phy_lp.c 65 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849
  1. /*
  2. Broadcom B43 wireless driver
  3. IEEE 802.11g LP-PHY driver
  4. Copyright (c) 2008-2009 Michael Buesch <mb@bu3sch.de>
  5. This program is free software; you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation; either version 2 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program; see the file COPYING. If not, write to
  15. the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
  16. Boston, MA 02110-1301, USA.
  17. */
  18. #include "b43.h"
  19. #include "main.h"
  20. #include "phy_lp.h"
  21. #include "phy_common.h"
  22. #include "tables_lpphy.h"
  23. static inline u16 channel2freq_lp(u8 channel)
  24. {
  25. if (channel < 14)
  26. return (2407 + 5 * channel);
  27. else if (channel == 14)
  28. return 2484;
  29. else if (channel < 184)
  30. return (5000 + 5 * channel);
  31. else
  32. return (4000 + 5 * channel);
  33. }
  34. static unsigned int b43_lpphy_op_get_default_chan(struct b43_wldev *dev)
  35. {
  36. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  37. return 1;
  38. return 36;
  39. }
  40. static int b43_lpphy_op_allocate(struct b43_wldev *dev)
  41. {
  42. struct b43_phy_lp *lpphy;
  43. lpphy = kzalloc(sizeof(*lpphy), GFP_KERNEL);
  44. if (!lpphy)
  45. return -ENOMEM;
  46. dev->phy.lp = lpphy;
  47. return 0;
  48. }
  49. static void b43_lpphy_op_prepare_structs(struct b43_wldev *dev)
  50. {
  51. struct b43_phy *phy = &dev->phy;
  52. struct b43_phy_lp *lpphy = phy->lp;
  53. memset(lpphy, 0, sizeof(*lpphy));
  54. //TODO
  55. }
  56. static void b43_lpphy_op_free(struct b43_wldev *dev)
  57. {
  58. struct b43_phy_lp *lpphy = dev->phy.lp;
  59. kfree(lpphy);
  60. dev->phy.lp = NULL;
  61. }
  62. static void lpphy_read_band_sprom(struct b43_wldev *dev)
  63. {
  64. struct b43_phy_lp *lpphy = dev->phy.lp;
  65. struct ssb_bus *bus = dev->dev->bus;
  66. u16 cckpo, maxpwr;
  67. u32 ofdmpo;
  68. int i;
  69. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  70. lpphy->tx_isolation_med_band = bus->sprom.tri2g;
  71. lpphy->bx_arch = bus->sprom.bxa2g;
  72. lpphy->rx_pwr_offset = bus->sprom.rxpo2g;
  73. lpphy->rssi_vf = bus->sprom.rssismf2g;
  74. lpphy->rssi_vc = bus->sprom.rssismc2g;
  75. lpphy->rssi_gs = bus->sprom.rssisav2g;
  76. lpphy->txpa[0] = bus->sprom.pa0b0;
  77. lpphy->txpa[1] = bus->sprom.pa0b1;
  78. lpphy->txpa[2] = bus->sprom.pa0b2;
  79. maxpwr = bus->sprom.maxpwr_bg;
  80. lpphy->max_tx_pwr_med_band = maxpwr;
  81. cckpo = bus->sprom.cck2gpo;
  82. ofdmpo = bus->sprom.ofdm2gpo;
  83. if (cckpo) {
  84. for (i = 0; i < 4; i++) {
  85. lpphy->tx_max_rate[i] =
  86. maxpwr - (ofdmpo & 0xF) * 2;
  87. ofdmpo >>= 4;
  88. }
  89. ofdmpo = bus->sprom.ofdm2gpo;
  90. for (i = 4; i < 15; i++) {
  91. lpphy->tx_max_rate[i] =
  92. maxpwr - (ofdmpo & 0xF) * 2;
  93. ofdmpo >>= 4;
  94. }
  95. } else {
  96. ofdmpo &= 0xFF;
  97. for (i = 0; i < 4; i++)
  98. lpphy->tx_max_rate[i] = maxpwr;
  99. for (i = 4; i < 15; i++)
  100. lpphy->tx_max_rate[i] = maxpwr - ofdmpo;
  101. }
  102. } else { /* 5GHz */
  103. lpphy->tx_isolation_low_band = bus->sprom.tri5gl;
  104. lpphy->tx_isolation_med_band = bus->sprom.tri5g;
  105. lpphy->tx_isolation_hi_band = bus->sprom.tri5gh;
  106. lpphy->bx_arch = bus->sprom.bxa5g;
  107. lpphy->rx_pwr_offset = bus->sprom.rxpo5g;
  108. lpphy->rssi_vf = bus->sprom.rssismf5g;
  109. lpphy->rssi_vc = bus->sprom.rssismc5g;
  110. lpphy->rssi_gs = bus->sprom.rssisav5g;
  111. lpphy->txpa[0] = bus->sprom.pa1b0;
  112. lpphy->txpa[1] = bus->sprom.pa1b1;
  113. lpphy->txpa[2] = bus->sprom.pa1b2;
  114. lpphy->txpal[0] = bus->sprom.pa1lob0;
  115. lpphy->txpal[1] = bus->sprom.pa1lob1;
  116. lpphy->txpal[2] = bus->sprom.pa1lob2;
  117. lpphy->txpah[0] = bus->sprom.pa1hib0;
  118. lpphy->txpah[1] = bus->sprom.pa1hib1;
  119. lpphy->txpah[2] = bus->sprom.pa1hib2;
  120. maxpwr = bus->sprom.maxpwr_al;
  121. ofdmpo = bus->sprom.ofdm5glpo;
  122. lpphy->max_tx_pwr_low_band = maxpwr;
  123. for (i = 4; i < 12; i++) {
  124. lpphy->tx_max_ratel[i] = maxpwr - (ofdmpo & 0xF) * 2;
  125. ofdmpo >>= 4;
  126. }
  127. maxpwr = bus->sprom.maxpwr_a;
  128. ofdmpo = bus->sprom.ofdm5gpo;
  129. lpphy->max_tx_pwr_med_band = maxpwr;
  130. for (i = 4; i < 12; i++) {
  131. lpphy->tx_max_rate[i] = maxpwr - (ofdmpo & 0xF) * 2;
  132. ofdmpo >>= 4;
  133. }
  134. maxpwr = bus->sprom.maxpwr_ah;
  135. ofdmpo = bus->sprom.ofdm5ghpo;
  136. lpphy->max_tx_pwr_hi_band = maxpwr;
  137. for (i = 4; i < 12; i++) {
  138. lpphy->tx_max_rateh[i] = maxpwr - (ofdmpo & 0xF) * 2;
  139. ofdmpo >>= 4;
  140. }
  141. }
  142. }
  143. static void lpphy_adjust_gain_table(struct b43_wldev *dev, u32 freq)
  144. {
  145. struct b43_phy_lp *lpphy = dev->phy.lp;
  146. u16 temp[3];
  147. u16 isolation;
  148. B43_WARN_ON(dev->phy.rev >= 2);
  149. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  150. isolation = lpphy->tx_isolation_med_band;
  151. else if (freq <= 5320)
  152. isolation = lpphy->tx_isolation_low_band;
  153. else if (freq <= 5700)
  154. isolation = lpphy->tx_isolation_med_band;
  155. else
  156. isolation = lpphy->tx_isolation_hi_band;
  157. temp[0] = ((isolation - 26) / 12) << 12;
  158. temp[1] = temp[0] + 0x1000;
  159. temp[2] = temp[0] + 0x2000;
  160. b43_lptab_write_bulk(dev, B43_LPTAB16(12, 0), 3, temp);
  161. b43_lptab_write_bulk(dev, B43_LPTAB16(13, 0), 3, temp);
  162. }
  163. static void lpphy_table_init(struct b43_wldev *dev)
  164. {
  165. u32 freq = channel2freq_lp(b43_lpphy_op_get_default_chan(dev));
  166. if (dev->phy.rev < 2)
  167. lpphy_rev0_1_table_init(dev);
  168. else
  169. lpphy_rev2plus_table_init(dev);
  170. lpphy_init_tx_gain_table(dev);
  171. if (dev->phy.rev < 2)
  172. lpphy_adjust_gain_table(dev, freq);
  173. }
  174. static void lpphy_baseband_rev0_1_init(struct b43_wldev *dev)
  175. {
  176. struct ssb_bus *bus = dev->dev->bus;
  177. u16 tmp, tmp2;
  178. if (dev->phy.rev == 1 &&
  179. (bus->sprom.boardflags_hi & B43_BFH_FEM_BT)) {
  180. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x000A);
  181. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0x3F00, 0x0900);
  182. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x000A);
  183. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0B00);
  184. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x000A);
  185. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0400);
  186. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x000A);
  187. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0B00);
  188. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_5, 0xFFC0, 0x000A);
  189. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_5, 0xC0FF, 0x0900);
  190. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_6, 0xFFC0, 0x000A);
  191. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_6, 0xC0FF, 0x0B00);
  192. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_7, 0xFFC0, 0x000A);
  193. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_7, 0xC0FF, 0x0900);
  194. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_8, 0xFFC0, 0x000A);
  195. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_8, 0xC0FF, 0x0B00);
  196. } else if (b43_current_band(dev->wl) == IEEE80211_BAND_5GHZ ||
  197. (bus->boardinfo.type == 0x048A) || ((dev->phy.rev == 0) &&
  198. (bus->sprom.boardflags_lo & B43_BFL_FEM))) {
  199. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x0001);
  200. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xC0FF, 0x0400);
  201. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x0001);
  202. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0500);
  203. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x0002);
  204. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0800);
  205. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x0002);
  206. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0A00);
  207. } else if (dev->phy.rev == 1 ||
  208. (bus->sprom.boardflags_lo & B43_BFL_FEM)) {
  209. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x0004);
  210. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xC0FF, 0x0800);
  211. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x0004);
  212. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0C00);
  213. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x0002);
  214. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0100);
  215. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x0002);
  216. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0300);
  217. } else {
  218. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x000A);
  219. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xC0FF, 0x0900);
  220. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x000A);
  221. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0B00);
  222. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x0006);
  223. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0500);
  224. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x0006);
