_writer;
  640. } else if (bits <= 16) {
  641. drv_data->n_bytes = 2;
  642. drv_data->dma_width = DCMD_WIDTH2;
  643. drv_data->read = drv_data->read != null_reader ?
  644. u16_reader : null_reader;
  645. drv_data->write = drv_data->write != null_writer ?
  646. u16_writer : null_writer;
  647. } else if (bits <= 32) {
  648. drv_data->n_bytes = 4;
  649. drv_data->dma_width = DCMD_WIDTH4;
  650. drv_data->read = drv_data->read != null_reader ?
  651. u32_reader : null_reader;
  652. drv_data->write = drv_data->write != null_writer ?
  653. u32_writer : null_writer;
  654. }
  655. cr0 = clk_div
  656. | SSCR0_Motorola
  657. | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
  658. | SSCR0_SSE
  659. | (bits > 16 ? SSCR0_EDSS : 0);
  660. /* Start it back up */
  661. write_SSCR0(cr0, reg);
  662. }
  663. message->state = RUNNING_STATE;
  664. /* Try to map dma buffer and do a dma transfer if successful */
  665. if ((drv_data->dma_mapped = map_dma_buffers(drv_data))) {
  666. /* Ensure we have the correct interrupt handler */
  667. drv_data->transfer_handler = dma_transfer;
  668. /* Setup rx DMA Channel */
  669. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  670. DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
  671. DTADR(drv_data->rx_channel) = drv_data->rx_dma;
  672. if (drv_data->rx == drv_data->null_dma_buf)
  673. /* No target address increment */
  674. DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
  675. | drv_data->dma_width
  676. | chip->dma_burst_size
  677. | drv_data->len;
  678. else
  679. DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
  680. | DCMD_FLOWSRC
  681. | drv_data->dma_width
  682. | chip->dma_burst_size
  683. | drv_data->len;
  684. /* Setup tx DMA Channel */
  685. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  686. DSADR(drv_data->tx_channel) = drv_data->tx_dma;
  687. DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
  688. if (drv_data->tx == drv_data->null_dma_buf)
  689. /* No source address increment */
  690. DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
  691. | drv_data->dma_width
  692. | chip->dma_burst_size
  693. | drv_data->len;
  694. else
  695. DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
  696. | DCMD_FLOWTRG
  697. | drv_data->dma_width
  698. | chip->dma_burst_size
  699. | drv_data->len;
  700. /* Enable dma end irqs on SSP to detect end of transfer */
  701. if (drv_data->ssp_type == PXA25x_SSP)
  702. DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
  703. /* Fix me, need to handle cs polarity */
  704. drv_data->cs_control(PXA2XX_CS_ASSERT);
  705. /* Go baby, go */
  706. write_SSSR(drv_data->clear_sr, reg);
  707. DCSR(drv_data->rx_channel) |= DCSR_RUN;
  708. DCSR(drv_data->tx_channel) |= DCSR_RUN;
  709. if (drv_data->ssp_type != PXA25x_SSP)
  710. write_SSTO(chip->timeout, reg);
  711. write_SSCR1(chip->cr1
  712. | chip->dma_threshold
  713. | drv_data->dma_cr1,
  714. reg);
  715. } else {
  716. /* Ensure we have the correct interrupt handler */
  717. drv_data->transfer_handler = interrupt_transfer;
  718. /* Fix me, need to handle cs polarity */
  719. drv_data->cs_control(PXA2XX_CS_ASSERT);
  720. /* Go baby, go */
  721. write_SSSR(drv_data->clear_sr, reg);
  722. if (drv_data->ssp_type != PXA25x_SSP)
  723. write_SSTO(chip->timeout, reg);
  724. write_SSCR1(chip->cr1
  725. | chip->threshold
  726. | drv_data->int_cr1,
  727. reg);
  728. }
  729. }
  730. static void pump_messages(struct work_struct *work)
  731. {
  732. struct driver_data *drv_data =
  733. container_of(work, struct driver_data, pump_messages);
  734. unsigned long flags;
  735. /* Lock queue and check for queue work */
  736. spin_lock_irqsave(&drv_data->lock, flags);
  737. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  738. drv_data->busy = 0;
  739. spin_unlock_irqrestore(&drv_data->lock, flags);
  740. return;
  741. }
  742. /* Make sure we are not already running a message */
  743. if (drv_data->cur_msg) {
  744. spin_unlock_irqrestore(&drv_data->lock, flags);