  225. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0700);
  226. }
  227. if (dev->phy.rev == 1) {
  228. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_5, B43_LPPHY_TR_LOOKUP_1);
  229. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_6, B43_LPPHY_TR_LOOKUP_2);
  230. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_7, B43_LPPHY_TR_LOOKUP_3);
  231. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_8, B43_LPPHY_TR_LOOKUP_4);
  232. }
  233. if ((bus->sprom.boardflags_hi & B43_BFH_FEM_BT) &&
  234. (bus->chip_id == 0x5354) &&
  235. (bus->chip_package == SSB_CHIPPACK_BCM4712S)) {
  236. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x0006);
  237. b43_phy_write(dev, B43_LPPHY_GPIO_SELECT, 0x0005);
  238. b43_phy_write(dev, B43_LPPHY_GPIO_OUTEN, 0xFFFF);
  239. b43_hf_write(dev, b43_hf_read(dev) | B43_HF_PR45960W);
  240. }
  241. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  242. b43_phy_set(dev, B43_LPPHY_LP_PHY_CTL, 0x8000);
  243. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x0040);
  244. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0x00FF, 0xA400);
  245. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xF0FF, 0x0B00);
  246. b43_phy_maskset(dev, B43_LPPHY_SYNCPEAKCNT, 0xFFF8, 0x0007);
  247. b43_phy_maskset(dev, B43_LPPHY_DSSS_CONFIRM_CNT, 0xFFF8, 0x0003);
  248. b43_phy_maskset(dev, B43_LPPHY_DSSS_CONFIRM_CNT, 0xFFC7, 0x0020);
  249. b43_phy_mask(dev, B43_LPPHY_IDLEAFTERPKTRXTO, 0x00FF);
  250. } else { /* 5GHz */
  251. b43_phy_mask(dev, B43_LPPHY_LP_PHY_CTL, 0x7FFF);
  252. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, 0xFFBF);
  253. }
  254. if (dev->phy.rev == 1) {
  255. tmp = b43_phy_read(dev, B43_LPPHY_CLIPCTRTHRESH);
  256. tmp2 = (tmp & 0x03E0) >> 5;
  257. tmp2 |= tmp << 5;
  258. b43_phy_write(dev, B43_LPPHY_4C3, tmp2);
  259. tmp = b43_phy_read(dev, B43_LPPHY_OFDMSYNCTHRESH0);
  260. tmp2 = (tmp & 0x1F00) >> 8;
  261. tmp2 |= tmp << 5;
  262. b43_phy_write(dev, B43_LPPHY_4C4, tmp2);
  263. tmp = b43_phy_read(dev, B43_LPPHY_VERYLOWGAINDB);
  264. tmp2 = tmp & 0x00FF;
  265. tmp2 |= tmp << 8;
  266. b43_phy_write(dev, B43_LPPHY_4C5, tmp2);
  267. }
  268. }
  269. static void lpphy_save_dig_flt_state(struct b43_wldev *dev)
  270. {
  271. static const u16 addr[] = {
  272. B43_PHY_OFDM(0xC1),
  273. B43_PHY_OFDM(0xC2),
  274. B43_PHY_OFDM(0xC3),
  275. B43_PHY_OFDM(0xC4),
  276. B43_PHY_OFDM(0xC5),
  277. B43_PHY_OFDM(0xC6),
  278. B43_PHY_OFDM(0xC7),
  279. B43_PHY_OFDM(0xC8),
  280. B43_PHY_OFDM(0xCF),
  281. };
  282. static const u16 coefs[] = {
  283. 0xDE5E, 0xE832, 0xE331, 0x4D26,
  284. 0x0026, 0x1420, 0x0020, 0xFE08,
  285. 0x0008,
  286. };
  287. struct b43_phy_lp *lpphy = dev->phy.lp;
  288. int i;
  289. for (i = 0; i < ARRAY_SIZE(addr); i++) {
  290. lpphy->dig_flt_state[i] = b43_phy_read(dev, addr[i]);
  291. b43_phy_write(dev, addr[i], coefs[i]);
  292. }
  293. }
  294. static void lpphy_restore_dig_flt_state(struct b43_wldev *dev)
  295. {
  296. static const u16 addr[] = {
  297. B43_PHY_OFDM(0xC1),
  298. B43_PHY_OFDM(0xC2),
  299. B43_PHY_OFDM(0xC3),
  300. B43_PHY_OFDM(0xC4),
  301. B43_PHY_OFDM(0xC5),
  302. B43_PHY_OFDM(0xC6),
  303. B43_PHY_OFDM(0xC7),
  304. B43_PHY_OFDM(0xC8),
  305. B43_PHY_OFDM(0xCF),
  306. };
  307. struct b43_phy_lp *lpphy = dev->phy.lp;
  308. int i;
  309. for (i = 0; i < ARRAY_SIZE(addr); i++)
  310. b43_phy_write(dev, addr[i], lpphy->dig_flt_state[i]);
  311. }
  312. static void lpphy_baseband_rev2plus_init(struct b43_wldev *dev)
  313. {
  314. struct ssb_bus *bus = dev->dev->bus;
  315. struct b43_phy_lp *lpphy = dev->phy.lp;
  316. b43_phy_write(dev, B43_LPPHY_AFE_DAC_CTL, 0x50);
  317. b43_phy_write(dev, B43_LPPHY_AFE_CTL, 0x8800);
  318. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVR, 0);
  319. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0);
  320. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_0, 0);
  321. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, 0);
  322. b43_phy_write(dev, B43_PHY_OFDM(0xF9), 0);
  323. b43_phy_write(dev, B43_LPPHY_TR_LOOKUP_1, 0);
  324. b43_phy_set(dev, B43_LPPHY_ADC_COMPENSATION_CTL, 0x10);
  325. b43_phy_maskset(dev, B43_LPPHY_OFDMSYNCTHRESH0, 0xFF00, 0xB4);
  326. b43_phy_maskset(dev, B43_LPPHY_DCOFFSETTRANSIENT, 0xF8FF, 0x200);
  327. b43_phy_maskset(dev, B43_LPPHY_DCOFFSETTRANSIENT, 0xFF00, 0x7F);
  328. b43_phy_maskset(dev, B43_LPPHY_GAINDIRECTMISMATCH, 0xFF0F, 0x40);
  329. b43_phy_maskset(dev, B43_LPPHY_PREAMBLECONFIRMTO, 0xFF00, 0x2);
  330. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x4000);
  331. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x2000);
  332. b43_phy_set(dev, B43_PHY_OFDM(0x10A), 0x1);
  333. if (bus->boardinfo.rev >= 0x18) {
  334. b43_lptab_write(dev, B43_LPTAB32(17, 65), 0xEC);
  335. b43_phy_maskset(dev, B43_PHY_OFDM(0x10A), 0xFF01, 0x14);
  336. } else {
  337. b43_phy_maskset(dev, B43_PHY_OFDM(0x10A), 0xFF01, 0x10);
  338. }
  339. b43_phy_maskset(dev, B43_PHY_OFDM(0xDF), 0xFF00, 0xF4);
  340. b43_phy_maskset(dev, B43_PHY_OFDM(0xDF), 0x00FF, 0xF100);
  341. b43_phy_write(dev, B43_LPPHY_CLIPTHRESH, 0x48);
  342. b43_phy_maskset(dev, B43_LPPHY_HIGAINDB, 0xFF00, 0x46);
  343. b43_phy_maskset(dev, B43_PHY_OFDM(0xE4), 0xFF00, 0x10);
  344. b43_phy_maskset(dev, B43_LPPHY_PWR_THRESH1, 0xFFF0, 0x9);
  345. b43_phy_mask(dev, B43_LPPHY_GAINDIRECTMISMATCH, ~0xF);
  346. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0x00FF, 0x5500);
  347. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xF81F, 0xA0);
  348. b43_phy_maskset(dev, B43_LPPHY_GAINDIRECTMISMATCH, 0xE0FF, 0x300);
  349. b43_phy_maskset(dev, B43_LPPHY_HIGAINDB, 0x00FF, 0x2A00);
  350. if ((bus->chip_id == 0x4325) && (bus->chip_rev == 0)) {
  351. b43_phy_maskset(dev, B43_LPPHY_LOWGAINDB, 0x00FF, 0x2100);
  352. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0xFF00, 0xA);
  353. } else {
  354. b43_phy_maskset(dev, B43_LPPHY_LOWGAINDB, 0x00FF, 0x1E00);
  355. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0xFF00, 0xD);
  356. }
  357. b43_phy_maskset(dev, B43_PHY_OFDM(0xFE), 0xFFE0, 0x1F);
  358. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0xFFE0, 0xC);
  359. b43_phy_maskset(dev, B43_PHY_OFDM(0x100), 0xFF00, 0x19);
  360. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0x03FF, 0x3C00);
  361. b43_phy_maskset(dev, B43_PHY_OFDM(0xFE), 0xFC1F, 0x3E0);
  362. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0xFFE0, 0xC);
  363. b43_phy_maskset(dev, B43_PHY_OFDM(0x100), 0x00FF, 0x1900);
  364. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0x83FF, 0x5800);
  365. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xFFE0, 0x12);
  366. b43_phy_maskset(dev, B43_LPPHY_GAINMISMATCH, 0x0FFF, 0x9000);
  367. if ((bus->chip_id == 0x4325) && (bus->chip_rev == 1)) {
  368. b43_lptab_write(dev, B43_LPTAB16(0x08, 0x14), 0);
  369. b43_lptab_write(dev, B43_LPTAB16(0x08, 0x12), 0x40);
  370. }
  371. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  372. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x40);
  373. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xF0FF, 0xB00);
  374. b43_phy_maskset(dev, B43_LPPHY_SYNCPEAKCNT, 0xFFF8, 0x6);
  375. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0x00FF, 0x9D00);
  376. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0xFF00, 0xA1);
  377. } else /* 5GHz */
  378. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x40);
  379. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0xFF00, 0xB3);
  380. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0x00FF, 0xAD00);
  381. b43_phy_maskset(dev, B43_LPPHY_INPUT_PWRDB, 0xFF00, lpphy->rx_pwr_offset);
  382. b43_phy_set(dev, B43_LPPHY_RESET_CTL, 0x44);
  383. b43_phy_write(dev, B43_LPPHY_RESET_CTL, 0x80);
  384. b43_phy_write(dev, B43_LPPHY_AFE_RSSI_CTL_0, 0xA954);
  385. b43_phy_write(dev, B43_LPPHY_AFE_RSSI_CTL_1,
  386. 0x2000 | ((u16)lpphy->rssi_gs << 10) |
  387. ((u16)lpphy->rssi_vc << 4) | lpphy->rssi_vf);
  388. if ((bus->chip_id == 0x4325) && (bus->chip_rev == 0)) {
  389. b43_phy_set(dev, B43_LPPHY_AFE_ADC_CTL_0, 0x1C);
  390. b43_phy_maskset(dev, B43_LPPHY_AFE_CTL, 0x00FF, 0x8800);
  391. b43_phy_maskset(dev, B43_LPPHY_AFE_ADC_CTL_1, 0xFC3C, 0x0400);
  392. }
  393. lpphy_save_dig_flt_state(dev);
  394. }
  395. static void lpphy_baseband_init(struct b43_wldev *dev)
  396. {
  397. lpphy_table_init(dev);
  398. if (dev->phy.rev >= 2)
  399. lpphy_baseband_rev2plus_init(dev);
  400. else
  401. lpphy_baseband_rev0_1_init(dev);
  402. }
  403. struct b2062_freqdata {
  404. u16 freq;
  405. u8 data[6];
  406. };
  407. /* Initialize the 2062 radio. */
  408. static void lpphy_2062_init(struct b43_wldev *dev)
  409. {
  410. struct ssb_bus *bus = dev->dev->bus;
  411. u32 crystalfreq, pdiv, tmp, ref;
  412. unsigned int i;
  413. const struct b2062_freqdata *fd = NULL;
  414. static const struct b2062_freqdata freqdata_tab[] = {
  415. { .freq = 12000, .data[0] = 6, .data[1] = 6, .data[2] = 6,
  416. .data[3] = 6, .data[4] = 10, .data[5] = 6, },
  417. { .freq = 13000, .data[0] = 4, .data[1] = 4, .data[2] = 4,
  418. .data[3] = 4, .data[4] = 11, .data[5] = 7, },
  419. { .freq = 14400, .data[0] = 3, .data[1] = 3, .data[2] = 3,
  420. .data[3] = 3, .data[4] = 12, .data[5] = 7, },
  421. { .freq = 16200, .data[0] = 3, .data[1] = 3, .data[2] = 3,
  422. .data[3] = 3, .data[4] = 13, .data[5] = 8, },
  423. { .freq = 18000, .data[0] = 2, .data[1] = 2, .data[2] = 2,
  424. .data[3] = 2, .data[4] = 14, .data[5] = 8, },
  425. { .freq = 19200, .data[0] = 1, .data[1] = 1, .data[2] = 1,
  426. .data[3] = 1, .data[4] = 14, .data[5] = 9, },
  427. };
  428. b2062_upload_init_table(dev);
  429. b43_radio_write(dev, B2062_N_TX_CTL3, 0);
  430. b43_radio_write(dev, B2062_N_TX_CTL4, 0);
  431. b43_radio_write(dev, B2062_N_TX_CTL5, 0);
  432. b43_radio_write(dev, B2062_N_PDN_CTL0, 0x40);
  433. b43_radio_write(dev, B2062_N_PDN_CTL0, 0);
  434. b43_radio_write(dev, B2062_N_CALIB_TS, 0x10);
  435. b43_radio_write(dev, B2062_N_CALIB_TS, 0);
  436. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  437. b43_radio_set(dev, B2062_N_TSSI_CTL0, 0x1);
  438. else
  439. b43_radio_mask(dev, B2062_N_TSSI_CTL0, ~0x1);
  440. /* Get the crystal freq, in Hz. */
  441. crystalfreq = bus->chipco.pmu.crystalfreq * 1000;
  442. B43_WARN_ON(!(bus->chipco.capabilities & SSB_CHIPCO_CAP_PMU));
  443. B43_WARN_ON(crystalfreq == 0);
  444. if (crystalfreq >= 30000000) {
  445. pdiv = 1;
  446. b43_radio_mask(dev, B2062_S_RFPLL_CTL1, 0xFFFB);
  447. } else {
  448. pdiv = 2;
  449. b43_radio_set(dev, B2062_S_RFPLL_CTL1, 0x4);
  450. }
  451. tmp = (800000000 * pdiv + crystalfreq) / (32000000 * pdiv);
  452. tmp = (tmp - 1) & 0xFF;
  453. b43_radio_write(dev, B2062_S_RFPLL_CTL18, tmp);
  454. tmp = (2 * crystalfreq + 1000000 * pdiv) / (2000000 * pdiv);
  455. tmp = ((tmp & 0xFF) - 1) & 0xFFFF;
  456. b43_radio_write(dev, B2062_S_RFPLL_CTL19, tmp);
  457. ref = (1000 * pdiv + 2 * crystalfreq) / (2000 * pdiv);
  458. ref &= 0xFFFF;
  459. for (i = 0; i < ARRAY_SIZE(freqdata_tab); i++) {
  460. if (ref < freqdata_tab[i].freq) {
  461. fd = &freqdata_tab[i];
  462. break;
  463. }
  464. }
  465. if (!fd)
  466. fd = &freqdata_tab[ARRAY_SIZE(freqdata_tab) - 1];
  467. b43dbg(dev->wl, "b2062: Using crystal tab entry %u kHz.\n",
  468. fd->freq); /* FIXME: Keep this printk until the code is fully debugged. */
  469. b43_radio_write(dev, B2062_S_RFPLL_CTL8,
  470. ((u16)(fd->data[1]) << 4) | fd->data[0]);
  471. b43_radio_write(dev, B2062_S_RFPLL_CTL9,
  472. ((u16)(fd->data[3]) << 4) | fd->data[2]);
  473. b43_radio_write(dev, B2062_S_RFPLL_CTL10, fd->data[4]);
  474. b43_radio_write(dev, B2062_S_RFPLL_CTL11, fd->data[5]);
  475. }
  476. /* Initialize the 2063 radio. */
  477. static void lpphy_2063_init(struct b43_wldev *dev)
  478. {
  479. b2063_upload_init_table(dev);
  480. b43_radio_write(dev, B2063_LOGEN_SP5, 0);
  481. b43_radio_set(dev, B2063_COMM8, 0x38);
  482. b43_radio_write(dev, B2063_REG_SP1, 0x56);
  483. b43_radio_mask(dev, B2063_RX_BB_CTL2, ~0x2);
  484. b43_radio_write(dev, B2063_PA_SP7, 0);
  485. b43_radio_write(dev, B2063_TX_RF_SP6, 0x20);
  486. b43_radio_write(dev, B2063_TX_RF_SP9, 0x40);
  487. b43_radio_write(dev, B2063_PA_SP3, 0xa0);
  488. b43_radio_write(dev, B2063_PA_SP4, 0xa0);
  489. b43_radio_write(dev, B2063_PA_SP2, 0x18);
  490. }
  491. struct lpphy_stx_table_entry {
  492. u16 phy_offset;
  493. u16 phy_shift;
  494. u16 rf_addr;
  495. u16 rf_shift;
  496. u16 mask;
  497. };
  498. static const struct lpphy_stx_table_entry lpphy_stx_table[] = {
  499. { .phy_offset = 2, .phy_shift = 6, .rf_addr = 0x3d, .rf_shift = 3, .mask = 0x01, },
  500. { .phy_offset = 1, .phy_shift = 12, .rf_addr = 0x4c, .rf_shift = 1, .mask = 0x01, },
  501. { .phy_offset = 1, .phy_shift = 8, .rf_addr = 0x50, .rf_shift = 0, .mask = 0x7f, },
  502. { .phy_offset = 0, .phy_shift = 8, .rf_addr = 0x44, .rf_shift = 0, .mask = 0xff, },
  503. { .phy_offset = 1, .phy_shift = 0, .rf_addr = 0x4a, .rf_shift = 0, .mask = 0xff, },
  504. { .phy_offset = 0, .phy_shift = 4, .rf_addr = 0x4d, .rf_shift = 0, .mask = 0xff, },
  505. { .phy_offset = 1, .phy_shift = 4, .rf_addr = 0x4e, .rf_shift = 0, .mask = 0xff, },
  506. { .phy_offset = 0, .phy_shift = 12, .rf_addr = 0x4f, .rf_shift = 0, .mask = 0x0f, },
  507. { .phy_offset = 1, .phy_shift = 0, .rf_addr = 0x4f, .rf_shift = 4, .mask = 0x0f, },
  508. { .phy_offset = 3, .phy_shift = 0, .rf_addr = 0x49, .rf_shift = 0, .mask = 0x0f, },
  509. { .phy_offset = 4, .phy_shift = 3, .rf_addr = 0x46, .rf_shift = 4, .mask = 0x07, },
  510. { .phy_offset = 3, .phy_shift = 15, .rf_addr = 0x46, .rf_shift = 0, .mask = 0x01, },
  511. { .phy_offset = 4, .phy_shift = 0, .rf_addr = 0x46, .rf_shift = 1, .mask = 0x07, },
  512. { .phy_offset = 3, .phy_shift = 8, .rf_addr = 0x48, .rf_shift = 4, .mask = 0x07, },
  513. { .phy_offset = 3, .phy_shift = 11, .rf_addr = 0x48, .rf_shift = 0, .mask = 0x0f, },
  514. { .phy_offset = 3, .phy_shift = 4, .rf_addr = 0x49, .rf_shift = 4, .mask = 0x0f, },
  515. { .phy_offset = 2, .phy_shift = 15, .rf_addr = 0x45, .rf_shift = 0, .mask = 0x01, },
  516. { .phy_offset = 5, .phy_shift = 13, .rf_addr = 0x52, .rf_shift = 4, .mask = 0x07, },
  517. { .phy_offset = 6, .phy_shift = 0, .rf_addr = 0x52, .rf_shift = 7, .mask = 0x01, },
  518. { .phy_offset = 5, .phy_shift = 3, .rf_addr = 0x41, .rf_shift = 5, .mask = 0x07, },
  519. { .phy_offset = 5, .phy_shift = 6, .rf_addr = 0x41, .rf_shift = 0, .mask = 0x0f, },
  520. { .phy_offset = 5, .phy_shift = 10, .rf_addr = 0x42, .rf_shift = 5, .mask = 0x07, },
  521. { .phy_offset = 4, .phy_shift = 15, .rf_addr = 0x42, .rf_shift = 0, .mask = 0x01, },
  522. { .phy_offset = 5, .phy_shift = 0, .rf_addr = 0x42, .rf_shift = 1, .mask = 0x07, },
  523. { .phy_offset = 4, .phy_shift = 11, .rf_addr = 0x43, .rf_shift = 4, .mask = 0x0f, },
  524. { .phy_offset = 4, .phy_shift = 7, .rf_addr = 0x43, .rf_shift = 0, .mask = 0x0f, },
  525. { .phy_offset = 4, .phy_shift = 6, .rf_addr = 0x45, .rf_shift = 1, .mask = 0x01, },
  526. { .phy_offset = 2, .phy_shift = 7, .rf_addr = 0x40, .rf_shift = 4, .mask = 0x0f, },
  527. { .phy_offset = 2, .phy_shift = 11, .rf_addr = 0x40, .rf_shift = 0, .mask = 0x0f, },
  528. };
  529. static void lpphy_sync_stx(struct b43_wldev *dev)
  530. {
  531. const struct lpphy_stx_table_entry *e;
  532. unsigned int i;
  533. u16 tmp;
  534. for (i = 0; i < ARRAY_SIZE(lpphy_stx_table); i++) {
  535. e = &lpphy_stx_table[i];
  536. tmp = b43_radio_read(dev, e->rf_addr);
  537. tmp >>= e->rf_shift;
  538. tmp <<= e->phy_shift;
  539. b43_phy_maskset(dev, B43_PHY_OFDM(0xF2 + e->phy_offset),
  540. ~(e->mask << e->phy_shift), tmp);
  541. }
  542. }
  543. static void lpphy_radio_init(struct b43_wldev *dev)
  544. {
  545. /* The radio is attached through the 4wire bus. */
  546. b43_phy_set(dev, B43_LPPHY_FOURWIRE_CTL, 0x2);
  547. udelay(1);
  548. b43_phy_mask(dev, B43_LPPHY_FOURWIRE_CTL, 0xFFFD);
  549. udelay(1);
  550. if (dev->phy.rev < 2) {
  551. lpphy_2062_init(dev);
  552. } else {
  553. lpphy_2063_init(dev);
  554. lpphy_sync_stx(dev);
  555. b43_phy_write(dev, B43_PHY_OFDM(0xF0), 0x5F80);
  556. b43_phy_write(dev, B43_PHY_OFDM(0xF1), 0);
  557. if (dev->dev->bus->chip_id == 0x4325) {
  558. // TODO SSB PMU recalibration
  559. }
  560. }
  561. }
  562. struct lpphy_iq_est { u32 iq_prod, i_pwr, q_pwr; };
  563. static void lpphy_set_rc_cap(struct b43_wldev *dev)
  564. {
  565. u8 rc_cap = dev->phy.lp->rc_cap;
  566. b43_radio_write(dev, B2062_N_RXBB_CALIB2, max_t(u8, rc_cap-4, 0x80));
  567. b43_radio_write(dev, B2062_N_TX_CTL_A, ((rc_cap & 0x1F) >> 1) | 0x80);
  568. b43_radio_write(dev, B2062_S_RXG_CNT16, ((rc_cap & 0x1F) >> 2) | 0x80);
  569. }
  570. static u8 lpphy_get_bb_mult(struct b43_wldev *dev)
  571. {
  572. return (b43_lptab_read(dev, B43_LPTAB16(0, 87)) & 0xFF00) >> 8;
  573. }
  574. static void lpphy_set_bb_mult(struct b43_wldev *dev, u8 bb_mult)
  575. {
  576. b43_lptab_write(dev, B43_LPTAB16(0, 87), (u16)bb_mult << 8);
  577. }
  578. static void lpphy_disable_crs(struct b43_wldev *dev)
  579. {
  580. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xFF1F, 0x80);
  581. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFC, 0x1);
  582. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x3);
  583. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFB);
  584. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x4);
  585. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFF7);
  586. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x8);
  587. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x10);
  588. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x10);
  589. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFDF);
  590. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x20);
  591. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFBF);
  592. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x40);
  593. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0x7);
  594. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0x38);