  745. return;
  746. }
  747. /* Extract head of queue */
  748. drv_data->cur_msg = list_entry(drv_data->queue.next,
  749. struct spi_message, queue);
  750. list_del_init(&drv_data->cur_msg->queue);
  751. /* Initial message state*/
  752. drv_data->cur_msg->state = START_STATE;
  753. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  754. struct spi_transfer,
  755. transfer_list);
  756. /* Setup the SSP using the per chip configuration */
  757. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  758. restore_state(drv_data);
  759. /* Mark as busy and launch transfers */
  760. tasklet_schedule(&drv_data->pump_transfers);
  761. drv_data->busy = 1;
  762. spin_unlock_irqrestore(&drv_data->lock, flags);
  763. }
  764. static int transfer(struct spi_device *spi, struct spi_message *msg)
  765. {
  766. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  767. unsigned long flags;
  768. spin_lock_irqsave(&drv_data->lock, flags);
  769. if (drv_data->run == QUEUE_STOPPED) {
  770. spin_unlock_irqrestore(&drv_data->lock, flags);
  771. return -ESHUTDOWN;
  772. }
  773. msg->actual_length = 0;
  774. msg->status = -EINPROGRESS;
  775. msg->state = START_STATE;
  776. list_add_tail(&msg->queue, &drv_data->queue);
  777. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  778. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  779. spin_unlock_irqrestore(&drv_data->lock, flags);
  780. return 0;
  781. }
  782. static int setup(struct spi_device *spi)
  783. {
  784. struct pxa2xx_spi_chip *chip_info = NULL;
  785. struct chip_data *chip;
  786. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  787. unsigned int clk_div;
  788. if (!spi->bits_per_word)
  789. spi->bits_per_word = 8;
  790. if (drv_data->ssp_type != PXA25x_SSP
  791. && (spi->bits_per_word < 4 || spi->bits_per_word > 32))
  792. return -EINVAL;
  793. else if (spi->bits_per_word < 4 || spi->bits_per_word > 16)
  794. return -EINVAL;
  795. /* Only alloc (or use chip_info) on first setup */
  796. chip = spi_get_ctldata(spi);
  797. if (chip == NULL) {
  798. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  799. if (!chip)
  800. return -ENOMEM;
  801. chip->cs_control = null_cs_control;
  802. chip->enable_dma = 0;
  803. chip->timeout = SSP_TIMEOUT(1000);
  804. chip->threshold = SSCR1_RxTresh(1) | SSCR1_TxTresh(1);
  805. chip->dma_burst_size = drv_data->master_info->enable_dma ?
  806. DCMD_BURST8 : 0;
  807. chip_info = spi->controller_data;
  808. }
  809. /* chip_info isn't always needed */
  810. if (chip_info) {
  811. if (chip_info->cs_control)
  812. chip->cs_control = chip_info->cs_control;
  813. chip->timeout = SSP_TIMEOUT(chip_info->timeout_microsecs);
  814. chip->threshold = SSCR1_RxTresh(chip_info->rx_threshold)
  815. | SSCR1_TxTresh(chip_info->tx_threshold);
  816. chip->enable_dma = chip_info->dma_burst_size != 0
  817. && drv_data->master_info->enable_dma;
  818. chip->dma_threshold = 0;
  819. if (chip->enable_dma) {
  820. if (chip_info->dma_burst_size <= 8) {
  821. chip->dma_threshold = SSCR1_RxTresh(8)
  822. | SSCR1_TxTresh(8);
  823. chip->dma_burst_size = DCMD_BURST8;
  824. } else if (chip_info->dma_burst_size <= 16) {
  825. chip->dma_threshold = SSCR1_RxTresh(16)
  826. | SSCR1_TxTresh(16);
  827. chip->dma_burst_size = DCMD_BURST16;
  828. } else {
  829. chip->dma_threshold = SSCR1_RxTresh(32)
  830. | SSCR1_TxTresh(32);
  831. chip->dma_burst_size = DCMD_BURST32;
  832. }
  833. }
  834. if (chip_info->enable_loopback)
  835. chip->cr1 = SSCR1_LBM;
  836. }
  837. if (drv_data->ioaddr == SSP1_VIRT)
  838. clk_div = SSP1_SerClkDiv(spi->max_speed_hz);
  839. else if (drv_data->ioaddr == SSP2_VIRT)
  840. clk_div = SSP2_SerClkDiv(spi->max_speed_hz);
  841. else if (drv_data->ioaddr == SSP3_VIRT)
  842. clk_div = SSP3_SerClkDiv(spi->max_speed_hz);
  843. else
  844. return -ENODEV;
  845. chip->speed_hz = spi->max_speed_hz;
  846. chip->cr0 = clk_div
  847. | SSCR0_Motorola
  848. | SSCR0_DataSize(spi->bits_per_word > 16 ?