  595. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFF3F);
  596. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0x100);
  597. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFDFF);
  598. b43_phy_write(dev, B43_LPPHY_PS_CTL_OVERRIDE_VAL0, 0);
  599. b43_phy_write(dev, B43_LPPHY_PS_CTL_OVERRIDE_VAL1, 1);
  600. b43_phy_write(dev, B43_LPPHY_PS_CTL_OVERRIDE_VAL2, 0x20);
  601. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFBFF);
  602. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xF7FF);
  603. b43_phy_write(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL, 0);
  604. b43_phy_write(dev, B43_LPPHY_RX_GAIN_CTL_OVERRIDE_VAL, 0x45AF);
  605. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, 0x3FF);
  606. }
  607. static void lpphy_restore_crs(struct b43_wldev *dev)
  608. {
  609. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  610. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xFF1F, 0x60);
  611. else
  612. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xFF1F, 0x20);
  613. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFF80);
  614. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFC00);
  615. }
  616. struct lpphy_tx_gains { u16 gm, pga, pad, dac; };
  617. static struct lpphy_tx_gains lpphy_get_tx_gains(struct b43_wldev *dev)
  618. {
  619. struct lpphy_tx_gains gains;
  620. u16 tmp;
  621. gains.dac = (b43_phy_read(dev, B43_LPPHY_AFE_DAC_CTL) & 0x380) >> 7;
  622. if (dev->phy.rev < 2) {
  623. tmp = b43_phy_read(dev,
  624. B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL) & 0x7FF;
  625. gains.gm = tmp & 0x0007;
  626. gains.pga = (tmp & 0x0078) >> 3;
  627. gains.pad = (tmp & 0x780) >> 7;
  628. } else {
  629. tmp = b43_phy_read(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL);
  630. gains.pad = b43_phy_read(dev, B43_PHY_OFDM(0xFB)) & 0xFF;
  631. gains.gm = tmp & 0xFF;
  632. gains.pga = (tmp >> 8) & 0xFF;
  633. }
  634. return gains;
  635. }
  636. static void lpphy_set_dac_gain(struct b43_wldev *dev, u16 dac)
  637. {
  638. u16 ctl = b43_phy_read(dev, B43_LPPHY_AFE_DAC_CTL) & 0xC7F;
  639. ctl |= dac << 7;
  640. b43_phy_maskset(dev, B43_LPPHY_AFE_DAC_CTL, 0xF000, ctl);
  641. }
  642. static void lpphy_set_tx_gains(struct b43_wldev *dev,
  643. struct lpphy_tx_gains gains)
  644. {
  645. u16 rf_gain, pa_gain;
  646. if (dev->phy.rev < 2) {
  647. rf_gain = (gains.pad << 7) | (gains.pga << 3) | gains.gm;
  648. b43_phy_maskset(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL,
  649. 0xF800, rf_gain);
  650. } else {
  651. pa_gain = b43_phy_read(dev, B43_PHY_OFDM(0xFB)) & 0x7F00;
  652. b43_phy_write(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL,
  653. (gains.pga << 8) | gains.gm);
  654. b43_phy_maskset(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL,
  655. 0x8000, gains.pad | pa_gain);
  656. b43_phy_write(dev, B43_PHY_OFDM(0xFC),
  657. (gains.pga << 8) | gains.gm);
  658. b43_phy_maskset(dev, B43_PHY_OFDM(0xFD),
  659. 0x8000, gains.pad | pa_gain);
  660. }
  661. lpphy_set_dac_gain(dev, gains.dac);
  662. if (dev->phy.rev < 2) {
  663. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFEFF, 1 << 8);
  664. } else {
  665. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFF7F, 1 << 7);
  666. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2, 0xBFFF, 1 << 14);
  667. }
  668. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFFBF, 1 << 4);
  669. }
  670. static void lpphy_rev0_1_set_rx_gain(struct b43_wldev *dev, u32 gain)
  671. {
  672. u16 trsw = gain & 0x1;
  673. u16 lna = (gain & 0xFFFC) | ((gain & 0xC) >> 2);
  674. u16 ext_lna = (gain & 2) >> 1;
  675. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFE, trsw);
  676. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  677. 0xFBFF, ext_lna << 10);
  678. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  679. 0xF7FF, ext_lna << 11);
  680. b43_phy_write(dev, B43_LPPHY_RX_GAIN_CTL_OVERRIDE_VAL, lna);
  681. }
  682. static void lpphy_rev2plus_set_rx_gain(struct b43_wldev *dev, u32 gain)
  683. {
  684. u16 low_gain = gain & 0xFFFF;
  685. u16 high_gain = (gain >> 16) & 0xF;
  686. u16 ext_lna = (gain >> 21) & 0x1;
  687. u16 trsw = ~(gain >> 20) & 0x1;
  688. u16 tmp;
  689. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFE, trsw);
  690. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  691. 0xFDFF, ext_lna << 9);
  692. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  693. 0xFBFF, ext_lna << 10);
  694. b43_phy_write(dev, B43_LPPHY_RX_GAIN_CTL_OVERRIDE_VAL, low_gain);
  695. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFFF0, high_gain);
  696. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  697. tmp = (gain >> 2) & 0x3;
  698. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  699. 0xE7FF, tmp<<11);
  700. b43_phy_maskset(dev, B43_PHY_OFDM(0xE6), 0xFFE7, tmp << 3);
  701. }
  702. }
  703. static void lpphy_enable_rx_gain_override(struct b43_wldev *dev)
  704. {
  705. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFFE);
  706. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFEF);
  707. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFBF);
  708. if (dev->phy.rev >= 2) {
  709. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFEFF);
  710. if (b43_current_band(dev->wl) != IEEE80211_BAND_2GHZ)
  711. return;
  712. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFBFF);
  713. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFFF7);
  714. } else {
  715. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFDFF);
  716. }
  717. }
  718. static void lpphy_disable_rx_gain_override(struct b43_wldev *dev)
  719. {
  720. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x1);
  721. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x10);
  722. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x40);
  723. if (dev->phy.rev >= 2) {
  724. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x100);
  725. if (b43_current_band(dev->wl) != IEEE80211_BAND_2GHZ)
  726. return;
  727. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x400);
  728. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x8);
  729. } else {
  730. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x200);
  731. }
  732. }
  733. static void lpphy_set_rx_gain(struct b43_wldev *dev, u32 gain)
  734. {
  735. if (dev->phy.rev < 2)
  736. lpphy_rev0_1_set_rx_gain(dev, gain);
  737. else
  738. lpphy_rev2plus_set_rx_gain(dev, gain);
  739. lpphy_enable_rx_gain_override(dev);
  740. }
  741. static void lpphy_set_rx_gain_by_index(struct b43_wldev *dev, u16 idx)
  742. {
  743. u32 gain = b43_lptab_read(dev, B43_LPTAB16(12, idx));
  744. lpphy_set_rx_gain(dev, gain);
  745. }
  746. static void lpphy_stop_ddfs(struct b43_wldev *dev)
  747. {
  748. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS, 0xFFFD);
  749. b43_phy_mask(dev, B43_LPPHY_LP_PHY_CTL, 0xFFDF);
  750. }
  751. static void lpphy_run_ddfs(struct b43_wldev *dev, int i_on, int q_on,
  752. int incr1, int incr2, int scale_idx)
  753. {
  754. lpphy_stop_ddfs(dev);
  755. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS_POINTER_INIT, 0xFF80);
  756. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS_POINTER_INIT, 0x80FF);
  757. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS_INCR_INIT, 0xFF80, incr1);
  758. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS_INCR_INIT, 0x80FF, incr2 << 8);
  759. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFFF7, i_on << 3);
  760. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFFEF, q_on << 4);
  761. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFF9F, scale_idx << 5);
  762. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS, 0xFFFB);
  763. b43_phy_set(dev, B43_LPPHY_AFE_DDFS, 0x2);
  764. b43_phy_set(dev, B43_LPPHY_AFE_DDFS, 0x20);
  765. }
  766. static bool lpphy_rx_iq_est(struct b43_wldev *dev, u16 samples, u8 time,
  767. struct lpphy_iq_est *iq_est)
  768. {
  769. int i;
  770. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, 0xFFF7);
  771. b43_phy_write(dev, B43_LPPHY_IQ_NUM_SMPLS_ADDR, samples);
  772. b43_phy_maskset(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR, 0xFF00, time);
  773. b43_phy_mask(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR, 0xFEFF);
  774. b43_phy_set(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR, 0xFDFF);
  775. for (i = 0; i < 500; i++) {
  776. if (!(b43_phy_read(dev,
  777. B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR) & 0x200))
  778. break;
  779. msleep(1);
  780. }
  781. if ((b43_phy_read(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR) & 0x200)) {
  782. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x8);
  783. return false;
  784. }
  785. iq_est->iq_prod = b43_phy_read(dev, B43_LPPHY_IQ_ACC_HI_ADDR);
  786. iq_est->iq_prod <<= 16;
  787. iq_est->iq_prod |= b43_phy_read(dev, B43_LPPHY_IQ_ACC_LO_ADDR);
  788. iq_est->i_pwr = b43_phy_read(dev, B43_LPPHY_IQ_I_PWR_ACC_HI_ADDR);
  789. iq_est->i_pwr <<= 16;
  790. iq_est->i_pwr |= b43_phy_read(dev, B43_LPPHY_IQ_I_PWR_ACC_LO_ADDR);