  849. spi->bits_per_word - 16 : spi->bits_per_word)
  850. | SSCR0_SSE
  851. | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
  852. chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) << 4)
  853. | (((spi->mode & SPI_CPOL) != 0) << 3);
  854. /* NOTE: PXA25x_SSP _could_ use external clocking ... */
  855. if (drv_data->ssp_type != PXA25x_SSP)
  856. dev_dbg(&spi->dev, "%d bits/word, %d Hz, mode %d\n",
  857. spi->bits_per_word,
  858. (CLOCK_SPEED_HZ)
  859. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  860. spi->mode & 0x3);
  861. else
  862. dev_dbg(&spi->dev, "%d bits/word, %d Hz, mode %d\n",
  863. spi->bits_per_word,
  864. (CLOCK_SPEED_HZ/2)
  865. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  866. spi->mode & 0x3);
  867. if (spi->bits_per_word <= 8) {
  868. chip->n_bytes = 1;
  869. chip->dma_width = DCMD_WIDTH1;
  870. chip->read = u8_reader;
  871. chip->write = u8_writer;
  872. } else if (spi->bits_per_word <= 16) {
  873. chip->n_bytes = 2;
  874. chip->dma_width = DCMD_WIDTH2;
  875. chip->read = u16_reader;
  876. chip->write = u16_writer;
  877. } else if (spi->bits_per_word <= 32) {
  878. chip->cr0 |= SSCR0_EDSS;
  879. chip->n_bytes = 4;
  880. chip->dma_width = DCMD_WIDTH4;
  881. chip->read = u32_reader;
  882. chip->write = u32_writer;
  883. } else {
  884. dev_err(&spi->dev, "invalid wordsize\n");
  885. kfree(chip);
  886. return -ENODEV;
  887. }
  888. chip->bits_per_word = spi->bits_per_word;
  889. spi_set_ctldata(spi, chip);
  890. return 0;
  891. }
  892. static void cleanup(const struct spi_device *spi)
  893. {
  894. struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
  895. kfree(chip);
  896. }
  897. static int init_queue(struct driver_data *drv_data)
  898. {
  899. INIT_LIST_HEAD(&drv_data->queue);
  900. spin_lock_init(&drv_data->lock);
  901. drv_data->run = QUEUE_STOPPED;
  902. drv_data->busy = 0;
  903. tasklet_init(&drv_data->pump_transfers,
  904. pump_transfers, (unsigned long)drv_data);
  905. INIT_WORK(&drv_data->pump_messages, pump_messages);
  906. drv_data->workqueue = create_singlethread_workqueue(
  907. drv_data->master->cdev.dev->bus_id);
  908. if (drv_data->workqueue == NULL)
  909. return -EBUSY;
  910. return 0;
  911. }
  912. static int start_queue(struct driver_data *drv_data)
  913. {
  914. unsigned long flags;
  915. spin_lock_irqsave(&drv_data->lock, flags);
  916. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  917. spin_unlock_irqrestore(&drv_data->lock, flags);
  918. return -EBUSY;
  919. }
  920. drv_data->run = QUEUE_RUNNING;
  921. drv_data->cur_msg = NULL;
  922. drv_data->cur_transfer = NULL;
  923. drv_data->cur_chip = NULL;
  924. spin_unlock_irqrestore(&drv_data->lock, flags);
  925. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  926. return 0;
  927. }
  928. static int stop_queue(struct driver_data *drv_data)
  929. {
  930. unsigned long flags;
  931. unsigned limit = 500;
  932. int status = 0;
  933. spin_lock_irqsave(&drv_data->lock, flags);
  934. /* This is a bit lame, but is optimized for the common execution path.