  791. iq_est->q_pwr = b43_phy_read(dev, B43_LPPHY_IQ_Q_PWR_ACC_HI_ADDR);
  792. iq_est->q_pwr <<= 16;
  793. iq_est->q_pwr |= b43_phy_read(dev, B43_LPPHY_IQ_Q_PWR_ACC_LO_ADDR);
  794. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x8);
  795. return true;
  796. }
  797. static int lpphy_loopback(struct b43_wldev *dev)
  798. {
  799. struct lpphy_iq_est iq_est;
  800. int i, index = -1;
  801. u32 tmp;
  802. memset(&iq_est, 0, sizeof(iq_est));
  803. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFC, 0x3);
  804. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x3);
  805. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0xFFFE);
  806. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x800);
  807. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x800);
  808. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x8);
  809. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x8);
  810. b43_radio_write(dev, B2062_N_TX_CTL_A, 0x80);
  811. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x80);
  812. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x80);
  813. for (i = 0; i < 32; i++) {
  814. lpphy_set_rx_gain_by_index(dev, i);
  815. lpphy_run_ddfs(dev, 1, 1, 5, 5, 0);
  816. if (!(lpphy_rx_iq_est(dev, 1000, 32, &iq_est)))
  817. continue;
  818. tmp = (iq_est.i_pwr + iq_est.q_pwr) / 1000;
  819. if ((tmp > 4000) && (tmp < 10000)) {
  820. index = i;
  821. break;
  822. }
  823. }
  824. lpphy_stop_ddfs(dev);
  825. return index;
  826. }
  827. static u32 lpphy_qdiv_roundup(u32 dividend, u32 divisor, u8 precision)
  828. {
  829. u32 quotient, remainder, rbit, roundup, tmp;
  830. if (divisor == 0) {
  831. quotient = 0;
  832. remainder = 0;
  833. } else {
  834. quotient = dividend / divisor;
  835. remainder = dividend % divisor;
  836. }
  837. rbit = divisor & 0x1;
  838. roundup = (divisor >> 1) + rbit;
  839. precision--;
  840. while (precision != 0xFF) {
  841. tmp = remainder - roundup;
  842. quotient <<= 1;
  843. remainder <<= 1;
  844. if (remainder >= roundup) {
  845. remainder = (tmp << 1) + rbit;
  846. quotient--;
  847. }
  848. precision--;
  849. }
  850. if (remainder >= roundup)
  851. quotient++;
  852. return quotient;
  853. }
  854. /* Read the TX power control mode from hardware. */
  855. static void lpphy_read_tx_pctl_mode_from_hardware(struct b43_wldev *dev)
  856. {
  857. struct b43_phy_lp *lpphy = dev->phy.lp;
  858. u16 ctl;
  859. ctl = b43_phy_read(dev, B43_LPPHY_TX_PWR_CTL_CMD);
  860. switch (ctl & B43_LPPHY_TX_PWR_CTL_CMD_MODE) {
  861. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF:
  862. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_OFF;
  863. break;
  864. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_SW:
  865. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_SW;
  866. break;
  867. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_HW:
  868. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_HW;
  869. break;
  870. default:
  871. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_UNKNOWN;
  872. B43_WARN_ON(1);
  873. break;
  874. }
  875. }
  876. /* Set the TX power control mode in hardware. */
  877. static void lpphy_write_tx_pctl_mode_to_hardware(struct b43_wldev *dev)
  878. {
  879. struct b43_phy_lp *lpphy = dev->phy.lp;
  880. u16 ctl;
  881. switch (lpphy->txpctl_mode) {
  882. case B43_LPPHY_TXPCTL_OFF:
  883. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF;
  884. break;
  885. case B43_LPPHY_TXPCTL_HW:
  886. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_HW;
  887. break;
  888. case B43_LPPHY_TXPCTL_SW:
  889. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_SW;
  890. break;
  891. default:
  892. ctl = 0;
  893. B43_WARN_ON(1);
  894. }
  895. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  896. (u16)~B43_LPPHY_TX_PWR_CTL_CMD_MODE, ctl);
  897. }
  898. static void lpphy_set_tx_power_control(struct b43_wldev *dev,
  899. enum b43_lpphy_txpctl_mode mode)
  900. {
  901. struct b43_phy_lp *lpphy = dev->phy.lp;
  902. enum b43_lpphy_txpctl_mode oldmode;
  903. oldmode = lpphy->txpctl_mode;
  904. lpphy_read_tx_pctl_mode_from_hardware(dev);
  905. if (lpphy->txpctl_mode == mode)
  906. return;
  907. lpphy->txpctl_mode = mode;
  908. if (oldmode == B43_LPPHY_TXPCTL_HW) {
  909. //TODO Update TX Power NPT
  910. //TODO Clear all TX Power offsets
  911. } else {
  912. if (mode == B43_LPPHY_TXPCTL_HW) {
  913. //TODO Recalculate target TX power
  914. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  915. 0xFF80, lpphy->tssi_idx);
  916. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_NNUM,
  917. 0x8FFF, ((u16)lpphy->tssi_npt << 16));
  918. //TODO Set "TSSI Transmit Count" variable to total transmitted frame count
  919. //TODO Disable TX gain override
  920. lpphy->tx_pwr_idx_over = -1;
  921. }
  922. }
  923. if (dev->phy.rev >= 2) {
  924. if (mode == B43_LPPHY_TXPCTL_HW)
  925. b43_phy_maskset(dev, B43_PHY_OFDM(0xD0), 0xFD, 0x2);
  926. else
  927. b43_phy_maskset(dev, B43_PHY_OFDM(0xD0), 0xFD, 0);
  928. }
  929. lpphy_write_tx_pctl_mode_to_hardware(dev);
  930. }
  931. static void lpphy_rev0_1_rc_calib(struct b43_wldev *dev)
  932. {
  933. struct b43_phy_lp *lpphy = dev->phy.lp;
  934. struct lpphy_iq_est iq_est;
  935. struct lpphy_tx_gains tx_gains;
  936. static const u32 ideal_pwr_table[22] = {
  937. 0x10000, 0x10557, 0x10e2d, 0x113e0, 0x10f22, 0x0ff64,
  938. 0x0eda2, 0x0e5d4, 0x0efd1, 0x0fbe8, 0x0b7b8, 0x04b35,
  939. 0x01a5e, 0x00a0b, 0x00444, 0x001fd, 0x000ff, 0x00088,
  940. 0x0004c, 0x0002c, 0x0001a, 0xc0006,
  941. };
  942. bool old_txg_ovr;
  943. u8 old_bbmult;
  944. u16 old_rf_ovr, old_rf_ovrval, old_afe_ovr, old_afe_ovrval,
  945. old_rf2_ovr, old_rf2_ovrval, old_phy_ctl, old_txpctl;
  946. u32 normal_pwr, ideal_pwr, mean_sq_pwr, tmp = 0, mean_sq_pwr_min = 0;
  947. int loopback, i, j, inner_sum;
  948. memset(&iq_est, 0, sizeof(iq_est));
  949. b43_switch_channel(dev, 7);
  950. old_txg_ovr = (b43_phy_read(dev, B43_LPPHY_AFE_CTL_OVR) >> 6) & 1;
  951. old_bbmult = lpphy_get_bb_mult(dev);
  952. if (old_txg_ovr)
  953. tx_gains = lpphy_get_tx_gains(dev);
  954. old_rf_ovr = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_0);
  955. old_rf_ovrval = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_VAL_0);
  956. old_afe_ovr = b43_phy_read(dev, B43_LPPHY_AFE_CTL_OVR);
  957. old_afe_ovrval = b43_phy_read(dev, B43_LPPHY_AFE_CTL_OVRVAL);
  958. old_rf2_ovr = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_2);
  959. old_rf2_ovrval = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_2_VAL);
  960. old_phy_ctl = b43_phy_read(dev, B43_LPPHY_LP_PHY_CTL);
  961. old_txpctl = b43_phy_read(dev, B43_LPPHY_TX_PWR_CTL_CMD) &
  962. B43_LPPHY_TX_PWR_CTL_CMD_MODE;
  963. lpphy_set_tx_power_control(dev, B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF);
  964. lpphy_disable_crs(dev);
  965. loopback = lpphy_loopback(dev);
  966. if (loopback == -1)
  967. goto finish;
  968. lpphy_set_rx_gain_by_index(dev, loopback);
  969. b43_phy_maskset(dev, B43_LPPHY_LP_PHY_CTL, 0xFFBF, 0x40);
  970. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFFF8, 0x1);
  971. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFFC7, 0x8);
  972. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFF3F, 0xC0);
  973. for (i = 128; i <= 159; i++) {
  974. b43_radio_write(dev, B2062_N_RXBB_CALIB2, i);
  975. inner_sum = 0;
  976. for (j = 5; j <= 25; j++) {
  977. lpphy_run_ddfs(dev, 1, 1, j, j, 0);
  978. if (!(lpphy_rx_iq_est(dev, 1000, 32, &iq_est)))
  979. goto finish;
  980. mean_sq_pwr = iq_est.i_pwr + iq_est.q_pwr;
  981. if (j == 5)
  982. tmp = mean_sq_pwr;
  983. ideal_pwr = ((ideal_pwr_table[j-5] >> 3) + 1) >> 1;
  984. normal_pwr = lpphy_qdiv_roundup(mean_sq_pwr, tmp, 12);
  985. mean_sq_pwr = ideal_pwr - normal_pwr;
  986. mean_sq_pwr *= mean_sq_pwr;
  987. inner_sum += mean_sq_pwr;
  988. if ((i = 128) || (inner_sum < mean_sq_pwr_min)) {
  989. lpphy->rc_cap = i;
  990. mean_sq_pwr_min = inner_sum;
  991. }
  992. }
  993. }
  994. lpphy_stop_ddfs(dev);
  995. finish:
  996. lpphy_restore_crs(dev);
  997. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, old_rf_ovrval);
  998. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_0, old_rf_ovr);
  999. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVRVAL, old_afe_ovrval);
  1000. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVR, old_afe_ovr);
  1001. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, old_rf2_ovrval);
  1002. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, old_rf2_ovr);
  1003. b43_phy_write(dev, B43_LPPHY_LP_PHY_CTL, old_phy_ctl);
  1004. lpphy_set_bb_mult(dev, old_bbmult);
  1005. if (old_txg_ovr) {
  1006. /*
  1007. * SPEC FIXME: The specs say "get_tx_gains" here, which is
  1008. * illogical. According to lwfinger, vendor driver v4.150.10.5
  1009. * has a Set here, while v4.174.64.19 has a Get - regression in
  1010. * the vendor driver? This should be tested this once the code
  1011. * is testable.