  935. * A wait_queue on the drv_data->busy could be used, but then the common
  936. * execution path (pump_messages) would be required to call wake_up or
  937. * friends on every SPI message. Do this instead */
  938. drv_data->run = QUEUE_STOPPED;
  939. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  940. spin_unlock_irqrestore(&drv_data->lock, flags);
  941. msleep(10);
  942. spin_lock_irqsave(&drv_data->lock, flags);
  943. }
  944. if (!list_empty(&drv_data->queue) || drv_data->busy)
  945. status = -EBUSY;
  946. spin_unlock_irqrestore(&drv_data->lock, flags);
  947. return status;
  948. }
  949. static int destroy_queue(struct driver_data *drv_data)
  950. {
  951. int status;
  952. status = stop_queue(drv_data);
  953. if (status != 0)
  954. return status;
  955. destroy_workqueue(drv_data->workqueue);
  956. return 0;
  957. }
  958. static int pxa2xx_spi_probe(struct platform_device *pdev)
  959. {
  960. struct device *dev = &pdev->dev;
  961. struct pxa2xx_spi_master *platform_info;
  962. struct spi_master *master;
  963. struct driver_data *drv_data = 0;
  964. struct resource *memory_resource;
  965. int irq;
  966. int status = 0;
  967. platform_info = dev->platform_data;
  968. if (platform_info->ssp_type == SSP_UNDEFINED) {
  969. dev_err(&pdev->dev, "undefined SSP\n");
  970. return -ENODEV;
  971. }
  972. /* Allocate master with space for drv_data and null dma buffer */
  973. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  974. if (!master) {
  975. dev_err(&pdev->dev, "can not alloc spi_master\n");
  976. return -ENOMEM;
  977. }
  978. drv_data = spi_master_get_devdata(master);
  979. drv_data->master = master;
  980. drv_data->master_info = platform_info;
  981. drv_data->pdev = pdev;
  982. master->bus_num = pdev->id;
  983. master->num_chipselect = platform_info->num_chipselect;
  984. master->cleanup = cleanup;
  985. master->setup = setup;
  986. master->transfer = transfer;
  987. drv_data->ssp_type = platform_info->ssp_type;
  988. drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
  989. sizeof(struct driver_data)), 8);
  990. /* Setup register addresses */
  991. memory_resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  992. if (!memory_resource) {
  993. dev_err(&pdev->dev, "memory resources not defined\n");
  994. status = -ENODEV;
  995. goto out_error_master_alloc;
  996. }
  997. drv_data->ioaddr = (void *)io_p2v((unsigned long)(memory_resource->start));
  998. drv_data->ssdr_physical = memory_resource->start + 0x00000010;
  999. if (platform_info->ssp_type == PXA25x_SSP) {
  1000. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
  1001. drv_data->dma_cr1 = 0;
  1002. drv_data->clear_sr = SSSR_ROR;
  1003. drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1004. } else {
  1005. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
  1006. drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
  1007. drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
  1008. drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1009. }
  1010. /* Attach to IRQ */
  1011. irq = platform_get_irq(pdev, 0);
  1012. if (irq < 0) {
  1013. dev_err(&pdev->dev, "irq resource not defined\n");
  1014. status = -ENODEV;
  1015. goto out_error_master_alloc;
  1016. }
  1017. status = request_irq(irq, ssp_int, 0, dev->bus_id, drv_data);
  1018. if (status < 0) {
  1019. dev_err(&pdev->dev, "can not get IRQ\n");
  1020. goto out_error_master_alloc;
  1021. }