  1012. */
  1013. lpphy_set_tx_gains(dev, tx_gains);
  1014. }
  1015. lpphy_set_tx_power_control(dev, old_txpctl);
  1016. if (lpphy->rc_cap)
  1017. lpphy_set_rc_cap(dev);
  1018. }
  1019. static void lpphy_rev2plus_rc_calib(struct b43_wldev *dev)
  1020. {
  1021. struct ssb_bus *bus = dev->dev->bus;
  1022. u32 crystal_freq = bus->chipco.pmu.crystalfreq * 1000;
  1023. u8 tmp = b43_radio_read(dev, B2063_RX_BB_SP8) & 0xFF;
  1024. int i;
  1025. b43_radio_write(dev, B2063_RX_BB_SP8, 0x0);
  1026. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7E);
  1027. b43_radio_mask(dev, B2063_PLL_SP1, 0xF7);
  1028. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7C);
  1029. b43_radio_write(dev, B2063_RC_CALIB_CTL2, 0x15);
  1030. b43_radio_write(dev, B2063_RC_CALIB_CTL3, 0x70);
  1031. b43_radio_write(dev, B2063_RC_CALIB_CTL4, 0x52);
  1032. b43_radio_write(dev, B2063_RC_CALIB_CTL5, 0x1);
  1033. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7D);
  1034. for (i = 0; i < 10000; i++) {
  1035. if (b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2)
  1036. break;
  1037. msleep(1);
  1038. }
  1039. if (!(b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2))
  1040. b43_radio_write(dev, B2063_RX_BB_SP8, tmp);
  1041. tmp = b43_radio_read(dev, B2063_TX_BB_SP3) & 0xFF;
  1042. b43_radio_write(dev, B2063_TX_BB_SP3, 0x0);
  1043. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7E);
  1044. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7C);
  1045. b43_radio_write(dev, B2063_RC_CALIB_CTL2, 0x55);
  1046. b43_radio_write(dev, B2063_RC_CALIB_CTL3, 0x76);
  1047. if (crystal_freq == 24000000) {
  1048. b43_radio_write(dev, B2063_RC_CALIB_CTL4, 0xFC);
  1049. b43_radio_write(dev, B2063_RC_CALIB_CTL5, 0x0);
  1050. } else {
  1051. b43_radio_write(dev, B2063_RC_CALIB_CTL4, 0x13);
  1052. b43_radio_write(dev, B2063_RC_CALIB_CTL5, 0x1);
  1053. }
  1054. b43_radio_write(dev, B2063_PA_SP7, 0x7D);
  1055. for (i = 0; i < 10000; i++) {
  1056. if (b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2)
  1057. break;
  1058. msleep(1);
  1059. }
  1060. if (!(b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2))
  1061. b43_radio_write(dev, B2063_TX_BB_SP3, tmp);
  1062. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7E);
  1063. }
  1064. static void lpphy_calibrate_rc(struct b43_wldev *dev)
  1065. {
  1066. struct b43_phy_lp *lpphy = dev->phy.lp;
  1067. if (dev->phy.rev >= 2) {
  1068. lpphy_rev2plus_rc_calib(dev);
  1069. } else if (!lpphy->rc_cap) {
  1070. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  1071. lpphy_rev0_1_rc_calib(dev);
  1072. } else {
  1073. lpphy_set_rc_cap(dev);
  1074. }
  1075. }
  1076. static void lpphy_set_tx_power_by_index(struct b43_wldev *dev, u8 index)
  1077. {
  1078. struct b43_phy_lp *lpphy = dev->phy.lp;
  1079. lpphy->tx_pwr_idx_over = index;
  1080. if (lpphy->txpctl_mode != B43_LPPHY_TXPCTL_OFF)
  1081. lpphy_set_tx_power_control(dev, B43_LPPHY_TXPCTL_SW);
  1082. //TODO
  1083. }
  1084. static void lpphy_btcoex_override(struct b43_wldev *dev)
  1085. {
  1086. b43_write16(dev, B43_MMIO_BTCOEX_CTL, 0x3);
  1087. b43_write16(dev, B43_MMIO_BTCOEX_TXCTL, 0xFF);
  1088. }
  1089. static void lpphy_pr41573_workaround(struct b43_wldev *dev)
  1090. {
  1091. struct b43_phy_lp *lpphy = dev->phy.lp;
  1092. u32 *saved_tab;
  1093. const unsigned int saved_tab_size = 256;
  1094. enum b43_lpphy_txpctl_mode txpctl_mode;
  1095. s8 tx_pwr_idx_over;
  1096. u16 tssi_npt, tssi_idx;
  1097. saved_tab = kcalloc(saved_tab_size, sizeof(saved_tab[0]), GFP_KERNEL);
  1098. if (!saved_tab) {
  1099. b43err(dev->wl, "PR41573 failed. Out of memory!\n");
  1100. return;
  1101. }
  1102. lpphy_read_tx_pctl_mode_from_hardware(dev);
  1103. txpctl_mode = lpphy->txpctl_mode;
  1104. tx_pwr_idx_over = lpphy->tx_pwr_idx_over;
  1105. tssi_npt = lpphy->tssi_npt;
  1106. tssi_idx = lpphy->tssi_idx;
  1107. if (dev->phy.rev < 2) {
  1108. b43_lptab_read_bulk(dev, B43_LPTAB32(10, 0x140),
  1109. saved_tab_size, saved_tab);
  1110. } else {
  1111. b43_lptab_read_bulk(dev, B43_LPTAB32(7, 0x140),
  1112. saved_tab_size, saved_tab);
  1113. }
  1114. //TODO
  1115. kfree(saved_tab);
  1116. }
  1117. static void lpphy_calibration(struct b43_wldev *dev)
  1118. {
  1119. struct b43_phy_lp *lpphy = dev->phy.lp;
  1120. enum b43_lpphy_txpctl_mode saved_pctl_mode;
  1121. b43_mac_suspend(dev);
  1122. lpphy_btcoex_override(dev);
  1123. lpphy_read_tx_pctl_mode_from_hardware(dev);
  1124. saved_pctl_mode = lpphy->txpctl_mode;
  1125. lpphy_set_tx_power_control(dev, B43_LPPHY_TXPCTL_OFF);
  1126. //TODO Perform transmit power table I/Q LO calibration
  1127. if ((dev->phy.rev == 0) && (saved_pctl_mode != B43_LPPHY_TXPCTL_OFF))
  1128. lpphy_pr41573_workaround(dev);
  1129. //TODO If a full calibration has not been performed on this channel yet, perform PAPD TX-power calibration
  1130. lpphy_set_tx_power_control(dev, saved_pctl_mode);
  1131. //TODO Perform I/Q calibration with a single control value set
  1132. b43_mac_enable(dev);
  1133. }
  1134. static void lpphy_set_tssi_mux(struct b43_wldev *dev, enum tssi_mux_mode mode)
  1135. {
  1136. if (mode != TSSI_MUX_EXT) {
  1137. b43_radio_set(dev, B2063_PA_SP1, 0x2);
  1138. b43_phy_set(dev, B43_PHY_OFDM(0xF3), 0x1000);
  1139. b43_radio_write(dev, B2063_PA_CTL10, 0x51);
  1140. if (mode == TSSI_MUX_POSTPA) {
  1141. b43_radio_mask(dev, B2063_PA_SP1, 0xFFFE);
  1142. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0xFFC7);
  1143. } else {
  1144. b43_radio_maskset(dev, B2063_PA_SP1, 0xFFFE, 0x1);
  1145. b43_phy_maskset(dev, B43_LPPHY_AFE_CTL_OVRVAL,
  1146. 0xFFC7, 0x20);
  1147. }
  1148. } else {
  1149. B43_WARN_ON(1);
  1150. }
  1151. }
  1152. static void lpphy_tx_pctl_init_hw(struct b43_wldev *dev)
  1153. {
  1154. u16 tmp;
  1155. int i;
  1156. //SPEC TODO Call LP PHY Clear TX Power offsets
  1157. for (i = 0; i < 64; i++) {
  1158. if (dev->phy.rev >= 2)
  1159. b43_lptab_write(dev, B43_LPTAB32(7, i + 1), i);
  1160. else
  1161. b43_lptab_write(dev, B43_LPTAB32(10, i + 1), i);
  1162. }
  1163. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_NNUM, 0xFF00, 0xFF);
  1164. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_NNUM, 0x8FFF, 0x5000);
  1165. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_IDLETSSI, 0xFFC0, 0x1F);
  1166. if (dev->phy.rev < 2) {
  1167. b43_phy_mask(dev, B43_LPPHY_LP_PHY_CTL, 0xEFFF);
  1168. b43_phy_maskset(dev, B43_LPPHY_LP_PHY_CTL, 0xDFFF, 0x2000);
  1169. } else {
  1170. b43_phy_mask(dev, B43_PHY_OFDM(0x103), 0xFFFE);
  1171. b43_phy_maskset(dev, B43_PHY_OFDM(0x103), 0xFFFB, 0x4);
  1172. b43_phy_maskset(dev, B43_PHY_OFDM(0x103), 0xFFEF, 0x10);
  1173. b43_radio_maskset(dev, B2063_IQ_CALIB_CTL2, 0xF3, 0x1);
  1174. lpphy_set_tssi_mux(dev, TSSI_MUX_POSTPA);
  1175. }
  1176. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_IDLETSSI, 0x7FFF, 0x8000);
  1177. b43_phy_mask(dev, B43_LPPHY_TX_PWR_CTL_DELTAPWR_LIMIT, 0xFF);
  1178. b43_phy_write(dev, B43_LPPHY_TX_PWR_CTL_DELTAPWR_LIMIT, 0xA);
  1179. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  1180. (u16)~B43_LPPHY_TX_PWR_CTL_CMD_MODE,
  1181. B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF);
  1182. b43_phy_mask(dev, B43_LPPHY_TX_PWR_CTL_NNUM, 0xF8FF);
  1183. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  1184. (u16)~B43_LPPHY_TX_PWR_CTL_CMD_MODE,
  1185. B43_LPPHY_TX_PWR_CTL_CMD_MODE_SW);
  1186. if (dev->phy.rev < 2) {
  1187. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_0, 0xEFFF, 0x1000);
  1188. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xEFFF);
  1189. } else {
  1190. lpphy_set_tx_power_by_index(dev, 0x7F);
  1191. }
  1192. b43_dummy_transmission(dev, true, true);
  1193. tmp = b43_phy_read(dev, B43_LPPHY_TX_PWR_CTL_STAT);
  1194. if (tmp & 0x8000) {
  1195. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_IDLETSSI,
  1196. 0xFFC0, (tmp & 0xFF) - 32);
  1197. }
  1198. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xEFFF);
  1199. // (SPEC?) TODO Set "Target TX frequency" variable to 0
  1200. // SPEC FIXME "Set BB Multiplier to 0xE000" impossible - bb_mult is u8!
  1201. }
  1202. static void lpphy_tx_pctl_init_sw(struct b43_wldev *dev)
  1203. {
  1204. struct lpphy_tx_gains gains;
  1205. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  1206. gains.gm = 4;
  1207. gains.pad = 12;
  1208. gains.pga = 12;
  1209. gains.dac = 0;
  1210. } else {
  1211. gains.gm = 7;
  1212. gains.pad = 14;
  1213. gains.pga = 15;
  1214. gains.dac = 0;
  1215. }
  1216. lpphy_set_tx_gains(dev, gains);
  1217. lpphy_set_bb_mult(dev, 150);
  1218. }
  1219. /* Initialize TX power control */
  1220. static void lpphy_tx_pctl_init(struct b43_wldev *dev)
  1221. {
  1222. if (0/*FIXME HWPCTL capable */) {
  1223. lpphy_tx_pctl_init_hw(dev);
  1224. } else { /* This device is only software TX power control capable. */
  1225. lpphy_tx_pctl_init_sw(dev);
  1226. }
  1227. }
  1228. static u16 b43_lpphy_op_read(struct b43_wldev *dev, u16 reg)
  1229. {
  1230. b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
  1231. return b43_read16(dev, B43_MMIO_PHY_DATA);
  1232. }
  1233. static void b43_lpphy_op_write(struct b43_wldev *dev, u16 reg, u16 value)
  1234. {
  1235. b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
  1236. b43_write16(dev, B43_MMIO_PHY_DATA, value);
  1237. }
  1238. static u16 b43_lpphy_op_radio_read(struct b43_wldev *dev, u16 reg)
  1239. {
  1240. /* Register 1 is a 32-bit register. */
  1241. B43_WARN_ON(reg == 1);
  1242. /* LP-PHY needs a special bit set for read access */
  1243. if (dev->phy.rev < 2) {
  1244. if (reg != 0x4001)
  1245. reg |= 0x100;
  1246. } else
  1247. reg |= 0x200;
  1248. b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
  1249. return b43_read16(dev, B43_MMIO_RADIO_DATA_LOW);
  1250. }
  1251. static void b43_lpphy_op_radio_write(struct b43_wldev *dev, u16 reg, u16 value)
  1252. {
  1253. /* Register 1 is a 32-bit register. */
  1254. B43_WARN_ON(reg == 1);
  1255. b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
  1256. b43_write16(dev, B43_MMIO_RADIO_DATA_LOW, value);
  1257. }
  1258. static void b43_lpphy_op_software_rfkill(struct b43_wldev *dev,
  1259. bool blocked)
  1260. {
  1261. //TODO
  1262. }
  1263. struct b206x_channel {
  1264. u8 channel;
  1265. u16 freq;
  1266. u8 data[12];