  1022. /* Setup DMA if requested */
  1023. drv_data->tx_channel = -1;
  1024. drv_data->rx_channel = -1;
  1025. if (platform_info->enable_dma) {
  1026. /* Get two DMA channels (rx and tx) */
  1027. drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
  1028. DMA_PRIO_HIGH,
  1029. dma_handler,
  1030. drv_data);
  1031. if (drv_data->rx_channel < 0) {
  1032. dev_err(dev, "problem (%d) requesting rx channel\n",
  1033. drv_data->rx_channel);
  1034. status = -ENODEV;
  1035. goto out_error_irq_alloc;
  1036. }
  1037. drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
  1038. DMA_PRIO_MEDIUM,
  1039. dma_handler,
  1040. drv_data);
  1041. if (drv_data->tx_channel < 0) {
  1042. dev_err(dev, "problem (%d) requesting tx channel\n",
  1043. drv_data->tx_channel);
  1044. status = -ENODEV;
  1045. goto out_error_dma_alloc;
  1046. }
  1047. if (drv_data->ioaddr == SSP1_VIRT) {
  1048. DRCMRRXSSDR = DRCMR_MAPVLD
  1049. | drv_data->rx_channel;
  1050. DRCMRTXSSDR = DRCMR_MAPVLD
  1051. | drv_data->tx_channel;
  1052. } else if (drv_data->ioaddr == SSP2_VIRT) {
  1053. DRCMRRXSS2DR = DRCMR_MAPVLD
  1054. | drv_data->rx_channel;
  1055. DRCMRTXSS2DR = DRCMR_MAPVLD
  1056. | drv_data->tx_channel;
  1057. } else if (drv_data->ioaddr == SSP3_VIRT) {
  1058. DRCMRRXSS3DR = DRCMR_MAPVLD
  1059. | drv_data->rx_channel;
  1060. DRCMRTXSS3DR = DRCMR_MAPVLD
  1061. | drv_data->tx_channel;
  1062. } else {
  1063. dev_err(dev, "bad SSP type\n");
  1064. goto out_error_dma_alloc;
  1065. }
  1066. }
  1067. /* Enable SOC clock */
  1068. pxa_set_cken(platform_info->clock_enable, 1);
  1069. /* Load default SSP configuration */
  1070. write_SSCR0(0, drv_data->ioaddr);
  1071. write_SSCR1(SSCR1_RxTresh(4) | SSCR1_TxTresh(12), drv_data->ioaddr);
  1072. write_SSCR0(SSCR0_SerClkDiv(2)
  1073. | SSCR0_Motorola
  1074. | SSCR0_DataSize(8),
  1075. drv_data->ioaddr);
  1076. if (drv_data->ssp_type != PXA25x_SSP)
  1077. write_SSTO(0, drv_data->ioaddr);
  1078. write_SSPSP(0, drv_data->ioaddr);
  1079. /* Initial and start queue */
  1080. status = init_queue(drv_data);
  1081. if (status != 0) {
  1082. dev_err(&pdev->dev, "problem initializing queue\n");
  1083. goto out_error_clock_enabled;
  1084. }
  1085. status = start_queue(drv_data);
  1086. if (status != 0) {
  1087. dev_err(&pdev->dev, "problem starting queue\n");
  1088. goto out_error_clock_enabled;
  1089. }
  1090. /* Register with the SPI framework */
  1091. platform_set_drvdata(pdev, drv_data);
  1092. status = spi_register_master(master);
  1093. if (status != 0) {
  1094. dev_err(&pdev->dev, "problem registering spi master\n");
  1095. goto out_error_queue_alloc;
  1096. }
  1097. return status;
  1098. out_error_queue_alloc:
  1099. destroy_queue(drv_data);
  1100. out_error_clock_enabled:
  1101. pxa_set_cken(platform_info->clock_enable, 0);
  1102. out_error_dma_alloc:
  1103. if (drv_data->tx_channel != -1)
  1104. pxa_free_dma(drv_data->tx_channel);
  1105. if (drv_data->rx_channel != -1)
  1106. pxa_free_dma(drv_data->rx_channel);
  1107. out_error_irq_alloc:
  1108. free_irq(irq, drv_data);
  1109. out_error_master_alloc:
  1110. spi_master_put(master);
  1111. return status;
  1112. }
  1113. static int pxa2xx_spi_remove(struct platform_device *pdev)
  1114. {
  1115. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1116. int irq;
  1117. int status = 0;
  1118. if (!drv_data)
  1119. return 0;
  1120. /* Remove the queue */
  1121. status = destroy_queue(drv_data);
  1122. if (status != 0)
  1123. return status;
  1124. /* Disable the SSP at the peripheral and SOC level */
  1125. write_SSCR0(0, drv_data->ioaddr);
  1126. pxa_set_cken(drv_data->master_info->clock_enable, 0);
  1127. /* Release DMA */
  1128. if (drv_data->master_info->enable_dma) {
  1129. if (drv_data->ioaddr == SSP1_VIRT) {
  1130. DRCMRRXSSDR = 0;
  1131. DRCMRTXSSDR = 0;
  1132. } else if (drv_data->ioaddr == SSP2_VIRT) {
  1133. DRCMRRXSS2DR = 0;
  1134. DRCMRTXSS2DR = 0;
  1135. } else if (drv_data->ioaddr == SSP3_VIRT) {
  1136. DRCMRRXSS3DR = 0;
  1137. DRCMRTXSS3DR = 0;
  1138. }
  1139. pxa_free_dma(drv_data->tx_channel);
  1140. pxa_free_dma(drv_data->rx_channel);
  1141. }
  1142. /* Release IRQ */
  1143. irq = platform_get_irq(pdev, 0);
  1144. if (irq >= 0)
  1145. free_irq(irq, drv_data);
  1146. /* Disconnect from the SPI framework */
  1147. spi_unregister_master(drv_data->master);
  1148. /* Prevent double remove */
  1149. platform_set_drvdata(pdev, NULL);
  1150. return 0;
  1151. }
  1152. static void pxa2xx_spi_shutdown(struct platform_device *pdev)
  1153. {
  1154. int status = 0;
  1155. if ((status = pxa2xx_spi_remove(pdev)) != 0)
  1156. dev_err(&pdev->dev, "shutdown failed with %d\n", status);
  1157. }
  1158. #ifdef CONFIG_PM
  1159. static int suspend_devices(struct device *dev, void *pm_message)
  1160. {
  1161. pm_message_t *state = pm_message;
  1162. if (dev->power.power_state.event != state->event) {
  1163. dev_warn(dev, "pm state does not match request\n");
  1164. return -1;
  1165. }
  1166. return 0;
  1167. }
  1168. static int pxa2xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1169. {
  1170. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1171. int status = 0;
  1172. /* Check all childern for current power state */
  1173. if (device_for_each_child(&pdev->dev, &state, suspend_devices) != 0) {
  1174. dev_warn(&pdev->dev, "suspend aborted\n");
  1175. return -1;
  1176. }
  1177. status = stop_queue(drv_data);
  1178. if (status != 0)
  1179. return status;
  1180. write_SSCR0(0, drv_data->ioaddr);
  1181. pxa_set_cken(drv_data->master_info->clock_enable, 0);
  1182. return 0;
  1183. }
  1184. static int pxa2xx_spi_resume(struct platform_device *pdev)
  1185. {
  1186. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1187. int status = 0;
  1188. /* Enable the SSP clock */
  1189. pxa_set_cken(drv_data->master_info->clock_enable, 1);
  1190. /* Start the queue running */
  1191. status = start_queue(drv_data);
  1192. if (status != 0) {
  1193. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1194. return status;
  1195. }
  1196. return 0;
  1197. }
  1198. #else
  1199. #define pxa2xx_spi_suspend NULL
  1200. #define pxa2xx_spi_resume NULL
  1201. #endif /* CONFIG_PM */
  1202. static struct platform_driver driver = {
  1203. .driver = {
  1204. .name = "pxa2xx-spi",
  1205. .bus = &platform_bus_type,
  1206. .owner = THIS_MODULE,
  1207. },
  1208. .probe = pxa2xx_spi_probe,
  1209. .remove = __devexit_p(pxa2xx_spi_remove),
  1210. .shutdown = pxa2xx_spi_shutdown,
  1211. .suspend = pxa2xx_spi_suspend,
  1212. .resume = pxa2xx_spi_resume,
  1213. };
  1214. static int __init pxa2xx_spi_init(void)
  1215. {
  1216. platform_driver_register(&driver);
  1217. return 0;
  1218. }
  1219. module_init(pxa2xx_spi_init);
  1220. static void __exit pxa2xx_spi_exit(void)
  1221. {
  1222. platform_driver_unregister(&driver);
  1223. }
  1224. module_exit(pxa2xx_spi_exit);