  1267. };
  1268. static const struct b206x_channel b2063_chantbl[] = {
  1269. { .channel = 1, .freq = 2412, .data[0] = 0x6F, .data[1] = 0x3C,
  1270. .data[2] = 0x3C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1271. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1272. .data[10] = 0x80, .data[11] = 0x70, },
  1273. { .channel = 2, .freq = 2417, .data[0] = 0x6F, .data[1] = 0x3C,
  1274. .data[2] = 0x3C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1275. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1276. .data[10] = 0x80, .data[11] = 0x70, },
  1277. { .channel = 3, .freq = 2422, .data[0] = 0x6F, .data[1] = 0x3C,
  1278. .data[2] = 0x3C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1279. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1280. .data[10] = 0x80, .data[11] = 0x70, },
  1281. { .channel = 4, .freq = 2427, .data[0] = 0x6F, .data[1] = 0x2C,
  1282. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1283. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1284. .data[10] = 0x80, .data[11] = 0x70, },
  1285. { .channel = 5, .freq = 2432, .data[0] = 0x6F, .data[1] = 0x2C,
  1286. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1287. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1288. .data[10] = 0x80, .data[11] = 0x70, },
  1289. { .channel = 6, .freq = 2437, .data[0] = 0x6F, .data[1] = 0x2C,
  1290. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1291. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1292. .data[10] = 0x80, .data[11] = 0x70, },
  1293. { .channel = 7, .freq = 2442, .data[0] = 0x6F, .data[1] = 0x2C,
  1294. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1295. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1296. .data[10] = 0x80, .data[11] = 0x70, },
  1297. { .channel = 8, .freq = 2447, .data[0] = 0x6F, .data[1] = 0x2C,
  1298. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1299. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1300. .data[10] = 0x80, .data[11] = 0x70, },
  1301. { .channel = 9, .freq = 2452, .data[0] = 0x6F, .data[1] = 0x1C,
  1302. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1303. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1304. .data[10] = 0x80, .data[11] = 0x70, },
  1305. { .channel = 10, .freq = 2457, .data[0] = 0x6F, .data[1] = 0x1C,
  1306. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1307. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1308. .data[10] = 0x80, .data[11] = 0x70, },
  1309. { .channel = 11, .freq = 2462, .data[0] = 0x6E, .data[1] = 0x1C,
  1310. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1311. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1312. .data[10] = 0x80, .data[11] = 0x70, },
  1313. { .channel = 12, .freq = 2467, .data[0] = 0x6E, .data[1] = 0x1C,
  1314. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1315. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1316. .data[10] = 0x80, .data[11] = 0x70, },
  1317. { .channel = 13, .freq = 2472, .data[0] = 0x6E, .data[1] = 0x1C,
  1318. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1319. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1320. .data[10] = 0x80, .data[11] = 0x70, },
  1321. { .channel = 14, .freq = 2484, .data[0] = 0x6E, .data[1] = 0x0C,
  1322. .data[2] = 0x0C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1323. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1324. .data[10] = 0x80, .data[11] = 0x70, },
  1325. { .channel = 34, .freq = 5170, .data[0] = 0x6A, .data[1] = 0x0C,
  1326. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x02, .data[5] = 0x05,
  1327. .data[6] = 0x0D, .data[7] = 0x0D, .data[8] = 0x77, .data[9] = 0x80,
  1328. .data[10] = 0x20, .data[11] = 0x00, },
  1329. { .channel = 36, .freq = 5180, .data[0] = 0x6A, .data[1] = 0x0C,
  1330. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x01, .data[5] = 0x05,
  1331. .data[6] = 0x0D, .data[7] = 0x0C, .data[8] = 0x77, .data[9] = 0x80,
  1332. .data[10] = 0x20, .data[11] = 0x00, },
  1333. { .channel = 38, .freq = 5190, .data[0] = 0x6A, .data[1] = 0x0C,
  1334. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x01, .data[5] = 0x04,
  1335. .data[6] = 0x0C, .data[7] = 0x0C, .data[8] = 0x77, .data[9] = 0x80,
  1336. .data[10] = 0x20, .data[11] = 0x00, },
  1337. { .channel = 40, .freq = 5200, .data[0] = 0x69, .data[1] = 0x0C,
  1338. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x01, .data[5] = 0x04,
  1339. .data[6] = 0x0C, .data[7] = 0x0C, .data[8] = 0x77, .data[9] = 0x70,
  1340. .data[10] = 0x20, .data[11] = 0x00, },
  1341. { .channel = 42, .freq = 5210, .data[0] = 0x69, .data[1] = 0x0C,
  1342. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x01, .data[5] = 0x04,
  1343. .data[6] = 0x0B, .data[7] = 0x0C, .data[8] = 0x77, .data[9] = 0x70,
  1344. .data[10] = 0x20, .data[11] = 0x00, },
  1345. { .channel = 44, .freq = 5220, .data[0] = 0x69, .data[1] = 0x0C,
  1346. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x04,
  1347. .data[6] = 0x0B, .data[7] = 0x0B, .data[8] = 0x77, .data[9] = 0x60,
  1348. .data[10] = 0x20, .data[11] = 0x00, },
  1349. { .channel = 46, .freq = 5230, .data[0] = 0x69, .data[1] = 0x0C,
  1350. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x03,
  1351. .data[6] = 0x0A, .data[7] = 0x0B, .data[8] = 0x77, .data[9] = 0x60,
  1352. .data[10] = 0x20, .data[11] = 0x00, },
  1353. { .channel = 48, .freq = 5240, .data[0] = 0x69, .data[1] = 0x0C,
  1354. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x03,
  1355. .data[6] = 0x0A, .data[7] = 0x0A, .data[8] = 0x77, .data[9] = 0x60,
  1356. .data[10] = 0x20, .data[11] = 0x00, },
  1357. { .channel = 52, .freq = 5260, .data[0] = 0x68, .data[1] = 0x0C,
  1358. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x02,
  1359. .data[6] = 0x09, .data[7] = 0x09, .data[8] = 0x77, .data[9] = 0x60,
  1360. .data[10] = 0x20, .data[11] = 0x00, },
  1361. { .channel = 56, .freq = 5280, .data[0] = 0x68, .data[1] = 0x0C,
  1362. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x01,
  1363. .data[6] = 0x08, .data[7] = 0x08, .data[8] = 0x77, .data[9] = 0x50,
  1364. .data[10] = 0x10, .data[11] = 0x00, },
  1365. { .channel = 60, .freq = 5300, .data[0] = 0x68, .data[1] = 0x0C,
  1366. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x01,
  1367. .data[6] = 0x08, .data[7] = 0x08, .data[8] = 0x77, .data[9] = 0x50,
  1368. .data[10] = 0x10, .data[11] = 0x00, },
  1369. { .channel = 64, .freq = 5320, .data[0] = 0x67, .data[1] = 0x0C,
  1370. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1371. .data[6] = 0x08, .data[7] = 0x08, .data[8] = 0x77, .data[9] = 0x50,
  1372. .data[10] = 0x10, .data[11] = 0x00, },
  1373. { .channel = 100, .freq = 5500, .data[0] = 0x64, .data[1] = 0x0C,
  1374. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1375. .data[6] = 0x02, .data[7] = 0x01, .data[8] = 0x77, .data[9] = 0x20,
  1376. .data[10] = 0x00, .data[11] = 0x00, },
  1377. { .channel = 104, .freq = 5520, .data[0] = 0x64, .data[1] = 0x0C,
  1378. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1379. .data[6] = 0x01, .data[7] = 0x01, .data[8] = 0x77, .data[9] = 0x20,
  1380. .data[10] = 0x00, .data[11] = 0x00, },
  1381. { .channel = 108, .freq = 5540, .data[0] = 0x63, .data[1] = 0x0C,
  1382. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1383. .data[6] = 0x01, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x10,
  1384. .data[10] = 0x00, .data[11] = 0x00, },
  1385. { .channel = 112, .freq = 5560, .data[0] = 0x63, .data[1] = 0x0C,
  1386. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1387. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x10,
  1388. .data[10] = 0x00, .data[11] = 0x00, },
  1389. { .channel = 116, .freq = 5580, .data[0] = 0x62, .data[1] = 0x0C,
  1390. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1391. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x10,
  1392. .data[10] = 0x00, .data[11] = 0x00, },
  1393. { .channel = 120, .freq = 5600, .data[0] = 0x62, .data[1] = 0x0C,
  1394. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1395. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1396. .data[10] = 0x00, .data[11] = 0x00, },
  1397. { .channel = 124, .freq = 5620, .data[0] = 0x62, .data[1] = 0x0C,
  1398. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1399. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1400. .data[10] = 0x00, .data[11] = 0x00, },
  1401. { .channel = 128, .freq = 5640, .data[0] = 0x61, .data[1] = 0x0C,
  1402. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1403. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1404. .data[10] = 0x00, .data[11] = 0x00, },
  1405. { .channel = 132, .freq = 5660, .data[0] = 0x61, .data[1] = 0x0C,
  1406. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1407. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1408. .data[10] = 0x00, .data[11] = 0x00, },
  1409. { .channel = 136, .freq = 5680, .data[0] = 0x61, .data[1] = 0x0C,
  1410. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1411. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1412. .data[10] = 0x00, .data[11] = 0x00, },
  1413. { .channel = 140, .freq = 5700, .data[0] = 0x60, .data[1] = 0x0C,
  1414. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1415. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1416. .data[10] = 0x00, .data[11] = 0x00, },
  1417. { .channel = 149, .freq = 5745, .data[0] = 0x60, .data[1] = 0x0C,
  1418. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1419. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1420. .data[10] = 0x00, .data[11] = 0x00, },
  1421. { .channel = 153, .freq = 5765, .data[0] = 0x60, .data[1] = 0x0C,
  1422. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1423. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1424. .data[10] = 0x00, .data[11] = 0x00, },
  1425. { .channel = 157, .freq = 5785, .data[0] = 0x60, .data[1] = 0x0C,
  1426. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1427. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1428. .data[10] = 0x00, .data[11] = 0x00, },
  1429. { .channel = 161, .freq = 5805, .data[0] = 0x60, .data[1] = 0x0C,
  1430. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1431. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1432. .data[10] = 0x00, .data[11] = 0x00, },
  1433. { .channel = 165, .freq = 5825, .data[0] = 0x60, .data[1] = 0x0C,
  1434. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1435. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1436. .data[10] = 0x00, .data[11] = 0x00, },
  1437. { .channel = 184, .freq = 4920, .data[0] = 0x6E, .data[1] = 0x0C,
  1438. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x09, .data[5] = 0x0E,
  1439. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xC0,
  1440. .data[10] = 0x50, .data[11] = 0x00, },
  1441. { .channel = 188, .freq = 4940, .data[0] = 0x6E, .data[1] = 0x0C,
  1442. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x09, .data[5] = 0x0D,
  1443. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xB0,
  1444. .data[10] = 0x50, .data[11] = 0x00, },
  1445. { .channel = 192, .freq = 4960, .data[0] = 0x6E, .data[1] = 0x0C,
  1446. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x08, .data[5] = 0x0C,
  1447. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xB0,
  1448. .data[10] = 0x50, .data[11] = 0x00, },
  1449. { .channel = 196, .freq = 4980, .data[0] = 0x6D, .data[1] = 0x0C,
  1450. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x08, .data[5] = 0x0C,
  1451. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xA0,
  1452. .data[10] = 0x40, .data[11] = 0x00, },
  1453. { .channel = 200, .freq = 5000, .data[0] = 0x6D, .data[1] = 0x0C,
  1454. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x08, .data[5] = 0x0B,
  1455. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xA0,
  1456. .data[10] = 0x40, .data[11] = 0x00, },
  1457. { .channel = 204, .freq = 5020, .data[0] = 0x6D, .data[1] = 0x0C,
  1458. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x08, .data[5] = 0x0A,
  1459. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xA0,
  1460. .data[10] = 0x40, .data[11] = 0x00, },
  1461. { .channel = 208, .freq = 5040, .data[0] = 0x6C, .data[1] = 0x0C,
  1462. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x07, .data[5] = 0x09,
  1463. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0x90,
  1464. .data[10] = 0x40, .data[11] = 0x00, },
  1465. { .channel = 212, .freq = 5060, .data[0] = 0x6C, .data[1] = 0x0C,
  1466. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x06, .data[5] = 0x08,
  1467. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0x90,
  1468. .data[10] = 0x40, .data[11] = 0x00, },
  1469. { .channel = 216, .freq = 5080, .data[0] = 0x6C, .data[1] = 0x0C,
  1470. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x05, .data[5] = 0x08,
  1471. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0x90,
  1472. .data[10] = 0x40, .data[11] = 0x00, },
  1473. };
  1474. static void lpphy_b2062_tune(struct b43_wldev *dev,
  1475. unsigned int channel)
  1476. {
  1477. //TODO
  1478. }
  1479. static void lpphy_b2063_vco_calib(struct b43_wldev *dev)
  1480. {
  1481. u16 tmp;
  1482. b43_phy_mask(dev, B2063_PLL_SP1, ~0x40);
  1483. tmp = b43_phy_read(dev, B2063_PLL_JTAG_CALNRST) & 0xF8;
  1484. b43_phy_write(dev, B2063_PLL_JTAG_CALNRST, tmp);
  1485. udelay(1);
  1486. b43_phy_write(dev, B2063_PLL_JTAG_CALNRST, tmp | 0x4);
  1487. udelay(1);
  1488. b43_phy_write(dev, B2063_PLL_JTAG_CALNRST, tmp | 0x6);
  1489. udelay(1);
  1490. b43_phy_write(dev, B2063_PLL_JTAG_CALNRST, tmp | 0x7);
  1491. udelay(300);
  1492. b43_phy_set(dev, B2063_PLL_SP1, 0x40);
  1493. }
  1494. static void lpphy_b2063_tune(struct b43_wldev *dev,
  1495. unsigned int channel)
  1496. {
  1497. struct ssb_bus *bus = dev->dev->bus;
  1498. static const struct b206x_channel *chandata = NULL;
  1499. u32 crystal_freq = bus->chipco.pmu.crystalfreq * 1000;
  1500. u32 freqref, vco_freq, val1, val2, val3, timeout, timeoutref, count;
  1501. u16 old_comm15, scale;
  1502. u32 tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
  1503. int i, div = (crystal_freq <= 26000000 ? 1 : 2);
  1504. for (i = 0; i < ARRAY_SIZE(b2063_chantbl); i++) {
  1505. if (b2063_chantbl[i].channel == channel) {
  1506. chandata = &b2063_chantbl[i];
  1507. break;
  1508. }
  1509. }
  1510. if (B43_WARN_ON(!chandata))
  1511. return;
  1512. b43_radio_write(dev, B2063_LOGEN_VCOBUF1, chandata->data[0]);
  1513. b43_radio_write(dev, B2063_LOGEN_MIXER2, chandata->data[1]);
  1514. b43_radio_write(dev, B2063_LOGEN_BUF2, chandata->data[2]);
  1515. b43_radio_write(dev, B2063_LOGEN_RCCR1, chandata->data[3]);
  1516. b43_radio_write(dev, B2063_A_RX_1ST3, chandata->data[4]);
  1517. b43_radio_write(dev, B2063_A_RX_2ND1, chandata->data[5]);
  1518. b43_radio_write(dev, B2063_A_RX_2ND4, chandata->data[6]);
  1519. b43_radio_write(dev, B2063_A_RX_2ND7, chandata->data[7]);
  1520. b43_radio_write(dev, B2063_A_RX_PS6, chandata->data[8]);
  1521. b43_radio_write(dev, B2063_TX_RF_CTL2, chandata->data[9]);
  1522. b43_radio_write(dev, B2063_TX_RF_CTL5, chandata->data[10]);
  1523. b43_radio_write(dev, B2063_PA_CTL11, chandata->data[11]);
  1524. old_comm15 = b43_radio_read(dev, B2063_COMM15);
  1525. b43_radio_set(dev, B2063_COMM15, 0x1E);
  1526. if (chandata->freq > 4000) /* spec says 2484, but 4000 is safer */
  1527. vco_freq = chandata->freq << 1;
  1528. else
  1529. vco_freq = chandata->freq << 2;
  1530. freqref = crystal_freq * 3;
  1531. val1 = lpphy_qdiv_roundup(crystal_freq, 1000000, 16);
  1532. val2 = lpphy_qdiv_roundup(crystal_freq, 1000000 * div, 16);
  1533. val3 = lpphy_qdiv_roundup(vco_freq, 3, 16);
  1534. timeout = ((((8 * crystal_freq) / (div * 5000000)) + 1) >> 1) - 1;
  1535. b43_radio_write(dev, B2063_PLL_JTAG_PLL_VCO_CALIB3, 0x2);
  1536. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_VCO_CALIB6,
  1537. 0xFFF8, timeout >> 2);
  1538. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_VCO_CALIB7,
  1539. 0xFF9F,timeout << 5);
  1540. timeoutref = ((((8 * crystal_freq) / (div * (timeout + 1))) +
  1541. 999999) / 1000000) + 1;
  1542. b43_radio_write(dev, B2063_PLL_JTAG_PLL_VCO_CALIB5, timeoutref);
  1543. count = lpphy_qdiv_roundup(val3, val2 + 16, 16);
  1544. count *= (timeout + 1) * (timeoutref + 1);
  1545. count--;
  1546. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_VCO_CALIB7,
  1547. 0xF0, count >> 8);
  1548. b43_radio_write(dev, B2063_PLL_JTAG_PLL_VCO_CALIB8, count & 0xFF);
  1549. tmp1 = ((val3 * 62500) / freqref) << 4;
  1550. tmp2 = ((val3 * 62500) % freqref) << 4;
  1551. while (tmp2 >= freqref) {
  1552. tmp1++;
  1553. tmp2 -= freqref;
  1554. }
  1555. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_SG1, 0xFFE0, tmp1 >> 4);
  1556. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_SG2, 0xFE0F, tmp1 << 4);
  1557. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_SG2, 0xFFF0, tmp1 >> 16);
  1558. b43_radio_write(dev, B2063_PLL_JTAG_PLL_SG3, (tmp2 >> 8) & 0xFF);
  1559. b43_radio_write(dev, B2063_PLL_JTAG_PLL_SG4, tmp2 & 0xFF);
  1560. b43_radio_write(dev, B2063_PLL_JTAG_PLL_LF1, 0xB9);
  1561. b43_radio_write(dev, B2063_PLL_JTAG_PLL_LF2, 0x88);
  1562. b43_radio_write(dev, B2063_PLL_JTAG_PLL_LF3, 0x28);
  1563. b43_radio_write(dev, B2063_PLL_JTAG_PLL_LF4, 0x63);
  1564. tmp3 = ((41 * (val3 - 3000)) /1200) + 27;
  1565. tmp4 = lpphy_qdiv_roundup(132000 * tmp1, 8451, 16);
  1566. if ((tmp4 + tmp3 - 1) / tmp3 > 60) {
  1567. scale = 1;
  1568. tmp5 = ((tmp4 + tmp3) / (tmp3 << 1)) - 8;
  1569. } else {
  1570. scale = 0;
  1571. tmp5 = ((tmp4 + (tmp3 >> 1)) / tmp3) - 8;
  1572. }
  1573. b43_phy_maskset(dev, B2063_PLL_JTAG_PLL_CP2, 0xFFC0, tmp5);
  1574. b43_phy_maskset(dev, B2063_PLL_JTAG_PLL_CP2, 0xFFBF, scale << 6);
  1575. tmp6 = lpphy_qdiv_roundup(100 * val1, val3, 16);
  1576. tmp6 *= (tmp5 * 8) * (scale + 1);
  1577. if (tmp6 > 150)
  1578. tmp6 = 0;
  1579. b43_phy_maskset(dev, B2063_PLL_JTAG_PLL_CP3, 0xFFE0, tmp6);
  1580. b43_phy_maskset(dev, B2063_PLL_JTAG_PLL_CP3, 0xFFDF, scale << 5);
  1581. b43_phy_maskset(dev, B2063_PLL_JTAG_PLL_XTAL_12, 0xFFFB, 0x4);
  1582. if (crystal_freq > 26000000)
  1583. b43_phy_set(dev, B2063_PLL_JTAG_PLL_XTAL_12, 0x2);
  1584. else
  1585. b43_phy_mask(dev, B2063_PLL_JTAG_PLL_XTAL_12, 0xFD);
  1586. if (val1 == 45)
  1587. b43_phy_set(dev, B2063_PLL_JTAG_PLL_VCO1, 0x2);
  1588. else
  1589. b43_phy_mask(dev, B2063_PLL_JTAG_PLL_VCO1, 0xFD);
  1590. b43_phy_set(dev, B2063_PLL_SP2, 0x3);
  1591. udelay(1);
  1592. b43_phy_mask(dev, B2063_PLL_SP2, 0xFFFC);
  1593. lpphy_b2063_vco_calib(dev);
  1594. b43_radio_write(dev, B2063_COMM15, old_comm15);
  1595. }
  1596. static int b43_lpphy_op_switch_channel(struct b43_wldev *dev,
  1597. unsigned int new_channel)
  1598. {
  1599. b43_write16(dev, B43_MMIO_CHANNEL, new_channel);
  1600. if (dev->phy.radio_ver == 0x2063) {
  1601. lpphy_b2063_tune(dev, new_channel);
  1602. } else {
  1603. lpphy_b2062_tune(dev, new_channel);
  1604. //TODO Japan filter
  1605. }
  1606. lpphy_adjust_gain_table(dev, channel2freq_lp(new_channel));
  1607. return 0;
  1608. }
  1609. static int b43_lpphy_op_init(struct b43_wldev *dev)
  1610. {
  1611. lpphy_read_band_sprom(dev); //FIXME should this be in prepare_structs?
  1612. lpphy_baseband_init(dev);
  1613. lpphy_radio_init(dev);
  1614. lpphy_calibrate_rc(dev);
  1615. b43_lpphy_op_switch_channel(dev, b43_lpphy_op_get_default_chan(dev));
  1616. lpphy_tx_pctl_init(dev);
  1617. lpphy_calibration(dev);
  1618. //TODO ACI init
  1619. return 0;
  1620. }
  1621. static void b43_lpphy_op_set_rx_antenna(struct b43_wldev *dev, int antenna)
  1622. {
  1623. //TODO
  1624. }
  1625. static void b43_lpphy_op_adjust_txpower(struct b43_wldev *dev)
  1626. {
  1627. //TODO
  1628. }
  1629. static enum b43_txpwr_result b43_lpphy_op_recalc_txpower(struct b43_wldev *dev,
  1630. bool ignore_tssi)
  1631. {
  1632. //TODO
  1633. return B43_TXPWR_RES_DONE;
  1634. }
  1635. const struct b43_phy_operations b43_phyops_lp = {
  1636. .allocate = b43_lpphy_op_allocate,
  1637. .free = b43_lpphy_op_free,
  1638. .prepare_structs = b43_lpphy_op_prepare_structs,
  1639. .init = b43_lpphy_op_init,
  1640. .phy_read = b43_lpphy_op_read,
  1641. .phy_write = b43_lpphy_op_write,
  1642. .radio_read = b43_lpphy_op_radio_read,
  1643. .radio_write = b43_lpphy_op_radio_write,
  1644. .software_rfkill = b43_lpphy_op_software_rfkill,
  1645. .switch_analog = b43_phyop_switch_analog_generic,
  1646. .switch_channel = b43_lpphy_op_switch_channel,
  1647. .get_default_chan = b43_lpphy_op_get_default_chan,
  1648. .set_rx_antenna = b43_lpphy_op_set_rx_antenna,
  1649. .recalc_txpower = b43_lpphy_op_recalc_txpower,
  1650. .adjust_txpower = b43_lpphy_op_adjust_txpower,
  1651. };